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Abstract

State-of-the-art semantic or instance segmentation deep
neural networks (DNNs) are usually trained on a closed set
of semantic classes. As such, they are ill-equipped to han-
dle previously-unseen objects. However, detecting and lo-
calizing such objects is crucial for safety-critical applica-
tions such as perception for automated driving, especially
if they appear on the road ahead. While some methods have
tackled the tasks of anomalous or out-of-distribution object
segmentation, progress remains slow, in large part due to
the lack of solid benchmarks; existing datasets either con-
sist of synthetic data, or suffer from label inconsistencies.
In this paper, we bridge this gap by introducing the “Seg-
mentMeIfYouCan” benchmark. Our benchmark addresses
two tasks: Anomalous object segmentation, which consid-
ers any previously-unseen object category; and road ob-
stacle segmentation, which focuses on any object on the
road, may it be known or unknown. We provide two cor-
responding datasets together with a test suite performing
an in-depth method analysis, considering both established
pixel-wise performance metrics and recent component-wise
ones, which are insensitive to object sizes. We empirically
evaluate multiple state-of-the-art baseline methods, includ-
ing several specifically designed for anomaly / obstacle seg-
mentation, on our datasets as well as on public ones, using
our benchmark suite. The anomaly and obstacle segmenta-
tion results show that our datasets contribute to the diversity
and challengingness of both dataset landscapes.

1. Introduction

The advent of high-quality publicly-available datasets,
such as Cityscapes [13], BDD100k [45], A2D2 [17] and
COCO [30] have hugely contributed to the progress in se-
mantic segmentation. However, while state-of-the-art deep
neural networks (DNNs) yield outstanding performance
on these datasets, they typically provide predictions for
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Fishyscapes LostAndFound

Figure 1: Comparison of images from our and existing pub-
lic datasets. Anomalies / obstacles are highlighted in or-
ange, darkened regions are excluded from the evaluation. In
RoadAnomaly21, anomalies may appear everywhere in the
image. In contrast to Fishyscapes, where anomalous objects
are synthetic, all RoadAnomaly21 images are real. In Road-
Obstacle21, the region of interest is restricted to the drivable
area with obstacles ahead. This is comparable to LostAnd-
Found, where the labeling, however, is not always consis-
tent, e.g. children are anomalies but other humans not.

a closed set of semantic classes. Consequently, they are
unable to classify an object as none of the known cate-
gories [47]. Instead, they tend to be overconfident in their
predictions, even in the presence of previously-unseen ob-
jects [19], which precludes the use of uncertainty to identify
the corresponding anomalous regions.

Nonetheless, reliability in the presence of unknown ob-
jects is key to the success of applications that have to face
the diversity of the real world, e.g. perception in auto-
mated driving. This has motivated the creation of bench-
marks such as Fishyscapes [6] or CAOS [20]. While these
benchmarks have enabled interesting experiments, the lim-
ited real-world diversity in Fishyscapes, the lack of a public
leader board and of a benchmark suite in CAOS, and the
reliance on synthetic images in both works hinder proper
evaluation and comparisons with the state-of-the-art.
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In this paper, motivated by the limitations of existing
anomaly and obstacle segmentation datasets and by the
emerging body of works in this direction [1, 6, 8, 9, 23, 24,
32, 34, 39], we introduce the SegmentMeIfYouCan1 bench-
mark. It is accompanied with two datasets, consisting of
diverse and manually annotated real images, a public leader
board and an evaluation suite, providing in-depth analysis
as well as comparisons, to facilitate the development of road
anomaly and obstacle segmentation methods.

Our benchmark encompasses two separate tasks. The
first one consists of strict anomaly segmentation, where any
previously-unseen object is considered as an anomaly. Fur-
thermore, motivated by the observation that the boundary
between known and unknown classes can sometimes be
fuzzy, for instance for car vs. van, we introduce the task
of obstacle segmentation, whose goal is to identify all ob-
jects on the road, may it be from a known class or from an
unknown one.

For the anomaly track, we provide a dataset of 100 im-
ages with pixel-wise annotations over two classes (anomaly,
not anomaly) and a void class, which, in analogy to City-
scapes, signals the pixels that are excluded from the evalu-
ation. We consider any object that strictly cannot be seen
in the Cityscapes data as anomalous, appearing anywhere
in the image. For the obstacle track, our dataset contains
327 images with analogous annotation (obstacle, not obsta-
cle, void), and focuses only on the road as region of in-
terest. The focus in this track is of more practical need,
e.g. for automated driving systems, targeting obstacles that
may cause hazardous street situations, see figure 1. All im-
ages of our datasets are publicly available for download1,
together with a benchmark suite that computes both estab-
lished pixel-wise metrics and recent component-wise ones.

In the remainder of this paper, we first review existing
anomaly detection datasets, methods and evaluation metrics
in more detail. We then describe our new benchmark and
provide numerical experiments that compare benchmark re-
sults for a number of state-of-the-art road anomaly / obsta-
cle segmentation methods on our datasets and on other re-
lated ones.

2. Related Work
In this section we first review previous datasets for

anomaly detection, with some of them being designed for
road anomaly segmentation. Then we briefly describe some
of the methods on anomaly and obstacle segmentation.

2.1. Datasets and Benchmarks

Existing methods for anomaly detection have often been
evaluated on their ability to separate images from two
different source distributions, such as separating MNIST

1http://www.segmentmeifyoucan.com/

from FashionMNIST [12, 35, 43], NotMNIST [43], or Om-
niglot [26], and separating CIFAR-10 from SVHN [28, 35,
43] or LSUN [28, 29, 35]. Such experiments can be found
in many works, including [12, 21, 28, 29, 35, 43].

For semantic segmentation, a similar task was therefore
proposed by the WildDash benchmark [46] that analyzes
semantic segmentation methods trained for driving scenes
on a range of failure sources, including full-image anoma-
lies, such as images from the beach. Similarly, the Robust
Vision Challenge2 evaluated the generalization of segmen-
tation models across different datasets. Here, by contrast,
we focus on the problem of robustness to anomalies that
only cover a small portion of the image, and on the methods
that aim to segment such anomalies.

One prominent dataset tackling the task of anomaly seg-
mentation is the LostAndFound dataset [40], which shares
the same setup as Cityscapes [13] but includes anoma-
lous objects / obstacles in various street scenes in Ger-
many. LostAndFound contains 9 different object types as
anomalies, and only has annotations for the anomaly and
the road surface. Furthermore, it considers children and
bicycles as anomalies, even though they are part of the
Cityscapes training set. While this was filtered and refined
in Fishyscapes [6], the low diversity of anomalies persists.

The CAOS benchmark [20] suffers from a similar low-
diversity issue, arising from its use of only 2 object classes
from the BDD100k dataset [45] as anomalies. Both Fishy-
scapes and CAOS try to mitigate this low diversity by com-
plementing their real images with synthetic data. Such syn-
thetic data, however, is not realistic and not representative
of the situations that can arise in the real world.

In general, the above works illustrate the shortage of di-
verse real-world data. Additional efforts in this regard have
been made by sourcing and annotating images of animals
in street scenes [32] and a multi-modal dataset of small ob-
jects placed on the road [42]. Parts of these datasets have
been included in our benchmark. Moreover, most of the
above datasets are fully published with annotations, allow-
ing methods to overfit on the available anomalies. Apart
from Fishyscapes, which as mentioned above suffers from
low diversity, we did not find any public leader boards that
allow for a trustworthy comparison of new methods.

2.2. Anomaly and Obstacle Segmentation

In the following, we give an overview of anomaly seg-
mentation methods. For each type, we evaluate at least one
method in our experiments. Anomaly detection was ini-
tially tackled in the context of image classification, by de-
veloping post-processing techniques aiming to adjusting the
confidence values produced by a classification model [19,
21, 28, 29, 35]. Although originally designed for image-
level anomaly detection, most of these methods can easily

2http://www.robustvision.net/rvc2018.php
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be adapted to anomaly segmentation [1, 6] by treating each
single pixel in an image as a potential anomaly.

Relevant are also works that estimate uncertainty of
predictions as anomalous image regions are expected to
correlate with high uncertainty. One approach to this is
Bayesian (deep) learning [33, 38] where model parameters
are treated as distributions. Due to the computational com-
plexity, approximations to Bayesian inference have been de-
veloped [2, 16, 18, 27] and extended to semantic segmen-
tation [3, 25, 36]. Instead of reasoning about uncertainty,
other, non-Bayesian approaches tune a previously-trained
model to the task of anomaly detection, by either modify-
ing its architecture or exploiting additional data. For exam-
ple, in [15], anomaly scores are learned by adding a sep-
arate branch to the neural network. Instead of modifying
the network’s architecture, other approaches [22, 35] incor-
porate an auxiliary out-of-distribution (OoD) dataset during
training, which is disjoint from the actual training dataset.
These ideas have been employed for anomaly segmentation
in [4, 9, 24].

