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Discrete port-Hamiltonian Coupled Heat
Transfer

Jens Jäschke, Matthias Ehrhardt, Michael Günther, and Birgit Jacob

Abstract Heat transfer and cooling solutions play an important role in the design of
gas turbine blades. However, the underlying mathematical coupling structures have
not been thoroughly investigated. In a previous work, we successfully modeled a
simplified version of this problem as an infinite-dimensional system. Here, we con-
struct a spatial discretization for the above problem and investigate its properties. We
show that the discrete system is less restrictive than the original infinite-dimensional
system, suggesting something like a regularization effect due to discretization.

1 Introduction

The heat transfer within the blade of a gas turbine defines an important task within
the simulation of gas turbines [1]. Here, we consider a simplified model system
[4], where the metal of the turbine blade itself is reduced to a one-dimensional rod
(a < xm < b). One end of the rod is in contact with an external thermal reservoir rep-
resenting the hot air driving the turbine, and the other end is in contact with the rel-
atively cooler air flowing through the blade’s cooling channel (i < xc < o). The heat
transfer along the rod is modelled as a simple heat equation (index ’m’) with Robin
boundary conditions (also known as convective boundary conditions). The cooling
channels themselves are modelled as simple transport equations, divided into an in-
coming channel part (index ’in’) and an outgoing channel part (index ’out’), both
connected to the rod at the coupling point. Overall, we get a multiphysics model
described by three coupled PDE models for the heat equation in the metal and the
transport equations for the incoming and outcoming cooling air:

Heat equation of metal

∂ϑm

∂ t
=

k
cm

∂ 2ϑm

∂x2
m

, a < xm < b, t > 0, (1a)

−k
∂ϑm

∂xm
(a, t) = αa

(
Text(t)−ϑm(a, t)

)
, t > 0, (1b)

−k
∂ϑm

∂xm
(b, t) = αb

(
ϑm(b, t)−ϑin(c, t)

)
, t > 0, (1c)
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Transport of incoming cooling air

∂ϑin

∂ t
=−v

∂ϑin

∂xc
, i < xc < c, t > 0, (2a)

ϑin(i, t) = Tinlet(t), t > 0, (2b)

Transport of outgoing cooling air

∂ϑout

∂ t
=−v

∂ϑout

∂xc
, c < xc < o, t > 0, (3a)

ccv
(
ϑout(c, t)−ϑin(c, t)

)
= αb

(
ϑm(b, t)−ϑin(c, t)

)
, t > 0. (3b)

In a previous work [4] we have shown that this multiphyiscs system can be for-
mulated as an infinite-dimensional Port-Hamiltonian system (pHS) [2, 3] Here, we
will show that discretizing the three subsystems separately will define three index-0
port-Hamiltonian descriptor (pHDAE) systems [6] (E is the identity), which can be
combined to form a single pHDAE system when properly coupled. pHDAE systems
generalize the PHS setting from ODEs to DAEs. For an ease of reference we recall

Definition 1 (port-Hamiltonian descriptor system, pHDAE [6]). Let X ⊂Rn the
state space, x(t) ∈X the state, u(t), y(t) ∈ Rm the input and output, E ∈ Rl×n the
flow matrix, z ∈ Rl the efforts, J,R ∈ Rl×l the structure and dissipation matrices,
B,P ∈ Rl×m the port matrices and S,N ∈ Rm×m the feed-through matrices.

Then the system of differential (-algebraic) equations

Eẋ = (J−R)z+(B−P)u, (4a)

y = (B+P)>z+(S−N)u, (4b)

associated with the Hamiltonian function H ∈ C 1(X ,R), is a port-Hamiltonian
descriptor system, if the following properties hold:

1. The extended structure and dissipation matrices Γ ,W ∈ Rl+m×l+m defined as

Γ =

(
J B
−B> N

)
, W =

(
R P

P> S

)
(5)

satisfy Γ =−Γ> and W =W> ≥ 0, i.e. W is positive semi-definite.
2. ∂H

∂x = E>z.

