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TATIANA KOSSACZKÁ ∗, MATTHIAS EHRHARDT ∗, AND MICHAEL GÜNTHER ∗3

Abstract. In this paper, we design a new modification of weighted essentially non-oscillatory4
(WENO) method for solving nonlinear degenerate parabolic equations using deep learning tech-5
niques. To this end, we modify the smoothness indicators of an existing WENO algorithm that are6
responsible for measuring the discontinuity of a numerical solution. We do this in such a way that7
the consistency and convergence of our new WENO-DS (deep smoothness) method is preserved and8
can be theoretically proven. We use a convolutional neural network (CNN) and present a novel and9
effective training procedure. Furthermore, we show that the WENO-DS method can be easily ap-10
plied in more dimensions without the need to retrain the CNN. We present our results on benchmark11
examples of nonlinear degenerate parabolic equations, such as the porous medium equation with the12
Barenblatt solution, the Buckley-Leverett equation and their extensions in two-dimensional space.13
Here we show that our novel method outperforms the standard WENO method, reliably handles the14
sharp interfaces and provides good resolution of discontinuities.15
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1. Introduction. In this work, we develop a new modification of the weighted19

essentially non-oscillatory (WENO) scheme for solving nonlinear degenerate parabolic20

equations of the form21

ut =

d∑
i=1

∂bi(u)

∂x2
i

, (x, t) ∈ Ω× (0,∞),

u(x, 0) = u0(x),

(1.1)22

where x = (x1, . . . , xd) with d being the space dimension. The simplest form of (1.1)23

with d = 1 can be represented by24

ut = b(u)xx,

u(x, 0) = u0(x),
(1.2)25

where b′(u) ≥ 0 and it is possible that b(u) vanishes for some values of u. In this26

case, the equation (1.2) degenerates on the u-level and is not strictly parabolic. We27

note that such equations are often found in applications. For b(u) = um, the equation28

(1.2) is called the porous medium equation (PME) [6, 36]:29

(1.3) ut = (um)xx, m > 1,30

which models the flow of an isentropic gas through a porous medium. At specific31

points, where u = 0, the equation (1.3) degenerates, leading to finite speed of prop-32

agation and sharp fronts. In general, a classical solution, i.e. twice continuously33

differentiable with respect to x, might not exist even in the case of a smooth initial34

condition. Therefore, the weak solution must be considered and is studied e.g. in35

[3, 27, 35].36
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2 T. KOSSACZKÁ, M. EHRHARDT, AND M. GÜNTHER

There are several schemes that solve (1.1) numerically, such as kinetic schemes [5],37

relaxation schemes [13], local discontinuous Galerkin methods [38] or finite volume38

schemes [4, 11]. When solving (1.1), we can observe a very similar behaviour to39

hyperbolic conservation laws. Therefore, the well-known WENO method, which is40

widely used for solving hyperbolic conservation laws, has also been generalized for41

solving (1.1).42

First, so-called Essentially non-oscillatory (ENO) schemes were developed to bet-43

ter capture the collisions involved in solving hyperbolic conservation laws [31, 32].44

Later, these schemes were extended by Liu et al. [24] by introducing Weighted es-45

sentially non-oscillatory (WENO) schemes, which were further investigated in [18].46

In this work, a new measure of smoothness was introduced based on the L2-norm of47

derivatives of the interpolation polynomials over each substencil. Thereafter, it was48

found that the order of convergence of the WENO scheme introduced in [18] is smaller49

than the fifth order when the first derivative of the solution vanishes. Therefore, new50

modifications of the WENO scheme were introduced, for example, [17, 12].51

Later, authors Liu et al. developed the WENO scheme for nonlinear degenerate52

parabolic equations [25]. Two formulations are described in [25]. In the first, the53

second derivative is directly approximated by a conservative flux difference. In this54

case, the negative ideal weights appear, so a special treatment of them is required [30].55

The desired sixth order of convergence is obtained and numerically demonstrated.56

The second approach is based on the introduction of an auxiliary variable for the57

first derivative, then the WENO scheme is applied to two first derivatives instead of58

the second derivative. However, this case is not discussed further because the error59

magnitude is larger than in the case of direct application of the WENO method to60

the second derivative.61

Subsequently, new modifications of the sixth-order WENO scheme for nonlinear62

degenerate parabolic equations were introduced. Christlieb et al. [14] supplied a high63

order WENO method with a nonlinear filter to avoid spurious oscillations. Hajipour64

and Malek [15] introduced a new type of nonlinear weights and used a nonstandard65

Runge-Kutta scheme instead of the Total Variation Diminishing (TVD) Runge-Kutta66

[31] previously used in combination with WENO methods. Abedian et al. [2, 1] aimed67

to avoid the negative ideal weights and present a new modification of the WENO68

method. Rathan et al. [29] designed a new smoothness indicator based on the L1-69

norm. Recently, Jiang [19] developed another WENO method for nonlinear degenerate70

parabolic equations.71

Lately, machine learning methods have been widely used to numerically solve72

partial differential equations (PDEs). We refer to [23, 33, 10], where machine learning73

methods are directly used to approximate the solution of a given PDE problem. Bar-74

Sinai et al. [7] used neural networks to approximate a spatial derivative on a low-75

resolution grid. Beck et al. [9] used methods from edge detection to better capture76

shocks and discontinuities.77

The idea of improving the WENO method for solving hyperbolic conservation78

laws using machine learning was presented by Stevens and Colonius [34]. The original79

smoothness indicators are retained and the finite volume coefficients of the original80

WENO scheme are perturbed using a neural network algorithm. However, the re-81

sulting scheme does not achieve the high order of accuracy, but is reduced to the82

first order. A further improvement of the WENO method on hyperbolic conservation83

laws was recently performed by Kossaczká et al. [21]. In this work, the smoothness84

indicators of the original WENO method are perturbed by training a relatively small85

neural network so that the high order of convergence is preserved, which was also86
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proved theoretically.87

