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Abstract

Pricing of interest rate derivatives, such as CMS spread or mid-curve options,
depends on the modelling of the underlying single rates. For flexibility and realism,
these rates are often described in the framework of stochastic volatility models.
In this paper we allow rates to be modelled within a class of general stochastic
volatility models, which includes SABR, ZABR, free SABR and Heston models.
We provide a versatile technique called Effective Markovian Projection, which
allows a tractable model to be found that mimics the distribution of the more
complex models used to price multi-rate derivatives. Three different numerical
approaches are outlined and applied to relevant examples from practice. Finally,
a new method that involves moment-matching of Johnson distributions is applied
to facilitate closed form pricing formulas.

Keywords: Stochastic volatility, SABR, ZABR, Markovian Projection, Effective
PDE, Approximation formula
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1 Introduction

Markovian projection was introduced to the area of quantitative finance by [2,27],
where it was originally applied to produce closed-form approximations for Euro-
pean option prices on basket models for stocks, multi-factor interest rate models
and hybrid interest rate/FX models. The method has since been extended and
refined. The Heston stochastic volatility model has been considered by [6], while
making the assumption of zero correlation between the Brownian motions driving
the asset and the volatility processed. The displaced diffusion model was consid-
ered by [7], and the SABR-LIBOR model by [30]. Other works have investigated
the standard SABR model [25, 26].

In the present paper we use results from our recent work on general stochastic
volatility models [16] to extend the scope of application for Markovian projection.
In particular, our novel approach allows pricing (and calibration) of multi-asset
options using a large range of stochastic volatility models with asset dynamics
specified by 

dFt = vtC(Ft) dW
(1)
t , Ft0 = f,

dvt = µ(vt) dt+ ν(vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

(1.1)

The model and parameters, as specified by the functions C(·), µ(·) and ν(·), are
chosen to ensure the best fit to the current (discrete) market implied volatility
surface and provide dynamics that are suitable for risk management and hedging of
exotic contracts. The generality of the specification allows the necessary flexibility
and control to ensure good calibration under varying market conditions. In our
applications, we focus on multi-rate interest rate derivatives and consider CMS
spread and mid-curve options as primary examples.

In summary, our research objectives are threefold: We provide a new Markovian
projection technique, showcase applications on interest rate derivatives with mul-
tiple underlying rates and provide new results on moment-matching techniques
outlining their application on general stochastic volatility models.

Our approach, to which we give the name Effective Markovian Projection, allows
the projection of any general stochastic volatility model onto another model within
the class specified by (1.1). This entails identifying the stochastic volatility model
that, in some sense, best approximates the original dynamics. In [16] we derived
an effective partial differential equation (PDE) for the dynamics specified by (1.1).
This PDE may be interpreted in terms of a (parametric) local volatility model [12]
using Markovian projection [18]. Owing to a common underlying structure of
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the effective PDE, it is possible to find parametrizations for specific stochastic
volatility models that provide good approximations to the general model.

When considering the application of Markovian projection to multi-factor baskets,
we choose the reference model in such a way that it allows the effective modelling of
general basket dynamics. To this end, we focus on the normal SABR model as our
reference model since it can be shown that under a suitable numeraire the basket
dynamics of normal SABR models is again a normal SABR model [21,22]. Having
specified how to proceed in terms of the projection and the choice of the reference
model, we provide numerical recipes for applying the method. Furthermore, to
contextualise our developments, we first briefly introduce the classic application
of Markovian projection.

