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1. Introduction1

We consider the nonlinear Itô stochastic differential equation (SDE) of2

the form3

dyt = F0(yt) dt+
m∑
i=1

Fi(yt) dW
i
t , y0 ∈M, (1)

where the solution yt, t ≥ 0, evolves on a n-dimensional, homogeneous4

submanifold M of RN , Fi : M → TM for i = 0, . . . ,m and W 1
t , . . . ,W

m
t5

are independent Wiener processes. A solution can be defined via yt =6

Λ(exp(Ωt), y0), where Λ: G × M → M is a Lie group action on M, i.e.7

for two elements y1, y2 ∈ M we can find a matrix G, an element of the Lie8

group G, such that Λ(G, y1) = y2.9

The variable Ωt is an element of the corresponding Lie algebra g, which10

is the tangent space at the identity e of G, i.e. g = TG|e. It satisfies11

dΩt = At dt+
m∑
i=1

Γ
(i)
t dW i

t , Ω0 = 0, (2)

where the coefficients At,Γ
(i)
t ∈ g depend on the coefficients of (1), Fi : M→12

TM, i = 0, . . . ,m. We refer to [6] for more details on a general representation13

of these coefficients and these SDEs. A specific representation for the case14

M = S2 can be found in Section 2.15

Our aim is to exploit the Euclidean-like geometry of the Lie algebra by16

applying stochastic Runge-Kutta (sRK) schemes to (2) and projecting the17

numerical solution back onto the manifold M to express an approximation18

of the solution of the SDE (1) since a direct application of sRK schemes to19

(1) would result in a drift-off. This approach is based on the Runge-Kutta–20

Munthe-Kaas (RKMK) schemes for ordinary differential equations (ODEs)21

on manifolds [11]. Their application to rigid body equations has been ana-22

lyzed in [2].23

Stochastic extensions of RKMK methods and their proof of convergence24

have already been considered in [6, 1, 12, 10]. The authors of [6] focus on the25

convergence of the exponential Lie series, while the authors of [1] consider26

only weak convergence. The proof of convergence in [12] applies only to27

the Euler-Maruyama scheme on matrix Lie groups and the proof of strong28

convergence in [10] is restricted to linear SDEs on matrix Lie groups which29

occur for example in the approximation of correlation matrices [9].30
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In this paper we extend the idea of Munthe-Kaas to SDEs on homo-31

geneous manifolds and give a proof of the strong convergence of stochastic32

Runge-Kutta–Munthe-Kaas (sRKMK) schemes for nonlinear Itô SDEs of the33

form (1) occurring in the modelling of perturbed rigid bodies. We will show34

that the strong order of convergence γ depends on the order of convergence35

of the applied sRK method in the Lie algebra and the truncation index in36

the series representation of the drift and diffusion coefficients of (2).37

The structure of the paper is as follows. In Section 2 we formulate based38

on the deterministic case the SDE that describes the motion of a rigid body39

that is perturbed by stochastic processes. Then, in Section 3 we present40

the schemes to solve this SDE numerically such that the numerical solution41

evolves on the correct manifold. The results of simulating the rigid body42

problem are provided in Section 4. At last, a conclusion of our findings and43

an outlook are given in Section 5.44

2. The stochastic rigid body problem45

Let M be the n-sphere Sn = {y ∈ Rn+1 : y>y = 1}. Then the Lie group46

action Λ, i.e. the transport across this manifold, can be described via the47

matrix-vector product Λ(G, y) = Gy with a rotation matrix G in the Lie48

group G := SO(n+ 1). The corresponding Lie algebra so(n+ 1) is the space49

of skew-symmetric (n+ 1)× (n+ 1)-matrices.50

For n = 2 this example can be illustrated by the rigid body problem [8].
Consider a free rigid body, whose centre of mass is at the origin. Let the
vector y = (y1, y2, y3)> represent the angular momentum in the body frame.
The motion of this free rigid body is described by the Euler equations

