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Summary

Based on current trends in computer architectures, faster compute speeds must
come from increased parallelism rather than increased clock speeds, which are
currently stagnate. This situation has created the well-known bottleneck for sequen-
tial time-integration, where each individual time-value (i.e., time-step) is computed
sequentially. One approach to alleviate this and achieve parallelism in time is with
multigrid. In this work, we consider multigrid-reduction-in-time (MGRIT), a mul-
tilevel method applied to the time dimension that computes multiple time-steps in
parallel. Like all multigrid methods, MGRIT relies on the complementary relation-
ship between relaxation on a fine-grid and a correction from the coarse grid to solve
the problem. All current MGRIT implementations are based on unweighted-Jacobi
relaxation; here we introduce the concept of weighted relaxation to MGRIT. We
derive new convergence bounds for weighted relaxation, and use this analysis to
guide the selection of relaxation weights. Numerical results then demonstrate that
non-unitary relaxation weights consistently yield faster convergence rates and lower
iteration counts for MGRIT when compared with unweighted relaxation. In most
cases, weighted relaxation yields a 10%–20% saving in iterations. For A-stable inte-
gration schemes, results also illustrate that under-relaxation can restore convergence
in some cases where unweighted relaxation is not convergent.

KEYWORDS:
parallel-in-time, multigrid, multigrid-reduction-in-time, weighted relaxation, polynomial relaxation

1 INTRODUCTION

Based on current trends in computer architectures, faster compute speeds must come from increased parallelism rather than
increased clock speeds, which are stagnate. This situation has created a bottleneck for sequential time-integration1–3, where
each individual time-value (i.e., time-step) is computed sequentially. One approach to alleviate this is through parallelism in
the time dimension, which goes back at least to Nievergelt4 in 1964. For an introduction to parallel-in-time methods, see
the review papers1, 3, which give an overview of various approaches such as multiple shooting, waveform relaxation, domain
decomposition, multigrid, and direct parallel-in-time methods.
In this work, we choose multigrid for parallelism in time for the same reasons that multigrid is often the method of choice for
solving spatial problems5, 6, i.e., a well-designed multigrid solver is an optimal method. In particular, we consider the multigrid-
reduction-in-time (MGRIT) method2, which has been applied in numerous settings, e.g., for nonlinear parabolic problems7,
compressible and incompressible Navier-Stokes8, 9, elasticity10, power-grid systems11, 12, eddy current13, 14, machine learn-
ing15, 16, andmore3. However, we note that there exist other powerful multigrid-like parallel-in-timemethods such as the popular
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parareal17 and parallel full approximation scheme in space and time (PFASST)18–20 methods. Parareal can be viewed as a two-
level multigrid reduction method that coarsens in time21. PFASST can also be viewed as a multigrid method in time that utilizes
a deferred correction strategy to compute multiple time-steps in parallel22. Unlike parareal, MGRIT is a full multilevel method
applied to the time dimension, which allows for optimal scaling with respect to problem size. In contrast, for the two-level case,
the coarsest temporal grid typically grows with problem size, yielding a potentially fast, but non-optimal method.
Like all multigrid methods, MGRIT relies on the complementary relationship between relaxation on a fine-grid, typically
unweighted (block) Jacobi, and a correction from the coarse grid to solve the problem. In this work, we extend the use of weighted
relaxation in multigrid5, 6, 23, 24 to MGRIT, and analyze and select effective relaxation weights. With an appropriate choice of
weight, MGRIT with weighted relaxation consistently offers faster convergence when compared with standard (unweighted)
MGRIT, at almost no additional computational work1. Section 2 introduces a framework for weighted relaxation in MGRIT, and
derives a new convergence analysis for linear two-grid MGRIT with degree-1 weighted-Jacobi relaxation. The theory is then
verified with simple numerical examples in Section 3, and the utility of weighted relaxation is demonstrated on more complex
problems in Section 4, including a 2D advection-diffusion problem and a 2D nonlinear eddy current problem. The new method
consistently offers a 10–20% savings in iterations over standard unweighted MGRIT, and in some cases, (particularly A-stable
integration schemes) yields convergence several times faster. Additional experiments are provided in the Supplemental Materials
Appendix S2, exploring the effects of level-dependent relaxation weights for multilevel solvers and degree-2 weighted-Jacobi.

2 MULTIGRID-REDUCTION-IN-TIME (MGRIT) ANDWEIGHTED-JACOBI

2.1 Two-level MGRIT method
This section derives the error-propagation operator for two-level linear MGRIT with weighted relaxation. Then, two-level con-
vergence bounds are derived as a function of relaxation weight, providing insight on choosing the weight in practice. Although
MGRIT uses full approximation storage (FAS) nonlinear multigrid cycling25 to solve nonlinear problems, the linear two-grid
setting makes analysis more tractable (e.g.,26–30), and MGRIT behavior for linear problems is often indicative of MGRIT behav-
ior for related nonlinear problems27. Thus, consider a linear system of ordinary differential equations (ODEs) with Nx spatial
degrees of freedom,

du
dt

= Gu(t) + g(t), u(0) = g0, t ∈ [0, T ], (1)

where u ∈ ℝNx and G ∈ ℝNx×Nx is a linear operator in space. For simplicity, define a uniform temporal grid as tj = j�t, for
j = 0, 1, .., Nt − 1 where Nt refers to the number of points in time, with constant spacing �t = T ∕(Nt − 1) > 0. Let uj be an
approximation to u(tj) for j = 1, 2, .., Nt − 1 and u0 = u(0). Then, a general one-step time discretization for (1) is defined as

u0 = g0,
uj = Φuj−1 + gj , j = 1, 2, ..., Nt − 1,

(2)

where Φ is a one-step integration operator and gj = g(tj). The solution to (2) for all time points is equivalent to solving the
system of equations

Au ∶=

⎡

⎢

⎢

⎢

⎢

⎣

I
−Φ I

⋱ ⋱
−Φ I

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

u0
u1
⋮

uNt−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

g0
g1
⋮

gNt−1

⎤

⎥

⎥

⎥

⎥

⎦

= g. (3)

While sequential time-stepping solves (3) directly with forward-substitution, MGRIT solves (3) iteratively by combining a block
Jacobi relaxationwith error corrections computed on a coarse-grid. Let the coarse temporal grid be Ti = i�T , for i = 0, 1, ..., NT−1
andNT = (Nt−1)∕m+1, which corresponds to a positive integer coarsening factor m and constant spacing �T = m�t. (Without
loss of generality, we assume that Nt − 1 divides evenly by m in this description.) The original grid of points {tj} is then
partitioned into C-points given by the set of coarse grid points {Ti}, and F-points given by {ti} ⧵ {Ti} (see Figure 1). These
C-points then induce a new coarser time-grid, with equivalent time-propagation problem

u0 = g0
ukm = Φmu(k−1)m + g̃km, k = 1, 2, ..., NT − 1,

(4)

1Only one additional vector addition is performed.
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FIGURE 1 Uniform fine and coarse time-grid corresponding to coarsening factor m. The Ti are the C-points and form the
coarse-grid, while the small hashmarks are F-points. Together, the F- and C-points form the fine-grid {tj}.

Ti−1 Ti Ti+1

(a)F-relaxation

Ti−1 Ti Ti+1

(b)C-relaxation

FIGURE 2 Schematic view of the action of (a) F-relaxation and (b) C-relaxation with a coarsening factor of m = 4.

where g̃km = gkm + Φgkm−1 +⋯ + Φm−1g(k−1)m+1. The solution to (4) is equivalent to solving the coarse system of equations

A△u△ ∶=

⎡

⎢

⎢

⎢

⎢

⎣

I
−Φm I

⋱ ⋱
−Φm I

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

u0
um
⋮

u(NT−1)m

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

g0
g̃m
⋮

g̃(NT−1)m

⎤

⎥

⎥

⎥

⎥

⎦

= g△, (5)

where A△ has NT block rows and block columns. Unfortunately, solving equation (5) is as expensive as solving equation (3)
because of theΦm operator. Thus,Φm is usually replaced with a cheap approximationΦ△, which in turn induces a new operator
on the coarse-grid, B△ ≈ A△. The operator B△ has the exact same structure as A△, only the Φm has been replaced by Φ△.
With the partition of F- and C-points as depicted in Figure 1, there are two fundamental types of relaxation: F- and C-relaxation.
F-relaxation updates the F-point values based on the C-point values, i.e., one F-sweep updates each interval of F-points with

ui = Φui−1 + gi for i = (km + 1)… ((k + 1)m − 1), (6)

and k is the F-interval index from 0 to NT − 2. Similarly, C-relaxation updates each C-point value based on the preceding F-
point value, i.e., the index i becomes km in equation (6). Each interval of F-points (Ti−1, Ti) for i = 1, ..., NT −1 can be updated
simultaneously in parallel, and each C-point can also be updated simultaneously in parallel. Figure 2 illustrates the action of
these relaxations in parallel. One application of F-relaxation followed by a C-relaxation updates each ukm based on u(k−1)m,
which computes Φm applied to u(k−1)m for k = 1, ..., NT − 1. This FC-sweep corresponds to a block Jacobi iteration on the
coarse-grid with A△. Letting k denote the current relaxation iteration, this block Jacobi scheme can be written as

u(k+1)
△

= u(k)
△
+D−1

△
(g△ − A△u(k)

△
)

=

⎡

⎢

⎢

⎢

⎢

⎣

u(k)0
u(k)m
⋮

u(k)(NT−1)m

⎤

⎥

⎥

⎥

⎥

⎦

+D−1
△

⎡

⎢

⎢

⎢

⎢

⎣

g0 − u(k)0
g̃m + Φmu(k)0 − u(k)m

⋮
g̃(NT−1)m + Φ

mu(k)(NT−2)m
− u(k)(NT−1)m

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

g0
Φmu(k)0 + g̃m

⋮
Φmu(k)(NT−2)m

+ g̃(NT−1)m

⎤

⎥

⎥

⎥

⎥

⎦

,
(7)

where D△ is the diagonal of AΔ and equal to the identity. The MGRIT algorithm performs either an F-relaxation or an FCF-
relaxation, which consists of the initial F-relaxation, a C-relaxation, and a second F-relaxation.

2.1.1 Weighted-Jacobi variant of FCF-relaxation
Here we introduce a weighted Jacobi relaxation to the MGRIT framework. Weighted-Jacobi relaxation with weight !C > 0
applied to (7) takes the form

u(k+1)
△

= !C{(I −D−1
△
A△)u

(k)
△
+D−1

△
g△} + (1 − !C )u

(k)
△
, k = 0, 1, 2, ... (8)
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We use !C to denote the weight in (8), because it will be shown that (8) is equivalent to applying a relaxation weight only during
the C-relaxation step of an FC-sweep. Since the standard MGRIT FC-sweep corresponds to the block Jacobi method (7), it is
thus natural to instead consider the weighted variant (8) inside of MGRIT.
In general, weighted relaxation has improved convergence for spatial multigrid methods applied to a variety of problems5, 6, 23, 24,
and so the remainder of this paper explores the application of weighted-Jacobi (8) in MGRIT. Regarding notation, the subscript
F indicates the relaxation weight !F for F-relaxation, and subscript C indicates the weight !C for C-relaxation. Degree-two
weighted-Jacobi will refer to two successive iterations of (8), possibly with different weights. The weight for the first C-
relaxation, for example, is denoted !C , while the weight for the second is denoted !CC . It is called degree-two, because the
resulting update to u△ corresponds to a degree-two polynomial in A△.