A recent line of work performs anomaly segmentation
via generative models that reconstruct / resynthesize the
original input image. The intuition is that the reconstructed
images will better preserve the appearance of regions con-
taining known objects than that of unknown regions. Pixel-
wise anomaly detection is then performed by identifying the
discrepancies between the original and reconstructed im-
age. This approach has been used not only for anomaly
segmentation [5,32,44] but also specifically for obstacle de-
tection [14, 31, 37].

3. Benchmark Description
In this section we present our datasets and benchmark

tracks together with the evaluation metrics.

3.1. Motivation

The aim of our benchmark is on the hand providing
diverse data with high-quality and consistent annotations,
to facilitate advances in general anomaly segmentation re-
search. On the other hand, by focusing on road scenes,
the benchmark should accelerate and measure progress to-
wards the imminent and practical need for safe segmenta-
tion methods in automated driving.

To achieve these goals, our benchmark covers two tasks.
First, it tackles the general problem of anomaly segmenta-
tion, aiming to identify the image regions containing ob-
jects that have never been seen during training, and thus
for which segmentation is not trustworthy. This is neces-
sary for any reliable decision making process, and of great
importance to many computer vision applications. This def-
inition of anomalies, however, can sometimes be ill-defined
because (i) existing semantic segmentation datasets, such
as Cityscapes [13], often contain ambiguous and ignored

regions (annotated as void), which are not strictly anoma-
lies since they are seen during training; (ii) the boundary of
some classes is fuzzy, e.g. cars vs. vans vs. rickshaws, mak-
ing it unclear whether some regions should be considered as
anomalous or not. To address these issues, and to account
for the fact that automated driving systems need to make
sure that the road ahead is free of any hazardous objects,
we further incorporate obstacle segmentation as a second
task in our benchmark, whose goal is to identify any non-
drivable region on the road, may the non-drivable region
correspond to a known object or an unknown one.

3.2. Benchmark Tracks and Datasets

We now present the two tracks in our benchmark, corre-
sponding to the two tasks discussed above. Each track con-
tains its own dataset with different properties and is there-
fore evaluated separately in our benchmark suite.

RoadAnomaly21. The road anomaly track benchmarks
general anomaly segmentation in full scenes, and is thus
independent of automated driving. It consists of an evalua-
tion dataset of 100 images with pixel-level annotations. The
data is an extension of that introduced in [32], now includ-
ing a broader collection of images and finer-grain labeling.
In particular, we removed labeling mistakes and added the
void class. Each image contains at least one anomalous ob-
ject, e.g. animals or unknown vehicles. The anomalies can
appear anywhere in the image and widely differ in size, cov-
ering from 0.5% to 40% of the image. The distribution of
object sizes is shown in figure 2. 13.8% of the dataset’s pix-
els belong to anomalies and 82.2% to non-anomalies. The
images were collected from web resources and therefore de-
pict a wide variety of environments.

RoadObstacle21. The road obstacle track focuses on
safety for automated driving. The objects to segment in
the evaluation data always appear on the road ahead, i.e.
they represent hazardous obstacles that are critical to de-
tect. This focuses the task of distinguishing between road
surface and obstacles. Our dataset consists of 222 new im-
ages taken by ourselves and 105 from [31] summing up to a
total of 327 evaluation images with pixel-level annotations,
where 0.12% of the all pixels are annotated as obstacles and
39.1% as drivable area. The region of interest in these im-
ages is given by the road, which is assumed to belong to
the known classes on which the algorithm was trained. The
obstacles in this dataset are chosen such that they all can
be understood as anomaly objects as well, e.g. stuffed toys,
sleighs or tree stumps. They appear at different distances
(one distance per image) and are completely surrounded by
road pixels. This allows us to focus our evaluation on the
obstacles, as other objects lie outside the region of inter-
est. Moreover, this dataset incorporates different road sur-
faces, lighting and weather conditions, thus encompassing
a broad diversity of scenes. An extra track of additional 85
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(b) RoadObstacle21

Figure 2: Relative frequency of annotated anomaly / obstacle pixels within an image over the 100 images in the Road-
Anomaly21 dataset (left) and the 327 images in the RoadObstacle21 dataset (right), respectively. Here, the fraction of
anomaly / obstacle pixels serves as proxy for the size of the objects of interest within an image. Note that the y-axis is log
scaled.

images with scenes at night and in extreme weather, like
snowstorm, is also available. However, the latter subset is
excluded from our numerical experiments due to the heavy
shift in domain.

Labeling Policy. In both datasets the pixel-level anno-
tations include three classes: 1) anomaly / obstacle, 2) not
anomaly / not obstacle, and 3) void. The 19 Cityscapes eval-
uation classes [13], on which many semantic segmentation
DNNs are trained, serve as basis to judge whether an ob-
ject is anomalous or not. We assigned image regions to the
void class if they cannot be clearly assigned to any of the
Cityscapes classes and also do not belong to the objects /
regions of interest, i.e. they are neither anomaly nor obsta-
cle (depending on the track). For instance, in the anomaly
track, this includes water, trash cans or street lights. Am-
biguous cases (e.g. constituting a strong domain shift) were
labeled as void as well. In the obstacle track, all regions
aside the drivable area are assigned to the void class. The
void regions are ignored in the evaluation.

3.3. Metrics

For the sake of brevity, in what follows we only refer to
anomalies instead of anomalies and obstacles.

Pixel level. Let Z denote the set of image pixel loca-
tions. A model with a binary classifier providing scores
s(x) ∈ R|Z| for an image x ∈ X (from a dataset X ⊆
[0, 1]N×|Z|×3 of N images) discriminates between the two
classes anomaly and non-anomaly. We evaluate the separa-
bility of the pixel-wise anomaly scores via the area under
the precision-recall curve (AuPRC).

Let Y ⊆ {“anomaly”, “not anomaly”}N×|Z| be the set
of ground truth labels per pixel for X . Analogously, we
denote the predicted labels with Ŷ(δ), obtained by pixel-
wise thresholding on s(x) ∀ x ∈ X w.r.t. some threshold
value δ ∈ R. Then, for the anomaly class (c1 = “anomaly”)
we compute

precision =
|Yc1∩ Ŷc1(δ)|
|Ŷc1(δ)|

, recall =
|Yc1∩ Ŷc1(δ)|
|Yc1 |

(1)

with Yc1 and Ŷc1 representing the ground truth labels and

predicted labels, respectively. For the AuPRC, precision
and recall are considered as functions of δ. The AuPRC
approximates

∫
precision(δ) drecall(δ) and is threshold in-

dependent [7]. It also puts emphasis on detecting the mi-
nority class, making it particularly well suited as our main
evaluation metric since the pixel-wise class distributions of
RoadAnomaly21 and RoadObstacle21 are considerably un-
balanced, c.f . section 3.2.

To consider the safety point of view, we also include the
false positive rate at 95% true positive rate (FPR95) in our
evaluation, where the true positive rate (TPR) is equal to the
recall of the anomaly class. The false positive rate (FPR) is
the number of pixels falsely predicted as anomaly over the
number of all non-anomaly pixels. Hence, for the anomaly
class we compute

FPR95 =
|Ŷc1(δ′) ∩ Yc2 |

|Yc2 |
s.t. TPR(δ′) = 0.95 , (2)

where c2 = “not anomaly”. The metric FPR95 indicates
how many false positive predictions are necessary to guar-
antee a desired true positive rate. Note that, any prediction
which is contained in a ground truth labeled region of class
void is not counted as false positive, c.f . section 3.2. In
particular for the RoadObstacle21 dataset the evaluation is
therefore restricted to the road area.

Component level. From a practitioner’s perspective, it
is often sufficient to correctly identify only a fraction of an
anomalous object instead of every single pixel. It is how-
ever very important in practice to detect all anomalies in the
scene, regardless of their number of pixels. Thus, to evalu-
ate how well a model performs at localizing anomalies, we
consider performance metrics at the component level. The
main metrics for component-wise evaluation are the num-
bers of true-positives (TP), false-negatives (FN) and false-
positives (FP). Considering anomalies as the positive class,
we use a component-wise localization and classification
quality measure to define the TP, FN and FP components.
Specifically, we define this measure as an adjusted version
of the component-wise intersection over union (sIoU), in-
troduced in [41]. In particular, while in [41] the sIoU is

4



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Target 1
k ∈ K(x)

Prediction
k̂ ∈ K̂(x)

IoU(k) = 0.50

sIoU(k) = 0.50

Target 1
k ∈ K(x)

Target 2 &
adjustment
A(k)

IoU(k) = 0.50

sIoU(k) = 0.99

Figure 3: Illustration of the adjusted component-wise in-
tersection over union. Here, IoU denotes the ordinary
component-wise intersection over union, sIoU the adjusted
one. In both examples the prediction k̂ (blue rectangle)
is the same but covers different targets (green rectangles).
In the sIoU the set A(k) is subtracted from the union (in
this case equal to k̂) when evaluating target k with respect
to prediction k̂ (right figure). That is, the sIoU does not
penalize the case when one prediction covers multiple tar-
gets. Since two targets are separated by at least one pixel,
IoU=sIoU=1 iff the prediction covers one target perfectly.

computed for predicted components only (to determine FP),
we also consider the sIoU for ground-truth components to
compute TP and FN. We discuss this in detail below.