ẏ = V (y)y, V (y) =

 0 y3/I3 −y2/I2

−y3/I3 0 y1/I1

y2/I2 −y1/I1 0

 ,

where I1, I2 and I3 denote the principal moments of inertia.51

We suppose that the rigid body is perturbed by Wiener processes, i.e.52

that the motion is driven by an Itô SDE of the form (1) with M = S2. The53

diffusion coefficients Fi : S
2 → TS2 are given by Fi(yt) = Vi(yt)yt, where54

Vi : S
2 → so(3) are defined as above,55

y =

y1

y2

y3

 7→
 0 y3/Ii3 −y2/Ii2
−y3/Ii3 0 y1/Ii1
y2/Ii2 −y1/Ii1 0

 , (3)
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for constants Ii1, Ii2, Ii3, i = 1, . . . ,m. For the drift coefficient we have

F0(yt) = V0(yt)yt +
1

2

m∑
i=1

(
V 2
i (yt) +

(
d

dΩ
d expΩ(Γ

(i)
t )

)
Γ

(i)
t

)
yt

with(
d

dΩ
d expΩ(Γ

(i)
t )

)
Γ

(i)
t =

∞∑
k=0

∞∑
j=0

1

(k + j + 2)

(−1)j+1

k!(j + 1)!
adkΩ

(
ad

Γ
(i)
t

(
adjΩ(Γ

(i)
t )
))
,

Γ
(i)
t being the diffusion coefficient in (2) and V0(yt) ∈ so(3) having the same56

structure as described in (3).57

Summarizing these notations the SDE we are considering for the motion58

of a perturbed rigid body reads59

dyt =

(
V0(yt) +

1

2

m∑
i=1

Ki

(
yt,Γ

(i)
t

))
yt dt+

m∑
i=1

Vi(yt)yt dW
i
t , (4)

where y0 ∈ S2 and

Ki(yt,Γ
(i)
t ) = V 2

i (yt) +

(
d

dΩ
d expΩ(Γ

(i)
t )

)
Γ

(i)
t .

Note that this stochastic rigid body problem has been considered before in60

[6, 15] but modelled as the Stratonovich SDE61

dyt = V0(yt)yt dt+
m∑
i=1

Vi(yt)yt ◦ dW i
t , y0 ∈ S2, (5)

with the corresponding SDE in the Lie algebra given by

dΩt = At dt+
m∑
i=1

Γ
(i)
t ◦ dW i

t , Ω0 = 0.

The coefficients of the Stratonovich and the Itô SDE (2) coincide and can be62

specified by63

At = d exp−1
Ωt

(
V0(yt)

)
, Γ

(i)
t = d exp−1

Ωt

(
Vi(yt)

)
, i = 1, . . . ,m, (6)
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if the expression

d expΩ(H) =
∑
k≥0

1

(k + 1)!
adkΩ(H)

given in the derivative of the matrix exponential exp(Ω) =
∑

k≥0 Ωk/k!,(
d

dΩ
exp(Ω)

)
H = d expΩ(H) exp(Ω),

is invertible.64

By adΩ(H) = [Ω, H] = ΩH −HΩ we express the adjoint operator which
is defined iteratively

ad0
Ω(H) = H, adkΩ(H) =

[
Ω, adk−1

Ω (H)
]

= adΩ

(
adk−1

Ω (H)
)
, k ≥ 1.

According to the classical Lemma of Baker (1905, see e.g. [3, p. 84])65

d expΩ(H) is invertible, if the eigenvalues of adΩ are different from 2`πi with66

` ∈ {±1,±2, . . . }. Since Bk are the Bernoulli numbers the inverse reads67

d exp−1
Ω (H) =

∞∑
k=0

Bk

k!
adkΩ(H), (7)

which converges for ‖Ω‖ < π.68

The definition of these coefficients follows from the Itô formula and their69

derivation can be done by using right multiplication instead of left multipli-70

cation of the solution in the proof of Theorem 5 in [7].71

3. Stochastic Runge-Kutta–Munthe-Kaas schemes72

In the sequel we present a stochastic version of Runge-Kutta–Munthe-73

Kaas (RKMK) schemes for solving (4).74

Algorithm 3.1. Divide the time interval [0, T ] uniformly into L subintervals75

[t`, t`+1], ` = 0, 1, . . . , L− 1 and define the time step ∆ = t`+1 − t`. Starting76