2.2 Convergence estimate for MGRIT with weighted-Jacobi relaxation
We now extend existing linear two-level MGRIT convergence bounds27, 29 to account for the effects of weighted-Jacobi
relaxation.

2.2.1 MGRIT error propagator for unweighted FCF-relaxation
Let the fine-grid operator A in (3) be reordered so that F-points appear first and C-points second. Then by using the subscripts
F and C to indicate the two sets of points, we have

A =
[

AFF AFC
ACF ACC

]

.

Define the ideal interpolation operator P 2, restriction by injection RI , and a map to F-points S, respectively, as

P ∶=
[

−A−1FFAFC
IC

]

, RI ∶=
[

0 IC
]

, S ∶=
[

IF
0

]

.

From2, the two-level error propagator for linear MGRIT with unweighted FCF-relaxation is then given by

(I − PB−1
△
RIA)P (I − A△)RI = P (I − B−1△A△)(I − A△)RI . (9)

2.2.2 Two-level error propagator for weighted C-relaxation
Weighted-Jacobi for F-relaxation using the same structure as (8) can be written as

uk+1 = !F {(I − S(STAS)−1STA)uk +D−1g} + (1 − !F )uk

= (I − !FS(STAS)−1STA)uk + !FD−1g,
(10)

where the first term (without g) is the error propagator. Similarly, weighted-Jacobi for C-relaxation can be written as

uk+1 = (I − !CRTI (RIAR
T
I )
−1RIA)uk +D−1g, (11)

where the first term (without g) is the error propagator. Hence, the error propagator of FCF-relaxation with weighted-Jacobi is
given by the product of F-, C-, and F-relaxation error-propagators:

(I − !FFS(STAS)−1STA)(I − !CRTI (RIAR
T
I )
−1RIA)(I − !FS(STAS)−1STA), (12)

where !FF denotes the weight for the second F-relaxation. Despite the above generality, moving forward we only consider
!F = !FF = 1.0. If !FF ≠ 1, then MGRIT would no longer be an approximate reduction method. In other words, if the exact
solution were given at C-points, the final F-relax using !FF ≠ 1 would no longer be guaranteed to yield the exact solution at
F-points. We note that experiments also indicated !FF = 1 performs best on model heat and advection problems. Similarly,
letting !F ≠ 1 would restrict an inexact residual to the coarse grid problem, deviating from the principle of reduction methods.

2P is ideal because if an exact solution is available at C-points, then multiplication by P plus a right-hand-side contribution will yield the exact solution at all C- and
F-points.
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Thus, with this simplification, the error propagator for C-weighted FCF-relaxation takes the following block 2 × 2 form:

(I − S(STAS)−1STA)(I − !CRTI (RIAR
T
I )
−1RIA)(I − S(STAS)−1STA) (13a)

=

(

I −
[

If A−1ffAfc
0 0

]

)(

I − !C

[

0 0
A−1cc Acf Ic

]

)(

I −
[

If A−1ffAfc
0 0

]

)

(13b)

=

[

0 −A−1ffAfc{Ic − !CA
−1
cc (Acc − AcfA

−1
ffAfc)}

0 Ic − !CA−1cc (Acc − AcfA
−1
ffAfc)

]

(13c)

=
[

−A−1ffAfc
Ic

]

[

Ic − !CA−1cc (Acc − AcfA
−1
ffAfc)

]

[

0 Ic
]

(13d)

= P (I − !CA△)RI . (13e)

Next, we take the two-level MGRIT error propagator with FCF-relaxation (9) and substitute in the new weighted variant (13e)
to yield the following two-level error propagator for FCF-relaxation with weighted-C-Jacobi,

(I − PB−1
△
RIA)P (I − !CA△)RI = P (I − B−1

△
A△)(I − !CA△)RI . (14)

Lastly, to derive our convergence bound, we follow the convention from27, 28 and examine the error propagator’s effect only at
C-points (i.e., drop the P and RI from equation (14)). This simplification is typically made with the following motivation. If
the solution at C-points is exact, then the final application of P in (14) will produce the exact solution at F-points, i.e., a zero
residual. With this simplification, we denote the error propagator (14) at only C-points as EFCF

△, !C
, which takes the form

EFCF
△, !C

= (I − B−1
△
A△)(I − !CA△) (15a)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
(1 − !C )(Φm − Φ△) 0

(1 − !C )Φ△(Φm − Φ△) + !C (Φm − Φ△)Φm (1 − !C )(Φm − Φ△) 0
⋮ ⋮ ⋱ 0

(1 − !C )Φ
NT−1
△

(Φm − Φ△) + !CΦ
NT−2
△

(Φm − Φ△)Φm ⋯ ⋯ (1 − !C )(Φm − Φ△) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (15b)

2.2.3 Two-grid eigenvalue convergence analysis
To guarantee convergence, ideally we bound (15) in some norm (e.g., see29). However, working in a norm can be difficult; thus
we take the more tractable approach of considering convergence for individual eigenvectors27, 29. Thus, assume that Φ and ΦΔ
have the same set of eigenvectors, {v}, as occurs when the same spatial discretization is used on the coarse and fine grid in
time, and let {�} be the eigenvalues of Φ and {�} be the eigenvalues of Φ△. For instance, let � ≥ 0 denote an eigenvalue of
the linear operator G in (1); if backward Euler is used on the coarse and fine grid, we have

� = (1 − ℎt� )−1, and � = (1 − mℎt� )−1 for  = 1, 2, ..., Nx. (16)

Define Ũ as a block-diagonal operator, with diagonal blocks given by the eigenvector matrix for Φ and ΦΔ. Following the
discussion of Section 5 in29, we can apply Ũ to the left and Ũ−1 to the right of (15). The resulting operator is then block diagonal,
with diagonal blocks corresponding to a single pair of eigenvalues {� , �}, and takes the following form:

ẼFCF
△, !C

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
(1 − !C )(�m − � ) 0

(1 − !C )� (�m − � ) + !C (�
m
 − � )�

m
 (1 − !C )(�k − � ) 0

⋮ ⋱ ⋱ ⋱
(1 − !C )�

NT−1
 (�m − � ) + !C�

NT−2
 (�m − � )�

m
 … … (1 − !C )(�m − � ) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (17)

Following the analysis in27, 29, we can provide bounds on (15) in a certain eigenvector-induced (Ũ Ũ ∗)−1-norm by bounding (17)
in norm and taking the maximum over  (note, if the spatial matrix is SPD, Ũ is unitary, and the (Ũ Ũ ∗)−1-norm is simply the
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l2-norm). Note that (17) is a Toeplitz matrix, with asymptotic generating function

 (x) ∶= (�m − � )

[

(1 − !C )
∞
∑

l=1
�l−1 eilx + !C�m

∞
∑

l=2
�l−2 eilx

]

= eix(�m − � )

[

(1 − !C )
∞
∑

l=0
(�eix)l + eix!C�m

∞
∑

l=0
(�eix)l

]

= eix
(�m − � )

1 − eix�

[

1 − !C + eix!C�m
]

.

Noting that  (x) ∈ L1[−�, �], from31 (see also32, Th. 2.1), we have that

�max, (ẼFCF
△, !C

) ≤ max
x∈[0,2�]

| (x)|

= max
x∈[0,2�]

|�m − � |

|1 − eix� |
|1 − !C + eix!C�m |. (18)

Taking the maximum over  , corresponding to all (shared) eigenvectors of Φ and ΦΔ yields the following final result.

Theorem 1. Assume that Φ and ΦΔ have the same set of eigenvectors, with eigenvalues {�} and {�}, respectively, where
|� |, |� | < 1 for all  ∈ [1, Nx]. Let Ũ denote a block-diagonal operator, with diagonal blocks given by the eigenvector matrix
of Φ and ΦΔ. Then,

‖EFCF
△, !C

‖(Ũ Ũ∗)−1 ≤ max max
x∈[0,2�]

|�m − � |

|1 − eix� |
|1 − !C + eix!C�m |. (19)

Proof. The proof follows from the above discussion.

For fixed  , a closed form for the maximum over x in (19) to allow for easier computation is provided in the Supplemental
materials.
We numerically verify the convergence bound (19) in Section 3.1 for model 1D heat and advection equations, respectively.
In some cases, the bound is quite tight, while for others the general behavior is right, but bounds are not exact. This is likely
due to Theorem 1 providing an upper bound on worst-case convergence; even if the upper bound is tight (which Theorem 1
is asymptotically in NT ), it is possible that better convergence can be observed in practice, depending on the problem and
right-hand side.

Remark 1. We also note that one can approximate the maximum over x in Theorem 1 by assuming a fixed x rotates � and � to
the real-axis. Experiments have indicated this to be a reasonable assumption for eigenvalues with dominant real-part, although
less so for eigenvalues with large imaginary component. Nevertheless, it does yield a simpler measure to compute, and can be
applied to weighted FCF- and FCFCF-relaxation (degree-two weighted-Jacobi), with approximate bounds

‖EFCF
△, !C

‖(Ũ Ũ∗)−1 ⪅ max
|�m − � |

1 − |� |
|1 − !C + !C |�m ||,

‖EFCFCF
△,{!C ,!CC}

‖(Ũ Ũ∗)−1 ⪅ max
|�m − � |

1 − |� |
|1 − !C + !C |�m || |1 − !CC + !CC |�

m
 ||.

(20)

For the derivation of the FCFCF-bound, see Appendix A.

3 VERIFYING THE CONVERGENCE BOUND

3.1 Numerical verification of the convergence bound
We focus our verification tests on three model problems with the following spatial discretizations, the 1D heat equation (second-
order central differencing in space), the 1D advection equation with purely imaginary spatial eigenvalues (second-order central
differencing in space), and the 1D advection equation with complex spatial eigenvalues (first-order upwinding in space). In all
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cases, backward Euler is used in time.3 We choose these model problems because the theoretical motivation of equation (19)
indicates that it is the character of the spatial eigenvalues and the time-stepping method that determine the convergence of
MGRIT, i.e., not the dimensionality of the problem, the complexity of the governing PDE, or the nature of the forcing term and
boundary conditions. Thus, we choose these three representative cases, similar to27, 28.
We consider the 1D heat equation subject to an initial condition and homogeneous Dirichlet boundary conditions,

)u
)t
− � )

2u
)x2

= f (x, t), � > 0, x ∈ Ω = [0, L], t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω, (21)
u(x, t) = 0, x ∈ )Ω, t ∈ [0, T ].

For numerical experiments, we use the space-time domain [0, 1] × [0, 0.625], the diffusivity constant � = 1, and the right-hand
side f (x, t) = sin(�x)[sin(t)−�2 cos(t)]. Note that with these choices, the analytical solution is given by u(x, t) = sin(�x) cos(t).
A random initial guess and a residual norm halting tolerance of 10−10∕

√

ℎxℎt are used. Reported convergence rates are taken as
an average over the last five MGRIT iterations, where ‖rk‖2∕‖rk−1‖2 is the convergence rate at iteration k and rk is the residual
from equation (3) at iteration k. The combination of grid points in space Nx and time Nt are chosen so that ℎt

ℎ2x
= 12.8. This

value was chosen to be of moderate magnitude and consistent with other MGRIT literature, namely the work27.
We also consider the 1D advection equation with purely imaginary spatial eigenvalues, subject to an initial condition and periodic
spatial boundary conditions,

)u
)t
− � )u

)x
= 0, � > 0, x ∈ Ω = [0, L], t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω, (22)
u(0, t) = u(L, t), t ∈ [0, T ].