The sequel consists of six sections. Section 2 provides the main theoretical results.
After briefly summarizing the theoretical background of Markovian projection [18],
we describe two novel applications. Initially, the classical approach is considered
in the setting of general SABR dynamics, which slightly generalizes the results
of [26]. We then introduce Effective Markovian Projection, which is based on
effective probability theory [16, 20]. The numerical methods used for computing
the projection are also introduced, in particular ATM-Matching, Minimal Point
Matching and N-Point Matching. It should be emphasised that Effective Marko-
vian Projection is directly applicable in the full general stochastic volatility setting.
This is in contrast to classical Markovian projection, which must be tailored to
the specific process, as seen for the General SABR model. It is known that this
may produce approximations for volatility dynamics that are crude for long-dated
instruments [26]. Section 3, focuses on examples from the interest rate derivatives
world. Fixing notation and definitions, we consider CMS spread and mid-curve
options as our main examples. With the underlying definitions at hand we con-
sider a ZABR-type model as our base model and the normal SABR model as our
reference model in Section 4, where we derive the corresponding projection and
basket (spread) dynamics. Here we also specifically address numeraire issues. The
resulting model amalgamates all the features of the base model and parametrizes
the implied volatility surface in terms of a normal SABR model for each maturity,
enabling the pricing of CMS spread and mid-curve options. Section 5 derives a
method based on moment matching applied to the model class. Moment matching
is applied to both NIG distributions and the family of Johnson distributions. The
former approach has been considered previously by [9,14], and we show that there
are some limitations in its application. The approach based on Johnson distribu-
tions provides a more stable and accurate result. The close connection of certain
Johnson distributions to distributions arising from a SABR model has previously
been recognized by [10]. Finally, Section 6 provides numerical illustrations of all
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the methods considered in the previous sections. Here we focus exclusively on
effective Markovian projection, since the classic approach has already been suc-
cessfully applied to SABR models, see [26]. In particular, we demonstrate the
additional flexibility in modelling and calibrating underlying rates in a multi-rate
framework when considering base models of the ZABR type. We also illustrate
the effects of changing model parameters. Section 7 concludes by summarizing the
results and giving prospects for future research.

2 Effective Markovian Projection

In this section we present our main result and introduce a new approximation
technique called Effective Markovian Projection (EMP). The idea underlying this
technique is to combine the approximation results of singular perturbation tech-
niques (see e.g. [16, 23]) with the general approximation technique of Markovian
projection (see e.g. [3, 18]).

2.1 Markovian Projection

Before introducing EMP, let us first recall classical Markovian projection, which
is based on the results in [3, 18]. Consider a stochastic process

dYt = α(t, Yt) dt+ β(t, Yt) dWt,

and assume that it has enough regularity to fit within the framework described
in [3]. Here, the stochastic processes α(t, Yt) and β(t, Yt) may depend on adapted
Brownian motions other than, and possibly correlated with, Wt. It has been shown
that there exists an SDE

dxt = a(t, xt) dt+ b(t, xt) dWt,

with non-random coefficients and a solution xt having the same one-dimensional
probability distribution as Yt, with the coefficients a and b satisfying

a(t, x) = E[α(t, Yt)|Yt = x] and b(t, x)2 = E[β(t, Yt)
2|Yt = x].

This existence result makes it possible to price European options by considering
a one-dimensional local volatility model [11, 12]. Using the notation of the latter
reference and considering an SDE of a forward price, i.e., α(t, Yt) = 0, the result
states that

σ2
local(t, x) = E[β(t, Yt)

2|Yt = x]. (2.1)

This projection onto a local volatility model, given in (2.1), is known as Markovian
projection. The main challenge for practical applications then lies in the proper
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evaluation of the conditional expectation. Possible approaches are based on Gaus-
sian or least-square approximations, see [3]. We call the approach using these
approximation techniques classical Markovian projection (CMP). Here we pro-
pose an alternative approach based on effective probability theory, see e.g. [16,20],
which allows fast and accurate approximation. To better highlight the structural
differences of our new approach, we first demonstrate an application of CMP to
spread options under the SABR model.

2.2 Classic Markovian Projection for Generalized SABR

Using CMP, we derive a projection for the difference of a pair of general SABR
stochastic volatility processes, which allows the modelling of spread options. The
general SABR stochastic volatility processes, indexed by i, j ∈ {1, 2}, are governed
by SDEs of the form:

dFi,t = vi,tCi(Fi,t) dW
(1)
i,t , Fi,t0 = fi,

dvi,t = νivi,t dW
(2)
i,t , vi,t0 = αi,

with d〈W (1)
i ,W

(2)
j 〉t = γij dt,

d〈W (1)
1 ,W

(1)
2 〉t = ρ dt,

and d〈W (2)
1 ,W

(2)
2 〉t = ξ dt,

(2.2)

where Ci are suitably chosen functions. For example, the function may be chosen
as the classical SABR backbone Ci(x) = xβi , for constants βi.