2 Discretization of the Heat Equation

We choose Im + 1 grid points x0 = a, . . . ,xIm = b and a step size h = (b− a)/Im.
We discretize the spatial derivative in (1a) by the standard second order differ-
ence quotient at x1, . . . ,xIm−1. Denoting the temperature at the grid points xi by
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Ti(t) = ϑ(xi, t), both boundary conditions (1a), (1c) can be solved for T0 and TIm.
Summing up, we get with T (m) := (T1, . . . ,TIm−1)

>

Ṫ (m) =
k

cmh2

(
1

1+ h
k αa

(
e1e>Im−1 + eIm−1e>1

)
+ tridiag(1,−2,1)

)
︸ ︷︷ ︸

Am :=

T (m)︸︷︷︸
z :=

(6)

+
k

cmh2 (e1 eIm−1)︸ ︷︷ ︸
B :=

(
Text

ϑin(c, t)

)
︸ ︷︷ ︸

u :=

.

With Am, B, z and u defined above, and setting J = 0, R = −Am, P = 0, S = 0,
N = 0, we get the phDAE structure of type (4). Condition (5), i.e. W ≥ 0, holds as
R is positive semi-definite due to the Gershgorin circle theorem for all physically
meaningful (i.e. positive) parameters h,k and αa, αb.

3 Discretization of the Transport Equations

To discretize the transport equations (2a), (3a) with respect to space, we choose Ic+
1 grid points x0, . . . ,xIc and a first-order upwind discretization (for v≥ 0). Replacing
T0 by the inlet boundary condition (2b), we arrive at the following semi-discrete
system with T (in) := (T1, . . . ,TIc)

>:

Ṫ (in) =− v
h

tridiag(−1,1,0)︸ ︷︷ ︸
Ac :=

T (in)︸︷︷︸
z :=

+
v
h

e1 ·Tinlet. (7)

In order to get a pHDAE structure, we split the matrix of (7) into J = 1
2 (Ac−A>c )

and R =− 1
2 (Ac +A>c ), cf. (4) and set

B> =
v
h

( 1
2 0 . . . 0 1

2

)
, P> =

v
h

(
− 1

2 0 . . . 0 1
2

)
, S = κ, N = 0, u = Tinlet,

with κ ≥ 1. With these choices, we get

W =

(
R P

P> S

)
=

v
h

(
tridiag(− 1

2 ,1,−
1
2 )

1
2 (−e1 + eIc)

1
2 (−e1 + eIc)

> κ

)
.

Again, the Gershgorin circle theorem yields the positive semi-definiteness of W .
For the outgoing cooling air (3a) we proceed analogously, but replace the cou-

pling condition (3b) with a simple input similar to equation (2b). Equation (3b) is
later included as a coupling condition in the coupled system in Section 4. We then
arrive at the semi-discrete system
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Ṫ (out) =− v
h

tridiag(−1,1,0)T (out)+
v
h

e1 ·T (out)
inlet , (8)

with T (out) := (T1, . . . ,TIc)
>. Making the same choices as above, it is obvious that

this is also a pHDAE.

4 The Coupled Discrete System

In the previous sections we have formulated the semi-discretized subsystems as
three port-Hamiltonian systems of the type (with x ∈ {m, in,out}):

Ṫ (x) = (J(x)−R(x))T (x)+(B(x)−P(x))u(x),

y(x) = (B(x)+P(x))>T (x)+(S(x)−N(x))u(x).

According to Mehrmann and Morandin [6], an interconnection of port-Hamiltonian
descriptor systems (pHDAEs) (see Definition 1) is again a pHDAE if we can find an
interconnection relation satisfying

Mu+Ny = 0, (9)

with any matrices M and N. Note, however, that this does not reduce the number of
inputs and outputs in general.