In this work, we aim to generalize the algorithm of [21] also for the nonlinear88

degenerate parabolic equations. We use a neural network algorithm to modify the89

smoothness indicators of the original WENO scheme [25, 15], obtaining sixth-order90

convergence, which we prove theoretically. We emphasize that no post-processing91

steps need to be performed to maintain the consistency and convergence of the92

method, which also increases the efficiency of the deep learning algorithm. We extend93

the method to two-dimensional problems and, in contrast to [21], use a novel effective94

training procedure and a neural network structure.95

The paper is organized as follows. In Section 2, we present the general framework96

of the WENO method from [25] and [15]. Next, in Section 3, we explain how the97

smoothness indicators are modified using the Deep Learning algorithm. The conver-98

gence of the new method is also proved in this section. In Section 4, we describe the99

structure of the neural network used in this paper and explain the training procedure.100

Moreover, in Section 5 we explain how we proceed in two-dimensional problems. We101

present the numerical results in Section 6, where we demonstrate the improvement102

with figures and tables. Finally, concluding remarks are made in Section 7.103

2. The WENO scheme. We firstly describe the general WENO discretization104

to solve (1.2) as developed in [25] and later in [15]. We introduce the uniform grid105

defined by the points xi = x0 + i∆x with the cell boundaries xi+ 1
2

= xi + ∆x
2 ,106

i = 0, . . . , N . The semi-discrete formulation of (1.2) can be written as107

(2.1)
dui(t)

dt
=
f̂i+ 1

2
− f̂i− 1

2

∆x2
,108

where ui(t) approximates pointwise u(xi, t) and the numerical flux f̂i+ 1
2

is chosen such109

that for all sufficiently smooth u110

(2.2)
1

∆x2

(
f̂i+ 1

2
− f̂i− 1

2

)
=
(
b(u)

)
xx
|x=xi +O(∆x6),111

with sixth order of accuracy. Following [25] if we implicitly define a function h by112

(2.3) b
(
u(x)

)
=

1

∆x2

∫ x+ ∆x
2

x−∆x
2

(∫ η+ ∆x
2

η−∆x
2

h(ξ) dξ

)
dη,113

then114

(2.4)
(
b(u)

)
xx

=
1

∆x2

[
h(x+ ∆x)− 2h(x) + h(x−∆x)

]
115

and with the function116

(2.5) g(x) = h
(
x+

∆x

2

)
− h
(
x− ∆x

2

)
,117

it holds that118

(2.6)
(
b(u)

)
xx
|x=xi =

g(x+ ∆x
2 )− g(x− ∆x

2 )

∆x2
.119

Let us now consider a 6-point stencil corresponding to sixth order discretization120

(2.7) S(i) = {xi−2, . . . , xi+3}.121
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This will be divided into three candidate substencils given by122

(2.8) S(i)m = {xi−2+m, . . . , xi+1+m}, m = 0, 1, 2.123

On each of these substencils, the numerical flux f̂m
i± 1

2

needs to be calculated. Let124

f̂m(x) be the polynomial approximation of g(x) on each of the substencils (2.8). By125

an evaluation of these polynomials at x = xi+ 1
2

following formulas from [25] can be126

obtained:127

f̂0
i+ 1

2
=
b(ui−2)− 3b(ui−1)− 9b(ui) + 11b(ui+1)

12
,

f̂1
i+ 1

2
=
b(ui−1)− 15b(ui) + 15b(ui+1)− b(ui+2)

12
,

f̂2
i+ 1

2
=
−11b(ui) + 9b(ui+1) + 3b(ui+2)− b(ui+3)

12
,

(2.9)128

and by shifting each index by −1 we obtain the numerical fluxes f̂m
i− 1

2

. The linear129

combination of the fluxes (2.9) gives the final approximation on the big stencil (2.7)130

(2.10) f̂i+ 1
2

=

2∑
m=0

dmf̂
m
i+ 1

2
,131

where dm are the linear weights, which values are132

(2.11) d0 = − 2

15
, d1 =

19

15
, d2 = − 2

15
.133

They are also called ”ideal weights” as they would yields the central sixth order134

scheme. As it can be seen, the linear weights d0 and d2 are negative. Therefore,135

the final WENO scheme may be unstable and a special technique treating negative136

weights has to be used [30]. The weights dm are then split into positive and negative137

parts, such that it holds138

(2.12) dm = σ+γ+
m − σ−γ−m.139

Following [25] we get the values140

γ+
0 =

1

21
, γ+

1 =
19

21
, γ+

2 =
1

21
,

γ−0 =
4

27
, γ−1 =

19

27
, γ−2 =

4

27
,

(2.13)141

and142

(2.14) σ+ =
42

15
, σ− =

27

15
.143

Finally, the numerical flux for the WENO scheme can be approximated by144

(2.15) f̂i+ 1
2

=

2∑
m=0

ωmf̂
m
i+ 1

2
,145

with146

(2.16) ωm = σ+α+
m − σ−α−m,147
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148

(2.17) α±m =
α̃±m∑2
i=0 α̃

±
i

, α̃±m =
γ±m

(ε+ βm)2
, m = 0, 1, 2.149

The parameter ε is used to prevent the denominator from becoming zero, and βm is150

referred to as the smoothness indicator, which plays the crucial role in deciding which151

substencils should be chosen for the final flux approximation.152

2.1. Smoothness indicators. In this section we analyze the smoothness indi-153

cators βm as proposed in [18]. They are defined as:154

(2.18) βm =

2∑
q=1

∆x2q−1

∫ xi+1

xi

(
dq f̂m(x)

dxq

)2

dx,155

with f̂m(x) being the polynomial approximation in each of three substencils. There156

is only one difference from [18], namely that the integration must be over the interval157

[xi, xi+1] to satisfy the symmetry property of the parabolic equation. The explicit158

forms of these indicators corresponding to the flux approximation f̂i+ 1
2

can be ob-159

tained as160

β0 =
13

12

(
b(ui−2)− 3b(ui−1) + 3b(ui)− b(ui+1)