with t0 = 0, y(t0) = y0 and Ω0 = 0n×n the following steps are repeated over77

successive intervals [t`, t`+1] until t`+1 = T .78

1. Initialization step: Let y` be the approximation of yt at time t = t`.79

2. Numerical method step: Compute an approximation Ω1 ≈ Ω∆ by80

applying a stochastic Runge-Kutta method to the matrix SDE (2).81
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3. Projection step: Set y`+1 = exp(Ω1)y`.82

Consider a truncated approximation for (7) denoted by83

dexpinv(Ω, H, q) =

q∑
k=0

Bk

k!
adkΩ(H). (8)

By adapting the notations of Rößler’s explicit s-stage sRK scheme [13] with84

coefficients given in Table 1 we can specify the algorithm above for m = 1,85

see Algorithm 1.86

c A B

c̃ Ã B̃

α β(1) β(2)

β(3) β(4)

Table 1: Butcher tableau

Algorithm 1 sRKMK

1: for ` = 0, 1, . . . , L− 1 do
2: for i = 1, 2, . . . , s do

3: Ω̄i =
∑i−1

j=1 aijA(Ω̄j)∆ +
∑i−1

j=1 bijΓ(Ω̃j)
I(1,0)

∆

4: Ω̃i =
∑i−1

j=1 ãijA(Ω̄j)∆ +
∑i−1

j=1 b̃ijΓ(Ω̃j)
√

∆

5: A(Ω̄i) = dexpinv
(
Ω̄i, V0(exp(Ω̄i)y`), q

)
6: Γ(Ω̃i) = dexpinv

(
Ω̃i, V1(exp(Ω̃i)y`), q

)
7: end for
8: Ω1 =

∑s
i=1 αiA(Ω̄i)∆ +

∑s
i=1 β

(1)
i Γ(Ω̃i)I(1) +

∑s
i=1 β

(2)
i Γ(Ω̃i)

I(1,1)
∆

+∑s
i=1 β

(3)
i Γ(Ω̃i)

I(1,0)
∆

+
∑s

i=1 β
(4)
i Γ(Ω̃i)

I(1,1,1)
∆

9: y`+1 = exp(Ω1)y`
10: end for

The question now is how to choose the truncation index q in (8) so that the87

sRKMK procedure inherits the strong convergence order of the underlying88

sRK scheme.89
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Theorem 3.2. Let the applied stochastic Runge-Kutta method in the second90

step of Algorithm 3.1 be of strong order γ. Assume that Vi : S
2 → so(3),91

i = 0, . . . ,m, are given as in (3). If the truncation index q in (8) satisfies92

q ≥ 2γ − 2, then the method of Algorithm 3.1 is of strong order γ.93

Proof. We define Ωq
∆ as the exact solution of the truncated version of (2) at

t = ∆, namely

Ωq
∆ =

∫ ∆

0

q∑
k=0

Bk

k!
adkΩs

(
V0(ys)

)
ds+

m∑
i=1

∫ ∆

0

q∑
k=0

Bk

k!
adkΩs

(
Vi(ys)

)
dW i

s .

Then, the absolute error considered in the Frobenius norm can be split into
a modelling and a numerical error,

E[‖Ω∆ − Ω1‖F ] ≤
(
E
[
‖Ω∆ − Ωq

∆‖
2
F

])1/2
+
(
E
[
‖Ωq

∆ − Ω1‖2
F

])1/2
.

Since the numerical error has the correct order by construction it remains to
be shown that (

E
[
‖Ω∆ − Ωq

∆‖
2
])1/2 ≤ C∆(q+2)/2, C <∞.

