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Abstract
The computer vision task “semantic segmentation” forms a crucial building block in the interaction of several redundant
systems. As metric to evaluate the performance and reliability of this perceptual function, one commonly considers the
number of false negatives (FNs), i.e. counting instances that have been overlooked by the perception model. From a
practitioner’s point of view, however, faulty detections need to be considered in a more differentiated way. For example in
autonomous driving, detection errors of vulnerable road users (VRUs, e.g. pedestrians) far away from the probable travel
path of the ego vehicle are not as safety-relevant as detection errors of VRUs on the path ahead. Moreover, standard
evaluation approaches do not consistently specify how well the VRU instance must be covered by the perception model
in order to consider the VRU to be found. In this work we therefore introduce a sophisticated evaluation framework that
assesses semantic segmentation models for autonomous driving not only based on their classification and localization
abilities but also on distance information of VRUs within a safety-relevant region of interest ahead of the ego vehicle.
This allows distinguishing irrelevant FNs from potentially relevant FNs and thus provides more safety-aware metrics.

Keywords
semantic segmentation, autonomous driving, vulnerable road users, perception, evaluation framework, safety-aware
metrics, false negative reduction

Introduction

Semantic segmentation combines the computer vision tasks
of object classification and localization, figure 1. Any
pixel in a high resolution image is attributed a class
from a pre-defined semantic space. As a metric for the
performance of a segmentation algorithm, in most cases
realized by deep convolutional neural networks (CNNs)
(1; 2; 3), one often uses pixel based metrics on a test
data set, which is then averaged both over pixels and
over test samples. Pixel-wise quantities however do not
always distinguish between different semantic classes, which
generally is problematic if one semantic category of special
importance is underrepresented. For this reason, metrics
like the commonly-used intersection over union (IoU, also
known as (4)) are computed per semantic category by
comparing ground truth segmentation masks with predicted
segmentation masks for a specific category and then
averaged over the classes.

Although the IoU as performance metric combines
important quantities like the numbers of true positive (TP),
false positive (FP) and false negative (FN) class predictions,
it is still agnostic with regard to the application context
of the computer vision system. If such modern artificial
intelligence (AI) methods are deployed as perceptive systems
in a safety critical application like medical imaging, e.g.
(5), or autonomous driving, e.g. (6), the measurement
of performance necessarily has to take into account the
application specific failure modes.

For the example of autonomous driving, errors in
perception could either be irrelevant, like if a tree is confused
with a lamppost, or fatal, if a pedestrian is overlooked
due to a confusion with the street. Apart from the class
specific asymmetry of importance of confusion events (7; 8),
it is evident that a measurement of performance based on
pixel coverage is insufficient and should be replaced by an
instance based assessment, like overlooked vulnerable road
users (VRUs). Information on instances is often part of the
annotation in public domains test data sets, see e.g. (9; 10).

In this work, we therefore focus on pedestrians as VRU
that are overlooked by a perception system. We present
and implement methods that enable an instance based
assessment and provide performance metrics as well as
visualization tools for the usecase of semantic segmentation
in autonomous driving. Our approach allows for further
contextualization in two regards. We measure a segmentation
CNN’s detection ability of VRUs in a reachable area
depending on the ego-car’s velocity. Moreover, filtering
via the degree of detection, or other geometric properties
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(a) Synthetic input image (b) Corresponding ground truth

Figure 1. An example input image (a) from the dataset we used in our experiments and its corresponding ground truth semantic
segmentation mask (b). Our focus lies at detecting pedestrian instances, which are labeled with red color in the segmentation.
Images provided by: Mackevision Medien Design GmbH

of ground truth instances, is feasible. This matters, as
downstream software modules tend to filter the raw semantic
predictions of CNN prior to constructing the environmental
model and determining the driving policy. Our software
permits to asses the effects of filtering on the instance and
zone based performance of detection.

The capabilities are demonstrated on a synthetic data set
produced within the collaborative research project “KI -
Absicherung - Safe AI for Automated Driving”*. The dataset
consists of high-resolution street scene images with pixel-
wise object class annotation as well as depth information.

The paper is organized as follows: We first briefly
introduce the field of semantic segmentation in general,
including available datasets and common performance
metrics, and the neural network we employed for our
experiments. Thereafter, we describe our approach and
software architecture to provide contextualized performance
information of the network. We provide results as well
as visualizations for our testcase and finally give our
conclusions along with a short outlook on our future software
development.

