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Correlation Matrices driven by Stochastic
Isospectral Flows

Michelle Muniz, Matthias Ehrhardt, and Michael Günther

Abstract In many important areas of finance and risk management, time-dependent
correlation matrices must be specified. We create valid correlation matrices by ex-
tending the idea of correlation flows based on isospectral flows. To incorporate the
stochastic behavior of correlations, we adapt this approach by modeling the isospec-
tral flow as a stochastic differential equation (SDE) instead of an ordinary differen-
tial equation (ODE).
The solution of this SDE lies on the manifold of symmetric and positive semi-
definite matrices, so structure-preserving schemes are needed for its numerical
approximation. We apply stochastic Lie group methods based on Runge-Kutta–
Munthe-Kaas schemes for ODEs to guarantee that the numerical solution evolves
on the correct manifold. We also present an application example to illustrate our
methodology.

1 Introduction

In this paper, we construct time-dependent correlation matrices that approximate the
true correlation using real market data, reflect the stochastic nature of correlations,
and satisfy the following properties of a valid correlation matrix:

1. All diagonal elements of a correlation matrix are equal to one and absolute values
of all non-diagonal elements are less than or equal to one.

2. Correlation matrices are real symmetric and positive semi-definite, i.e. all eigen-
values are non-negative.

To ensure these properties, we take up the idea presented in [6, 3]. The authors
constructed covariance flows, i.e., covariance matrices based on the isospectral flux
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Ṗt = [Yt ,Pt ] , t ≥ 0 , (1)

where P0 is a given valid covariance matrix, i.e. symmetric and positive semi-
definite, Yt is a skew-symmetric matrix, Yt ∈ so(n), and [A,B] = AB− BA is the
matrix commutator. The solution Pt is a differential curve on the manifold

Ŝym(n) = {Pt = QtP0Q>t : Qt ∈ SO(n), P0 positive semi-definite} , (2)

where SO(n) denotes the space of orthogonal matrices with determinant +1. Note
that the matrices in Ŝym(n) are similar to P0.

The corresponding correlation flow is obtained by the transformation Rt =

Σ
−1
t PtΣ

−1
t with Σt =

(
diag(Pt)

)1/2.
Our goal is to extend this approach by incorporating the stochastic behavior of

correlations. To this end, we formulate an isospectral flow based on (1) driven by a
stochastic differential equation (SDE) rather than an ordinary differential equation
(ODE). Since the solution of this SDE evolves on the manifold Ŝym(n), we need
a method for its numerical approximation that preserves the geometric properties
of the manifold. Therefore, we will present a structure-preserving Euler-Maruyama
scheme based on Runge-Kutta- Munthe-Kaas (RKMK) schemes for ODEs on mani-
folds [5]. Further details on stochastic RKMK schemes can be found in [2, 4].

The remainder of the paper is organized as follows. In Sect. 2 we construct co-
variance flows based on an isospectral flow driven by a SDE. Since correlation ma-
trices play an important role in finance and risk management we provide an appli-
cation example of our methodology from the viewpoint of a risk manager using real
market data in Sect. 3. A conclusion of our results is given in Sect. 4.

2 Covariance flows based on stochastic isospectral flows

The space of covariance matrices Ŝym(n) is a homogeneous manifold, i.e. there
exists an element Q in a corresponding Lie group such that Λ(Q,P1) = P2 for two
arbitrary elements P1 and P2 of the manifold. The considered Lie group regarding
isospectral flows is the space of rotation matrices SO(n) and the map Λ : SO(n)×
Ŝym(n)→ Ŝym(n), called the Lie group action, can be chosen as

Λ(Q,P) = QPQ> , (3)

see [5]. Corresponding to this Lie group action there exists a Lie algebra action
λ : so(n)× Ŝym(n)→ Ŝym(n) given by

λ (Ω ,P) = exp(Ω)Pexp(−Ω) , (4)

where the Lie algebra so(n) is the tangent space at the identity I of the Lie group
SO(n), i.e. so(n) = TISO(n), which is the space of skew-symmetric matrices.
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The matrix exponential exp: so(n)→ SO(n), Ω 7→ ∑k≥0 Ω k/k! acts as a map
from the Lie algebra to the Lie group and its derivative is given by(

d
dΩ

exp(Ω)