While we do not explore it further here, a similar projection may be applied to
d-dimensional basket options, where each of the individual processes have dynam-
ics of the form (2.2). The d-dimensional basket would have 2d driving Brownian

motions W
(j)
i,t , with i = 1, . . . , d and j = 1, 2, and it would have (d2 − d)/2 corre-

lations. As above, W
(1)
i,t is the Brownian motion associated with the i-th forward

and W
(2)
i,t is associated with its stochastic volatility process.

In the case of a two-dimensional spread considered here, i.e.,

Ft = F1,t − F2,t,

the spread is assumed to be governed by combined dynamics of the form:
dFt = utC(Ft) dB

(1)
t , Ft0 = f,

dut = νut dB
(2)
t , ut0 = 1,

with d〈B(1), B(2)〉t = γdt,

(2.3)
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with the original stochastic volatility processes vi,t scaled by their initial values,
ui,t = vi,t/αi, and a suitably specified function C. For example, we may choose
C(x) = p + q(x − a) + r(x − b)2, with constants p, q, r, a and b. The case of
q = r = 0 leads to a Gaussian process, r = 0 to a displaced diffusion process, and
the general case to a quadratic local volatility backbone with log-normal stochastic
volatility. We apply CMP to find the parameters that provide the best match to
the basket having combined dynamics given by (2.3). This results in the correlated

Brownian motions B
(1)
t and B

(2)
t specified as

dB
(1)
t = σ(t)−1

(
u1,tα1C1(F1,t) dW

(1)
1,t − u2,tα2C2(F2,t) dW

(1)
2,t

)
(2.4)

dB
(2)
t = (νp)−1

(
p1ν1ρ1 dW

(2)
1,t − p2ν2ρ2 dW

(2)
2,t

)
.

For the case of a displaced diffusion model we use C(x) = p + q(x − f) with the
parameters in (2.3) given by

p2 = p2
1 + p2

2 − 2ρp1p2, pi = vi,t0Ci(fi), qi = vi,t0C
′
i(fi),

ρ1 = (p1 − p2ρ)/p, ρ2 = (p1ρ− p2)/p,

q = (p2
1q1ρ1 + p2

2q2ρ2 − p1p2ρq1ρ1 − p1p2ρq2ρ2)/p2

ν =
√

(p1ν1ρ1)2 + (p2ν2ρ2)2 − 2ξp1p2ν1ν2ρ1ρ2/p and

γ =
(
p2

1ν1ρ1γ11 + p2
2ν2ρ2γ22 − p1p2ν1ρ1γ12 − p1p2ν2ρ2γ21

)
/(νp2).

The parameters are derived by approximating the variances of the spread as

σ2(t) = u2
1,tα

2
1C1(F1,t)

2 + u2
2,tα

2
2C2(F2,t)

2 − 2ρu1,tu2,tα1C1(F1,t)α2C2(F2,t) (2.5)

and u2
t = (p2

1u
2
1,t + p2

2u
2
2,t − 2ρp1p2u1,tu2,t)/p

2. (2.6)

Some aspects of the derivation can be found in A.1 and the references cited therein.
In particular for numerical examples we refer to [26]. Finally, we emphasise that
the approximations presented are heavily dependent on the underlying models and
thus only valid for the case of general SABR models.

2.3 Effective Markovian Projection for Generalized Stochas-
tic Volatility

To motivate our new approximation technique, we now go a step further and
relax the previous restriction of general SABR models and instead consider general
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stochastic volatility models of the form
dFt = vtC(Ft) dW

(1)
t , Ft0 = f,

dvt = µ(vt) dt+ ν(vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt,

(2.7)

which satisfy the assumptions of Theorem 1 of [16]. For convenience these assump-
tions can be found in Appendix A.2.

With this setup, we provide the central result of Effective Markovian Projection.