The space-time domain considered is [0, 1] × [0, 1], the velocity constant � = 1, and the analytical solution u(x, t) =
e−25((x−t)−0.5)2 . The solution is chosen as a standard test problem that satisfies the spatially periodic boundary conditions. A ran-
dom initial guess and a residual norm halting tolerance of 10−8∕

√

ℎxℎt are used. The maximum allowed iterations is set to 70,
because some cases will fail to quickly converge. Reported convergence rates are taken as (‖rk‖2∕‖r0‖2)1∕k at the final iteration
k. The geometric average is used (as opposed to the heat equation case above) because the per iteration convergence rate here
can vary significantly. The combination of grid points in spaceNx and timeNt are chosen so that

ℎt
ℎx
= 0.5.

Figure 3 (a) and Figure 4 (a) depict the convergence bound (dashed line) and experimental convergence rates (solid line) against
various relaxation weights!C for the 1D heat equation and the 1D advection equation with purely imaginary spatial eigenvalues,
respectively. Figure 3 (b) and Figure 4 (b) show the iterations associated with the experimental convergence rates. For Figure 3,
the theoretical bound is very tight and predicts the optimal !C . For the advective case in Figure 4, the bound is predictive, but
not quite sharp enough to predict the best weight. The results for the 1D advection equation with complex spatial eigenvalues
are similar to the 1D advection equation with purely imaginary spatial eigenvalues and, thus, are omitted.
Next, we summarize the experimentally best relaxation weights for the 1D heat equation and the 1D advection equation with
purely imaginary spatial eigenvalues. For the full multilevel experiments, V-cycles are used and we coarsen down to a grid
of size 4 or less in time. During searches in the weight-space for experimentally optimal weights, we use a step size of 0.1,
and in these tables we report only the best weight in comparison to a unitary weight of 1.0. For expanded versions of these
tables, please see Supplemental Materials S2, Tables S1, S2, S5, and S6. Regarding notation, !CC denotes the weight for the
second weighted relaxation, if degree-two (FCFCF) weighted relaxation is used. If only!C is given, then only degree-one (FCF)
weighted relaxation is used.
Tables 1 and 2 depict the results for the 1D heat equation for a two-level and multi-level solver, respectively. The best experi-
mental weight for degree-one relaxation in both cases is !C = 1.3 and saves 1 iteration on the largest problem, or approximately
10%–14%. The best weights (!C , !CC ) for degree-two relaxation differ between two-level and multilevel, but similarly save 1
iteration. Other coarsening factorsmwere tested, but generated the same experimentally best weights (see Supplemental Results
Section S2.1 for more details).
Tables 3 and 4 depict the results for the 1D advection equation with purely imaginary spatial eigenvalues for a two-level and
multilevel solver, respectively. The best experimental weights for degree-one relaxation differ between not only two-level and

3For a complete description of these problems, see the Supplemental Materials for the heat equation in Section S2.1, the advection equation with purely imaginary
spatial eigenvalues in Section S2.2, and the advection equation with complex spatial eigenvalues in Section S2.3.
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(a)Convergence Rate (b) Iterations

FIGURE 3 Two-level MGRIT theoretical bound (dashed line in left plot), experimental convergence rates (solid line in left
plot), and iteration counts (right plot) as a function of relaxation weights !C for the one-dimensional heat equation, coarsening
factor m = 2, and grid size (Nx, Nt) = (291, 4097).

(a)Convergence Rate (b) Iterations

FIGURE 4 Two-level MGRIT theoretical bound (dashed line in left plot), experimental convergence rates (solid line in left
plot) and iteration counts (right plot) as a function of relaxation weights !C for the one-dimensional linear advection equation
with purely imaginary spatial eigenvalues, coarsening factor m = 2, and grid size (Nx, Nt) = (1025, 1025).

multilevel but also coarsening factors m = 2 and m = 4. The best experimental weight in the two-level case with m = 4
is !C = 1.5 and saves 2–3 iterations on the larger problems, or approximately 5%-9%. The best experimental weight in the
multilevel case with m = 2 is !C = 1.5 and saves 15 iterations on the second largest problem, or approximately 22%. The best
weights (!C , !CC ) for degree-two relaxation have been omitted for brevity, but are in Supplemental Materials Section S2.2.

Nx ×Nt 291 × 4097 411 × 8193 581 × 16385 821 × 32769

m = 2

!C = 1.0 0.049 (7) 0.048 (7) 0.039 (7) 0.039 (7)
1.3 0.036 (7) 0.036 (7) 0.034 (6) 0.034 (6)

(!C , !CC ) = (1.0, 1.0) 0.029 (6) 0.029 (6) 0.029 (6) 0.028 (6)
(1.7, 0.9) 0.020 (6) 0.020 (6) 0.019 (6) 0.016 (5)

TABLE 1 1D heat equation, two-level MGRIT convergence rates (iterations) for weighted FCF- and FCFCF-relaxation with
unitary weights and the experimentally best weights.
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Nx ×Nt 291 × 4097 411 × 8193 581 × 16385 821 × 32769

m = 2

!C = 1.0 0.118 (9) 0.121 (9) 0.123 (9) 0.125 (9)
1.3 0.092 (8) 0.095 (8) 0.096 (8) 0.096 (8)

(!C , !CC ) = (1.0, 1.0) 0.065 (7) 0.066 (7) 0.067 (7) 0.068 (7)
(2.0, 0.9) 0.032 (6) 0.032 (6) 0.032 (6) 0.032 (6)

TABLE 2 1D heat equation, multilevel MGRIT convergence rates (iterations) for weighted FCF- and FCFCF-relaxation with
unitary weights and the experimentally best weights.

Nx ×Nt 513 × 513 1025 × 1025 2049 × 2049 4097 × 4097

m = 2 !C = 1.0 0.304 (15) 0.307 (15) 0.308 (15) 0.309 (15)
1.8 0.280 (14) 0.282 (14) 0.284 (14) 0.285 (14)

m = 4 !C = 1.0 0.564 (30) 0.607 (34) 0.617 (35) 0.619 (35)
1.5 0.568 (30) 0.581 (31) 0.591 (32) 0.596 (33)

TABLE 3 1D linear advection equation, two-level MGRIT convergence rates (iterations) for weighted FCF-relaxation with
unitary weights and the experimentally best weights.

Nx ×Nt 513 × 513 1025 × 1025 2049 × 2049 4097 × 4097

m = 2 !C = 1.0 0.560 (30) 0.675 (44) 0.771 (67) (> 100)
1.5 0.495 (24) 0.606 (35) 0.718 (52) 0.810 (82)

m = 4 !C = 1.0 0.581 (32) 0.666 (42) 0.757 (61) 0.838 (95)
1.4 0.535 (27) 0.611 (34) 0.712 (50) 0.802 (77)

TABLE 4 1D linear advection equation, multilevel MGRIT convergence rates (iterations) for weighted FCF-relaxation with
unitary weights and the experimentally best weights.

3.2 Visualizing the convergence bound
Recall that {�} and {�} are the eigenvalues of Φ and Φ△, respectively corresponding to the same set of eigenvectors {v}.
That is, Φ and Φ△ are diagonalized by the eigenvectors {v}. If � ≥ 0 is an eigenvalue of the linear operator G in (1), the
corresponding eigenvalue of Φ is given by

� = 1 + ℎt�bT0 (I − ℎt�A0)
−11, and � = 1 + mℎt�bT0 (I − mℎt�A0)

−11 (23)

where the Runge-Kutta matrix A0 = (ai,j) and weight vector bT0 = (b1, ..., bs)
T are taken from the Butcher tableau of an s-stage

Runge-Kutta method30.
Here, we consider A-stable two-stage third-order SDIRK-23, L-stable two-stage second-order SDIRK-22, and L-stable three-
stage third-order SDIRK-33 methods (see Appendix of30 for coefficients), where SDIRK refers to singly diagonally implicit
Runge-Kutta. Figures 5 – 7 depict the convergence bound (18) in the complex plane as a function of ℎt� over various !C for
these methods, respectively. Overall, the L-stable schemes lead to significantly better MGRIT convergence bounds than the A-
stable scheme, consistent with the discussion and results for unweighted relaxation in30, and, more importantly, numerical results
using weighted relaxation in Section 4.1.1. Additionally, note from Figure 5 that for unweighted relaxation (!C = 1), two-level
MGRIT is divergent inmuch of the complex plane (a known phenomenon30). However, applying under-relaxation with!C = 0.8
restores reasonable convergence in much of the complex plane. This behavior is confirmed in practice in Section 4.1.2. Similarly,
applying under-relaxation to L-stable SDIRK-33 in Figure 7 yields convergence, albeit slow, along the imaginary axis. Spatial
eigenvalues on the imaginary axis are notoriously difficult for MGRIT to converge on, as can be seen with the theoretical bounds
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for !C = 1. To the best of our knowledge, backward Euler is the only one-step time-integration scheme that yields convergence
on the imaginary axis.4 Here, we see that weighted relaxation can yield convergence on higher-order integration schemes as well.

(a)!C = 0.5 (b)!C = 0.6 (c)!C = 0.7

(d)!C = 0.8 (e)!C = 1.0 (f)!C = 1.2

FIGURE 5 Two-level MGRIT theoretical convergence bound as a function of Re(ℎt� ) and Im(ℎt� ), for m = 2 and A-stable
2-stage SDIRK-23.

4 RESULTS

This section demonstrates MGRIT with weighted relaxation on a 2D advection-diffusion problem and a nonlinear eddy current
problem.

4.1 2D Convection-Diffusion with discontinuous Galerkin elements
To indicate generality of the proposed weighted relaxation scheme, we now consider the advection-diffusion problem

)u
)t
+ b(t, x) ⋅ ∇u − �∇ ⋅ ∇u = 0, x ∈ Ω, t ∈ [0, T ] (24)

u(x, 0) = u0(x), x ∈ Ω, (25)

where � > 0 is the diffusion constant, Ω is a bounded convex domain in 2D, and the boundary conditions are periodic in space.
The final time T is set to 20 and b = (

√

2∕3,
√

1∕3). Letting x = (x1, x2), the initial condition is

u0(x) =
1
16
erfc[w(x1 − c1 − r1)] erfc[−w(x1 − c1 + r1)]

× erfc[w(x2 − c2 − r2)] erfc[−w(x2 − c2 + r2)],

4It is important to note that for unweighted relaxation, two-level convergence bounds are necessary and sufficient 29.
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(a)!C = 0.5 (b)!C = 0.75 (c)!C = 1.0

(d)!C = 1.25 (e)!C = 1.5 (f)!C = 2.0

FIGURE 6 Two-level MGRIT theoretical convergence bound as a function of Re(ℎt� ) and Im(ℎt� ), for m = 2 and L-stable
2-stage SDIRK-22.

which defines a smooth rectangular hump with erfc(x) the complementary error function, (c1, c2) = (0,−0.2), (r1, r2) =
(0.45, 0.25), and w = 10.
We use the MFEM library33 to discretize over a regular quadrilateral grid on a hexagonal domain Ω, corresponding to the
file mfem/data/periodic-hexagon.mesh. In space, we use Q1 (bi-linear) or Q3 (bi-cubic) discontinuous Galerkin (DG)
elements with a standard upwind scheme for the advective term and the interior penalty (IP)34 scheme for the diffusion term. In
time, we consider backward Euler (L-stable), the A-stable two-stage third-order SDIRK-23 method, and the L-stable three-stage
third-order SDIRK-33 method.
The numerical setup uses MGRIT V-cycles with a random initial guess and a residual halting tolerance of 10−10∕(ℎx

√

�t). The
iterations are capped at 125, with “125+" indicating that this maximum was reached. The valueNx represents the total number
of spatial degrees-of-freedom, and grows by a factor of 4 each uniform refinement because space is now 2D. The number of
time points grows by a factor of 2, so that �t∕ℎx = 0.477 is fixed for all test problems, where ℎx refers to the spatial mesh size.
Regarding the diffusive term, the ratio �t∕ℎ2x varies from 1.9245 for the smallest problem, to 15.396 on the largest problem,
representing moderate ratios typical for an implicit scheme.