Deep neural networks for perception and
test datasets

In this section, we give a brief introduction to the topic
”semantic segmentation by CNNs”. Furthermore, for our
experiments we employ a state-of-the-art segmentation
network, which we introduce as well. We then conclude this
section with an overview of the dataset on which we report
our results.

Semantic segmentation is the computer vision task of
classifying each pixel in an image to a pre-defined class.
Typically, the state-of-the-art in this field approaches this
task by employing deep (convolutional) neural networks
(CNNs), which can be understood as visual models
extracting hierarchies of features. Those models are one
of the basic components of an AI-based perception system
for autonomous driving. By capturing the environment via
cameras and feeding the produced images through a CNN,

the ego-car’s perception system is able to gain a visual
understanding of the present scene.

One prominent test suite in this regard is the Cityscapes
benchmark (9), which focuses on large-scale semantic
segmentation of urban street scenes. Early success on this
task was achieved by fully convolutional networks (11),
allowing an efficient end-to-end training and inference of
images of arbitrary size. Later, the introduction of “atrous”
convolution operators, first employed in the Deeplab model
(12), significantly impacted the segmentation quality by
effectively enlarging the field of vision. Such models,
therefore, are able to capture larger visual context and form
the basis of many modern network architectures (2; 13).
As the trend moved towards deeper and deeper network
designs, the training of such models grew ever more difficult.
The training process was then substantially eased by the
integration of residual modules (3; 14; 15), which are part
of nearly every recent network for semantic segmentation.

We, in this work, perform our experiments with a
DeeplabV3+ model with a WideResnet backbone (13), that
is pretrained by NVIDIA and publicly available. At the
time of writing, this network is among the best performing
models on the Cityscapes benchmark, reaching a mean
intersection over union (mIoU) score of 83.5%. The mIoU
as performance metric is commonly-used in other semantic
segmentation benchmarks as well, such as KITTI (16) or
Mapillary (17), and it measures the classification quality
per pixel over an entire test dataset. Although further
maximizing this global metric is important, particularly
research-wise, it does not necessarily improve the overall
system performance or guarantee safety as the mIoU
evaluates methods independently of a scene’s context. This
drawback also concerns an AI-based perception system for
autonomous driving, where usually other sensor data is
additionally available.

In our proposed evaluation framework for semantic seg-
mentation models, we take contextual additional information
into account, such as the ego-car’s velocity and the distance

∗https://www.ki-absicherung-projekt.de/
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of captured objects, in order evaluate the detection ability
of vulnerable road users. Therefore, we aim at quantifying
the deployability of camera-based perception models to real-
world applications. For testing purposes, we demonstrate our
results on a propriety synthetic dataset, provided by the “KI-
Absicherung” consortium.

At the time of writing, the dataset contains 196 sequences
with a total of 118,082 frames that were produced by
the companies Mackevision Medien Design GmbH and
BIT Technology Solutions GmbH. Special characteristics
of the synthetically generated data include: different
road surfaces, different lighting conditions (time of day,
weather...), different road infrastructure and architecture,
diverse vegetation, reflections, widely dispersed distribution
of distance to VRUs, high frame rates in dynamic sequences
(more than 10 fps), occlusions (various occluding objects)
and groups of people.

Sensor images with up to three different sensor
configurations (different contrast or brightness sensitivity)
are available for the generated frames. In addition, a pixel-
level annotation of the euclidean distance outgoing from the
ego-car is provided. Also, many other annotation formats are
available, including semantic instance segmentation, body
part segmentation and 2D- and 3D-bounding boxes.

Human-centered performance evaluation for
CNNs
In this section, we first explain why our evaluation and
the effort of the project revolve around the road user
”pedestrian”. We then discuss how to distinguish between
relevant and non-relevant instances of this class of vulnerable
road users. Furthermore, we present the prerequisites and
assumptions the evaluations are based on and motivate, why
the information from different types of sensors must be
available evaluate the performance of CNNs with respect to
VRU safety. We introduce the performance measure fIoU
and give a brief overview of the preparation of the data for
the evaluations of the ensuing section.

Vulnerable road users
The project ”KI-Absicherung” aims to make safety of
AI-based function modules for highly automated driving
verifiable. The project results form the foundation to build an
industry consensus for a general safeguarding strategy of AI
functions. As the primary research objective, the detection
of pedestrians was selected within the project, as from a
safety point of view, the relevance of VRUs detection is
rated particularly high as pedestrians form the largest group
of fatalities in street accidents that are not motor vehicle
occupants*. Furthermore, the task of detecting pedestrians as
VRU is an example for perception via mutliple sensors. In the
following, pedestrians and VRUs are used interchangeably,
as other VRU classes like cyclists are not represented in our
data.