Proposition 2.1. Given a general stochastic volatility model (2.7), satisfying the
assumptions of Theorem 1 of [16], the local volatility function (2.1) is approximated
as

σ2
local(t, x) ≈ C(x)2a(t)2eG(t)

(
1 + 2b(t)z(x) + c(t)z(x)2

)
, (2.8)

where the coefficients a, b, c, z and G are specified in Appendix A.2.

We call this projection from a general stochastic volatility model onto a local volatil-
ity model the Effective Markovian Projection (EMP).

Proof. Let p(t0, f, α, t, F,A) be the probability density function that Ft = F and
vt = A at time t, given that Ft0 = f and vt0 = α at time t0. With this we can
describe the conditional probability corresponding to (2.1) as

σ2
local(t, x) = C(x)2E

[
v2
t

∣∣Ft = x
]

= C(x)2E
[
v2
t I{Ft=x}

]
E
[
I{Ft=x}

]
= C(x)2

∫∞
0
A2p(t0, f, α, t, x, A) dA∫∞

0
p(t0, f, α, t, x, A) dA

= C(x)2Q
(2)(t0, f, α, t, x)

Q(0)(t0, f, α, t, x)
,

where the function Q(k) is defined by

Q(k)(t0, f, α, t, F ) :=

∫ ∞
0

Akp(t0, f, α, t, F,A) dA.

Applying Theorem 1 of [16] we have

Q(2)(t0, f, α, t, x) ≈ P (t, x)Q(0)(t0, f, α, t, x),

with
P (t, x) = a(t)2eG(t)

(
1 + 2b(t)z(x) + c(t)z(x)2

)
, (2.9)

where the coefficients a, b, c, z and G are specified in [16] and provided in Ap-
pendix A.2.
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In the context of singular perturbation theory, this approximation is accurate to
O(ε2), which is the same order of accuracy provided by the SABR implied volatility
formula (see [20]). To conclude this section, we provide further remarks on the
applicability of the technique.

Remark 2.2. Although we have formulated EMP in terms of a stochastic volatility
model, it may also be applied to a stochastic variance model (e.g. the Heston
model). In this case the local volatility function is expressed as

σ2
local(t, x) = C(x)2Q

(1)(t0, f, α, t, x)

Q(0)(t0, f, α, t, x)
.

As shown in [23], in this setting an analogous representation of

Q(1) = P (t, x)Q(0)(t0, f, α, t, x)

is applicable, yielding the representation of the local volatility function as in Propo-
sition 2.1.

Remark 2.3. We stress that the backbone function C(x) need not be restricted
to a parametric function and can be chosen to be non-parametric. This allows
application of EMP to stochastic local volatility models (see [1, 17, 28] for a non-
exhaustive list), which we are currently investigating.

Remark 2.4. To guarantee that the resulting model is arbitrage-free, it is enough
to ensure that the local volatility function remains positive. Assuming that the
backbone function is chosen such that C > 0 then one requires the condition that
P > 0.

2.4 Projection onto another Model

Using EMP we wish to project one model onto another. This is useful because
some models are more tractable than others, for example possessing analytical
solutions for various contingent claim prices. The idea is to consider matching the
corresponding projected local volatility functions of both models. To this end, let
us consider two local volatility functions σ2

local, σ̃
2
local of the form (2.8)

σ2
local(t, x) = C(x)2a(t)2eG(t)

(
1 + 2b(t)z(x) + c(t)z(x)2

)
σ̃2

local(t, x) = C̃(x)2ã(t)2eG̃(t)
(
1 + 2b̃(t)z̃(x) + c̃(t)z̃(x)2

)
.

Our goal is to specify the coefficients ã, b̃ and c̃ in such a way that these two local
volatility functions match each other as closely as possible. The other functions,
e.g. C̃, are assumed to be model specific and are not modified. Note that a complete
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matching would impose an x-dependence on these coefficients. This imposes a
dependence of the forward dynamics on the volatility dynamics. Since in our later
applications we aim to project a general SV model onto another SV model, we
want to avoid this x-dependence at this point. Thus we focus on matching the
local volatility function at specific points. To match three different coefficients,
we need at least three different equations for the problem to be well posed. There
is some freedom in choosing these equations and the choice can be individually
tailored to the corresponding problem at hand. Some choices are presented in the
following sections and are further examined for specific applications, which are
presented in Section 6.