)2
+

1

4

(
b(ui−2)− 5b(ui−1) + 7b(ui)− 3b(ui+1)

)2
,

β1 =
13

12

(
b(ui−1)− 3b(ui) + 3b(ui+1)− b(ui+2)

)2
+

1

4

(
b(ui−1)− b(ui)− b(ui+1) + b(ui+2)

)2
,

β2 =
13

12

(
b(ui)− 3b(ui+1) + 3b(ui+2)− b(ui+3)

)2
+

1

4

(
− 3b(ui) + 7b(ui+1)− 5b(ui+2) + b(ui+3)

)2

(2.19)161

and the Taylor expansion at xi gives162

β0 = b2xx∆x4 + b2xxfxxx∆x5 +

(
4

3
b2xxx −

1

3
bxxbxxxx

)
∆x6

+

(
1

4
bxxbxxxxx −

5

4
bxxxbxxxx

)
∆x7 +O(∆x8),

β1 = b2xx∆x4 + b2xxbxxx∆x5 +

(
4

3
b2xxx +

2

3
bxxbxxxx

)
∆x6

+

(
1

4
bxxbxxxxx +

17

12
bxxxbxxxx

)
∆x7 +O(∆x8),

β2 = b2xx∆x4 + b2xxbxxx∆x5 +

(
4

3
b2xxx −

1

3
bxxbxxxx

)
∆x6

+

(
−3

4
bxxbxxxxx +

37

12
bxxxbxxxx

)
∆x7 +O(∆x8).

(2.20)163

For more details and the convergence analysis we refer the reader to [25]. It has164

been shown, that for the sixth order accuracy the following necessary and sufficient165
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6 T. KOSSACZKÁ, M. EHRHARDT, AND M. GÜNTHER

conditions have to be satisfied:166

2∑
m=0

(ωm − dm) = O(∆x8),

ωm − dm = O(∆x3),

ω0 − ω2 = O(∆x4).

(2.21)167

As it was shown in [25], the smoothness indicators (2.19) with nonlinear weights168

(2.16)-(2.17) do not fulfill the conditions (2.21). Therefore, the mapped function as169

introduced in [17] was used by Liu et al. [25].170

2.2. The MWENO scheme. Alternatively, Hajipour and Malek [15] defined171

new nonlinear weights using172

(2.22) α±m =
α̃±m∑2
i=0 α̃

±
i

, α̃±m = γ±m

[
1 +

( τ7
βm + ε

)2
]
, m = 0, 1, 2,173

and then inserting into (2.16) with174

(2.23) τ7 = |β0 − β2|.175

From (2.20) it can be seen that176

(2.24) τ7 =
∣∣∣−bxxbxxxxx +

13

3
bxxxbxxxx

∣∣∣∆x7 +O(∆x8).177

It has been shown [15], that using these nonlinear weights the conditions (2.21) are178

satisfied and the sixth-order accuracy is ensured.179

3. Application of Deep Learning to the sixth-order WENO Scheme.180

Solving nonlinear degenerate parabolic equations is a challenging task in most cases.181

Not only because of the possible existence of non-smooth solutions or sharp fronts,182

but also because of the finite propagation speed of the wave fronts. This gives us183

enough room to improve the existing methods. In [21], new smoothness indicators for184

the fifth-order WENO-DS scheme were developed using Deep Learning. They were185

defined as the product of the original smoothness indicators βm and perturbations186

δm, where δm are the outputs of a particular neural network algorithm:187

(3.1) βDSm = βm(δm + C),188

where C is a constant that ensures the consistency and convergence of the new method189

and will be further discussed in subsection 3.1. We apply this idea and modify the190

smoothness indicators (2.19) in the same way to improve the sixth-order WENO191

scheme.192

We proceed as described in [21] and use the same multiplier δm,i for both βm,i+ 1
2

193

and βm,i− 1
2
, which are the smoothness indicators used for the flux reconstruction at194

points xi− 1
2

and xi+ 1
2

for the approximation of the solution in xi. βm,i+ 1
2

is given195

in (2.19) and βm,i− 1
2

is obtained by shifting each index by −1. The new smoothness196

indicators are:197

(3.2)
βDSm,i+ 1

2
= βm,i+ 1

2
(δm,i + C),

βDSm,i− 1
2

= βm,i− 1
2
(δm,i + C),

198
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and the values δ0, δ1, δ2 are obtained, such that it holds199

(3.3) δ0,i+1 = δ1,i = δ2,i−1, i = 0, . . . , N.200

For more details we refer to [21].201

3.1. Convergence analysis. In this section we analyze the convergence of the202

new WENO-DS method formulated by the following properties and theorem.203

Property 3.1. Let the neural network, represented by a function F (·), have the204

structure assuring its spatial invariance. Further, let all hidden layers of this neural205

network be differentiable functions. Then, the multipliers δm,i from (3.2) in the node206

xi satisfying (3.3) can be expressed as the outputs of the neural network function F (·):207

δ0,i = F
(
b̄(x̄i−1)

)
= Φ(x̄i −∆x) = Φ(x̄i)−O(∆x),

δ1,i = F
(
b̄(x̄i)

)
= Φ(x̄i),

δ2,i = F
(
b̄(x̄i+1)

)
= Φ(x̄i + ∆x) = Φ(x̄i) +O(∆x),

(3.4)208

where209

x̄i = (xi−k, xi−k+1, . . . , xi+k),

b̄(x̄i) = (b(xi−k), b(xi−k+1), . . . , b(xi+k)),
(3.5)210

with 2k+1 being the size of the receptive field of the whole neural network and Φ being211

the function composition F ◦ b̄.212

Property 3.2. Let the constant C in (3.2) be chosen such that it holds Φ(x̄i) +213