4.1.1 Results for L-Stable Schemes
Tables 5 and 6 depict these results for the case of bilinear DG elements with backward Euler and bi-cubic DG elements with
L-stable SDIRK-33, respectively. Three diffusion constants, � = 0.1, 0.01, and 0.001, are depicted to highlight the benefits of
weighted relaxation for three different MGRIT convergence regimes. The first regime concerns sufficiently diffusive problems,
where MGRIT convergence is bounded with growing problem size27. This is observed for the � = 0.1 case. For the next regime
when � = 0.01, the problem is on the cusp of sufficient diffusiveness, as evidenced by the growing iteration counts for backward
Euler in Table 5, but flat iteration counts in Table 6 for some weight values.5 When � = 0.001, convergence is poor in both cases.

5Note that SDIRK-33 is a more favorable time-stepping scheme for MGRIT convergence and diffusive problems 27, thus it is not surprising that it provides better
performance here. In fact, if these experiments are repeated with bi-cubic DG elements and backward Euler, the results are almost identical to Table 5 for bilinear DG
elements and backward Euler, thus indicating that the use SDIRK-33 is the factor leading to the improved convergence.
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(a)!C = 0.7 (b)!C = 1.0 (c)!C = 1.3

(d)!C = 0.7, and the axes go up to 20. (e)!C = 1.0, and the axes go up to 20. (f)!C = 1.3, and the axes go up to 20.

FIGURE 7 Two-level MGRIT theoretical convergence bound as a function of Re(ℎt� ) and Im(ℎt� ), for m = 2 and L-stable
3-stage SDIRK-33.

In all three regimes, the benefits of weighted relaxation can be observed and are similar to those benefits observed for the
1D model problems in the Supplemental Materials S2. For the first-order discretizations in Table 5, a weight choice of 1.6 is
experimentally found to be best, saving 15%–20% of iterations, which aligns with the best weight choice for 1D advection in
Appendix S2.6 For the third-order discretizations in Table 6, a weight choice of 1.3 is experimentally found to be best, saving
10%–15% of iterations. This does not align with the best weight choice for 1D advection in Appendix S2, but instead aligns
with the best weight choice for 1D diffusion. Thus, we can say that the simple 1D model problems from Appendix S2 provide
a useful, but rough guide for choosing relaxation weights for more complicated problems. Lastly, we note that under-relaxation
was not beneficial for these cases, as indicated by the !C = 0.7 case.

4.1.2 A-stable Results
Table 7 repeats the above experiments for the A-stable SDIRK-23 scheme with bi-cubic DG elements in space. We also consider
larger � (i.e., stronger diffusion) as this highlights the benefits of weighted-relaxation. Results for � = 0.001 are omitted because
all test cases larger than the smallest took 125+ iterations. Weights larger than 1.0 are also omitted as they did not improve
convergence.
Consistent with the discussion in Section 3.2, we find that under-relaxation (!C < 1.0) is beneficial, with!C = 0.7 providing the
best performance. In fact, in most cases this under-relaxation even restores convergence compared with unweighted relaxation,
where the 125+ label for !C = 1.0 corresponds to a convergence rate larger than one. This divergence for !C = 1.0 is not
surprising, as the work30 shows that A-stable schemes do not generally yield good MGRIT convergence and often lead to
divergence, even for problems of a parabolic character.
Lastly, we compare Table 7 to the convergence plots in Figure 5. Convergence for !C = 0.7 improves as the problem size
increases. This is most likely due to increasing numerically diffusivity as the grid is refined, which results in the spectrum being
pushed into the region of more rapid convergence close to the real axis in Figure 5. Additionally, overall performance degrades

6We note that while the tables only show a handful of weight choices, thorough experimentation with under- and over-relaxation using a weight step-size of 0.1 was
done to find the experimentally best choices.
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Nx ×Nt 192 × 192 768 × 384 3072 × 768 12288 × 1536

� = 0.001

!C = 0.7 29 39 56 125+
1.0 25 32 47 65
1.3 22 28 42 58
1.6 29 38 40 52
1.9 38 63 112 125+

� = 0.01

!C = 0.7 28 34 45 53
1.0 24 30 38 46
1.3 21 27 32 41
1.6 28 30 28 37
1.9 37 58 81 76

� = 0.1

!C = 0.7 16 19 21 23
1.0 13 16 18 19
1.3 12 14 16 17
1.6 15 16 14 16
1.9 24 29 26 26

TABLE 5 Multilevel MGRIT iterations for 2D advection-diffusion over various diffusion constants �, with bilinear 1 DG ele-
ments, backward Euler in time, FCF-relaxation, and m = 2. For the cases labeled “125+", the solver is still diverging with a
convergence rate over 1 at iteration 125.

Nx ×Nt 768 × 192 3072 × 384 12288 × 768 49152 × 1536

� = 0.01

!C = 0.7 32 31 29 29
1.0 27 25 25 25
1.3 25 22 22 22
1.6 37 43 32 27
1.9 52 66 73 68

� = 0.1

!C = 0.7 11 10 10 10
1.0 9 9 9 9
1.3 9 8 8 8
1.6 12 10 10 9
1.9 19 17 18 15

TABLE 6 Multilevel MGRIT iterations for 2D advection-diffusion over various diffusion constants �, with bi-cubic 3 DG
elements, SDIRK-33 in time, FCF-relaxation, and m = 2. Results for � = 0.001 are omitted because all test cases larger than
the smallest took 125+ iterations.

for larger �, which is due to the spectrum being pushed out of the region of convergence (i.e., farther up the positive real axis)
in Figure 5. Similarly, as � decreases, the spectrum is pushed to the imaginary axis in Figure 5, and convergence eventually
degrades, as is observed for � = 0.001. For this problem and time-discretization, MGRIT convergence is best for � = 0.1, and
interestingly, the advection terms actually helpMGRIT converge for this problem.

4.2 Nonlinear Eddy Current Problem
The last example illustrates the performance of the new relaxation scheme for a nonlinear eddy current problem. The eddy
current problem is an approximation of Maxwell’s equations that is commonly used in the simulation of electrical machines,
such as induction machines, transformers, or cables. Here, we consider a coaxial cable model. Let Ω = Ω1 ∪ Ω2 ∪ Ω3 denote a
2D cross-section of the 3D cable model, as depicted in Figure 8.
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Nx ×Nt 192 × 192 768 × 384 3072 × 768 12288 × 1536

� = 0.01

!C = 0.6 51 60 55 50
0.7 47 54 49 45
0.8 43 50 44 42
1.0 43 85 125+ 125+

� = 0.1

!C = 0.6 38 38 32 27
0.7 32 32 27 23
0.8 36 47 47 42
1.0 48∗ 96∗ 125+ 125+

� = 1.0

!C = 0.6 44 43 38 30
0.7 38 38 33 26
0.8 41 57 63 53
1.0 48∗ 96∗ 125+ 125+

� = 100.0

!C = 0.6 52 59 60 59
0.7 44 52 52 51
0.8 44 66 90 98
1.0 48∗ 96∗ 125+ 125+

TABLE 7 Multilevel MGRIT iterations for 2D advection-diffusion over various diffusion constants �, with bi-cubic DG ele-
ments, SDIRK-23 in time, FCF-relaxation, and m = 2. The asterisk ∗ refers to convergence due only to the exactness property
of FCF-relaxation, where FCF-relaxation reproduces sequential time-stepping in (Nt − 1)∕2m iterations2. For all cases labeled
“125+", the solver is still diverging with a convergence rate over 1 at iteration 125.

x

y

z

Ω0Ω1
Ω2x

y

FIGURE 8 Coaxial cable model and its cross section. The inner, black region Ω0 models the copper wire, the white region Ω1
the air insulator and the outer, gray region Ω2 the conducting shield35.

For a voltage-driven system, the eddy current problem is coupled with an additional equation, resulting in the following system
for unknown magnetic vector potential A ∶ Ω × (0, T ]→ ℝ and the electric current is ∶ (0, T ]→ ℝ:

�)tA − ∇ ⋅
(

�∇A) − �sis = 0, (26)
d
dt ∫

Ω

�s ⋅ A dV = �s, (27)

with homogeneous Dirichlet boundary condition A = 0 on )Ω and the initial value A(x, 0) = 0, x ∈ Ω. The electrical
conductivity � ≥ 0 is only non-zero in the tube region Ω2 (here set to 10 MS/m), and the (isotropic, nonlinear) magnetic
reluctivity �(x, |∇A|) is modeled by a vacuum (1∕�0) in Ω0 and Ω1 and by a monotone cubic spline curve in Ω2. The current
distribution function �s ∶ Ω → ℝ represents a stranded conductor in the model36. The relationship between the spatially
integrated time derivative of the magnetic vector potential, called flux linkage, and the voltage vs is modeled by Equation (27).
The voltage is a pulsed voltage source, produced by comparing a reference wave with a triangular wave,

vs(t) = 0.25sign
[

rs(t) − sn(t)
]

, t ∈ (0, T ],
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with reference signal
rs(t) = sin

(2�
T
t
)

and bipolar trailing-edge modulation using a sawtooth carrier signal

sn(t) =
n
T
t −

⌊ n
T
t
⌋

,

with n = 200 teeth and electrical period T = 0.02 s37.
We use linear edge shape functions with 2269 degrees of freedom in space to discretize (26)–(27). The resulting system of index-
1 differential-algebraic equations (DAEs) is integrated on an equidistant time grid with 214 intervals using the backward Euler
method to resolve the pulses. For each time step tj , we obtain a nonlinear system of the form Φ(uj) = gj , with u⊤j = (a

⊤, i) and
where a is the vector of discrete vector potentials and i is an approximation of the current. Considering all time steps at once
results in a space-time system of the form (u) = g, where each block row corresponds to one time step, i.e., the nonlinear
extension of equation (3). This space-time system is solved usingMGRITV-cycles with a random initial guess, a residual halting
tolerance of 10−7 and factor-4 coarsening (m = 4). The method is fully multilevel with the system on the coarsest grid consisting
of four time points. For all spatial problems, Newton’s method is used with a direct LU solver. For the experiments, we use the
model tube.fem from the finite element package FEMM35 and the Python framework PyMGRIT38, 39.
Figure 9 shows MGRIT convergence for the eddy current problem and various relaxation weights for FCF- and FCFCF-
relaxation7. The results show that non-unitary weights improve MGRIT convergence for both relaxation schemes. For this
particular problem, the best weight choice for FCF-relaxation of!C = 1.5 yields a saving of one iteration, or 10%, over a unitary
weight choice. For degree-two relaxation, the experimentally optimal pair of weights (!C , !CC ) = (2.0, 0.9) even allows for a
saving of two iterations, or 22%, over a unitary weight choice of (!C , !CC ) = (1.0, 1.0). Again, as for the 2D advection-diffusion
problem, the benefits of weighted relaxation on MGRIT convergence for this problem are similar to the benefits observed for the
1D heat equation in Section 3.1. For FCF-relaxation, the best weight choice for 1D diffusion of!C = 1.3 results in slightly slower
convergence for the 2D eddy current problem, compared to the weight !C = 1.5, but both weight choices allow for the same
saving of one iteration over a unitary weight choice. For FCFCF-relaxation, the best weight choice of (!C , !CC ) = (2.0, 0.9)
corresponds to the best weight choice for 1D diffusion. Thus again, the simple linear 1D model problem provides good guid-
ance for choosing relaxation weights for a more complicated problem, particularly in choosing over- and/or under-relaxation.
Lastly, comparing total runtimes of MGRIT with weighted FCF- and FCFCF-relaxation with the experimentally optimal weight
choices of !C = 1.5 and (!C , !CC ) = (2.0, 0.9), respectively, FCF-relaxation is about 4 % faster than FCFCF-relaxation. For
this particular problem, MGRIT with weighted FCF-relaxation is the most efficient solver.