Analyzing the left hand side of the inequality above and using the Itô isom-
etry, we get(

E
[
‖Ω∆ − Ωq

∆‖
2
F

])1/2

≤

(
E
[∥∥∥ ∫ ∆

0

∞∑
k=q+1

Bk

k!
adkΩs

(
V0(ys)

)
ds
∥∥∥2

F

])1/2

+
m∑
i=1

(
E
[∥∥∥ ∫ ∆

0

∞∑
k=q+1

Bk

k!
adkΩs

(
Vi(ys)

)
dW i

s

∥∥∥2

F

])1/2

≤
m∑
i=0

(∫ ∆

0

E
[∥∥∥ ∞∑

k=q+1

Bk

k!
adkΩs

(
Vi(ys)

)∥∥∥2

F

]
ds

)1/2

≤
m∑
i=0

(∫ ∆

0

E
[( ∞∑

k=q+1

|Bk|
k!

∥∥ adkΩs

(
Vi(ys)

)∥∥
F

)2
]
ds

)1/2

.

By using the submultiplicativity of the Frobenius norm, one can show that∥∥ adkΩs

(
Vi(ys)

)∥∥
F
≤ 2k

∥∥Ωs

∥∥k
F

∥∥Vi(ys)∥∥F
7



holds via induction. Due to the specific structure of Vi(y) (3) we have

‖Vi(ys)‖2
F = 2

((
ys,1
Ii1

)2

+

(
ys,2
Ii2

)2

+

(
ys,3
Ii3

)2
)
≤ 2

I2
i,min

‖ys‖2
2,

where we define Ii,min = min{|Ii1|, |Ii2|, |Ii3|}. Moreover, it holds

‖ys‖2
2 = ‖ exp(Ωs)y0‖2

2 ≤ ‖ exp(Ωs)‖2
2‖y0‖2

2 ≤
(
exp

(
µ2(Ωs)

))2
= 1,

where we have used that y0 ∈ S2 and that the logarithmic matrix norm94

µ2(Ωs) = λmax((Ωs + Ω>s )/2) = 0 for skew-symmetric matrices Ωs.95

Inserting these results in the expected value we get

E
[( ∞∑

k=q+1

|Bk|
k!

∥∥ adkΩs

(
Vi(ys)

)∥∥
F

)2
]
≤ 2

I2
i,min

E
[( ∞∑

k=q+1

|Bk|
k!

2k‖Ωs‖kF
)2
]
.

Let f : I → R, x 7→ x
2

(
1 + cot

(
x
2

))
+ 2 with I = {x ∈ R : x

2π
6∈ Z}. Then

it is true that
∞∑
k=0

|Bk|
k!

xk = f(x),

where f(x) can be expressed by

f(x) =

q∑
k=0

f (k)(0)

k!
xk +Rq(x), Rq(x) =

f (q+1)(ξ)

(q + 1)!
xq+1,

if Taylor’s theorem is applied to f at the point 0. In doing so, we are using
the Lagrange form of the remainder for some real number ξ between 0 and
x. Next, we set x = 2‖Ωs‖ and consider the restriction fĨ with Ĩ = {x ∈ R :
|x| < 2π} since (7) only converges for ‖Ω‖ < π. The restriction fĨ is bounded,

in particular there exists an upper bound Mq such that | f |(q+1)

Ĩ
(ξ)| ≤ Mq

for all ξ between 0 and x and therefore

|Rq(x)| ≤ Mq

(q + 1)!
(2‖Ωs‖)q+1.

This leads us to

E
[( ∞∑

k=q+1

|Bk|
k!

(2‖Ωs‖F )k
)2
]
≤
(

2q+1Mq

(q + 1)!

)2

E
[
‖Ωs‖2q+2

F

]
.
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Lastly, we insert an Itô-Taylor expansion according to Proposition 5.9.1 [5],

Ωs = Ω0 +Rs = Rs, E
[
‖Rs‖2

F

]
≤ C1s

for some C1 <∞ such that

E
[
‖Ωs‖2(q+1)

F

]
= E

[
‖Rs‖2(q+1)

F

]
≤ C1s

q+1.

Summing up, we have

m∑
i=0

(∫ ∆

0

E
[( ∞∑

k=q+1

|Bk|
k!