C > κ > 0 with κ fixed and Φ defined as in Property 3.1.214

Theorem 3.1. Let the numerical flux of the WENO-DS scheme be given by (2.9)215

and (2.15) with the corresponding nonlinear weights given by (2.16) and216

(3.6) α±m =
α̃±m∑2
i=0 α̃

±
i

, α̃±m = γ±m

1 +

(
τ7,i+ 1

2

βDS
m,i+ 1

2

+ ε

)2
 , m = 0, 1, 2,217

with γ±m given by (2.13), βDS
m,i+ 1

2

defined in (3.2) and τ7 defined by218

(3.7) τ7 =
∣∣∣β0,i+ 1

2
− β2,i+ 1

2

∣∣∣ .219

To define a negative flux f̂i− 1
2
, (3.6) is used with βDS

m,i+ 1
2

being replaced by βDS
m,i− 1

2

from220

(3.2) Next, (3.7) is used with βm,i+ 1
2

from (2.19) being replaced by βm,i− 1
2

obtained by221

shifting each index in (2.19) by −1. Let the multipliers δm,i in (3.2) be the output of222

a neural network algorithm satisfying the Property 3.1 and Property 3.2. Then, the223

resulting WENO-DS method (2.1) for smooth solutions of the nonlinear degenerate224

parabolic equation (1.1) exhibits a sixth-order accuracy.225

Proof. From (2.20) we see that226

(3.8) βm,i± 1
2

= b2xx∆x4 +O(∆x5),227

and from (2.24)228

(3.9) τ7,i± 1
2

= O(∆x7).229
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Then using Property 3.1 it holds230

βDSm,i± 1
2

= βm,i± 1
2
(δm,i + C) =

(
b2xx∆x4 +O(∆x5)

)(
Φ(x̄i) +O(∆x) + C)

)
= b2xxP (x̄i)∆x

4 +O(∆x5),
(3.10)231

with P (x̄i) = Φ(x̄i)+C and C satisfying Property 3.2. Then P (x̄i) = O(1) is ensured.232

Assuming bxx 6= 0, it holds233

(3.11)
τ7,i± 1

2

βDS
m,i± 1

2

= D̂∆x3 +O(∆x4), D̂ =
| − bxxbxxxxx + 13

3 bxxxbxxxx|
b2xxP (x̄i)

.234

We take ε = 0, substitute now this into (3.6) (for simplicity we drop the index i± 1
2 )235

and obtain236

(3.12) α̃±m = γ±m

[
1 +

(
τ7

βDSm + ε

)2
]

= γ±m
(
1 +O(∆x6)

)
,237

and238

(3.13) α±m =

γ±m

[
1 +

(
τ7

βDSm +ε

)2
]

∑2
i=0 γ

±
m

(
1 +O(∆x6)

) ,239

which implies240

(3.14) γ±m = α±m
1

1 +
(

τ7
βDSm +ε

)2

2∑
i=0

γ±m
(
1 +O(∆x6)

)
= α±m +O(∆x6),241

where we used
∑2
i=0 γ

±
m = 1.242

We investigate now the conditions (2.21). Due to the normalization we see that243 ∑2
i=0 α

±
m = 1. Inserting this into (2.16) and using (2.14) we have

∑2
i=0 ωm = 1. From244

(2.11) we conclude that
∑2
i=0 dm = 1 and the first condition is always fulfilled. Then245

using (3.14), inserting into (2.12) and using (2.16) we fulfill also the second condition:246

(3.15) dm = σ+
(
α+
m +O(∆x6)

)
− σ−

(
α−m +O(∆x6)

)
= ωm +O(∆x6).247

Finally, realizing that γ±0 = γ±2 , the third condition is also fulfilled:248

ω0 − ω2 = σ+α+
0 − σ−α

−
0 − σ+α+

2 + σ−α−2 = σ+
(
γ+

0 +O(∆x6)
)

− σ−
(
γ−0 +O(∆x6)

)
− σ+

(
γ+

2 +O(∆x6)
)

+ σ−
(
γ−2 +O(∆x6)

)
= O(∆x6)

(3.16)249

and the sixth-order convergence of the WENO-DS method for smooth solutions of250

nonlinear degenerate parabolic equation (1.1) is ensured.251

4. The structure of a neural network and training procedure. In our252

application, we use the convolutional neural network (CNN). Here, we ensure the253

spatial invariance of the resulting numerical scheme and make the multipliers δm254

independent of their position in the spatial grid. Then we use the differentiable255

activation function exponential linear unit (ELU) for all hidden layers. In the output256
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layer, we use either a sigmoid activation function or no activation function. The257

number of its hidden layers, kernel size, and number of channels are chosen separately258

for each of the equation classes. Our goal is to keep the CNN as small as possible,259

while still achieving the best possible results. In all our experiments, we set C = 0.1260

in (3.2) and the value of ε to 10−13.261

Since we want to improve the smoothness indicators, we first calculate the first262

and second central finite differences of b(xi), i = 0, . . . , N . From these parameters we263

obtain the information about the smoothness of the solution and they represent an264

effective preprocessing of the given data. The input values for the first learned hidden265

layer are:266

(4.1) bdiff1 = b(xi+1)− b(xi−1), bdiff2 = b(xi+1)− 2b(xi) + b(xi−1).267

Now we explain how the training procedure is performed. First, the weights of268

the CNN are randomly initialized and a problem is selected from a data set. The269

computational domain is divided into N ×M steps, where N is a number of space270

steps and M is a number of time steps. One possibility would then be to continue271

as described in [21], where we successively computed the entire solution up to the272

final time T . We used the solution at time step n and calculated the solution at time273

step n + 1 and during this calculation the CNN was used to predict the multipliers274

of the smoothness indicators. After each of these time steps, we calculated the loss275

and its gradient with respect to the weights of the CNN using the backpropagation276

algorithm. We repeated these steps until the final time T and in this time step we277

tested our model on a validation set.278

We introduce a novel training procedure in this paper. At the beginning of the279

training, we select a problem from a dataset. Then we perform one time step and use280

the CNN to predict the multipliers of the smoothness indicators. Then we compute the281

loss and its gradient with respect to the weights of the CNN. After this step, however,282

we do not automatically proceed to the next time step; instead, we randomly decide283

whether to proceed to the next time step of a current problem or to choose another284

problem from our data set and run one time step of that problem. The probability of285

choosing the new problem is determined at the beginning of the training session. We286

use the probability ϕ = 0.1 in our trainings. This means that we select a new problem287

from a dataset with probability ϕ = 0.1. We remember all opened problems and if no288

new problem is opened (with probability 1−ϕ), we proceed to execute the next time289

step of a problem uniformly sampled from the set of already opened problems. After290

each of these time steps, the loss and its gradient with respect to the weights of the291