2.4.1 ATM Matching

The first approach is based exclusively on matching the at-the-money (ATM) initial
point, x = f . Considering only one point we choose to match the value of the local
volatility function in addition to the value of the first two derivatives at x. This
corresponds to

σ2
local(t, f) = σ̃2

local(t, f)

∂xσ
2
local(t, f) = ∂xσ̃

2
local(t, f)

∂xxσ
2
local(t, f) = ∂xxσ̃

2
local(t, f).

(2.10)

Evaluating the first equation and noting that z(f) = z̃(f) = 0 we deduce that

ã(t)2 =
C(f)2

C̃(f)2
a(t)2eG(t)−G̃(t). (2.11)

Evaluating the derivatives at x = f then yields

∂xσ
2
local(t, f) = 2σ2

local(t, f)

[
C ′(f)

C(f)
+ b(t)z′(f)

]
∂xxσ

2
local(t, f) = 2σ2

local(t, f)

[
C ′(f)2

C(f)2
+
C ′′(f)

C(f)
+ 4

C ′(f)

C(f)
b(t)z′(f)

+ b(t)z′′(f) + c(t)z′(f)2

]
.

Taking into account that z′(x) = 1
C(x)

we further simplify this to

∂xσ
2
local(t, f) = 2σ2

local(t, f)

[
1

C(f)

(
C ′(f) + b(t)

)]
∂xxσ

2
local(t, f) = 2σ2

local(t, f)

[
1

C(f)2

(
C ′(f)2 + C ′′(f)C(f) + 3C ′(f)b(t) + c(t)

)]
.

(2.12)
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Thus, matching (2.10) with the derivatives provided in (2.12), boils down to (2.11)
and a matching of the bracketed terms. We shall refer to this algorithm as EMP-
ATM matching.

2.4.2 Minimal Point Matching

The second matching approach we propose is the minimal point (EMP-MP) match-
ing algorithm and is based on matching the local volatility functions of the two
models at three distinct points. These three points are the minimal requirement
for a well-posed specification for deducing the three different coefficients. When
including in-the-money (ITM) and/or out-the-money (OTM) values, the method
allows better fitting of the wings. As one of the matching points we take the ATM
value, x = f , corresponding to the condition

ã(t)2 =
C(f)2

C̃(f)2
a(t)2eG(t)−G̃(t).

Inserting this into the local volatility functions, for each x we get the condition

2b̃(t)z̃(x) + c̃(t)z̃(x)2 =
C(x)2C̃(f)2

C̃(x)2C(f)2

(
1 + 2b(t)z(x) + c(t)z(x)2

)
− 1.

By selecting two additional points these equations allow an explicit solution where
the new coefficients are given by

b̃(t) =
1

2

r(x1)

z̃(x1)
− 1

2

r(x2)z̃(x1)− r(x1)z̃(x2)

z̃(x2)2 − z̃(x1)z̃(x2)

c̃(t) =
r(x2)z̃(x1)− r(x1)z̃(x2)

z̃(x1)z̃(x2)2 − z̃(x1)2z̃(x2)
,

with

r(x) =
C(x)2C̃(f)2

C̃(x)2C(f)2

(
1 + 2b(t)z(x) + c(t)z(x)2

)
− 1.

2.4.3 N-Point Matching

The last matching algorithm we propose is based on numerical minimization. Spec-
ifying a set of more than three points, it is always possible to minimize an error
function that quantifies the difference between the local volatility functions evalu-
ated at these points. To mention a few possibilities, this includes error functions
based on the absolute value, relative value or mean squared error. This procedure
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may yield a better fit along the entire curve, but comes at the cost of requiring
a minimization problem to be solved, since the coefficients are no longer explicit.
Compared to a direct calibration of the underlying models, based, for example, on
the implied volatility curve, this approach still yields computational advantages
due to the simpler form of the local volatility function. We denote this approach
the EMP-NP matching algorithm.