(a)FCF-relaxation (b)FCFCF-relaxation

FIGURE 9 Experimental MGRIT convergence using weighted FCF- (left) and FCFCF-relaxation (right), m = 4, and various
relaxation weights !C and !CC for the eddy current problem.

7We note that also for this problem thorough experimentation with under- and over-relaxation using a weight step-size of 0.1 was done.



Pr
ep
rin

t–
Pr
ep
rin

t–
Pr
ep
rin

t–
Pr
ep
rin

t–
Pr
ep
rin

t–
Pr
ep
rin

t 16 Sugiyama ET AL.

5 CONCLUSIONS

In this work, we introduced the concept of weighted relaxation to MGRIT, which until now has used only unweighted relaxation.
We derived a new convergence analysis for linear two-grid MGRIT with degree-1 weighted-Jacobi relaxation, and used this
analysis to guide and explore the selection of relaxation weights. The theory was verified with simple numerical examples in
Section 3, and the utility of weighted relaxation was demonstrated on more complex problems in Section 4, including a 2D
advection-diffusion problem and a 2D nonlinear eddy current problem. The simple linear 1D model problems from Section 3.1
provide useful guidance when choosing relaxation weights for more complicated linear and nonlinear problems, and are intended
in part to guide future weight choices.
With an appropriate choice of weight, the numerical results demonstrated that MGRIT with weighted relaxation consistently
offers improved convergence rates and lower iteration counts when compared with standard (unweighted) MGRIT, at almost
no additional computational work. In most cases, weighted relaxation yields a 10%–20% savings in iterations, while for the A-
stable scheme, the results show that under-relaxation can restore convergence in some cases where unweighted relaxation does
not converge.
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APPENDIX

A BOUNDWITH FCFCF-RELAXATION

The derivation of the theoretical convergence bound for weighted FCFCF-relaxation (degree-two weighted-Jacobi) is shown in
this section. Remembering expression (13a), the error propagator for stand-alone weighted FCF-relaxation takes the form

(I − S(STAS)−1STA)(I − !CRTI (RIAR
T
I )
−1RIA)(I − S(STAS)−1STA)

= P (I − !CA△)RI .
(A1)

Applying expression (A1) twice, once with weight !C and once with another weight !CC , the error propagator for stand-alone
weighted FCFCF-relaxation can be expressed as

P (I − !CCA△)(I − !CA△)RI . (A2)

Combining the effect of FCFCF-relaxation (A2) with the previous two-level error propagator (9), yields the following two-level
MGRIT error propagator for FCFCF-relaxation

(I − PB−1
△
RIA)P (I − !CCA△)(I − !CA△)RI

= P (I − B−1
△
A△)(I − !CCA△)(I − !CA△)RI

. (A3)

Simplifying the error propagator to consider only C-points yields

EFCFCF
△,{!C ,!CC}

= (I − B−1
△
A△)(I − !CCA△)(I − !CA△). (A4)

Similar to Section 2.2.3, we next use the set of eigenvectors {v} and corresponding eigenvalues {�} of Φ and {�} of Φ△ to
diagonalize EFCFCF

△,{!C ,!CC}
with the block diagonal eigenvector matrix Ũ . The resulting matrix ẼFCFCF

△,{!C ,!CC}
is Toeplitz with the

http://www.femm.info
https://github.com/pymgrit/pymgrit
https://digitalrepository.unm.edu/math_etds/147
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following asymptotic generating function,

 (x) ∶= (�m − � )

[

(1 − !CC )(1 − !C )
∞
∑

l=1
�l−1 eilx + {!CC (1 − !C ) + !C (1 − !CC )}�m

∞
∑

l=2
�l−2 eilx + !CC!C�2m

∞
∑

l=3
�l−3 eilx

]

= eix(�m − � )

[

(1 − !CC )(1 − !C )
∞
∑

l=0
(�eix)l + eix{!CC (1 − !C ) + !C (1 − !CC )}�m

∞
∑

l=0
(�eix)l + ei2x!CC!C�2m

∞
∑

l=0
(�eix)l

]

= eix
(�m − � )

1 − eix�

[

(1 − !CC )(1 − !C ) + eix{!CC (1 − !C ) + !C (1 − !CC )}�m + e
i2x!CC!C�

2m


]

. (A5)

Again following Section 2.2.3, we bound the maximum singular value of EFCFCF
△,{!C ,!CC}

with

�max, (ẼFCFCF
△,{!C ,!CC}

) ≤ max
x∈[0,2�]

| (x)|

= max
x∈[0,2�]

|�m − � |

|1 − eix� |
|(1 − !CC )(1 − !C ) + eix{!CC (1 − !C ) + !C (1 − !CC )}�m + e

i2x!CC!C�
2m
 |.

(A6)

Next by taking the maximum over  , we have the following result, similar to Theorem 1,

||EFCFCF
△,{!C ,!CC}

||(Ũ Ũ∗)−1 ≤ max max
x∈[0,2�]

|�m − � |

|1 − eix� |
|(1 −!CC )(1 −!C ) + eix{!CC (1 −!C ) +!C (1 −!CC )}�m + e

i2x!CC!C�
2m
 |.

Finally, the approximation of the maximum over x yields the theoretical convergence bound for weighted FCFCF-relaxation
given in equation (20),

||EFCFCF
△,{!C ,!CC}

||(Ũ Ũ∗)−1 ⪅ max
|�m − � |

1 − |� |
|(1 − !CC )(1 − !C ) + {!CC (1 − !C ) + !C (1 − !CC )}|�m | + !CC!C |�

2m
 ||

= max


|�m − � |

1 − |� |
|1 − !C + !C |�m || |1 − !CC + !CC |�

m
 ||. (A7)
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SUPPLEMENTAL MATERIALS

S1 MAX OVER X

Here we derive a closed form for the maximum over x that arises in theoretical bounds to allow easier
computation. Consider

max
x∈[0,2�]

|�k − �|
1 − eix�

|1 − ! + eix!�k|. (A8)

This function is not differentiable due to the absolute values, but the maximum is obtained at the same x if
we square the underlying function. Noting that for complex f , |f |2 = ff ∗; thus, consider

max
x∈[0,2�]

|�k − �|2
(1 − ! + eix!�k)(1 − ! + e−ix!(�∗)k)

(1 − eix�)(1 − e−ix�∗)

= |�k − �|2 max
x∈[0,2�]

(1 − ! + eix!�k)(1 − ! + e−ix!(�∗)k)
(1 − eix�)(1 − e−ix�∗)

= |�k − �|2 max
x∈[0,2�]

(! − 1)2 + !2|�k|2 − 2!(! − 1)Re(�k) cos(x) + 2!(! − 1) Im(�k) sin(x)
1 + |�|2 − 2Re(�) cos(x) + 2 Im(�) sin(x)

∶= |�k − �|2 max
x∈[0,2�]

C� − 2a cos(x) + 2b sin(x)
C� − 2c cos(x) + 2d sin(x)

. (A9)

Note that by assumption |�| < 1, which implies |1 − |�|| > 0, and the denominator of (A9) is necessarily
nonzero. Thus the function we are maximizing is well-defined at all x (i.e., has non zero denominator). To
find the maximum, we differentiate in x, where

)
)x

C� − 2a cos(x) + 2b sin(x)
C� − 2c cos(x) + 2d sin(x)

=
2 sin(x)(aC� − cC�) + 2 cos(x)(bC� − dC�) + 4(ad − bc)

(C� − 2c cos(x) + 2d sin(x))2
.

To set the derivative equal to zero, we only need to worry about the numerator, so we seek x such that
sin(x)(aC� − cC�) + cos(x)(bC� − dC�) + 2(ad − bc) = 0. (A10)

Note if ! = 1 (unweighted relaxation),
ad − bc = !(1 − !)(Re(�k) Im(�) − Im(�k) Re(�)) = 0, (A11)

in which case we can directly compute the solution x0 to (A10) via the arctangent. The perturbation term
in (A11) arises for ! ≠ 1. If � and �k have the same angle in the complex plane (i.e., � = C�k for some
constant C), (A11) is also zero, and we arrive at the same solution x0 as when ! = 1. More generally, we
need to account for the case that � and �k are not the same direction in the complex plane. Mathematica
provides the root as

x0 ∶= 2 arctan

⎛

⎜

⎜

⎜

⎝

aC� − cC� ±
√

a2C2
� − 4a2d2 + 8abcd − 2acC�C� − 4b2c2 + b2C2

� − 2bdC�C� + c2C
2
� + d2C

2
�

−2(ad − bc) + bC� − dC�

⎞

⎟

⎟

⎟

⎠

= 2 arctan

⎛

⎜

⎜

⎜

⎝

aC� − cC� ±
√

(aC� − cC�)2 + (bC� − dC�)2 − 4(ad − bc)2

−2(ad − bc) + bC� − dC�

⎞

⎟

⎟

⎟

⎠

. (A12)
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Now we want to evaluate (A9) at our maximum, x0. Note that the maximum in (A12) takes the form
x0 = 2 arctan(r) for a certain r, and recall the identities

cos(2 arctan(r)) = 1 − r2

1 + r2
, sin(2 arctan(r)) = 2r

1 + r2
.

Then from (A9),

C� − 2a cos(2 arctan(r)) + 2b sin(2 arctan(r))
C� − 2c cos(2 arctan(r)) + 2d sin(2 arctan(r))

=
C� −

2a(1−r2)
1+r2

+ 4br
1+r2

C� −
2c(1−r2)
1+r2

+ 4dr
1+r2

=
C�(1 + r2) − 2a(1 − r2) + 4br
C�(1 + r2) − 2c(1 − r2) + 4dr

=
(C� + 2a)r2 + 4br + C� − 2a
(C� + 2c)r2 + 4dr + C� − 2c

. (A13)

Thus to compute the bound in (A8), we first evaluate r from (A12),

r ∶=
aC� − cC� ±

√

(aC� − cC�)2 + (bC� − dC�)2 − 4(ad − bc)2

−2(ad − bc) + bC� − dC�
, (A14)

where
a = !(! − 1)Re(�k),
b = !(! − 1) Im(�k),
c = Re(�),
d = Im(�),
C� = 1 + |�|2 = 1 + c2 + d2,
C� = (! − 1)2 + !2|�k|2 = (! − 1)2 + !2(Re(�k)2 + Im(�k)2).