CNN are calculated. The gradient is then used to update the weights.292

To improve the gradient propagation into the lower layers, we use the residual293

learning framework [16]. It may happen that when using a deeper neural network, its294

effectiveness is compromised, which is not caused by overfitting, as reported in [16].295

The idea is to introduce a so-called identity mapping that only adds the output of the296

previous layer to the output of the next layer. It is important that neither additional297

parameters nor computational complexity are added.298

To update the weights of the CNN we use the Adam optimizer [20]. The optimizer299

parameters will be specified for each of the equation classes separately. As the default300

loss function we use the mean square error301

(4.2) LOSSMSE(u) =
1

N

N∑
i=0

(ui − uref
i )2,302
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10 T. KOSSACZKÁ, M. EHRHARDT, AND M. GÜNTHER

where ui is a numerical approximation of u(xi) and uref
i denotes the corresponding303

reference solution. For the implementation we use Python with the library Pytorch304

[28].305

5. Two-dimensional implementation. Here we consider the two-dimensional306

form of (1.1):307

(5.1) ut = b1(u)xx + b2(u)yy.308

The procedure described in Section 2 can be easily applied dimension-by-dimension309

to obtain the approximations of numerical fluxes f̂i+ 1
2

and k̂i+ 1
2
, such that it holds310

1

∆x2

(
f̂i+ 1

2
− f̂i− 1

2

)
=
(
b1(u)

)
xx
|(xi,yj) +O(∆x6),

1

∆y2

(
k̂i+ 1

2
− k̂i− 1

2

)
=
(
b2(u)

)
yy
|(xi,yj) +O(∆x6),

(5.2)311

using the uniform grid with nodes (xi, yj), ∆x = xi+1 − xi, ∆y = yj+1 − yj . The312

corresponding semi-discrete form of (5.1) takes the form313

(5.3)
dui(t)

dt
=
f̂i+ 1

2
− f̂i− 1

2

∆x2
+
k̂i+ 1

2
− k̂i− 1

2

∆y2
.314

We could use two-dimensional CNN for training in this case to see if the information315

from the second dimension can improve the smoothness indicators in the first dimen-316

sion. However, experimentally we got better results with one-dimensional CNNs in317

each direction.318

6. Numerical Results. In this section, we present the numerical results to319

show the efficiency of the proposed numerical scheme WENO-DS based on the neural320

network algorithm. We use the nonlinear weights (2.22), replacing βm with βDSm (3.2).321

This is done to discretize the diffusion term and for the discretization of the advection322

term, which later appears in the examples, we use an analogous procedure as described323

in [21]. Then the following system of ordinary differential equations (ODEs) has to324

be solved325

(6.1)
du(t)

dt
= L(u).326

For this purpose we use a third-order total variation diminishing (TVD) Runge-Kutta327

method [31] given by328

u(1) = un + ∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)),

(6.2)329

where un is the numerical solution at the time step n.330

For solving, we use the time step of the one-dimensional problems331

(6.3) ut + f(u)x = b(u)xx,332
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such that333

(6.4)
0.4

∆t
=

maxu|f ′(u)|
∆x

+
maxu|b′(u)|

∆x2
.334

For two-dimensional problems335

(6.5) ut + f1(u)x + f2(u)y = b1(u)xx + b2(u)yy,336

the time step is set as337

(6.6)
0.4

∆t
=

maxu|f ′1(u)|
∆x

+
maxu|f ′2(u)|

∆y
+

maxu|b′1(u)|
∆x2

+
maxu|b′2(u)|

∆y2
.338

6.1. The porous medium equation. As the first example we apply the CNN339

algorithm to enhance the numerical solution of the porous medium equation (1.2)340

with (1.3).341

The Barenblatt solution [8, 37] is a weak solution of the PME with the explicit342

form343

(6.7) Bm(x, t) = t−α
[(

1− k|x|2t− 2α
d

)+
] 1
m−1

, t > 0, x ∈ Ω ⊆ Rd, m > 1,344

where v+ = max(v, 0) and k = α(m−1)
2md with α = d

(m−1)d+2 . For d = 1, the compact345

support of this Barenblatt solution is the interval [−am(t), am(t)], where346

(6.8) am(t) =

√
2m

α(m− 1)
tα,347

with α = 1
m+1 . The solution is not differentiable at the interface points x = ±am(t)348

[26].349

In our numerical experiments, we take as initial condition the Barenblatt solution350

(6.7) at time t = 1. We use zero boundary conditions u(±6, t) = 0 for t > 1 and351

divide the computational domain into 64 uniform cells.352

For the training, we proceed as described in Section 4. When a new problem353

is to be selected from a data set, an exponent m in PME (1.3) is chosen such that354

m ∈ U(2, 8). In this way, we cover a wide range of different problems and the final355

numerical scheme can be reliably used for different values of m. For training, we fix356

T = 1.4. We use a rather small CNN with only three hidden layers. The structure is357

described in Figure 1, where also the number of channels and the kernel size can be358

found.359

Conv1d
in_channels = 2
out_channels = 5
kernel_size = 5
padding = 2

ELU

Conv1d
in_channels = 5
out_channels = 5
kernel_size = 5
padding = 2

Conv1d
in_channels = 5
out_channels = 1
kernel_size = 1
padding = 0fdiff2

fdiff1

identity

output

identity

+ ELU +

Fig. 1: A structure of the convolutional neural network used for the porous medium
equation.
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12 T. KOSSACZKÁ, M. EHRHARDT, AND M. GÜNTHER

We use the loss function (4.2), where a reference solution is computed from (6.7).360

To match the training contribution from very small loss problems to large loss prob-361

lems, we use the following loss scaling:362

(6.9) LOSSMSE(u) =

{
102LOSSMSE(u), if LOSSMSE(u) < 104,

10
√
LOSSMSE(u), otherwise.