The resulting pHDAE then has the form, cf. (5)
I 0 0
0 0 0
0 0 0
0 0 0


Ṫ

˙̂u
˙̂y

=

Γ −W
0 0
I −M>

0 −I
0 M

0 −N>

N 0




T
û
ŷ
0

+


0
0
I
0

u, (10)

y = ŷ, (11)

with

T (t) =

 T (m)(t)
T (in)(t)
T (out)(t)

 ∈ RIm−1+2Ic , û(t), ŷ(t) ∈ R4,

Γ −W = Π diag
(
Γ

(m)−W (m),Γ (in)−W (in),Γ (out)−W (out))
Π
>,

as in Definition 1 with a permutation matrix

Π =


I 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 I 0
0 I 0 0 0 0
0 0 0 I 0 0
0 0 0 0 0 I

 .
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It is worth mentioning that the additionally introduced variables û and ŷ are just
copies of the inputs u and outputs y.

Note that the above property makes no statement about the index of the resulting
pHDAE. While this is common also for coupling ”regular” ODEs, it is important to
keep in mind, since even when all subsystems are index-0 (i.e. ODEs), the coupled
system can have a higher index.

We can now check whether the coupled system (10) exhibits the form (9). The
inputs u and outputs y of the coupled system (10) are

inputs: u =


u(m)

1

u(m)
2

u(in)

u(out)

=


T (m)

ext

ϑin(c, t)

T (in)
inlet

T (out)
inlet

 , (12)

outputs: y =


y(m)

1

y(m)
2

y(in)

y(out)

=



k
cmh2

1
1+ 1

h
k αa

T (m)
1

k
cmh2

1
1+ 1

h
k αb

T (m)
Im−1

v
h T (in)

Ic +κT (in)
inlet

v
h T (out)

Ic +κT (out)
inlet


, y(m) =

(
y(m)

1

y(m)
2

)
. (13)

The input of the heat equation still references ϑin(c, t), a quantity of the con-
tinuous system. From equation (2a) as well as equation (7), we can see that it is
equivalent to T (in)

Ic of the discrete cooling channel:

u(m)
2 = ϑin(c, t) = T (in)

Ic =
h
v

y(in)− hκ

v
u(in).

Equation (3b) yields the coupling condition

ccvT (out)
0 − ccvT (in)

Ic = αbT (m)
Im −αbT (in)

Ic

to the outgoing cooling channel, i.e. using the notation (12), (13) and the explicit
formula of TIm

ccvu(out)− ccv
h
v

(
y(in)−κu(in)

)
= cmhy(m)

2 +
αb

1+ 1
h
k αb

u(m)
2 −αb

h
v

(
y(in)−κu(in)

)
.

Together this leads to an interconnection relation of the form (9)0 1 hκ

v 0
0 − αb

1+ 1
h
k αb

(cch− h
v αb)κ ccv


︸ ︷︷ ︸

M

u+
(

0 0 − h
v 0

0 −cmh αb
h
v − cch 0

)
︸ ︷︷ ︸

N

y = 0,
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and therefore, the considered coupled system is a pHDAE.

Remark 1. However, the above model does not define a Dirac structure for (y,u)
and is therefore not an energy-conserving coupling in terms of the quantity acting
as energy in the Hamiltonian under consideration, i.e., not the physical energy. Con-
sequently, the criteria given in [6] for index reduction and row operations to reduce
the system are not satisfied.

5 Conclusion

We have found that the multiphysics approach to discretization before coupling
works quite well and requires only a small change in our transport equations. In-
terestingly, unlike the continuous system, it has no constraints on the parameters,
but leads to a pHDAE that potentially has a nonzero index.

In future work, following the ideas of Kotyczka and Lefèvre [5], we will consider
our multiphysics problem as a discrete-time port Hamiltonian system arising from
a discrete-time Dirac structure, that is obtained by a symplectic Gauss-Legendre
collocation method.
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