Relevant and non-relevant VRUs
One objective of our framework is to refine the evaluation of
CNNs by distinguishing between relevant and non-relevant
false negative (FN) VRUs, i.e. pedestrians that have been
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Figure 2. The blue shaded areas mark the reachable area for
emergency braking (dark blue), normal braking (lighter blue)
and delayed normal braking (light blue) at a speed of 50 km/h or
less. The areas are also referred to as priority areas 1 (dark
blue), 2 (lighter blue) and 3 (light blue). The different areas are
shown in a representation that uses euclidean distance instead
of longitudinal and lateral distance as seen in figure 6. The
points represent the instances of the distance-filtered dataset.
The colour of the dots represents the fIoU of the associated
instances.

overlooked. Note that we divide all VRUs into relevant
and non-relevant, but focus specifically on the false-negative
instances (i.e. the overlooked instances). As non-relevant
false negative we consider those overlooked instances that
are out of the zone that could be reached during a braking
process. This means that no hazardous street scenario arises
from this false negative, unless it is also overlooked on
later image frames. In order to make this distinction, sensor
information as well as information on the ego-car’s velocity
are used. An exemplary filtering of the relevant VRUs is
shown in the section ”test results”.

In the evaluation we consider three different zones, which
can bee seen in figure 2. We have chosen three zones, which
are listed in ascending size and descending prioritization in
the following:

1) The smallest zone has a longitudinal length of 12.5m.
The length of the zone is based on the braking distance
during a emergency braking at a speed of 50km/h
or less. All points in this zone can theoretically be
reached during such emergency braking. VRUs in this
zone have the highest priority. In the following we will
refer to this zone as priority area 1.

2) The second largest zone has a longitudinal length of
25m, which corresponds to the braking distance for
a normal braking of 50 km/h speed. The zone thus
includes all points that can be reached during a normal
braking of 50 km/h or less. VRUs in this zone have the
second highest priority. Note that the entire first zone
is contained in the second zone. In the following we
will refer to this zone as priority area 2.

∗Source: Federal Statistical Office of Germany 2020
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3) The largest zone has a longitudinal length of 50m,
which corresponds to twice the braking distance in a
normal braking of 50 km/h speed. VRUs in this zone
have the third highest priority. Note that the first and
second zone are contained in the third zone. In the
following we will refer to this zone as priority area
3.

To reiterate the significance of the different zones: In
the case of false negatives of VRUs in priority area 1, a
possible collision can no longer be prevented by emergency
braking. In this case, an accident can only be avoided
by circumventing the VRU instance. In the case of false
negatives of VRUs in priority area 2, an accident can
be avoided by hazardous braking, and in the case of false
negatives in priority area 3, by ordinary braking.

Experimental setup

For our evaluation, we choose a subset of the project dataset
that was provided by BIT Technology Solutions GmbH. This
subset consists of 50 images and contains individual scenes
that are largely independent of each other. We consider the
following parameters, which all can be derived from the
available virtual sensors, to determine the relevance of a false
negative:

• Speed: The speed has a significant influence on the
braking distance and thus on the area that can be
reached while braking.

• Road surface: The surface characteristics of the road
have an influence on steering movements or braking
distance.

• Weather conditions: Wet or snow-covered roads can
significantly increase the braking distance.

• Trajectory: The potential driving trajectory of the ego-
car determines the size of the reachable area.

• Movement of the VRU: The likeliness, whether a VRU
crosses the ego-car’s driving trajectory, depends on
both the direction and movement speed of of the VRU.

In our experiments, we consider the speed as main parameter,
which is set to a maximum of 50 km/h. Furthermore, we
assume that the road surface is ordinary and dry asphalt,
since all our test images depict urban street scenes. For the
sake of simplicity, we for now omit the trajectories of the
ego-car and VRU.

An exemplary modeling of the possible reachable zones
for braking distances of 12.5 m (red, corresponding to normal
braking at ∼35 km/h) and 25 m (blue, corresponding to
normal braking at 50 km/h) can be viewed in figure 3. It
can be seen that at lower speeds, additional sections of the
area can be reached, as a smaller curve radius has to be taken
into account. Since only an upper limit is given for the speed,
the reachable area is extended to the area outlined in green.
Please note that the modeling shown is not based on scientific
research, nor does it cover areas that could be reached after
a collision with another road object. Instead, the displayed
zones function as placeholders, which shall be replaced by
scientifically proven reachable areas at a later stage.
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Figure 3. Reachable area for normal braking at 35 km/h (red)
and 50 km/h (blue) ego-car velocity, respectively, when the
ego-car is located at (0,0). Note, that the reachable area at
exactly 35 km/h does not completely cover the reachable area
at exactly 50 km/h. Therefore, under the assumption that the
ego-car’s velocity is any below 50 km/h, the reachable area for
normal braking then is depicted as the convex hull of reachable
areas at all velocities up to 50 km/h (green contours).