∥∥∥ adkΩs

(
Vi
(

exp(Ωs)y0

))∥∥∥
F

)2
]
ds

)1/2

≤ 2q+1Mq

(q + 1)!

m∑
i=0

(
2C1

I2
i,min

∫ ∆

0

sq+1ds

)1/2

= O
(
∆(q+2)/2

)
.

96

4. Simulation97

For the simulation of our theoretic results above we have implemented98

Algorithm 3.1 to solve (4) in the software package MATLAB. We have set99

m = 1, y0 = (cos(0.9), 0, sin(0.9))> as the initial value in S2 and the moments100

of inertia as I0 = (3, 1, 2) and I1 = (1, 0.5, 1.5), where Ii := (Ii1, Ii2, Ii3) for101

i = 0, 1.102

In the Numerical method step of Algorithm 3.1 we have used the Euler-103

Maruyama scheme and the sRK methods SRI1 [14] of strong order γ = 1104

and SRI1W1 of strong order γ = 1.5 [13]. Since applying these sRK schemes105

together with a Projection step in Algorithm 3.1 preserves the geometric106

properties of the manifold in contrast to applying them directly to (4) we107

use the abbreviations gEM, gSRI1 and gSRI1W1, resp., to emphasise the108

geometric aspect. The truncation index q in (8) was chosen according to109

Theorem 3.2, namely q = 0 for gEM and for gSRI1 and q = 1 for gSRI1W1.110

A log-log-plot of the simulation of the strong convergence order can be viewed111

in Figure 1.112

For the estimation of the absolute error we computed

1

M

M∑
j=1

∥∥yref
T,j − ŷT,j

∥∥
2

9
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Figure 1: Simulation of the strong convergence order for M = 1000 paths.

where we have used the step sizes ∆ = 2−14, 2−13, 2−12, 2−11, 2−10, 2−9, 2−8, 2−7

to obtain the approximations ŷT . The reference solution yref
T was com-

puted using gSRI1W1 with ∆ = 2−16 and with the Cayley map cay(Ω) =
(I −Ω)−1(I + Ω) instead of the matrix exponential in the Projection step of
Algorithm 3.1 (see [3, 10]). As the Cayley map and the analogue expression
to (7), namely

d cay−1
Ω (H) =

1

2
(I − Ω)H(I + Ω),

are given by a finite product of matrices, there is no modelling error being113

made.114

Note that we could also have used the closed-form expressions for the115

matrix exponential and (7) from [4, Appendix B] for the reference solution.116

Figure 1 shows that the chosen truncation indices are sufficient for the117

sRKMK schemes to inherit the strong convergence order γ of the sRK scheme118

chosen in the second step of Algorithm 3.1.119

The structure-preserving property of sRKMK schemes is visualised in120

Figure 2. It shows a sample path of gSRI1 of strong order γ = 1 applied to121

(4) with the same initial value y0 and moments of inertia I0 and I1 as above122

10



Figure 2: Sample path of the sRK method SRI1 and its structure-preserving counterpart
gSRI1.

for 450 steps with a step size of ∆ = 0.1. In contrast to the sample path123

of SRI1 applied directly to (4), the sample path of gSRI1 remains on the124

manifold. The drift-off of the sRK scheme is also shown in Figure 3.125

5. Conclusion126

Since the analytical solution of the SDE considered in the stochastic rigid127

body problem lies on the unit sphere, a numerical approximation of the128

solution should also lie on the unit sphere. Based on the RKMK schemes129

for ODEs on manifolds, we have presented an extension to sRKMK schemes130

for nonlinear SDEs that arise in rigid body modelling under the assumption131

that there is a perturbation caused by stochastic processes.132
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Figure 3: Log-distance of the numerical solution to the unit sphere

Moreover, we proved that the sRKMK schemes inherit the strong conver-133

gence order of the underlying sRK schemes when a condition on the trunca-134

tion index q of (8) is satisfied.135

Since the construction of sRKMK methods for nonlinear SDEs and their136

proof of convergence in this paper are limited to the modelling of perturbed137

rigid bodies, in future work we will generalise the results to SDEs on arbitrary138

homogeneous manifolds.139
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