)
H = (dexpΩ (H))exp(Ω), dexpΩ (H) = ∑

k≥0

1
(k+1)!

adk
Ω (H) ,

(5)
see [1, p. 83]. By adΩ (H) = [Ω ,H] = ΩH−HΩ we express the adjoint operator

ad0
Ω (H) = H, adk

Ω (H) =
[
Ω ,adk−1

Ω
(H)
]
= adΩ

(
adk−1

Ω
(H)
)
, k ≥ 1 .

Theorem 1. Assume that dexpΩ (H) in (5) is invertible and let Ωt ∈ so(n) be driven
by

dΩt = Atdt +
m

∑
i=1

Γi,tdWi,t , Ω0 = 0 . (6)

Then Pt = exp(Ωt)P0 exp(−Ωt) obeying

dPt =

(
[Y0,t ,Pt ]+

1
2

m

∑
i=1

[
Yi,t , [Yi,t ,Pt ]

])
dt +

m

∑
i=1

[Yi,t ,Pt ]dWi,t (7)

is an isospectral flow in Ŝym(n), where Yi,t ∈ so(n) for i = 0, . . . ,m.
The coefficients in (6) are given by

At = dexp−1
Ωt

(
Y0,t −

1
2

m

∑
i=1

Ci,t
)
, Γi,t = dexp−1

Ωt
(Yi,t) ,

where

Ci,t =

(
d

dΩ
dexpΩt

(Γi,t)

)
Γi,t =

∞

∑
k=0

∞

∑
j=0

1
(k+ j+2)

(−1) j+1

k!( j+1)!
adk

Ωt

(
adΓi,t

(
ad j

Ωt
(Γi,t)

))
.

The SDE (7) and the coefficients in (6) can be derived by applying Itô’s lemma
to Pt = exp(Ωt)P0 exp(−Ωt) and assuming an additive perturbation by independent
Wiener processes W1,t , . . . ,Wm,t to the ODE (1). Since exp(Ωt)P0 exp(−Ωt) corre-
sponds to the Lie algebra action (4) with P ≡ P0, the solution Pt will evolve in
Ŝym(n) by construction.

The expression dexpΩ (H) in (5) is invertible if the eigenvalues of adΩ are dif-
ferent from 2`πi with ` ∈ {±1,±2, . . .}. The inverse converges for ‖Ω‖< π and is
given by

d exp−1
Ω
(H) =

∞

∑
k=0

Bk

k!
adk

Ω (H) , (8)

where Bk denotes the Bernoulli numbers (see Lemma III.4.2 (Baker, 1905) in [1]).
Note that the assumption of a SDE in the Lie algebra gives the benefit of applying

actions in a linear space whereas applying linear actions to (7) on the manifold
Ŝym(n) would result in a drift-off.
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3 Simulation of correlation flows

We assume the following scenario: A risk manager retrieves from the middle office’s
reporting system the initial correlation matrix

Rhist
0 =

(
1 −0.0159

−0.0159 1

)
, (9)

of the moving correlations between the S&P 500 index and the Euro/US-Dollar
exchange rate on a daily basis computed with a window size of 30 days from January
3, 2005 to January 6, 2006 seen in Fig. 1. Furthermore, we assume that the risk
manager is aware of the density function of the considered correlation as the path
shown in Fig. 1 is only one of many possible realizations. Therefore, we estimate
a density function from the historical data using kernel smoothing functions (see
Fig. 2). Now, the risk manager’s task is to create valid time-dependent correlation
matrices that reflect the stochastic nature of correlations while trying to match the
density function of the historical data.

Our proposed methodology for the risk manager is given by the following steps:

1. Compute a covariance matrix P0 based on the historical correlation matrix Rhist
0

and consider the covariance flow Pt = exp(Ωt)P0 exp(−Ωt) obeying (7) where
the skew-symmetric matrices Y0,t , . . . ,Ym,t are set such that they contain parame-
ters as degrees of freedom.