Merging different sensors for evaluation

In order to evaluate the relevance of false negatives, the
information from several sensors must be combined. In
particular we require the real image and some kind of depth
information. In our evaluation, the depth information is
available as pixel-wise depth mask, but sensor data such as
LIDAR or radar could also be used to obtain this information.
Based on the image and the depth information (which
measures the euclidean distance to the camera that takes the
image), the position of a VRU relative to the ego vehicle can
be determined. Since the angle of view is known, the position
of the VRU in the real image can be used to convert the
euclidean distance into a longitudinal and a lateral distance.

Fair component-wise IoU

The most-commonly used performance metric in semantic
segmentation is the intersection over union (IoU (4)),
measuring how well a CNN detects and localizes objects.
As the name suggests, given one prediction with its
corresponding target, this metric is computed by dividing
the area of overlap by the area of union, see figure 4
for an illustrative example. The prediction and target type
in our evaluation are the connected components of pixels,
sharing the class label of VRU, in the prediction and
ground truth segmentation masks, respectively. By means of
the component-wise IoU, we determine whether one VRU
instance has been overlooked or not.

Prepared using sagej.cls
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IoU = = 0.33

Figure 4. The ordinary component-wise IoU is computed by
dividing the area of overlap (orange area top) by the area of
union (orange area bottom). In this example, the prediction (blue
rectangle) and target (green rectangle) are of size 2, whereas
the overlap of these two is of size 1, yielding IoU = 0.33.

Target 1 Prediction

ordinary IoU = 0.50

fair IoU = 0.50

Target 1 Target 2

ordinary IoU = 0.50

fair IoU = 0.99

Figure 5. An illustrative comparison between the ordinary and
fair component-wise IoU. In both examples the prediction (blue
rectangle) is the same but different targets are covered (green
rectangles). In this examples, the component to be evaluated is
“target 1”. Then, the fair component-wise IoU subtracts all
correctly predicted regions from the union which are disjoint
from target 1 (red area in the right figure). In this way, the fair
component-wise IoU (fIoU) does not penalize the case when
one prediction covers multiple targets.

However, standard semantic segmentation models do not
provide predictions for single instances†. Therefore, we
employ an adapted version of the component-wise IoU for
our instance-based evaluation. We call this adjusted metric
fair component-wise IoU (fIoU), which already has been
introduced in (18; 19), see also figure 5 for an illustrative
example. It is called fair since this metric does not penalize
if one large prediction covers multiple instances, making this
metric particularly suitable to perform an instanced-based
evaluation of standard CNNs for semantic segmentation. We
consider one VRU instance as detected if its component-wise
IoU is greater than a chosen threshold, i.e. if fIoU > t, t ∈
[0, 1), and otherwise as overlooked.

Preparation of the DataFrame
In order to prepare the evaluation, a structured data set
is created by our framework. More precisely, a pandas
DataFrame is created where each row corresponds to one
VRU instance and contains the following information about
that instance:

• Fair component-wise IoU [%]
• Euclidean distance [m] to the ego vehicle
• Instance size [number of pixels]
• Longitudinal distance [m] to the ego vehicle
• Lateral distance [m] to the ego vehicle

The generated DataFrame can then be filtered, limiting the
evaluation to the relevant instances (or also relevant false
negatives).
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Figure 6. Representation of all VRU instances of the sequence
under consideration. Each instance is represented by a dot. The
colour of the dot indicates the fair component-wise IoU of the
instance, ranging form red (fIoU = 0.0) over yellow (fIoU = 0.5)
to green (fIoU = 1.0). The position of a dot is determined by the
longitudinal and lateral distance of the instance to the ego
vehicle. The grey area shows the angle of view.

Test results
In this section, an exemplary analysis of a sequence will be
shown. To this end, we first give some statistical details on
the sequence to be evaluated. Subsequently, the filtering of
the data set is considered step by step before the results of
the analysis are presented.
There are a total of 893 VRU instances in our evaluation
data set, as can be seen in figure 6. Most instances are not
further than 110m away. However, a few outliers exist, being
up to 185.95m away from the ego-car. In the figure, it can
be observed that the quality of the detection decreases with
increasing distance.