Let Zc be the set of pixel locations labeled with class
c = “anomaly” in the dataset X . We consider a connected
component of pixels (where the 8 pixels surrounding pixel
z in image x ∈ X are taken to be its neighbors) that share
the same class label as a component. Then, let us denote
by K ⊆ P(Zc), with P(S) the power set of a set S, the
set of anomaly components according to the ground truth,
and by K̂ ⊆ P(Zc) the set of components predicted to be
anomalous by some machine learning model.

Formally, the sIoU is a mapping sIoU : K ∪̇ K̂ → [0, 1].
For k ∈ K, it is defined as

sIoU(k) :=
|k∩K̂(k)|

|k∪K̂(k)| − |A(k)|
with K̂(k)=

⋃

k̂∈K̂
k̂∩k 6=∅

k̂ (3)

and A(k) = {z ∈ k′ : k′ ∈ K \ {k}}. With the ad-
justment A(k), the pixels are excluded from the union if
and only if they correctly intersect with another ground-
truth component k′ ∈ K(x), which is not equal to k. This
may happen when one predicted component covers multiple
ground-truth components, as illustrated in figure 3. Given
some threshold τ ∈ [0, 1), we then call a target k ∈ K TP
if sIoU(k) > τ , and FN otherwise.

For the other error type, i.e. FP, we consider k̂ ∈ K̂ in
equation (3), and compute

sIoU(k̂) :=
|k̂ ∩K(k̂)|

|k̂ ∪K(k̂)| − |A(k̂)|
, (4)

with analogous definitions of K(k̂) and A(k̂). We then call
a predicted component k̂ ∈ K̂ FP if sIoU(k̂) ≤ τ .

As overall metric for component-level evaluation, we in-
clude the component-wise F1-score that is defined as

F1(τ) :=
2 · TP(τ)

2 · TP(τ) + FN(τ) + FP(τ)
∈ [0, 1] , (5)

and summarizes the TP, FN and FP quantities (which de-
pend on τ ). The component-level metrics allow evaluating
localization of objects irrespective of their size and hence
big objects will not dominate these metrics. In addition,
while object detection metrics punish if a prediction covers
multiple ground truth objects or vice-versa, our component-
level metric does not do so, see figure 3.

4. Evaluated Methods
In this section, we briefly describe the methods which are

evaluated on our benchmark and constitute our initial leader
board. All methods subject to evaluation are stated in bold-
face. We evaluate at least one method per type discussed in
section 2.2. All methods have an underlying semantic seg-
mentation DNN trained on Cityscapes and they all provide
pixel-wise anomaly scores. For additional technical details,
we refer the reader to the supplementary material.

Given an input image, the maximum softmax probabil-
ity (MSP) of a DNN’s corresponding output is a commonly-
used baseline for OoD detection at image level [21]. Adding
small perturbations to every pixel of the input image and ap-
plying temperature scaling enhances the anomaly detection
ability of MSP. The latter approach is known as ODIN [29].
Another well-known method detects anomalies based on the
Mahalanobis distance. It is computed by estimating Gaus-
sian distributions of latent features of a DNN’s penultimate
layer, therefore yielding an estimate of the likelihood of a
test sample w.r.t. the distribution in the training data. All
these methods are originally designed for image classifica-
tion but can be adapted straightforwardly to segmentation
and represent good baselines in our benchmark.

As Bayesian approach to uncertainty estimation we em-
ploy Monte Carlo (MC) dropout in our evaluation. MC
dropout has already been investigated for semantic segmen-
tation. We follow [36] and use the mutual information as
pixel-wise anomaly scores, which captures the epistemic
uncertainty of a DNN.

In [6] several approaches to learning the confidence with
respect to the presence of anomalies have been proposed.
The learned embedding density aims to approximate the
distribution of feature embeddings within a DNN via nor-
malizing flows. At test time, the negative log-likelihood
for each embedded representation of an image measures
the discrepancy of a test embedding with respect to training
embeddings, where high discrepancies indicate anomalies.
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Input image & annotation Maximum softmax ODIN Mahalanobis MC dropout

Void classifier Embedding density Image resynthesis SynBoost Maximized entropy

Input image & annotation Maximum softmax ODIN Mahalanobis MC dropout

Void classifier Embedding density Image resynthesis SynBoost Maximized entropy

Figure 4: Qualitative comparison of the anomaly scores produced by the methods introduced in section 4 for one example
image of RoadAnomaly21 (top two rows) and one example image of RoadObstacle21 (bottom two rows). Here, red indicates
higher anomaly / obstacle scores. The ground truth anomaly / obstacle component is indicated by green contours.

These scores are then upsampled via bilinear interpolation
to obtain the pixel-wise anomaly scores. Alternatively, the
segmentation DNN can be modified to learn the confidence
for the presence of anomalies, requiring an OoD dataset.
As in [6], a Cityscapes DNN is trained with an additional
model output for the Cityscapes void class. The anomaly
scores are then the softmax scores for the that class, there-
fore this method is called void classifier. Additionally, one
can also retrain a DNN with a different OoD proxy, such as
the COCO dataset [30], and enforce maximized softmax
entropy [9] on samples of the OoD proxy. All theses meth-
ods tune previously-trained DNNs to the task of anomaly
segmentation and are included in our evaluation.

As autoencoders in our evaluation, we employ image
resynthesis together with a discrepancy network that ex-
tracts meaningful differences based on the information pro-
vided by the DNN’s segmentation mask, the resynthesized
input image and the original image itself [32]. This ap-
proach can be extended by including uncertainty estimates
in the discrepancy module, aiming to boost the anomaly
segmentation performance, known as SynBoost [5]. One
method specifically designed for obstacle segmentation is
called road inpainting [31]. This method inpaints road

patches in a sliding window manner. The resulting synthe-
sized image is then again presented to a discrepancy net-
work, similarly as in [32], for pixel-wise obstacle scores.

5. Numerical Experiments
In our benchmark suite we integrate a default method to

generate the segmentation from pixel-wise anomaly scores.
We choose the threshold δ∗, at which one pixel is classified
as anomaly, by means of the optimal pixel-wise F1-score,
that we denote with F ∗1 . Then, δ∗ is computed as

δ∗ = arg max
δ∈R

2 · precision(δ) · recall(δ)
precision(δ) + recall(δ)

(6)

subject to precision(δ) + recall(δ) > 0, ∀ δ.
Moreover, for the anomaly track, components smaller

than 500 pixels are discarded from the predicted segmen-
tation, and for the obstacle track, components smaller than
50 pixels are discarded. These sizes are chosen based on
the smallest ground-truth instances. All methods presented
in section 4 produce anomaly scores for which we apply the
default segmentation method. Note that, we also allow com-
petitors in the benchmark to submit anomaly segmentation
masks generated via more sophisticated operations.
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Pixel-level Component-level

requires Anomaly scores k ∈ K k̂ ∈ K̂ sIoU > τ = 0.25 sIoU > τ = 0.50 sIoU > τ = 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F ∗1 ↑ sIoU ↑ sIoU ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [21] 7 27.9 72.2 34.0 15.2 4.7 204 759 10.3 232 789 5.0 253 811 1.1 5.2
ODIN [29] 7 33.4 72.0 39.3 20.1 4.2 182 1142 10.4 224 1182 4.7 250 1209 1.2 5.2
Mahalanobis [28] 7 20.1 86.9 31.9 15.0 2.5 203 1581 5.9 238 1619 2.2 254 1636 0.5 2.7
MC dropout [36] 7 29.1 69.9 39.0 20.9 3.3 170 1608 9.1 219 1648 4.1 251 1679 0.8 4.4
Void classifier [6] 3 36.9 63.4 44.3 21.3 5.5 177 989 12.3 216 1035 6.4 250 1067 1.3 6.5
Embedding density [6] 7 37.6 70.8 48.7 34.5 5.0 102 1781 14.3 172 1837 8.0 245 1911 1.3 7.9
Image resynthesis [32] 7 52.3 25.9 60.5 39.5 6.9 94 1242 19.8 152 1285 13.0 227 1357 3.9 12.4
SynBoost [5] 3 56.6 62.3 58.2 35.2 6.5 109 1264 17.9 175 1320 10.1 241 1388 2.2 10.2
Maximized entropy [9] 3 85.6 14.9 77.5 49.2 17.8 85 552 35.3 113 572 29.9 159 611 20.6 29.0

Table 1: Benchmark results for our RoadAnomaly21 dataset. This dataset contains 259 ground truth components in total.