3 Interest Rate Derivatives

Having derived the general methodology we now demonstrate the applicability of
the new approach by considering the pricing of semi-vanilla interest rate products,
where the underlying swap rates are governed by more complex models of the
ZABR type. We consider the displaced diffusion ZABR model (dZABR) as our
primary example in this setting. The dZABR is specified by the following system
of SDEs: 

dFt = vt(Ft + d)β dW
(1)
t , Ft0 = f,

dvt = νvγt dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

As far as the contingent claims is concerned, we focus our attention on options
on CMS spreads and mid-curves. In the special case where the underlying rates
are modelled using the normal SABR model (nSABR), options on CMS spreads
have been intensively studied (see e.g. [21]). When the rates are governed by
Black baskets the pricing of options on CMS spreads and mid-curves can be found
in [5]. With our new approach we extend these pricing techniques to allow a
general stochastic volatility model as the underlying model for the single rates.
We demonstrate this in the case where each rate follows a dZABR under its own
measure.

3.1 Interest Rate Notation

To introduce the previously mentioned pricing techniques, let us first specify the
setting and corresponding notation. For the general tenor structure we consider
some starting date T1 and end date T2. The payment dates in between are denoted
by T1 < t1, . . . , tn ≤ T2. Furthermore, we denote the exercise date as T and assume
the payment happens at time T0. We use the notation DF (T, T0) to denote the
discount factor from the payment date to the exercise date and define the annuity
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factor A(t, T1, T2) and the forward level L(t, T0, T1, T2) by

A(t, T1, T2) =
∑

T1<tn≤T2

δnDF (t, tn)

L(t, T0, T1, T2) =
∑

T1<tn≤T2

δnDF (t, T0, tn) =
A(t, T1, T2)

DF (t, T0)
,

respectively. Here δn = tn− tn−1 denotes the day count fraction. Finally, the swap
rates R(t, T1, T2) are defined as

R(t, T1, T2) =
DF (t, T1)− DF (t, T2)

A(t, T1, T2)
. (3.1)

Remark 3.1. Notice that the definition of the swap rates can be further generalized
as in [21]. For our situation, however, this generalization is not necessary and we
retain the notation used in [5].

3.2 Options on CMS Spreads

The first interest rate derivatives we consider are options on CMS spreads. To
this end, we provide a short summary of the results of [21], where the goal is
the evaluation of caplets, floorlets or swaplets on CMS spreads. We denote by
(Ri(t))i=1,2 the two swap rates R(t, T0, Ti). Moreover, we define the spread, S(t),
on the two rates as

S(t) = R2(t)−R1(t)

with initial value s = r2 − r1. Using a caplet as an example, the payoff function
at the expiry date T is given by

Vspread(T ;T,K) = DF (T, T0)(S(T )−K)+.

In turn, the value of the caplet at an earlier date is given as the conditional
expectation under a suitable martingale measure. Under the forward measure,
i.e., with the discount factor DF (·, T0) as the numeraire, the value is expressed as

Vspread(t;T,K) = DF (t, T0)ET0
[
(S(T )−K)+

∣∣t].
Without loss of generality we consider the value at the initial time, t = 0. To eval-
uate this expression, Hagan et al. introduced a suitable measure, H, under which
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the spread process becomes a martingale1. By further analyzing the convexity
correction the value of the caplet can be evaluated as (see e.g. [21, Equation 3.22])

Vspread(0;T,K) = DF (0, T0)
(
(1− (s−K)λs)C

S(0;T,K) + λsQ
S
C(0;T,K)

)
. (3.2)

Here the expressions CS and QS
C denote the vanilla and quadratic calls of the

spread under the martingale measure H, i.e.,

CS(t;T,K) = EH
[
(S(T )−K)+

∣∣t]
QS
C(t;T,K) = EH

[(
(S(T )−K)+

)2∣∣t].
The coefficient λs denotes the convexity coefficient which, following the suggestion
of Hagan et al. [21], is set in a manner consistent with the underlying swap rates

λs =
λ2Q

2
S(0;T, r2)− λ1Q

1
S(0;T, r1)

QS
S(0;T, s)

.