363

To update the weights we use the Adam optimizer with learning rate 0.1.364

Due to the rather large variance of the training, we performed 20 trainings and365

selected the one that gave the best results on a validation set. We present the history366

of the value of the loss function for the problems from the validation set on Figure 2.367

We tested our model every 5 training steps and the loss was evaluated at time T = 2.368

The validation set contains PME problems with different exponents m generated369

randomly. We rescale the loss values for each validation problem to be in the interval370

[0, 1]. It can be seen that the low values are obtained after a fairly small number of371

training steps.372

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195
number of training steps

0.0

0.2

0.4

0.6

0.8

1.0

LO
SS

Fig. 2: Loss values for different validation problems evaluated each 5 training steps.

In some cases, we see that the loss value increases slightly as the number of373

iterations increases. This is because we want to optimize the method for a wide range374

of parameters m and also over the entire time domain. However, we conclude that375

in most cases, which we demonstrate later in the tables and figures, the improvement376

outweighs a slight increase in the error that occurs in a rather small number of cases.377

We take the model obtained after the 195th training step as our final WENO-DS378

scheme. Here the loss values are stable and we found experimentally that further379

training would lead to overfitting, so the suboptimal results would be obtained.380

We show the results on problems from the test set. These were not in the training381

or validation set. In Figure 3 we present the solution of the PME for m = 2, 4. We382

observe that WENO-DS yields a better solution in the regions where discontinuity383

occurs. This also affects the L∞ and L2 errors, whose values we compare in the384

Table 1. We compare the errors for different parameters m and T and highlight385

the best performing WENO method in bold. We divide the error of the MWENO386

method by the error of WENO-DS in the column labeled ’ratio’ to show how well our387

method performs compared to the original method. We realize that our new method388

outperforms the MWENO method in most cases.389

Finally, we demonstrate the theoretically proven sixth-order of convergence for a390
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(a) m = 2
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Fig. 3: Comparison of the MWENO and WENO-DS methods for the numerical solu-
tion of the porous medium equation with various parameter values m, N = 64.

heat equation with smooth initial condition given by391

(6.10) ut = uxx, u(x, 0) = sin(x), −π ≤ x ≤ π, 0 ≤ t ≤ 1.392

The exact solution for this example is393

(6.11) u(x, t) = e−t sinx394

and we take the boundary conditions from the exact solution for this case. The results395

can be found in Table 2 and we observe that the sixth-order convergence is ensured.396

Let us note, that we used for these results the same WENO-DS scheme which was an397

output of the learning procedure for the porous medium equation with the Barenblatt398

solution. We also did not retrain the CNN for different values of N .399

6.2. The convection-diffusion Buckley-Leverett equation. In the next ex-400

ample we solve the convection-diffusion Buckley–Leverett equation of the form401

(6.12) ut + f(u)x = ε
(
ν(u)ux

)
x
, ε ν(u) ≥ 0.402

This is a prototype model for oil reservoir simulations (two-phase flow). In our test403

we choose ε = 0.01 and the flux function404

(6.13) f(u) =
u2

u2 + a(1− u)2

(
1− g(1− u)2

)
,405

where a < 1 is a constant representing the ratio of the viscosities of the two fluids406

and g is a gravitational effect. Usually, ν(u) vanishes at some points so the equation407

(6.12) is a degenerate parabolic equation. Moreover, the sign of f ′(u) changes its sign,408

so the handling of the flux is more complicated. We choose409

(6.14) ν(u) =

{
4u(1− u), 0 ≤ u ≤ 1,

0, otherwise,
410

so we obtain the parabolic term in a form411

(6.15) b(u) =


0, u < 0,

ε (2u2 − 4
3u

3), 0 ≤ u ≤ 1,
2
3ε, u > 1.

412

This manuscript is for review purposes only.
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L∞ L2

m MWENO WENO-DS ratio MWENO WENO-DS ratio

2 0.003257 0.001221 2.67 0.002689 0.001075 2.50
3 0.017395 0.014781 1.18 0.011163 0.009243 1.21
4 0.045135 0.040757 1.11 0.028080 0.025137 1.12
5 0.112800 0.105249 1.07 0.069098 0.064075 1.08
6 0.177022 0.173597 1.02 0.108670 0.104464 1.04
7 0.088695 0.090100 0.98 0.057645 0.058483 0.99
8 0.175060 0.179969 0.97 0.109320 0.111824 0.98

(a) T = 1.2

L∞ L2

m MWENO WENO-DS ratio MWENO WENO-DS ratio

2 0.004877 0.003501 1.39 0.003013 0.002290 1.32
3 0.010907 0.008025 1.36 0.008057 0.005505 1.46
4 0.032591 0.029200 1.12 0.020487 0.018229 1.12
5 0.104031 0.097510 1.07 0.063717 0.059600 1.07
6 0.219481 0.214394 1.02 0.134668 0.130684 1.03
7 0.028863 0.023676 1.22 0.018625 0.012921 1.44
8 0.013782 0.014577 0.95 0.010280 0.011453 0.90

(b) T = 1.5

L∞ L2

m MWENO WENO-DS ratio MWENO WENO-DS ratio

2 0.001235 0.001040 1.19 0.000952 0.000766 1.24
3 0.058471 0.056758 1.03 0.036008 0.034991 1.03
4 0.026741 0.018162 1.47 0.016951 0.011387 1.49
5 0.101398 0.092241 1.10 0.062115 0.056459 1.10
6 0.201053 0.194967 1.03 0.123476 0.119017 1.04
7 0.052631 0.047613 1.11 0.033208 0.027910 1.19
8 0.043306 0.039945 1.08 0.027796 0.024824 1.12

(c) T = 2

Table 1: Comparison of L∞ and L2 error of MWENO and WENO-DS methods for
the solution of the porous medium equation with various parameter m and T . As
’ratio’ we denote the error of the MWENO method divided by the error of WENO-
DS (rounded to 2 decimal points).