We then plug r into (A13) and take the square root to map from (A9) to (A8).

S2 ONE-DIMENSIONAL MODEL PROBLEM RESULTS

This section thoroughly examines weighted-relaxation and MGRIT for three model problems, the 1D
heat equation, the 1D advection equation with purely imaginary spatial eigenvalues, and the 1D advec-
tion equation with complex spatial eigenvalues. For full multilevel experiments, V-cycles are used and we
coarsen down to a grid of size 4 or less in time. During searches in the weight-space for experimentally
optimal weights, we use a step size of 0.1. Other testing parameters are discussed below on a case-by-case
basis.
Regarding notation, we introduce a level subscript to allow for level-dependent weights, i.e., !C,l=k is the
weight used on level k. If the level subscript is omitted, then the weight is uniform across all levels. For
example, !C,l=0 represents the relaxation weight for the first application of C-relaxation on the finest level
0, and !CC,l=1 represents the relaxation weight for the second application of C-relaxation (degree two
weighted-Jacobi) on the first coarse level 1.
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S2.1 One-dimensional heat equation
We consider the one-dimensional heat equation subject to an initial condition and homogeneous Dirichlet
boundary conditions,

)u
)t
− � )

2u
)x2

= f (x, t), � > 0, x ∈ Ω = [0, L], t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = 0, x ∈ )Ω, t ∈ [0, T ].

(B15)

We transform the model problem to a system of ODEs of the form (1) by using second-order central dif-
ferencing for discretizing the spatial derivative and then a standard one-step method (backward Euler) of
the form (2) for discretizing the time derivative. We call this the Backward Time, Central Space or BTCS
scheme, which yields

uj = (I − �tG)−1uj−1 + (I − �tG)−1�tfj , j = 1, 2, ..., Nt, (B16)
where the linear operator G in (1) is the three-point stencil �

ℎ2x
[1,−2, 1]. In the form of (2),Φ = (I − �tG)−1

and gj = (I − �tG)−1�tfj . The eigenvalues of Φ and Φm are computed using the eigenvalues of G, i.e.,

� = −
4
ℎ2x
sin2

( �
2(Nx + 1)

)

,

for  = 1, 2, ..., Nx, which in turn allows for the computation of the theoretical convergence estimate (19).
For more details on our computation of � , see the work27.
The following functions with the given domains are used for numerical experiments,

u(x, t) = sin(�x) cos(t),
f (x, t) = sin(�x)[sin(t) − �2 cos(t)],
� = 1, x ∈ [0, 1], t ∈ [0, 0.625].

The residual norm halting tolerance forMGRIT is set to 10−10∕
√

ℎx�t. Reported convergence rates are taken
as an average over the last 5 MGRIT iterations, where ‖rk‖2∕‖rk−1‖2 is the convergence rate at iteration k
and rk is the residual from equation (3) at iteration k. The combination of grid points in spaceNx and time
Nt are chosen so that a

�t
ℎ2x
= 12.8. This value was chosen to be of moderate magnitude and consistent with

other MGRIT literature, namely the work27.

S2.1.1 Weighted FCF- and FCFCF-relaxation
We start by considering the two-level method for weighted FCF- and FCFCF-relaxation, i.e., degree-one
and degree-two relaxation, respectively. Here, the search for the experimentally optimal pair of weights
for FCFCF-relaxation and m = 2 is depicted in Figure S1, where (!C , !CC) = (1.7, 0.9) is the point
corresponding to the minimal experimental convergence rate. The search space of possible weights is 0 ≤
!C , !CC ≤ 2.0, and is based on a more expansive preliminary search. A similar study was done in the
thesis40 for FCF-relaxation and found that !C = 1.3 is the point where the minimal convergence rate is
reached.
Table S1 depicts the convergence rate and iterations for the two-level case. Each table entry is formatted
as convergence rate (iterations). The experimentally optimal weights for FCFCF-relaxation (!C , !CC) =
(1.7, 0.9), found using (Nx, Nt) = (291, 4097) and m = 2 above, is highlighted in bold. This weight choice
leads to a saving of 1 MGRIT iteration, or 16%, over unitary weights and FCFCF-relaxation on the largest
problem. The best weight choice for FCF-relaxation of !C = 1.3 yields a saving of 1 iteration, or 14%,
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(a)Convergence Rate (b) Iterations

FIGURE S1 Two-level MGRIT experimental convergence rates (left) and iteration counts (right) using FCFCF-relaxation and
various relaxation weights!C and!CC for the 1D heat equation, coarsening factorm = 2, and grid sizes (Nx, Nt) = (291, 4097).

over a unitary weight choice (i.e., !C = 1.0) on the largest problem. At the bottom of the table, we exam-
ine whether the experimentally optimal weights for FCF- and FCFCF-relaxation carry over to another
coarsening factor choice, m = 16, and find that this is largely the case.
Table S2 repeats these experiments for a full multilevel method. We see that the best two-level choice for
FCFCF-relaxation of (1.7, 0.9) still performs well, but no longer yields the fastest convergence. Another
search of the weight-space for the multilevel case yielded the experimentally optimal pair of weights
(!C , !CC) = (2.0, 0.9) when m = 2, which allows for saving 1 iteration. The uniform weight choice of
!C = 1.3 for FCF-relaxation continues to save 1 iteration.
Regarding cost, we can say that the cost of relaxation is the dominant cost of each V-cycle2, thus a V-
cycle with m = 2 and FCFCF-relaxation has a cost of about 1.66× when compared to a V-cycle using
FCF-relaxation. Furthermore, we can then say that the use of weighted relaxation with FCF-relaxation
is the most efficient solver depicted, as the number of iterations (8) for the largest problem size in Table
S2 and weighted FCF-relaxation is noticeably less than 1.66 times the number of iterations for weighted
FCFCF-relaxation (1.66 ∗ 6 ≈ 10).

S2.1.2 Multilevel weights for C-relaxation
We now consider the effect of level-dependent FCF-relaxation weights on MGRIT. Weighted FCFCF-
relaxation is not considered because it is not as efficient as FCF, as discussed in Section S2.1.1, and the
search space quickly becomes prohibitive. Thus, the search for the experimentally optimal pair of weights
for three-level MGRIT with FCF-relaxation and m = 2 is depicted in Figure S2, where (!C,l=0, !C,l=1) =
(1.0, 2.0) is the point corresponding to the minimal convergence rate.
Next, we move to a four-level method while keeping fixed the experimentally optimal weights found in
Figure S2 and search only for the weight on level three (the second coarse grid), !C,l=2. The search
for !C,l=2 is depicted in Figure S3, and the trio of experimentally optimal weights is found to be
(!C,l=0, !C,l=1, !C,l=2) = (1.0, 2.0, 1.7) when m = 2.
Table S3 depicts the convergence rate and iterations for level dependent weights, comparing the experimen-
tally “best" choice of (!C,l=0, !C,l=1, !C,l=2) = (1.0, 2.0, 1.7) against unitary weights and the best uniform
weight choice of !C = 1.3. Level dependent weights provide only a very modest improvement in conver-
gence rate with m = 2 and no benefit in iteration count over the best uniform weight choice of !C = 1.3.
Additionally, the selected level dependent weights do not translate to improved performance for m = 16,
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Nx ×Nt 291 × 4097 411 × 8193 581 × 16385 821 × 32769

m = 2
!C = 1.0 0.049 (7) 0.048 (7) 0.039 (7) 0.039 (7)

1.3 0.036 (7) 0.036 (7) 0.034 (6) 0.034 (6)
1.5 0.048 (7) 0.049 (7) 0.049 (7) 0.049 (7)

m = 2

(!C , !CC ) = (1.0, 1.0) 0.029 (6) 0.029 (6) 0.029 (6) 0.028 (6)
(1.3, 1.0) 0.025 (6) 0.024 (6) 0.024 (6) 0.023 (6)
(1.7, 0.9) 0.020 (6) 0.020 (6) 0.019 (6) 0.016 (5)
(2.0, 0.9) 0.023 (6) 0.023 (6) 0.023 (6) 0.023 (6)

m = 16 !C = 1.0 0.101 (9) 0.099 (8) 0.099 (8) 0.099 (8)
1.3 0.074 (8) 0.075 (8) 0.075 (8) 0.074 (8)

m = 16

(!C , !CC ) = (1.0, 1.0) 0.056 (7) 0.060 (7) 0.060 (7) 0.060 (7)
(1.3, 1.0) 0.049 (7) 0.053 (7) 0.053 (7) 0.053 (7)
(1.7, 0.9) 0.041 (6) 0.042 (6) 0.041 (6) 0.040 (6)
(2.0, 0.9) 0.042 (6) 0.042 (6) 0.042 (6) 0.042 (6)

TABLES1Two-levelMGRIT convergence rates (iterations) for the 1D heat equation andweighted FCF- and FCFCF-relaxation.

Nx ×Nt 291 × 4097 411 × 8193 581 × 16385 821 × 32769

m = 2 !C = 1.0 0.118 (9) 0.121 (9) 0.123 (9) 0.125 (9)
1.3 0.092 (8) 0.095 (8) 0.096 (8) 0.096 (8)

m = 2

(!C , !CC ) = (1.0, 1.0) 0.065 (7) 0.066 (7) 0.067 (7) 0.068 (7)
(1.3, 1.0) 0.057 (7) 0.058 (7) 0.059 (7) 0.059 (7)
(1.7, 0.9) 0.048 (7) 0.049 (7) 0.049 (7) 0.049 (7)
(2.0, 0.9) 0.032 (6) 0.032 (6) 0.032 (6) 0.032 (6)

m = 16 !C = 1.0 0.101 (9) 0.099 (8) 0.098 (8) 0.098 (8)
1.3 0.071 (8) 0.068 (7) 0.067 (7) 0.067 (7)

m = 16

(!C , !CC ) = (1.0, 1.0) 0.056 (7) 0.060 (7) 0.060 (7) 0.060 (7)
(1.3, 1.0) 0.048 (7) 0.053 (7) 0.052 (7) 0.052 (7)
(1.7, 0.9) 0.037 (6) 0.040 (6) 0.039 (6) 0.038 (6)
(2.0, 0.9) 0.041 (6) 0.041 (6) 0.041 (6) 0.041 (6)

TABLE S2 Multilevel MGRIT convergence rates (iterations) for the 1D heat equation and weighted FCF- and FCFCF-
relaxation.

as shown at the bottom of the table. Thus, we conclude that level independent weights for problems similar
to the heat equation are likely sufficient.

S2.1.3 Varying �t experiment
Lastly, for the one-dimensional heat equation, we explore the question of why weighted relaxation offers a
significantly larger convergence benefit for multilevel MGRIT than for two-level MGRIT (compare Tables
S1 and S2). In particular, we are interested if the progressively larger �t on coarse grids drives the improved
performance for weighted relaxation in a multilevel setting. Thus, Table S4 depicts the two-level MGRIT
convergence rate for various fine-grid �t values that mimic the �t values encountered with m = 2 on coarse
MGRIT levels, when a final time of 0.625 is used and Nt = 16385 (i.e., the largest problem from Tables
S1 and S2). To further mimic the coarse levels in MGRIT, Nt adapts with �t, so that the final time is
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(a)Convergence Rate (b) Iterations

FIGURE S2 Three-level MGRIT experimental convergence rates (left) and iteration counts (right) using level-dependent FCF-
relaxation weights !C,l=0 and !C,l=1 for the 1D heat equation, coarsening factor m = 2, and grid size (Nx, Nt) = (291, 4097).