Here the functions QS
S and Qi

S express the quadratic swaps

QS
S(t;T,K) = EH

[
(S(T )−K)2

∣∣t]
Qi
S(t;T,K) = Ei

[
(Ri(T )−K)2

∣∣t],
and the coefficients λi are the convexity coefficients of the underlying rates given
by the approximation

L(0, T0, T0, Ti)

L(T, T0, T0, Ti)
=
Li(0)

Li(T )
= 1 + λi(Ri(T )−Ri(0)) + · · · . (3.3)

Given the convexity coefficients and the explicit values of the vanilla and quadratic
calls this provides a closed form pricing formula.

Remark 3.2. By construction, see [21], these formulae satisfy put-call parity.

1In the following applications the explicit form of the measure H is not of importance—only
the dynamics of the spread measure expressed in this measure is relevant.
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3.3 Options on Mid-curves

Another popular semi-vanilla product is the mid-curve call option. This option
provides the holder with the right to enter into a swap with starting time T1

and maturity T2 at some exercise date T . As shown in [5, 15], the value of
the mid-curve call option can be expressed as a call option on the mid-curve
rate, Rmc(T ) = R(T, T1, T2), under the annuity measure, which uses numeraire
Amc(T ) = A(T, T1, T2). At time 0, this yields the value

Vmc(0, T,K) = Amc(0)EAmc

[
(Rmc(T )−K)+

]
. (3.4)

Note that by definition the mid-curve rate, Rmc(T ), is a martingale under the cho-
sen annuity measure. To evaluate the expectation we do not assume an additional
model for the mid-curve rate, but instead focus on the choice of the underlying
swap rates. Therefore, in the rest of this section, we follow the approach presented
in [5] and express the mid-curve rate as a weighted spread on swap rates. We start
by considering the rates Ri(T ) and deduce that

Rmc(T ) = R2(T )
A2(T )

Amc(T )
−R1(T )

A1(T )

Amc(T )
.

Defining new modified rates R̂i(T ) as

R̂i(T ) =
Ri(T )

M̂i(T )
=

Ri(T )
Amc(T )Ai(0)
Ai(T )Amc(0)

,

the mid-curve rate becomes

Rmc(T ) = R̂2(T )
A2(0)

Amc(0)
− R̂1(T )

A1(0)

Amc(0)
.

At this point we highlight an important structural difference in comparison to the
CMS spread options presented previously in Section 3.2, namely that under the
chosen annuity measure the mid-curve rate, Rmc(T ), as well as the rates, R̂i(T ),
are martingales at the same time. To evaluate the CMS spread options we worked
under a measure where only the spread is a martingale, here we have a measure
where the weighted spread and all the single rates are simultaneously martingales.

To characterize these new modified rates, R̂i(T ), we assume that the martingales
M̂i(T ) are approximated by

M̂i(T ) =
Amc(T )Ai(0)

Ai(T )Amc(0)
≈ 1 + λ̂i(Ri(T )−Ri(0)) + · · · ,

13



and, as demonstrated in [5], this allows us to recover the distributions of the
modified rates from the original ones by considering approximate option prices
using the relation

EAmc

[
(R̂i(T )−K)+

]
≈ EAi

[(
Ri(T )(1− λ̂iK)−K(1− λ̂iri)

)+
]
. (3.5)

4 Evaluation under ZABR-type Models

Having described the general framework for pricing interest rate derivatives, we
now show how to apply EMP to a general stochastic volatility model for the
underlying swap rates. As mentioned previously, we consider the dZABR model
of [16] as our primary model.

4.1 Projection onto a Normal SABR Model

To provide analytical tractability, we consider a projection of the underlying dZ-
ABR model onto the nSABR model. To apply EMP, we first compute the corre-
sponding coefficients for the function P (t, x) specified in (2.9). For the dZABR
model with β ∈ (0, 1) the coefficients, given in [16], are

a(t) = α

b(t) = ρναγ−2

c(t) = ν2α2(γ−2)(1 + (γ − 1)ρ2)

G(t) = −ρ2ν2α2(γ−1)(γ − 1)t− ρναγβ(f + d)β−1t,

and the transformed variable is

z(x) =
1

1− β
((x+ d)1−β − (f + d)1−β).