Pixel-level Component-level

requires Anomaly scores k ∈ K k̂ ∈ K̂ sIoU > τ = 0.25 sIoU > τ = 0.50 sIoU > τ = 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F ∗1 ↑ sIoU ↑ sIoU ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [21] 7 15.7 16.6 22.5 19.7 4.4 255 1673 12.1 326 1738 5.7 372 1783 1.5 6.3
ODIN [29] 7 22.1 15.3 30.1 21.4 6.4 260 1220 14.7 307 1265 9.3 361 1318 3.1 9.2
Mahalanobis [28] 7 20.9 13.1 25.8 13.5 4.1 295 1265 10.7 353 1321 4.0 385 1352 0.3 4.7
MC dropout [36] 7 4.9 50.3 9.0 5.5 0.9 356 2322 2.3 375 2339 0.9 387 2351 0.1 1.0
Void classifier [6] 3 10.4 41.5 23.3 6.3 5.7 350 403 9.2 365 421 5.5 381 435 1.7 5.4
Embedding density [6] 7 0.8 46.4 2.0 35.6 1.3 145 11166 4.1 244 11271 2.4 370 11393 0.3 2.3
Image resynthesis [32] 7 37.5 4.7 38.8 16.5 6.8 286 887 14.8 333 931 8.0 374 970 2.0 8.4
Road inpainting [31] 7 55.8 56.8 63.2 70.5 4.8 29 5453 11.6 59 5488 10.6 171 5599 7.0 10.1
SynBoost [5] 3 71.3 3.2 70.8 44.3 27.5 136 388 49.0 185 440 39.4 283 538 20.4 37.6
Maximized entropy [9] 3 85.1 0.8 79.6 47.9 41.4 136 202 59.9 177 250 49.7 247 321 33.2 48.5

Table 2: Benchmark results for our RoadObstacle21 dataset. This dataset contains 388 ground truth components in total.

In our experiments, we additionally include the average
sIoU per component sIoU, which can be computed w.r.t.
ground truth components k ∈ K or predicted components
k̂ ∈ K̂. As the number of component-wise TP, FN and
FP depends on some threshold τ for sIoU (see section 3.3),
we average these quantities over different thresholds τ ∈
T = {0.25, 0.30, . . . , 0.75}, similar to [30], yielding the
averaged component-wise F1 score F1 = 1

|T |
∑
τ∈T F1(τ).

Discussion of the Results. Our benchmark results for
RoadAnomaly21 and RoadObstacle21 are summarized in
table 1 and table 2, respectively. In general, we observe
that methods originally designed for image classification,
including maximum softmax, ODIN, and Mahalanobis, do
not generalize well to anomaly and obstacle segmentation.
For methods based on statistics of the Cityscapes dataset,
such as Mahalanobis as well as learned embedding density,
anomaly detection is typically degraded by the presence of
a domain shift. This results in a poor performance, par-
ticularly in RoadObstacle21, where various road surfaces
can be observed. Interestingly, learned embedding density,
MC dropout and the void classifier yield worse performance
than maximum softmax on RoadObstacle21, whereas we
observe the opposite on RoadAnomaly21.

The detection methods based on autoencoders, namely
image resynthesis and SynBoost, show to be better suited

for both anomaly and obstacle segmentation at pixel as
well as component level, clearly being superior to all the
approaches discussed previously. This observation also
holds for road inpainting in the obstacle track. These
autoencoder-based methods are nonetheless limited by their
discrepancy module, and they are outperformed in our ex-
periments maximized softmax entropy, which peaks at an
AuPRC of 86% and a component-wise F1 of 49%. This
highlights the importance of anomaly and obstacle proxy
data. Illustrative example score maps produced by the dis-
cussed methods are shown in figure 4.

In summary, the component-level evaluation highlights
the methods’ weaknesses even more clearly than the pixel-
wise evaluation, the latter giving a stronger weight to larger
anomalies and obstacles. All methods indeed tend to face
difficulties in the presence of smaller anomalies and obsta-
cles, as we demonstrate in more detail in the supplementary
material. In addition, we observe a much lower component-
wise F1 score than a pixel-wise one, demonstrating the im-
portance of evaluating at component level. The results w.r.t.
the different categories of methods are challenging for mod-
els, hence leaving room for improvement.

Our benchmark suite enables a unified evaluation across
different datasets whenever ground truth is available. In ta-
ble 3 we summarize our results for Fishyscapes LostAnd-
Found [6], a validation set of 100 LostAndFound images
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RoadAnomaly21 Fishyscapes LostAndFound Validation RoadObstacle21 LostAndFound Filtered

Pixel-level Component-level Pixel-level Component-level

OoD Anomaly scores k ∈ K k̂ ∈ K̂ Anomaly scores k ∈ K k̂ ∈ K̂
Method data AuPRC ↑ F1 ↑ AuPRC↑ FPR95 ↓ sIoU ↑ sIoU ↑ F1 ↑ AuPRC ↑ F1 ↑ AuPRC ↑ FPR95 ↓ sIoU ↑ sIoU ↑ F1 ↑
Maximum softmax [21] 7 27.9 5.2 5.6 40.5 3.5 2.6 1.7 15.7 6.3 30.1 33.2 14.2 14.9 10.3
ODIN [29] 7 33.4 5.2 16.6 38.5 10.3 10.1 10.3 22.1 9.2 52.9 30.0 39.8 27.0 34.5
Mahalanobis [28] 7 20.1 2.7 32.9 8.7 19.6 15.3 17.7 20.9 4.7 55.0 12.9 33.8 16.8 22.1
MC dropout [36] 7 29.1 4.4 10.3 46.4 7.1 6.6 6.1 4.9 9.0 36.8 35.5 17.4 11.8 13.0
Void classifier [6] 3 36.9 6.5 11.4 15.3 9.0 24.3 13.9 10.4 23.3 4.8 47.0 1.8 3.3 1.9
Embedding density [6] 7 37.6 7.9 8.9 42.2 5.9 4.4 4.8 0.8 2.0 61.7 10.4 37.8 20.3 27.5
Image resynthesis [32] 7 52.3 12.4 5.1 29.8 23.3 2.3 4.3 37.5 8.4 57.1 8.8 3.5 15.4 3.7
Road inpainting [31] 7 - - - - - - - 55.8 10.1 78.5 49.9 50.7 40.8 51.3
SynBoost [5] 3 56.6 10.2 65.0 31.0 28.1 36.3 36.8 71.3 37.6 81.7 4.6 36.8 51.6 48.7
Maximized entropy [9] 3 85.6 29.0 44.3 37.7 21.1 31.3 28.4 85.1 48.5 77.9 9.7 45.9 43.0 49.9

Table 3: Benchmark results for Fishyscapes LostAndFound validation and LostAndFound filtered, containing 165 and 1709
ground truth components in total, respectively. In this table the pixel-wise AuPRC and the component-wise F1 from Road-
Anomaly21 and RoadObstacle21, c.f . table 1 and table 2, are additionally included for cross evaluation (gray columns).

[40] with refined labels fitting the anomaly track, and Lo-
stAndFound itself, with original labels fitting the obstacle
track. Note that for LostAndFound we filtered out all im-
ages that contain humans and bicycles labeled as obsta-
cles because we applied anomaly segmentation methods out
of the box to the task of obstacle segmentation, and these
methods focus on previously-unseen objects.

In comparison to our datasets, for both LostAndFound
datasets we observe a less pronounced gap, in terms of
both pixel-level AuPRC and component-levelF1 scores, be-
tween the methods designed for image classification, espe-
cially ODIN and Mahalanobis, and those specifically de-
signed for anomaly segmentation, especially road inpaint-
ing and maximized entropy. This signals that both of our
datasets contribute new challenges for anomaly and obsta-
cle segmentation. In particular, 13.8% of the image pixels
in RoadAnomaly21 belong to anomalies, vs. only 0.23% in
Fishyscapes LostAndFound. Thus, we expect that results
on RoadAnomaly21 are statistically more reliable than on
Fishyscapes LostAndFound. In the supplementary material
we provide further and more fragmented results, in terms of
both objects categories and object sizes.

Finally, we also applied our benchmark suite to the Li-
DAR guided Small obstacle Segmentation dataset [42]. Our
main findings are that our whole set of methods yields
weak performance on that dataset. The main purpose of
this dataset is the detection of small obstacles from multi-
ple sensors including LiDAR. Hence, the conditions for the
other sensor modalities are purposely challenging (e.g. low
illumation), making this dataset less suitable to camera-only
methods. We present the corresponding results in the sup-
plementary material.