The initial condition reads413

(6.16) u(x, 0) =

{
0, 0 ≤ x ≤ 1− 1√

2
,

1, 1− 1√
2
< x ≤ 1,

414

and we divide the computational domain into 128 uniform cells.415

In the training we proceed as in the previous example. As there exists no an-416

alytical solution in this case, we firstly create our data set, where we compute the417
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WENO-DS
N L∞ Order L2 Order

20 6.148104e-06 - 4.858320e-06 -
40 5.641584e-08 6.767898 4.406364e-08 6.784725
80 8.366046e-10 6.075410 8.927014e-10 5.625267
160 1.300835e-11 6.007036 1.714365e-11 5.702432
320 1.962874e-13 6.050326 2.656299e-13 6.012112

Table 2: L∞ and L2-norm error with convergence order of WENO-DS on (6.10)

reference solutions on fine grid for the equation (6.12). In this data set we consider418

the constants a ∈ U [0.1, 0.95] and d ∈ U [0, 6], divide the computational domain [0, 1]419

into 1024 uniform cells and compute the solution up to time T = 0.1. We use the420

MWENO method [15] combined with the WENO-Z method [12] for the computation421

of these reference solutions.422

The structure of the chosen CNN can be found in Figure 4. In the training we423

optimize not only the WENO-DS method to approximate the parabolic term, but424

also the WENO-DS [21] to approximate the hyperbolic term. The structure of the425

CNN remains the same for both cases. We use the loss function (4.2) and the Adam426

optimizer with the learning rate 10−5.427

Conv1d
in_channels = 2
out_channels = 10
kernel_size = 5
padding = 2

ELU

Conv1d
in_channels = 10
out_channels = 10
kernel_size = 5
padding = 2

Conv1d
in_channels = 10
out_channels = 1
kernel_size = 1
padding = 0fdiff2

fdiff1

identity

Sigmoid

identity

+ ELU +

Fig. 4: A structure of the convolutional neural network used for the Buckley-Leverett
equation.

We created a validation set with 12 different combinations of a and g generated428

randomly. On this set, we tested our model every 100 training steps. The Figure 5429

shows how the value of the loss function changes as the number of training steps430

increases. We scaled the loss values again so that they are in [0, 1]. We see similar431

behavior to the Buckley-Leverett example of [21]. However, more than 2 optima can432

apparently be distinguished. There may be a small set of problems for which the433

optimum exists after only a few initial training steps (after zooming in to the bottom434

row region, we would see a slight decrease at the beginning, which is then replaced435

by an increase), the next optimum would be reached after about 5200 training steps,436

for the next set of problems we might see the optimum after 7600 training steps, and437

for the other set of problems the optimum would be reached after more than 8000438

training steps. However, further training would not make sense because the error439

would become too large for the other set of problems. Finally, we choose the model440

obtained after the 4800th training step and present the results computed with this441

model.442

We present the numerical solution of the Buckley-Leverett equation in Figure 6.443

We observe that our scheme provides a high quality of numerical solutions for both444

of these problems. Further, we compare the L∞ and L2 errors of the problems from445
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Fig. 5: Loss values for different validation problems evaluated each 100 training steps.

the test set with various parameters a and g in Table 3. We see, that in almost all446

cases our method provides smaller errors.447

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8
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WENO-DS
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(a) a = 1 and g = 0

0.0 0.2 0.4 0.6 0.8 1.0
x
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0.8

1.0

u

WENO
WENO-DS
ref. sol.

(b) a = 1 and g = 5

Fig. 6: Comparison of the original WENO (WENO-Z combined with MWENO) and
WENO-DS methods for the numerical solution of the Buckley-Leverett equation with
various parameters a and g, T = 0.1, N = 128.

6.3. The strongly degenerate parabolic convection-diffusion equation.448

In this example we test the method trained on the Buckley-Leverett data from the pre-449

vious example. We do not retrain the method and apply it to the strongly degenerate450

parabolic convection-diffusion equation of a form451

(6.17) ut + f(u)x = ε
(
ν(u)ux

)
x
, ε ν(u) ≥ 0.452
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L∞ L2

a g WENO WENO-DS ratio WENO WENO-DS ratio

1 5 0.102771 0.060673 1.69 0.009442 0.006242 1.51
1 0 0.037256 0.035068 1.06 0.003709 0.003493 1.06
1 3 0.081126 0.065823 1.23 0.007497 0.005990 1.25

0.75 5 0.065215 0.033212 1.96 0.006346 0.003856 1.65
0.75 4 0.077982 0.052171 1.49 0.007096 0.005972 1.19
0.5 5 0.086089 0.076892 1.12 0.008228 0.008637 0.95
0.5 2 0.045176 0.039770 1.14 0.004495 0.003955 1.14
0.5 1 0.030054 0.028264 1.06 0.003729 0.003603 1.03
0.3 3 0.035122 0.030277 1.16 0.004715 0.003233 1.46
0.25 4 0.083372 0.041290 2.02 0.007815 0.005713 1.37

Table 3: Comparison of L∞ and L2 error of original WENO (WENO-Z combined with
MWENO) and WENO-DS methods for the solution of the Buckley-Leverett equation
with various parameters a and g, T = 0.1. As ’ratio’ we denote the error of the
original WENO method divided by the error of WENO-DS (rounded to 2 decimal
points).

This is a benchmark example presented e.g. in [19, 22, 25]. We take ε = 0.1, f(u) = u2453

and454

(6.18) ν(u) =

{
0, |u| ≤ 0.25,

1, |u| > 0.25.
455

This leads to a fact, that the equation is hyperbolic if u ∈ [−0.25, 0.25] and parabolic456

elsewhere. The parabolic term takes a form457

(6.19) b(u) =


ε (u+ 0, 25), u < −0.25,

ε (u− 0, 25), u > 0.25,

0, u ≤ |0.25|.
458

The initial condition is taken as459

(6.20) u(x, 0) =


1, − 1√

2
− 0.4 < x ≤ − 1√

2
+ 0.4,

−1, 1√
2
− 0.4 < x ≤ 1√

2
+ 0.4,

0, otherwise.