As can be seen in table 1, a large proportion of the false
negatives are located on non-relevant areas (i.e. none of the
three prioritized areas). Of the 893 instances, 305 instances
(34.15%) are in the prio. 3 zone, 95 (10.64%) in the prio. 2
zone and 32 (3.58%) in the prio. 1 zone. The same statement
holds true for the different IoU thresholds, whereby with
decreasing IoU, the proportion of false negatives that occur
in the prioritised areas decreases further. For example, 15
(6.15%) of the total 244 instances that were completely
overlooked (i.e. fIoU = 0%) are located in priority area 3
and one (0.41%) is located in priority area 1 (and thereby in
priority area 2 as well). Of the 659 false-negatives with fIoU
< 50%, 125 (18.97%) are located in priority area 3, twelve
(1.82%) are located in priority area 2 and three (0.46%) are
located in priority area 1. Of the 305 instances in priority area
3, 15 (4.92%) were completely missed and 125 (40.99%)

†The task of detecting and localizing each distinct object of interest
appearing in an image is referred to as instance segmentation.

Prepared using sagej.cls
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fIoU = 0% ≤ 10% ≤ 20% ≤ 30% ≤ 40% ≤ 50% ≤ 60% ≤ 70% ≤ 80% ≤ 90% total

#FN 244 430 490 559 609 659 713 764 806 868 893
#rel. FN (prio. 3) 15 31 46 74 100 125 153 185 218 280 305
#rel. FN (prio. 2) 1 5 6 8 9 12 15 21 29 71 95
#rel. FN (prio. 1) 1 1 1 2 2 3 3 3 4 15 32

Table 1. The number of instances whose fIoU fall below the threshold value specified in the header is indicated. These numbers
are given for the unfiltered dataset (in the row #FN) as well as the three priority areas. The last column also shows the total number
of instances in the respective areas.

were detected with a fIoU of less than 50%. Of the 95
instances in priority area 2, one (1.05%) was completely
missed and just twelve (12.63%) were detected with a fIoU
of less than 50%. In summary, it can be observed that the
majority of false negatives are not relevant, as they do not
occur in any of the three prioritised areas.

Conclusion and outlook
In this work, we presented a safety-aware evaluation
framework for semantic segmentation models, accompanied
with several visualization tools. In contrast to traditional
performance metrics, that measure a model’s classification
capability independently of the application context, we
take further available sensor data into account in order to
provide a contextualized safety metric. More precisely, we
focus on the semantic segmentation of street scenes and
we additionally consider depth information to determine
pedestrians as VRUs that are within reachable area of
the ego-car. Besides being assessed by means of the
detection quality, positional information of the VRUs
allows to distinguish between relevant false negative
VRUs (overlooked pedestrians) and non-relevant ones. We
demonstrated our software’s capabilities on a state-of-
the-art semantic segmentation network and a synthetic
dataset produced within the collaborative research project
“KI -Absicherung - Safe AI for Automated Driving”.
The generated report provides greater insight in terms of
deployability of segmentation models as perception system
for autonomous driving.

We plan to extend the software functionalities to handle
further perception modalities such as 2D or 3D bounding
boxes. Moreover, other sensor data, like the exact ego car’s
velocity or the steering angle, is also planned to be included
since this affects the relevant zones. Up to now, we only
evaluated single images. As image data is often available
in video sequences, we plan to add temporal consistency
checks, since there is a major difference between failing to
detect an instance once and failing to detect repeatedly in
consecutive frames.
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Brüggemann, Chan, Gottschalk & Bracke 7

publication/2018-Segmentation.
[14] He K, Zhang X, Ren S et al. Deep residual learning for

image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 770–778. DOI:
10.1109/CVPR.2016.90.

[15] Wu Z, Shen C and van den Hengel A. Wider or
Deeper: Revisiting the ResNet Model for Visual
Recognition. Pattern Recognition 2019; 90: 119–133.
DOI:https://doi.org/10.1016/j.patcog.2019.01.006. URL
https://www.sciencedirect.com/science/

article/pii/S0031320319300135.
[16] Geiger A, Lenz P and Urtasun R. Are we ready for

autonomous driving? the kitti vision benchmark suite. In
Conference on Computer Vision and Pattern Recognition
(CVPR).

[17] Neuhold G, Ollmann T, Bulò SR et al. The mapillary vistas
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