6. Conclusion
In this work, we have introduced a unified and publicly

available benchmark suite that evaluates a method’s per-

formance for anomaly segmentation with established pixel
level as well as recent component level metrics. Our bench-
mark suite is applicable in a plug and play fashion to any
dataset for anomaly segmentation that comes with ground
truth, such as LostAndFound and Fishyscapes LostAnd-
Found, allowing for a better comparison of new methods.
Moreover, our benchmark is accompanied with two pub-
licly available datasets, RoadAnomaly21 for anomaly seg-
mentation and RoadObstacle21 for obstacle segmentation.
They challenge two important abilities of computer vision
systems, on one hand the ability to detect and localize un-
known objects, on the other the ability to reliably detect
and localize obstacles on the road, may they be known
or unknown. Our datasets consist of real images with
pixel-level annotations and depict street scenes with higher
variability in object types and object sizes than existing
datasets. Our experiments have demonstrated that both of
our datasets show a distinct separation in terms of perfor-
mance between the methods that are specifically designed
for anomaly / obstacle segmentation and those that are not.
However, there remains much room for performance im-
provement, particularly in terms of component-wise met-
rics, which stresses the need for future research in anomaly
segmentation. The datasets and the software are available
at http://www.segmentmeifyoucan.com/.
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Simultaneous semantic segmentation and outlier detection in
presence of domain shift. In Gernot A. Fink, Simone Frin-
trop, and Xiaoyi Jiang, editors, Pattern Recognition, pages
33–47, Cham, 2019. Springer International Publishing. 3

[5] Giancarlo Di Biase, Hermann Blum, Roland Siegwart, and
Cesar Cadena. Pixel-wise anomaly detection in complex
driving scenes, 2021. 3, 6, 7, 8, 16, 17

[6] Hermann Blum, Paul-Edouard Sarlin, Juan Nieto, Roland
Siegwart, and Cesar Cadena. Fishyscapes: A benchmark
for safe semantic segmentation in autonomous driving. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) Workshops, October 2019. 1, 2, 3,
5, 6, 7, 8, 11, 12, 13, 16, 17

[7] Kendrick Boyd, Kevin H. Eng, and C. David Page. Area
under the precision-recall curve: Point estimates and con-
fidence intervals. In Hendrik Blockeel, Kristian Kerst-
ing, Siegfried Nijssen, and Filip Železný, editors, Machine
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Supplementary Material

A. Evaluated Methods
In this section, we introduce technical details on the

methods that we already evaluated on our benchmark and
thus form the backbone of our leader board.

A.1. Method Description

All methods provide pixel-wise anomaly scores s(x) ∈
R|Z|, x ∈ X where anomalies correspond to higher values.
As a reminder, Z denotes the set of image coordinates and
X ⊆ [0, 1]N×|Z|×3 a dataset with N images. Below, we
describe how s is obtained for each approach.

Maximum softmax probability. Let f : X → R|Z|×|C|
denote the output of a semantic segmentation DNN. The
maximum softmax probability (MSP) is a commonly-used
baseline for OoD detection at image level [21]. It computes
an anomaly score for each pixel z ∈ Z as

sz(x) = 1−max
c∈C

σ(f cz (x)), x ∈ X , (7)

where σ(·) : R|C| → (0, 1)|C| denotes the softmax function
over the non-anomalous class set C.

ODIN. Let t ∈ R \ {0} be a temperature scaling param-
eter and ε ∈ R a perturbation magnitude. Following [29]
small perturbations are added to every pixel z ∈ Z of im-
age x by

x̃z = xz − εsign
(
− ∂

∂xz
log max

c∈C
σ(f cz (x)/t)

)
. (8)

Then, an anomaly score is obtained analogously to equa-
tion (7) via the MSP as

sz(x) = 1−max
c∈C

σ(f cz (x̃)/t) . (9)

Mahalanobis distance. Let hL−1(·) denote the output
of the penultimate layer of a DNN with L ∈ N layers, i.e.
f(x) = hL(x), x ∈ X . Under the assumption that

P (hL−1z (x) | yz(x) = c) = N (hL−1z (x) | µc,Σc) , (10)

an anomaly score for each pixel z can be computed as the
Mahalanobis distance [28]

sz(x) = min
c∈C

(hL−1z (x)− µ̂c)T Σ̂c
−1

(hL−1z (x)− µ̂c) ,
(11)

where µ̂c and Σ̂c are estimates of the class mean µc and
class covariance Σc, respectively, of the latent features in
the penultimate layer. This Mahalanobis distance yields an
estimate of the likelihood of a test sample with respect to
the closest class distribution in the training data, which are
assumed to be class-conditional Gaussians.

Monte Carlo dropout. Let M ∈ N denote the number
of Monte Carlo samplings and q̂cm := σ(f cz (x)) the softmax
probability of class c ∈ C for sample m ∈ {1, . . . ,M}.
One can compute the predictive entropy as

Ê(f(x)) = −
∑

c∈C

(
1

M

M∑

m=1

q̂cm

)
log

(
1

M

M∑

m=1

q̂cm

)
.

(12)
As suggested in [36], the mutual information can then be
used to define an anomaly score

sz(x) = Ê(f(x))− 1

M

∑

c∈C

M∑

m=1

q̂cm log (q̂cm) . (13)

Void classifier. In [15], an approach to learning the con-
fidence with respect to the presence of anomalies was pro-
posed. Here, we adapt this by using the Cityscapes void
class to approximate the anomaly distribution. We then
trained a Cityscapes DNN f : X 7→ R|Z|×(|C|+1) with
an additional class, i.e., a dustbin [47], and compute the
anomaly score for each pixel z ∈ Z as the softmax score
for the void class, which yields

sz(x) = σ(fvoidz (x)), x ∈ X . (14)

Learned embedding density. Let hl(x) ∈ R|Z′|×nl ,
nl ∈ N, Z ′ ⊂ Z , be the embedding vector of a segmen-
tation DNN at layer l ∈ {1, . . . , L} for image x ∈ X .
The true distribution p∗(hl(x)), x ∈ Xtrain ⊂ X can be ap-
proximated with a normalizing flow p̂(hl(x)) ≈ p∗(hl(x)).
At test time, the negative log-likelihood − log p̂z′(h

l(x)) ∈
(0,∞) for each embedding location z′ ∈ Z ′ then mea-
sures the discrepancy of a test embedding with respect to
training embeddings, where higher discrepancies indicate
anomalies [6]. The resulting anomaly score map are of size
|Z ′| = 1

n |Z|, with n ∈ N the rescaling factor for Z ′ to
match the size of Z , and hence bring back latent features
to the full image resolution |Z| via bilinear interpolation
u : R|Z′| → R|Z|. This yields an anomaly score for each
z ∈ Z as

sz(x) = uz
(

(− log p̂(hlz′(x)))z′∈Z′
)
, x ∈ X . (15)

Image resynthesis. The semantic segmentation map
ŷ(x) := (arg maxc∈C f cz (x))z∈Z predicted by a DNN for
image x ∈ X is passed to a generative network g : C|Z| →
X ′ whose goal is to resynthesize x, i.e. x ≈ g(ŷ(x)) ∈ X ′,
with X ′ the resynthesized input space. Assuming that mis-
labeled pixels in the segmentation map, i.e. anomaly pixels,
will be poorly reconstructed, a discrepancy network [32]
d : C|Z| × X ′ × X → R|Z| is trained to extract the
meaningful differences based on the information provided
by ŷ(x), g(ŷ(x)) and x itself. The output of d(·) serves as
anomaly score for each z ∈ Z , that is,

sz(x) = dz ( ŷ(x), g(ŷ(x)), x ) , x ∈ X . (16)
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Road inpainting. Another approach motivated by im-
age resynthesis is road inpainting, which is specifically de-
signed for obstacle segmentation. This method inpaints
patches on the road (that is assumed to be known a-priori)
in a sliding window manner and passes the resulting resyn-
thesized image g′(x) to the discrepancy network together
with the original input image. Thus, the anomaly score is

sz(x) = dz ( g′(x), x ) , x ∈ X . (17)

SynBoost. This approach follows a similar idea as image
resynthesis but includes further inputs in the discrepancy
module. In particular, for all z ∈ Z the pixel-wise softmax
entropy

Hz(x) = −
∑

c∈C
σ(f cz (x)) log (σ(f cz (x))) (18)

and the pixel-wise softmax distance

Dz(x) = 1−max
c∈C

σ(f cz (x)) + max
c′∈C\{argmaxc∈C}

σ(f c
′
z (x))

(19)
is included. The anomaly score for x ∈ X is then obtained
via

sz(x) = dz ( ŷ(x), g(ŷ(x)), x,H(x), D(x) ) . (20)

Maximized entropy. Starting from a pretrained DNN,
a second training objective is introduced to maximize the
softmax entropy on OoD pixels [9, 22, 24]. This yields the
multi-criteria loss function