2. Solve the SDE (6) in the Lie algebra numerically and define a solution of (7) ac-
cording to the Lie algebra action (4). Transform the obtained covariance matrices
to corresponding correlation matrices.

3. Estimate the density function from the so-obtained correlation flow and calibrate
the involved parameters such that the density function of the correlation flow
matches the density function of the historical correlation.

These steps are now specified for n = 2 and m = 2.
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Fig. 1 The 30-day historical correlations between S&P 500 and Euro/US-Dollar exchange rate,
source of data: www.yahoo.com.
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Setting P0 and Y0,t ,Y1,t ,Y2,t

For the construction of P0 we set D as the diagonal matrix containing the eigenvalues
of the estimated covariance matrix of the whole historical data and we tried to find an
orthogonal matrix H such that P0 = H>DH and ‖R0−Rhist

0 ‖F → min, where R0 =

Σ
−1
0 P0Σ

−1
0 with Σ0 =

(
diag(P0)

)1/2 (see [3]). We report the so-found covariance
matrix as

P0 =

(
0.0233 −0.0005
−0.0005 0.0427

)
. (10)

Time-dependent, skew-symmetric matrices can be obtained by multiplying an ar-
bitrary time-dependent function gi(t) with the generator G of so(2). Experimenting
with different functions we chose

g0(t) = x1t sin(x2t), g1(t) = x3 + x4t, g2(t) = x5 + x6t, (11)

as they worked regarding the given historical data and we set Yi(t) = gi(t)G for
i = 0,1,2. The parameters x1, . . . ,x6 ∈ R can be associated with possible degrees of
freedom.

Structure-preserving Euler-Maruyama scheme

We solve (7) with the initial value and coefficients specified in the previous step by
applying the following algorithm which is based on RKMK schemes for ODEs [5].

Algorithm 2 (Structure-preserving Euler-Maruyama scheme) Divide the time in-
terval [0,T ] uniformly into J subintervals [t j, t j+1], j = 0,1, . . . ,J − 1 and define
∆ = t j+1− t j and ∆Wi ∼N (0,∆). Starting with t0 = 0 and Ω0 = 0 these steps are
repeated until t j+1 = T :

1. Let Pj be the approximation of Pt at time t = t j.
2. Compute Ω1 by applying the Euler-Maruyama scheme to the SDE (6).
3. Define a numerical solution of (7) as Pj+1 = exp(Ω1)Pj exp(−Ω1).

The computation of the correlation flow can be listed as an additional step:

4. Set R j+1 = Σ
−1
j+1Pj+1Σ

−1
j+1 with Σ j+1 =

(
diag(Pj+1)

)1/2.

Calibration

We calibrate the parameters x1, . . . ,x6 in (11) such that the mean squared error,
1
N ∑

N
j=1
(

f hist(z j)− f flow(z j)
)2 is minimized, where f hist(z) and f flow(z) are the em-

pirical density function of the historical data and the correlation flow, resp., esti-
mated with the MATLAB function ksdensity at N = 100 equally spaced points.

Choosing (x1,x2,x3,x4,x5,x6) = (6.22,−5.22,9.88,−5.19,−0.62,−16.63) we
computed a mean squared error of 9.57 · 10−4. A corresponding plot that shows
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how well the density function of our correlation flow approximates the historical
data can be found in Fig. 2.

Fig. 2 Empirical density
function of the historical cor-
relation and the correlation
flow between S&P 500 and
Euro/US-Dollar exchange
rate, computed with the MAT-
LAB function ksdensity.
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4 Conclusion

We have presented an approach that shows that the correlation model of [6] can
be extended such that the stochastic behaviour of correlations is included by mod-
elling the isospectral flow as a SDE instead of an ODE. Moreover, we introduced
a structure-preserving scheme that keeps the numerical solution of this stochastic
isospectral flow on the correct manifold Ŝym(n). Lastly, we have seen that our
methodology for the approximation of correlation matrices based on the stochastic
isospectral flow works quite well. In future work one could extend our model such
that more correlations (n > 2) are approximated. For this purpose, one could adjust
the number of diffusion coefficients Yi,t and the time-dependent functions gi(t) or
apply higher order methods.
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