(a)Convergence Rate (b) Iterations

FIGURE S3 Four-level MGRIT convergence rates (left) and iteration counts (right) using FCF-relaxation, as we search for
the best level-three relaxation weight !C,l=2, with the fixed values of (!C,l=0, !C,l=1) = (1.0, 2.0) on the first two levels. The
problem is the 1D heat equation, coarsening factor m = 2, and grid size (Nx, Nt) = (291, 4097).

Nx ×Nt 291 × 4097 411 × 8193 581 × 16385 821 × 32769

m = 2
(!C,l=0, !C,l=1, !C,l=2) = (1.0, 1.0, 1.0) 0.090 (8) 0.090 (8) 0.090 (8) 0.090 (8)

(1.0, 2.0, 1.7) 0.056 (7) 0.056 (7) 0.056 (7) 0.056 (7)
(1.3, 1.3, 1.3) 0.069 (8) 0.069 (8) 0.063 (7) 0.062 (7)

m = 16
(!C,l=0, !C,l=1, !C,l=2) = (1.0, 1.0, 1.0) 0.101 (9) 0.099 (8) 0.098 (8) 0.098 (8)

(1.0, 2.0, 1.7) 0.087 (8) 0.086 (8) 0.087 (8) 0.087 (8)
(1.3, 1.3, 1.3) 0.071 (8) 0.068 (7) 0.067 (7) 0.067 (7)

TABLE S3 Four-level MGRIT convergence rates (iterations) for the 1D heat equation with level-dependent weights.

unchanged, e.g., when �t has been multiplied by 16 in Table S4, Nt decreases by a factor of 16 from
4096 to 256. However, as evidenced in the table, no MGRIT dependence on �t for weighted-relaxation is
found, so we conclude that a more complication multilevel interaction is driving the improved benefit of
weighted-relaxation in the multilevel case.
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�t 3.81e−5 2 ⋅ 3.81e−5 4 ⋅ 3.81e−5 8 ⋅ 3.81e−5 16 ⋅ 3.81e−5

Iterations 6 7 7 7 7
Convergence Rate 0.034 0.036 0.036 0.036 0.036

TABLE S4 Two-level MGRIT with !C = 1.3 and m = 2 for various fine-grid �t values for the 1D heat equation.

S2.2 One-dimensional linear advection equation with purely imaginary spatial eigenvalues
We now consider the one-dimensional linear advection equation subject to an initial condition and periodic
boundary conditions,

)u
)t
− � )u

)x
= 0, � > 0, x ∈ Ω = [0, L], t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω,
u(0, t) = u(L, t), t ∈ [0, T ].

(B18)

If we apply the BTCS scheme, we obtain
uj = (I − �tG)−1uj−1, j = 1, 2, ..., Nt,

where the linear operator G from (1) is the two-point stencil �
2ℎx
[−1, 0, 1]. Here,Φ = (I−�tG)−1 and gj = 0.

Similar to the heat equation, the eigenvalues of Φ and Φm are computed from the eigenvalues of G, i.e.,

� =
i
ℎx
sin

(

2�
Nx

)

,

for  = 1, 2, ..., Nx, which in turn allows for the computation of the theoretical convergence estimate (19).
The following function with the given domain is used for numerical experiments,

u(x, t) = e−25((x−t)−0.5)2 , (B19a)
� = 1, x ∈ [0, 1], t ∈ [0, 1]. (B19b)

The function is chosen as a standard test problem that satisfies the spatially periodic boundary conditions.
The MGRIT residual norm halting tolerance is set to 10−8∕

√

ℎx�t and the maximum allowed iterations
is set to 70, because some cases will fail to quickly converge. Reported convergence rates are taken as
(‖rk‖2∕‖r0‖2)1∕k at the final iteration k, where ri is the residual from equation (3) at iteration i. The
combination of grid points in spaceNx and timeNt are chosen so that

�t
ℎx
= 0.5.

S2.2.1 Weighted FCF- and FCFCF-relaxation
We again start by considering the two-level method for weighted FCF- and FCFCF-relaxation. The search
for the experimentally optimal pair of weights for FCFCF-relaxation and m = 2 is depicted in Figure S4,
where (!C , !CC) = (1.0, 2.3) is the point corresponding to the minimal convergence rate. The search space
of weights is widened to 0 ≤ !C , !CC ≤ 3, because a more expansive preliminary search indicated this was
a reasonable range. A similar study was done in the thesis40 for FCF-relaxation and found that !C = 1.8 is
the point where the minimal convergence rate is reached.
Table S5 depicts the convergence rate and iterations for the two-level case. The experimentally optimal pair
of weights for FCFCF-relaxation (!C , !CC) = (1.0, 2.3), found in Figure S4, is highlighted in bold, and
this choices leads to saving 1 iteration, or 7% over unitary weights and FCFCF-relaxation on the largest
problem. The best weight choice for FCF-relaxation of !C = 1.8 yields a saving of 1 iteration, or 7%,
over a unitary weight choice on the largest problem. At the bottom of the table, we examine whether the
experimentally optimal weights carry over to another coarsening factor, m = 4, and find that this is not the
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case, in contrast to the heat equation. MGRIT for advection problems is typically sensitive to changes in m
(as opposed to the heat equation)27, 41, hence we do not consider m = 16 or other large coarsening factors.
Table S6 repeats these experiments for a full multilevel method. We see that the best two-level choice for
FCFCF-relaxation of (!C , !CC) = (1.0, 2.3) fails to provide a benefit for larger problems in the multi-
level setting. Thus, we carry out another search in the weight-space and find that (!C , !CC) = (2.3, 0.6)
(in bold) yields the fastest convergence when m = 2, saving 25% of the iterations over unitary weights
(!C , !CC) = (1.0, 1.0) on the largest problem. A search in the weight-space for FCF-relaxation yielded the
best convergence rate when !C = 1.5, saving 22% of the iterations on the second largest problem. At the
bottom of the table, we show that the best weight choices for m = 2 do not carry over to m = 4. The choice
of !C = 1.4 for FCF-relaxation is depicted to illustrate the performance for the best weight choice found
in that case.
Overall, we note that linear advection is traditionally difficult for MGRIT27, 41, so while these iteration
counts with experimentally optimal weights are not scalable, we view any significant improvement in
convergence as an important step.

(a)Convergence Rate (b) Iterations

FIGURE S4 Two-level MGRIT experimental convergence rates (left) and iteration counts (right) using FCFCF-relaxation
and various relaxation weights !C and !CC for the 1D linear advection equation, coarsening factor m = 2, and grid size
(Nx, Nt) = (1025, 1025).

S2.2.2 Multilevel weights for C-relaxation
We again consider the effect of level-dependent FCF-relaxation weights on MGRIT, similar to the heat
equation. Weighted FCFCF-relaxation is again not considered due to its cost and size of search space. Thus,
the search for the experimentally optimal pair of weights for three-level MGRIT with FCF-relaxation and
m = 2 is depicted in Figure S5, where (!C,l=0, !C,l=1) = (1.3, 2.0) is the point corresponding to theminimal
convergence rate.
Next, we move to a four-level method while keeping fixed the experimentally optimal weights found
in Figure S5 and search only for the weight on level three (the second coarse grid), !C,l=2. This
search is depicted in Figure S6 and the trio of experimentally optimal weights is found to be
(!C,l=0, !C,l=1, !C,l=2) = (1.3, 2.0, 1.7) when m = 2.
Table S7 depicts the convergence rate and iterations for level dependent weights, comparing the experimen-
tally “best" choice of (!C,l=0, !C,l=1, !C,l=2) = (1.3, 2.0, 1.7) against unitary weights and the best uniform
weight choice of !C = 1.5. Level dependent weights provide only a modest improvement in convergence,
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Nx ×Nt 513 × 513 1025 × 1025 2049 × 2049 4097 × 4097

m = 2 !C = 1.0 0.304 (15) 0.307 (15) 0.308 (15) 0.309 (15)
1.8 0.280 (14) 0.282 (14) 0.284 (14) 0.285 (14)

m = 2

(!C , !CC ) = (1.0, 1.0) 0.263 (13) 0.266 (13) 0.268 (13) 0.278 (14)
(1.8, 1.0) 0.249 (13) 0.254 (13) 0.257 (13) 0.257 (13)
(1.0, 2.3) 0.237 (12) 0.250 (13) 0.251 (13) 0.252 (13)
(2.3, 0.6) 0.238 (12) 0.254 (13) 0.256 (13) 0.256 (13)

m = 4 !C = 1.0 0.564 (30) 0.607 (34) 0.617 (35) 0.619 (35)
1.8 0.763 (63) 0.777 (67) 0.780 (68) 0.780 (68)
1.5 0.568 (30) 0.581 (31) 0.591 (32) 0.596 (33)

m = 4

(!C , !CC ) = (1.0, 1.0) 0.473 (23) 0.537 (27) 0.557 (29) 0.566 (30)
(1.5, 1.0) 0.448 (21) 0.511 (25) 0.537 (27) 0.546 (28)
(1.0, 2.3) 0.655 (40) 0.675 (43) 0.679 (44) 0.680 (44)
(2.3, 0.6) 0.643 (38) 0.660 (41) 0.663 (41) 0.664 (41)

TABLE S5 Two-level MGRIT convergence rates (iterations) for the 1D linear advection equation and weighted FCF- and
FCFCF-relaxation.

Nx ×Nt 513 × 513 1025 × 1025 2049 × 2049 4097 × 4097

m = 2 !C = 1.0 0.560 (30) 0.675 (44) 0.771 (67) 0.854 (> 100)
1.5 0.495 (24) 0.606 (35) 0.718 (52) 0.810 (82)

m = 2

(!C , !CC ) = (1.0, 1.0) 0.464 (23) 0.576 (32) 0.678 (45) 0.765 (64)
(1.5, 1.0) 0.423 (20) 0.542 (29) 0.646 (40) 0.738 (57)
(1.0, 2.3) 0.452 (22) 0.605 (35) 0.744 (59) 0.858 (>100)
(2.3, 0.6) 0.390 (19) 0.492 (25) 0.603 (34) 0.696 (48)

m = 4 !C = 1.0 0.581 (32) 0.666 (42) 0.757 (61) 0.838 (95)
1.4 0.535 (27) 0.611 (34) 0.712 (50) 0.802 (77)

m = 4

(!C , !CC ) = (1.0, 1.0) 0.476 (23) 0.577 (31) 0.677 (43) 0.774 (66)
(1.4, 1.0) 0.448 (22) 0.544 (28) 0.643 (39) 0.752 (60)
(1.0, 2.3) 0.658 (41) 0.683 (44) 0.761 (63) 0.884 (>100)
(2.3, 0.6) 0.607 (34) 0.640 (38) 0.758 (62) 0.860 (>100)

TABLE S6 Multilevel MGRIT convergence rates (iterations) for the 1D linear advection equation and weighted FCF- and
FCFCF-relaxation.

but it is a larger improvement than observed for the heat equation, where no iterations were saved. Here,
only 3 iterations (4.7%) are saved form = 2, when compared to the best uniform weight choice of!C = 1.5.
At the bottom of the table, we show how this expensive weight optimization procedure does not carry over
to another coarsening factor of m = 4, and instead show that a uniform weight choice of !C = 1.4 still
provides a substantial improvement in convergence. We conclude that for this problem, level-dependent
weights do not offer much improvement for convergence and come at the high cost of finding weights.