(1− λ)&E(x,y)∼Din
[`in(σ(fz(x)), yz(x))]

+ λ&Ex′∼Dout
[`out(σ(fz(x

′)))] λ ∈ [0, 1] ,
(21)

where `in is the empirical cross entropy and `out the neg-
ative log-likelihood for the in-distribution data Din and the
out-distribution data Dout, respectively. To approximate
Dout, a subset of the COCO dataset [30] is used whose im-
ages do not depict any object classes also available in Din,
the Cityscapes dataset [13]. The COCO subset together
with the Cityscapes training data are then included into a
tender retraining of the Cityscapes model. The anomaly
score is then computed via the softmax entropy as

sz(x) = −
∑

c∈C
σ(f cz (x)) log (σ(f cz (x))) . (22)

A.2. Underlying Segmentation DNNs

Most of our evaluated methods build upon variants
of DeepLab [10] network architectures for semantic seg-
mentation. In particular, for MC dropout, void classi-
fier and learned embedding density we use a DeepLabv3+
model with an Xception backbone [11], as presented first

Semantic segmentation time in s ↓
Method Network architecture per image

Maximum softmax DeepLabv3+ WideResNet38 backbone [49] 1.19
ODIN DeepLabv3+ WideResNet38 backbone [49] 16.74
Mahalanobis Distance DeepLabv3+ WideResNet38 backbone [49] 63.60
MC dropout DeepLabv3+ Xcpection backbone [11] 19.68
Void Classifier DeepLabv3+ Xcpection backbone [11] 2.02
Embedding density DeepLabv3+ Xcpection backbone [11] 10.66
Image resynthesis PSPNet [48] 1.43
Maximized entropy DeepLabv3+ WideResNet38 backbone [49] 2.90

Table 4: Run time comparison of the different anomaly seg-
mentation methods. The averaged inference time for one
image of RoadAnomaly21 is reported in seconds.

in [6]. For maximum softmax, ODIN, Mahalanobis dis-
tance and maximized entropy, we employ a more modern
DeepLabv3+ model with a WideResNet38 backbone [49].
For image resynthesis we use the more lightweight PSP-
Net as underlying model for semantic segmentation just like
originally proposed by [32]. All these networks are initial-
ized with publicly available weights which are pretrained
on the Cityscapes dataset.

A.3. Inference Time Comparison

In practice, anomaly segmentation is desired to be ob-
tained in real time. Therefore, we report the run-time of the
evaluated anomaly segmentation methods as further perfor-
mance metric that expresses a method’s suitability as online
application. We measure the total inference time for Road-
Anomaly21, i.e. the time from feeding all images through
a model to obtaining pixel-wise anomaly scores. After-
wards we average the time per image and report them in
table 4. All methods are compared with the same hardware
(NVIDIA Quadro P6000), however they might differ in the
underlying network architecture.

B. Parameter Study
In our evaluation, the component-wise F1 score (equa-

tion (5)) does not only depend on the parameter τ but also
δ. Recall that τ is the threshold for sIoU at which one
component is considered to be false negative and false pos-
itive, respectively, see also equation (3) and equation (4).
As we generate anomaly segmentation masks from pixel-
wise anomaly scores, we introduced another threshold δ at
which a given pixel is considered as anomaly. For generat-
ing segmentation masks with our default method, we chose
that threshold as δ∗ (equation (6)) which is the parameter
for which a method achieves its best pixel-wise F1 score,
i.e. the optimal threshold according to the precision recall
curve.

In this section, we perform a parameter study to show
what impact the choice of δ has on the component-wise
performance. By considering F1 as component-wise perfor-
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(b) RoadObstacle21

Figure 5: The averaged component-wise metric F1 as func-
tion of the pixel-wise anomaly / obstacle threshold δ for
RoadAnomaly21 and RoadObstacle21, respectively, c.f . ta-
ble 1 and 2. The “star” marker indicates a method’s F1-
score at the chosen threshold δ∗ according to equation (6),
which is used in our default procedure for generating seg-
mentation masks from pixel-wise anomaly / obstacle scores.

mance metric we already cover varying values for τ , since
F1 is the average of component-wise F1-scores over differ-
ent values of τ . The dependence of F1 on the parameter δ is
illustrated in figure 5 for RoadAnomaly21 and RoadObsta-
cle21, respectively. For the sake of clarity, we only include
six methods in total in this study, with at least one per type
as discussed in section 2.2.

We observe that for most of the evaluated methods the
choice of δ∗ leads to an F1-score close its optimum, with
some methods even reaching their optimal scores at δ∗, e.g.
MC dropout on RoadAnomaly21 and SynBoost as well as
the void classifier on RoadObstacle21. For the other meth-
ods the gap to the optimal F1-score reaches up to 2.8 per-
cent points for maximized entropy on RoadAnomaly21 and
even 4.1 percent points for maximum softmax on RoadOb-
stacle21. However, except for the latter case where the dis-
tance between δ∗ and the actual optimal location for F1 is
0.30, for all other methods the distance (in terms of F1) of
δ∗ to the optimal δ is at most 0.05.

This parameter study shows that our default method for
generating segmentation masks from pixel-wise anomaly
scores via the threshold δ∗ is a legitimate choice, reach-
ing a near optimal component-wise performance. Nonethe-
less, the parameter study also demonstrates that for some
methods the F1-score can still be improved. Consequently,
we allow (and encourage) competitors in the benchmark to
submit their own anomaly segmentation masks with more
sophisticated image operations and other post-processing
techniques.

C. Evaluated Datasets
Besides RoadAnomaly21 and RoadObstacle21 we also

performed analogous benchmark evaluations for three ad-
ditional publicly available datasets: Fishyscapes LostAnd-
Found [6], LostAndFound test set [40], and the LiDAR
guided Small obstacleSegmentation dataset [42]. For the
sake of comparison, we chose the Fishyscapes LostAnd-
Found validation set for the anomaly track and the LostAnd-
Found test set as well as the Small Obstacle dataset for the
obstacle track.

C.1. Fishyscapes LostAndFound

The Fishyscapes LostAndFound validaion dataset [6]
consists of 100 images from the original LostAndFound
data [40] with refined labels. With this labeling, anoma-
lous objects are not restricted to only appear on the road but
everywhere in the image, therefore Fishyscapes LostAnd-
Found fits our benchmark’s anomaly track.

Comparing the RoadAnomaly21 and Fishyscapes Lo-
stAndFound datasets in terms of anomaly class frequency
per pixel location, as observed in figure 7, one notices
a clear difference in the variation of object locations and
sizes. While in Fishyscapes LostAndFound the objects ap-
pear mostly in the center of the image and are also rather
small, the objects in RoadAnomaly21 may appear every-
where in the image and have sizes ranging from 122 up
to 883,319 pixels (thus covering up to more than one third
of the image). The low variety in object sizes is also no-
ticeable in the pixel-wise class distribution, as in Road-
Anomaly21 13.8% of the pixels belong to the anomaly
class and 82.2% to non-anomaly whereas in Fishyscapes
LostAndFound only 0.23% belong to anomaly and 81.13%
to non-anomaly.

As already discussed in section 5, we observe a less pro-
nounced gap between methods designed for image classifi-
cation and those specifically designed for anomaly segmen-
tation. A detailed overview of our benchmark results on
Fishyscapes LostAndFound is given in table 5. In this eval-
uation, we see that the number of false positive components
(relative to the number of ground truth components) over
multiple thresholds τ is significantly less than on Road-
Anomaly21, shown in Table 1. This holds for all evaluated
methods, resulting in relatively strong component-wise per-
formance (compared to SynBoost and maximized entropy).
Even Mahalanobis and void classifier report strong results,
which is due to similarality of this dataet to Cityscapes
as all LostAndFound images share the same setup as in
Cityscapes. These results further indicate the lack in diver-
sity in Fishyscapes LostAndFound. More specifically, the
environments of the scenes shown in LostAndFound do not
considerably differ to those shown in Cityscapes whereas
our RoadAnomaly21 dataset has a wide variety of scenes
since all images are gathered from the web, see figure 10.
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C.2. LostAndFound filtered

The LostAndFound dataset [40] shares the same setup as
Cityscapes but includes small obstacles on the road. There-
fore, this dataset fits our benchmark’s obstacle track. When
a model is trained on Cityscapes, the LostAndFound dataset
then contains images with objects that have been previously
seen and therefore are not anomalies. As most of our meth-
ods are designed for anomaly detection, we filtered out all
scenes in the LostAndFound test split where the obstacles
belong to known classes, e.g. children or bicycles, and call
this subset LostAndFound filtered. In this way, the results
obtained with our evaluated methods on LostAndFound fil-
tered and on our RoadObstacle21 dataset are comparable.