460

We use the zero boundary conditions and compute the solution to the final time461

T = 0.7 with N = 128 and N = 256. We present the numerical results in Figure 7462

and see that our method is able to capture the discontinuities and sharp interfaces463

very well. The reference solution is obtained using MWENO and WENO-Z method464

with N = 1024.465

6.4. Two-dimensional porous medium equation. In the next example we466

solve the two-dimensional PME in the form467

(6.21) ut = (um)xx + (um)yy, m > 1.468
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Fig. 7: Numerical solution of the strongly degenerate parabolic equation, T = 0.7.

As an initial condition we use a Barenblatt solution (6.7) at time t = 1 with d = 2. In469

this case, the Barenblatt solution has no derivative at the points of the circle x2 +y2 =470 √
4m

α(m−1) t
α, with α = 1

m . We choose the computational domain Ω = [−10, 10] and471

zero boundary condition u = 0 on the boundary ∂Ω. We divide the computational472

domain into 64× 64 space grid points.473

In our training we proceed analogously to the one-dimensional PME example and474

again simulate the equation (6.21) for m ∈ U(2, 8) to make the final numerical scheme475

more robust. We use the same CNN structure as described in Figure 1, the same loss476

function (6.9) and Adam optimizer with the learning rate 0.1 to update the weights.477

We show the progress of the loss function on the Figure 8 and see that the stable478

values of the loss function are obtained after a few first training steps. We could take479

the model obtained after the 30th training step, where small values of loss for some480

problems are obtained, or the model obtained after the 40th training step. Here we481

obtain minimal value of loss for another class of problems. Both of them would give482

us sufficient results and we decided to compare the results of the model obtained after483

the 40th training step.484

Alternatively, we can use the method which was an output of the training proce-485

dure for the one-dimensional porous medium equation from the subsection 6.1. We486

compare the errors of the both methods in the Table 4. We see that the results487

are very similar and also the method trained on a one-dimensional example can be488

reliably used in more-dimensional space. This observation can be very useful when489

the computation of a reference solution in more dimensions becomes too demanding.490

Figure 9 illustrates the solution for m = 2.491

6.5. Two-dimensional Buckley-Leverett equation. As a last example we492

solve the two-dimensional Buckley-Leverett equation of the form493

(6.22) ut + f1(u)x + f2(u)y = ε (uxx + uyy),494
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Fig. 8: Loss values for different validation problems evaluated each 5 training steps.

L∞ L2

m MWENO
WENO-DS
(2d model)

ratio
WENO-DS
(1d model)

ratio MWENO
WENO-DS
(2d model)

ratio
WENO-DS
(1d model)

ratio

2 0.009582 0.008436 1.14 0.008118 1.18 0.000836 0.000671 1.25 0.000660 1.27
3 0.055924 0.053288 1.05 0.053661 1.04 0.004178 0.003810 1.10 0.003938 1.06
4 0.102970 0.104485 0.99 0.105505 0.98 0.009584 0.009156 1.05 0.009359 1.02
5 0.191146 0.185335 1.03 0.189306 1.01 0.015311 0.014818 1.03 0.015023 1.02
6 0.154870 0.141532 1.09 0.142142 1.09 0.012903 0.012314 1.05 0.012444 1.04
7 0.268363 0.270085 0.99 0.271441 0.99 0.019981 0.019297 1.04 0.019738 1.01
8 0.298711 0.299791 1.00 0.301236 0.99 0.021872 0.021427 1.02 0.021806 1.00

Table 4: Comparison of L∞ and L2 error of MWENO and WENO-DS methods for the
solution of the porous medium equation with various parameter m, d = 2, T = 2. As
’ratio’ we denote the error of the MWENO method divided by the error of WENO-DS
(rounded to 2 decimal points).

x

10.07.5 5.0 2.50.0 2.5 5.0 7.510.0

y

10.07.55.02.50.02.55.07.510.0

u

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Fig. 9: Numerical solution of the porous medium equation with d = 2, m = 2 and
T = 2. 64× 64 cells.
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with ε = 0.01 and the flux functions495

(6.23) f1(u) =
u2

u2 + (1− u)2
, f2(u) = f1(u)

(
1− 5(1− u)2

)
.496

We solve equation (6.22) with the WENO-DS method trained on the one-dimensional497

Buckley-Leverett equation from subsection 6.2. We divide the computational domain498

[−1.5, 1.5] × [−1.5, 1.5] into 120 × 120 uniform cells and solve the equation with the499

initial condition500

(6.24) u(x, y, 0) =

{
1, x2 + y2 < 0.5,

0, otherwise.
501

The results at time T = 0.5 are presented in Figure 10 and agree with the results502

shown in [22]. With this example we demonstrate, that the method trained on one-503

dimensional data can be easily applied also in more dimensions and provides a high504

quality numerical solution to the equation with a nonlinear, degenerate diffusion.505

1.5 1.0 0.50.0 0.5 1.0 1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

0.0

0.2

0.4

0.6

0.8

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Fig. 10: Numerical solution of the two-dimensional Buckley-Leverett equation at T =
0.5. 120× 120 cells.

7. Conclusions. In this paper, we developed a new modification of WENO506

scheme for nonlinear degenerate parabolic equations. Using deep learning techniques507

we improved the smoothness indicators of the original WENO method and applied our508

enhancement to the MWENO scheme. We preserved the sixth-order convergence and509

proved it theoretically. We presented an effective training procedure and extended it510

also to higher-dimensional space. In the one-dimensional and two-dimensional bench-511

mark examples from the literature we demonstrate, that the WENO-DS method out-512

performs the standard WENO scheme in the challenging examples of nonlinear de-513

generate parabolic equations and remains sixth-order convergent in smooth regions.514
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