S2.2.3 Varying �t experiment
Lastly, similar to the heat equation, we explore the question of whyweighted relaxation offers a significantly
larger benefit for multilevel MGRIT than for two-level MGRIT (compare Tables S6 and S5). Thus, we
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(a)Convergence Rate (b) Iterations

FIGURE S5 Three-level MGRIT experimental convergence rates (left) and iteration counts (right) using various level-
dependent FCF-relaxation weights !C,l=0 and !C,l=1 for the 1D linear advection equation, coarsening factor m = 2, and grid
size (Nx, Nt) = (1025, 1025).

(a)Convergence Rate (b) Iterations

FIGURE S6 Four-level MGRIT convergence rates (left) and iteration counts (right) using FCF-relaxation, as we search for
the best level-three relaxation weight !C,l=2, with the fixed values of (!C,l=0, !C,l=1) = (1.3, 2.0) on the first two levels. The
problem is the 1D linear advection equation, coarsening factor m = 2, and grid size (Nx, Nt) = (1025, 1025). The maximum
allowed iterations is 50.

Nx ×Nt 513 × 513 1025 × 1025 2049 × 2049 4097 × 4097

m = 2
(!C,l=0, !C,l=1, !C,l=2) = (1.0, 1.0, 1.0) 0.562 (31) 0.670 (43) 0.749 (60) 0.788 (72)

(1.3, 2.0, 1.7) 0.584 (32) 0.591 (33) 0.695 (47) 0.754 (61)
(1.5, 1.5, 1.5) 0.485 (24) 0.609 (35) 0.710 (51) 0.764 (64)

m = 4
(!C,l=0, !C,l=1, !C,l=2) = (1.0, 1.0, 1.0) 0.579 (31) 0.670 (42) 0.755 (61) 0.838 (96)

(1.3, 2.0, 1.7) 0.545 (28) 0.673 (44) 0.794 (76) 0.983 (>100)
(1.4, 1.4, 1.4) 0.535 (27) 0.613 (35) 0.711 (50) 0.803 (77)

TABLE S7 Four-level MGRIT convergence rates (iterations) for the 1D linear advection equation with level-dependent weights.

explore whether increasing the �t value has a discernible impact on MGRIT convergence. Table S8 depicts
the two-level MGRIT convergence rate for various fine-grid �t values that mimic the �t values encountered
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with m = 2 on coarse MGRIT levels, when a final time of 1.0 is used and Nt = 4097 (i.e., the largest
problem in Tables S5 and S6). The value Nt also adapts with �t so that the final time remains unchanged,
similar to coarse MGRIT levels, e.g., when �t is multiplied by 16 in Table S8, Nt decreases by a factor or
16 from 4097 to 257. The table shows that only a weak potential dependence exists between �t and MGRIT
convergence, with a slight improvement in convergence rate as �t increases, but no decrease in iterations.
This leads us to believe that a more complicated multilevel interaction is driving the improved benefit of
weighted-relaxation in the multilevel case.

�t 2.44e−4 2 ⋅ 2.44e−4 4 ⋅ 2.44e−4 8 ⋅ 2.44e−4 16 ⋅ 2.44e−4

Iterations 14 14 14 14 14
Convergence Rate 0.285 0.284 0.282 0.280 0.274

TABLE S8 One-dimensional linear advection equation and two-level MGRIT with !C = 1.8 and m = 2 for various fine-grid
�t values.

S2.3 One-dimensional advection equation with grid-dependent dissipation
The final one-dimensional model problem considered is the one-dimensional advection equation with grid-
dependent dissipation, which yields complex spatial eigenvalues. For initial condition u0(x) and periodic
spatial boundary condition, we have

)u
)t
− � )u

)x
− �ℎx

)2u
)x2

= 0,

� > 0, � > 0, x ∈ Ω = [0, L], t ∈ [0, T ],
u(x, 0) = u0(x), x ∈ Ω,
u(0, t) = u(L, t), t ∈ [0, T ].

(B20)

By applying standard central differencing for discretizing the spatial derivatives, we obtain the classic first-
order upwind difference scheme with � = 0.5. Next, using backward Euler for discretizing the temporal
derivative results in

uj = (I − �tG)−1uj−1, j = 1, 2, ..., Nt, (B21)
where the linear operator G from (1) is the two-point upwinding stencil �

ℎx
[−1, 1, 0]. The eigenvalues of G

are then computed from the combination of the previously described eigenvalues for the heat equation and
linear advection equations (see Sections S2.1 and S2.2, respectively), yielding

� =
i
ℎx
sin

(

2�
Nx

)

− 4�
ℎx
sin2

(

�
2(Nx + 1)

)

,

for  = 1, 2, ..., Nx. These values for � allow for the computation of the theoretical convergence estimate
(19).
The same function, domains, and boundary conditions are used as in equations (B19a) and (B19b). Like-
wise, the same MGRIT residual norm tolerance, convergence rate measurements, and maximum iterations
are used as in Section S2.2. The combination of grid points in space Nx and time Nt are chosen so that
�t
ℎx
= 1.0.

S2.3.1 Weighted FCF- and FCFCF-relaxation
We again start by considering the two-level method for weighted FCF- and FCFCF-relaxation. The search
for the experimentally optimal pair of weights for FCFCF-relaxation and m = 2 is depicted in Figure S7b,



Pr
ep
rin

t–
Pr
ep
rin

t–
Pr
ep
rin

t–
Pr
ep
rin

t–
Pr
ep
rin

t–
Pr
ep
rin

t Sugiyama ET AL. 31

where (!C , !CC) = (2.4, 1.0) is the point corresponding to the minimal convergence rate. The search space
of weights is the same as that for Section S2.2, 0 ≤ !C , !CC ≤ 3, because a more expansive preliminary
search indicated this was a reasonable range.
A similar study was done in the thesis40 for FCF-relaxation and found that !C = 1.9 is the point where the
minimal convergence rate is reached.
Table S9 depicts the convergence rate and iterations for the two-level case. The experimentally optimal pair
of weights found in Figure S7b for FCFCF-relaxation (!C , !CC) = (2.4, 1.0) is in bold, and this choice
leads to saving 1 iteration, or 11%, over unitary weights and FCFCF-relaxation on the largest problem. The
best weight choice for FCF-relaxation of !C = 1.9 yields only a marginal improvement in convergence and
no reduction in iterations when compared to a unitary weight and FCF-relaxation on the largest problem.
At the bottom of the table, we examine whether the experimentally optimal weights carry over to m = 4
and find that they do not, e.g., (!C , !CC) = (2.4, 1.0) is slightly out-performed by (!C , !CC) = (2.2, 0.5).
Additionally, the experimentally best weight for FCF-relaxation and m = 4 was found to be 1.7 (not 1.9).
Table S10 repeats these experiments for a full multilevel method. We see that the best two-level choice for
FCFCF-relaxation of (!C , !CC) = (2.4, 1.0) fails to provide a benefit for larger problems. Thus, we carry
out another search for FCFCF-relaxation and find that the weights (!C , !CC) = (2.2, 0.5) yield the fastest
multilevel convergence when m = 2, saving 9 iterations, or 22%, when compared to unitary weights and
FCFCF-relaxation on the largest problem. A search in the weight-space for FCF-relaxation yielded the best
convergence rate when !C = 1.6, saving 14 iterations or 21%, over a unitary weight choice on the largest
problem. At the bottom of the table, we show that the best weight choices for m = 2 do not carry over to
m = 4. We depict the results for an experimentally best weight of 1.4 for FCF-relaxation in order to show
that, curiously, MGRIT with FCF-relaxation performs better for m = 4 than for m = 2.
We again note that linear advection is traditionally difficult for MGRIT, so we view this improved
convergence when using experimentally optimal weights to be an important step.

(a)Convergence Rate (b) Iterations

FIGURE S7 Two-level MGRIT experimental convergence rates (left) and iteration counts (right) using FCFCF-relaxation and
various relaxation weights !C and !CC for the 1D linear advection equation with dissipation, coarsening factor m = 2, and grid
size (Nx, Nt) = (1025, 1025).

Remark 2. To avoid repetition, we omit our experiments for level-dependent weights and for varying �t,
because the results are similar to that seen in Sections S2.2.2 and S2.2.3 for the linear advection equation
with purely imaginary spatial eigenvalues. That is, optimized level-dependent weights saved 2 iterations, or
7%, in the four-level setting and FCF-relaxation, and little MGRIT dependence on the size of �t was found.
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Nx ×Nt 513 × 513 1025 × 1025 2049 × 2049 4097 × 4097

m = 2 !C = 1.0 0.147 (9) 0.150 (9) 0.151 (9) 0.151 (9)
1.9 0.140 (9) 0.141 (9) 0.142 (9) 0.142 (9)

m = 2
(!C , !CC ) = (1.0, 1.0) 0.133 (9) 0.134 (9) 0.135 (9) 0.136 (9)

(2.2, 0.5) 0.115 (8) 0.117 (8) 0.117 (8) 0.118 (8)
(2.4, 1.0) 0.114 (8) 0.115 (8) 0.116 (8) 0.116 (8)

m = 4 !C = 1.0 0.366 (17) 0.339 (18) 0.332 (18) 0.394 (18)
1.7 0.343 (16) 0.352 (16) 0.363 (17) 0.366 (17)

m = 4

(!C , !CC ) = (1.0, 1.0) 0.304 (14) 0.329 (15) 0.346 (16) 0.349 (16)
(1.7, 1.0) 0.273 (13) 0.304 (14) 0.323 (15) 0.326 (15)
(2.2, 0.5) 0.314 (15) 0.323 (15) 0.330 (15) 0.338 (16)
(2.4, 1.0) 0.328 (15) 0.334 (16) 0.337 (16) 0.338 (16)

TABLE S9 Two-level MGRIT convergence rates (iterations) for the 1D advection equation with dissipation and weighted FCF-
and FCFCF-relaxation.

Nx ×Nt 513 × 513 1025 × 1025 2049 × 2049 4097 × 4097

m = 2 !C = 1.0 0.438 (21) 0.560 (30) 0.667 (43) 0.772 (66)
1.6 0.388 (18) 0.488 (23) 0.613 (35) 0.719 (52)

m = 2

(!C , !CC ) = (1.0, 1.0) 0.344 (16) 0.432 (21) 0.559 (29) 0.660 (41)
(1.6, 1.0) 0.293 (14) 0.412 (20) 0.520 (26) 0.638 (38)
(2.2, 0.5) 0.295 (14) 0.363 (17) 0.482 (24) 0.585 (32)
(2.4, 1.0) 0.388 (19) 0.564 (32) 0.725 (53) 0.834 (94)

m = 4 !C = 1.0 0.428 (20) 0.549 (28) 0.657 (40) 0.746 (57)
1.4 0.375 (18) 0.496 (24) 0.607 (34) 0.694 (46)

m = 4

(!C , !CC ) = (1.0, 1.0) 0.336 (16) 0.449 (21) 0.562 (29) 0.677 (43)
(1.4, 1.0) 0.301 (14) 0.416 (20) 0.542 (28) 0.653 (39)
(2.2, 0.5) 0.454 (22) 0.582 (31) 0.682 (44) 0.712 (49)
(2.4, 1.0) 0.404 (19) 0.559 (30) 0.672 (42) 0.689 (45)

TABLES10MultilevelMGRIT convergence rates (iterations) for the 1D linear advection equationwith dissipation andweighted
FCF- and FCFCF-relaxation.
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