Both datasets have obstacles in the same size range. Both
RoadObstacle21 and LostAndFound filtered have 0.12% of
the pixels labeled as obstacles, while 39.08% and 15.31%
of the pixels belong to not obstacles, respectively. Regard-
ing the object locations in images, the obstacles in Road-
Obstacle21 are distributed wider over the image than in Lo-
stAndFound, as observed in figure 7. This also implies that
in RoadObstacle21 the obstacles appear at stronger vary-
ing distances. For an illustration as well as of that varia-
tion, we refer to figures 11 and 12. Looking at the results
in table 6, we observe for LostAndFound filtered, just as
in Fishyscapes LostAndFound (table 5), that methods from
image classification perform relatively well in comparison
to methods designed for anomaly segmentation. This is
again due the limited variety of environments, i.e. the road
surfaces in this dataset. In our RoadObstacle21 dataset, we
therefore provide scenes with obstacles on different road
surfaces, such as gravel or a road with cracks, see figure 12.

C.3. LiDAR Guided Small Obstacle Segmentation
Dataset

The third publicly available dataset to which we applied
our benchmark suite is the LiDAR guided Small obstacle
Segmentation dataset [42], which can be viewed as a refer-
ence dataset for our obstacle track. The results correspond-
ing to this dataset are given in table 7. In general, the given
set of methods exhibits poor performance on this dataset.
More precisely, obstacles are mostly overlooked, e.g. Syn-
Boost as best-performing method still misses 1100 of 1203
components in total at the lowest sIoU threshold τ = 0.25.
As the LiDAR guided Small obstacle Segmentation dataset
rather focuses on the challenge of detecting obstacles via
multiple sensors, including LiDAR, the camera images of
this dataset are purposely challenging, e.g. due to low illu-
mination, blurry images and barely visible obstacles. Fig-
ure 13 shows an example of this dataset, which highlights
the difficulty of anomaly detection. This dataset can easily
be included into our benchmark and it also fits the obstacle
track, however, from our experiments we conclude that this
dataset is less suitable to camera-only obstacle segmenta-

tion as obstacles are not well captured via cameras.

D. Evaluation per Environment Category
We already emphasized that in our RoadObstacle21

dataset a wide variety of road surfaces are available, rep-
resenting different scenes which might pose unique chal-
lenges. In this section, we provide more insights by evalu-
ating our set of methods on each of these surfaces. In total,
we split our datasets into 8 different scenes, shown in fig-
ure 6:

1. cracked road, surrounded by snow (road cracked)

2. dark asphalt after rain, with leaves (asphalt dark)

3. gravel road, no snow (road gravel)

4. gray asphalt in village and forest (asphalt gray)

5. motorway with side railing (motorway)

6. sun reflection off wet road (sun reflection)

7. road made of bricks (road bricks)

8. and night images (asphalt night) .

We evaluate each subset using our benchmark suite and
report the results in table 9. This more detailed evaluation
shows that the reported set of methods perform differently
across the data splits, with no method having consistent per-
formance on each of these subsets. Our dataset offers extra
difficulty caused by the diversity of road texture, surround-
ing environments, weather and lighting variations. Cracks
and leaves may trigger false positives, and a gravel or wet
road surface may itself be sufficiently different from train-
ing images to be mistaken for an anomaly.

E. Evaluation for Different Component Sizes
In this section we provide further insights of the seg-

mentation quality of ground truth components in Road-
Anomaly21 and RoadObstacle21. To this end, we conduct
a more fine-grained analysis by grouping ground truth com-
ponents into size intervals and perform the evaluation for
each size interval separately. In total, RoadAnomaly21 con-
tains 259 ground truth components, ranging in size from
122 to 883,319 pixels. RoadObstacle21 contains 388 obsta-
cles ranging from 18 up to 77,435 pixels. For each dataset
we divide these components into eight size intervals such
that each interval contains same number of components.

In figure 8, we report the averaged sIoU (equation (3))
w.r.t. the ground truth components within each size inter-
val. As illustrated in this figure, we observe a positive cor-
relation of sIoU with the component size. Especially in
RoadObstacle21, methods designed for the task of anomaly
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segmentation like maximized entropy or SynBoost perform
significantly better than the other approaches.

In addition, we consider the amount of entirely neglected
components, meaning the objects for which not even one
pixel is detected. To do so, we measure the relative ratio of
FN to all ground truth components within different object
size intervals, see figure 9. As a threshold, therefore, for
discriminating between FN and TP, we choose τ = 0, i.e. a
ground truth component is considered as TP if at least one of
its pixels is detected by the respective method. Indeed, we
observe a negative correlation of the number of FN with the
component size, but even more conspicuous is the amount
of totally overlooked components of small size. This anal-
ysis shows the challengingness of anomaly segmentation,
particularly for small obstacles at component-level, and em-
phasizes the need for further research in this direction.

F. Evaluation per Object Category
As part of our benchmark, we also provide an evaluation

with respect to different object categories. An exemplary
evaluation with the given set of methods is provided in ta-
ble 8. In particular, the methods specifically designed for
anomaly segmentation perform worse on the vehicle cat-
egory than on the other ones. This general trends shows
that our choice of vehicles, including classes such as jet ski,
rickshaw and carriage, is rather challenging. This additional
dimension of granularity offers further insight to users of
our benchmark such that one can identify the drawbacks of
an anomaly segmentation method under inspection.
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Pixel-level Component-level

requires Anomaly scores k ∈ K k̂ ∈ K̂ sIoU > τ = 0.25 sIoU > τ = 0.50 sIoU > τ = 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F ∗1 ↑ sIoU ↑ sIoU ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [21] 7 5.6 40.5 12.1 3.5 2.6 152 209 6.7 164 221 0.5 165 222 0.0 1.7
ODIN [29] 7 16.6 38.5 23.7 10.3 10.1 137 141 16.8 145 149 12.0 162 166 1.8 10.3
Mahalanobis [28] 7 32.9 8.7 37.3 19.6 15.3 111 160 28.5 132 183 17.3 155 205 5.3 17.7
MC dropout [36] 7 10.3 46.4 17.7 7.1 6.6 145 161 11.6 156 171 5.2 163 178 1.2 6.1
Void classifier [6] 3 11.4 15.3 21.9 9.0 24.3 143 39 19.5 149 45 14.2 159 55 5.3 13.9
Embedding density [6] 7 8.9 42.2 14.8 5.9 4.4 148 212 8.6 155 218 5.1 163 226 1.0 4.8
Image resynthesis [32] 7 5.1 29.8 11.1 5.1 4.0 150 205 7.8 157 211 4.2 164 218 0.5 3.9
SynBoost [5] 3 65.0 31.0 67.8 28.1 36.3 103 66 42.3 107 70 39.6 130 93 23.9 36.8
Maximized entropy [9] 3 44.3 37.7 50.9 21.1 31.3 117 63 34.8 121 68 31.8 146 93 13.7 28.4

Table 5: Benchmark results for the Fishyscapes LostAndFound validation set. This dataset contains 165 ground truth objects.

Pixel-level Component-level

requires Anomaly scores k ∈ K k̂ ∈ K̂ sIoU > τ = 0.25 sIoU > τ = 0.50 sIoU > τ = 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F ∗1 ↑ sIoU ↑ sIoU ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
maximum softmax [21] 7 30.1 33.2 32.5 14.2 14.9 1256 1222 26.8 1575 1522 8.0 1701 1647 0.5 10.3
ODIN [29] 7 52.9 30.0 55.7 39.8 27.0 701 1552 47.2 954 1803 35.4 1319 2163 18.3 34.5
Mahalanobis [28] 7 55.0 12.9 54.8 33.8 16.8 777 2559 35.8 1126 2911 22.4 1527 3309 7.0 22.1
MC dropout [36] 7 36.8 35.5 42.0 17.4 11.8 1204 2072 23.6 1428 2279 13.2 1635 2484 3.5 13.0
void classifier [6] 3 4.8 47.0 13.7 1.8 3.3 1661 864 3.7 1686 887 1.8 1704 905 0.4 1.9
embedding density [6] 7 61.7 10.4 61.7 37.8 20.3 646 2205 42.7 963 2562 29.7 1526 3103 7.3 27.5
image resynthesis [32] 7 57.1 8.8 55.1 27.2 15.2 947 2379 31.4 1232 2667 19.7 1560 2989 6.1 19.2
road inpainting [31] 7 78.5 49.9 74.8 52.6 37.8 548 1222 56.7 664 1350 50.9 910 1602 38.9 49.8
SynBoost [5] 3 81.7 4.6 75.2 36.8 51.6 775 292 63.6 942 459 52.3 1381 898 22.4 48.7
maximized entropy [9] 3 77.9 9.7 76.8 45.9 43.0 639 777 60.2 781 911 52.3 1113 1244 33.6 49.9

Table 6: Benchmark results for the LostAndFound filtered dataset. This dataset contains 1709 ground truth objects.

Pixel-level Component-level

requires Anomaly scores k ∈ K k̂ ∈ K̂ sIoU > τ = 0.25 sIoU > τ = 0.50 sIoU > τ = 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F ∗1 ↑ sIoU ↑ sIoU ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
maximum softmax [21] 7 0.7 57.1 2.2 0.5 0.4 1196 1669 0.5 1202 1675 0.1 1203 1676 0.0 0.2
ODIN [29] 7 1.9 49.4 5.9 2.9 1.9 1148 1799 3.6 1171 1823 2.1 1196 1847 0.5 2.1
Mahalanobis [28] 7 1.4 45.5 2.4 7.1 1.7 1039 4923 5.2 1137 5024 2.1 1198 5085 0.2 2.3
MC dropout [36] 7 0.6 81.2 2.3 0.4 0.4 1194 1236 0.7 1201 1242 0.2 1203 1244 0.0 0.3
void classifier [6] 3 0.8 59.6 2.1 1.5 2.1 1169 825 3.3 1193 849 1.0 1200 856 0.3 1.4
embedding density [6] 7 0.5 66.0 1.1 9.8 0.9 1010 12535 2.8 1122 12645 1.2 1200 12721 0.0 1.3
SynBoost [5] 3 12.4 64.8 22.9 11.2 9.8 1016 1190 14.5 1043 1216 12.4 1117 1290 6.7 11.6
maximized entropy [9] 3 4.8 63.1 11.6 2.0 3.8 1159 606 4.7 1184 631 2.1 1202 649 0.1 2.4

Table 7: Benchmark results for the LiDAR guided Small obstacle Segmentation dataset. This dataset contains 1203 ground
truth components in total.

all anomalies animals vehicles other anomalies

OoD N = 100 N = 59 N = 22 N = 12
Method data AuPRC ↑ FPR95 ↓ F1 ↑ AuPRC ↑ FPR95 ↓ F1 ↑ AuPRC ↑ FPR95 ↓ F1 ↑ AuPRC ↑ FPR95 ↓ F1 ↑
Maximum softmax [21] 7 27.9 72.2 5.2 25.2 75.6 4.9 30.0 72.0 4.1 27.2 59.6 8.1
ODIN [29] 7 33.4 72.0 5.2 32.1 72.9 4.9 29.7 74.9 4.2 38.7 63.9 9.5
Mahalanobis [28] 7 20.1 86.9 2.7 21.3 87.4 2.5 16.7 87.4 1.9 34.9 65.4 11.7
MC dropout [36] 7 29.1 69.9 4.4 24.8 74.0 3.2 36.3 70.3 4.5 19.7 61.6 13.6
Void classifier [6] 3 36.9 63.4 6.5 32.2 66.9 4.0 42.6 38.7 8.7 23.3 68.7 20.5
Embedding density [6] 7 37.6 70.8 7.9 43.9 63.2 8.4 30.1 88.4 3.5 27.3 56.6 22.8
Image resynthesis [32] 7 52.3 25.9 12.4 51.4 26.5 16.4 52.3 25.7 5.3 43.3 53.0 13.8
SynBoost [5] 3 56.6 62.3 10.3 54.7 66.2 10.2 57.4 62.2 7.0 47.0 63.8 21.9
Maximized entropy [9] 3 85.6 14.9 29.0 92.2 7.2 41.9 79.0 17.9 14.8 58.0 17.6 25.4

Table 8: Effect of different of anomalies in the RoadAnomaly21 dataset. In total, RoadAnomaly21 contains 59 images with
only animals, 22 images with only vehicles and 12 with other anomalies (denoted with N in the table). Images containing
objects from both the animal and the vehicle category are excluded in this evaluation.
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road cracked asphalt dark road gravel asphalt gray motorway sun reflection road bricks asphalt night

OoD N = 40 N = 47 N = 33 N = 66 N = 30 N = 72 N = 39 N = 30
Method data AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1

Maximum softmax [21] 7 11.7 2.9 69.3 11.1 39.5 14.9 43.4 4.2 4.8 1.9 2.1 3.5 32.7 3.7 6.0 0.3
ODIN [29] 7 15.3 4.6 75.7 14.9 68.2 40.0 76.2 7.4 10.8 8.6 3.0 5.9 51.1 6.7 8.8 4.2
Mahalanobis [28] 7 25.9 1.4 46.7 12.3 65.9 16.8 84.7 27.7 61.2 9.1 13.9 2.0 83.6 16.1 14.2 10.2
MC dropout [36] 7 6.6 0.8 26.3 5.8 22.6 4.9 11.1 1.9 0.4 0.0 0.2 0.1 15.2 2.1 4.8 1.3
Void classifier [6] 3 15.8 5.6 34.6 16.7 10.0 3.0 37.8 10.3 18.6 8.2 9.4 0.5 28.2 9.0 5.8 5.2
Embedding density [6] 7 2.5 0.8 3.3 0.8 2.8 2.2 1.8 2.3 1.1 2.8 0.1 1.1 18.3 2.5 16.7 3.2
Image resynthesis [32] 7 47.5 8.4 40.1 10.9 77.2 40.4 66.7 18.5 24.2 11.5 34.0 7.8 12.2 2.3 24.3 4.5
Road inpainting [31] 7 28.1 17.4 79.4 35.2 85.7 68.2 91.6 67.3 50.8 44.7 19.5 14.4 87.2 65.6 48.4 26.9
SynBoost [5] 3 49.4 15.6 89.3 61.6 84.3 44.8 83.7 51.1 52.8 40.9 42.9 22.2 90.6 66.4 21.4 9.8
Maximized entropy [9] 3 77.1 37.0 96.9 59.5 98.6 87.5 94.8 64.9 64.3 40.7 43.2 18.6 93.9 44.8 41.0 10.4

Table 9: Effect of different of scenes in the RoadObstacle21 dataset. Here, N denotes the number of images in a subset. As
main evaluation metrics we consider the pixel-wise AuPRC and the component-wise F1.

road cracked asphalt dark road gravel asphalt gray

motorway sun reflection road bricks asphalt night

Figure 6: The scenes of our RoadObstacle21 dataset feature a variety of road surfaces.
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Figure 7: Comparison of the pixel distributions between RoadAnomaly21 and Fishyscapes LostAndFound (100 images each)
as well as RoadObstacle21 and a subset of randomly sampled images from the LostAndFound test dataset (327 images each).
The color indicates the frequency of observing an anomaly in each pixel location, averaged over the images in the dataset.
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RoadAnomaly21, each size interval contains 32 components except the first one (very left) that contains 35 components
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RoadObstacle21, each size interval contains 46 components except the first one (very left) that contains 66 components

Figure 8: Comparison of the averaged sIoU w.r.t. ground truth components within a certain range of the components size,
produced by the methods discussed in section 4 and appendix A.1.

18



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Maximum Softmax

ODIN

Mahalanobis

MC Dropout

Void classifier

Embedding density

Image resynthesis

SynBoost

Maximized Entropy

[122, 840] [887, 1811] [1840, 5437] [6172, 13576] [13635, 38112] [38547, 100332] [105203, 236301] [239562, 883319]

Components sizes in pixels

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
n
u

m
b

er
of

F
N

RoadAnomaly21, each size interval contains 32 components except the first one (very left) that contains 35 components

[18, 172] [176, 289] [302, 461] [466, 708] [711, 1123] [1141, 1981] [1983, 4396] [4458, 77435]

Components sizes in pixels

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
n
u

m
b

er
of

F
N

RoadObstacle21, each size interval contains 46 components except the first one (very left) that contains 66 components

Figure 9: Comparison of the relative number of FN to TP at threshold τ = 0, i.e. the fraction of overlooked components
to the total number of ground truth components within a certain range of the components size. The evaluated methods are
discussed in section 4 and appendix A.1.
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Figure 10: Qualitative comparison of the methods introduced in section 4 and appendix A.1 on a sample from Road-
Anomaly21. In this example, the anomalous objects have a large size and the environment differs from scenes shown in
Cityscapes. Green contours indicate the annotation of the anomaly.
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Figure 11: Qualitative comparison of the methods introduced in section 4 and appendix A.1 for an example from RoadOb-
stacle21, where the obstacle is small and far away. Green contours indicate the annotation of the obstacle, red contours the
road.
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Figure 12: Qualitative comparison of the methods introduced in section 4 and appendix A.1 for an example from Road-
Obstacle21, showing a road surface with cracks. Green contours indicate the annotation of the obstacle, red contours the
road.

(a) Input image (b) Ground truth (c) Maximized entropy anomaly score

Figure 13: An example image (a) from the Small Obstacle dataset with the corresponding ground truth annotation (b) and an
obstacle score heatmap obtained with maximized entropy (c). Here, the obstacles are barely visible in the input image due to
their size and the scene’s illumination, that is why camera-only based segmentation techniques fail for the dataset.
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