Remark 4.1. Note that we have chosen the dZABR model as our primary example
to ensure that notation remains relatively simple. More complicated examples
such as the mean-reverting ZABR or Heston models can be considered, using the
corresponding coefficients given, for example, in [16] and [23].

For the nSABR model these coefficients may be simplified further leading to

σ̃2
local(t, x) = α̃2

(
1 + 2

ρ̃ν̃

α̃
z̃(x) +

ν̃2

α̃2
z̃(x)2

)
with z̃(x) = x− f .
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Given these coefficients, we, in turn, can evaluate the local volatility function
induced by EMP. We may now use any of the three projection procedures described
in Section 2. For example, using the parameters f = 0.005, α = 0.3f 1−β, d = 0.002,
ν = 0.3, ρ = −0.3, T = 5, γ = 0.8 and β = 0.4 we compute the local volatility
function generated by each of the different projection procedures. The results are
shown in Figure 1, and, as can be seen, yield good results in each case.
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Figure 1: Local volatility function for the parameter set f = 0.005, α =
0.3f 1−β, d = 0.002, ν = 0.3, ρ = −0.3, T = 5, γ = 0.8 and β = 0.4. Green
crosses indicate matching points.

4.2 Options on CMS Spreads

Given the pricing formula for options on CMS spreads in (3.2), we now consider
valuation of vanilla and quadratic calls on the spread and swap rates. This depends
heavily on the model chosen for the single rates. Assuming that each swap rate is
modelled using dZABR, the call options can be valued using the methods described
in [4,16]. However, it is not clear how to value options on the spread process since
the underlying model is not known. Therefore, in the explicit case, where each
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rate follows an nSABR model under its respective measure, Hagan et al. [21, 22]
showed that it is possible to approximate the dynamics of the spread using an
nSABR model.2 To achieve this, singular perturbation techniques were used and
the resulting approximation has the same order of accuracy as the classical SABR
implied volatility formulas. Applying these results and the following steps, we can
evaluate CMS spread options using dZABR models for each of the rates:

(i) Given that each swap rate Ri(t) is modeled using a dZABR model, we use
EMP to deduce approximate rates R̃i(t) characterized in terms of nSABR
models.

(ii) We approximate the spread, S(t), on the swap rates as

S(t) ≈ S̃(t) = R̃1(t)− R̃2(t).

Using the results in [21,22] this allows for an approximation of the spread in
terms of an nSABR model.

(iii) We evaluate the corresponding vanilla and quadratic calls using the explicit
formulas presented in [21] and can, in turn, evaluate the value of the option
on the CMS spread.

4.3 Options on Mid-Curves

To deduce the price of a call option on a mid-curve, we proceed in a fashion similar
to that as above. In Section 3.3 it was shown that the underlying mid-curve rate
can be expressed as a weighted spread of two modified rates, R̂i(T ). From an
analytical perspective we cannot deduce a general dynamic of the rates R̂i(T ).
We can, however, resort to numerical means in the spirit of [5]. Given that the
underlying rates Ri(T ) follow a dZABR model under their own measure, we assume
that the modified rates R̂i(T ) are governed by a dZABR model under the annuity
measure Amc. Using the parameters of the rates Ri(T ) we can then calibrate
the model parameters of the rates R̂i(T ) using (3.5). Since we know that the
rates R̂i(T ) are martingales we approximate them using EMP onto corresponding
nSABR models. Given that the original weighted sum of the rates, R̂i(T ), is also
a martingale under the Amc-measure, we can use the more general basket result of
Hagan et al. [21, 22] to deduce that the mid-curve rate, Rmc(T ), is approximated
by an nSABR model. This reduces the evaluation of the option on mid-curves to
a vanilla call option under an nSABR model.

2This actually also holds true when we replace the spread by a basket of nSABR models
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5 Moment Matching

We now explore a second application of EMP in which we derive explicit approxi-
mating formulas for the density and characteristic functions of a general stochastic
volatility model. Once again, the key step in this approach is the projection of the
model onto an nSABR model. Thereafter we use approximation techniques based
on a moment matching algorithm.

Concentrating on the nSABR for the moment, we fix a maturity and use explicit
formulas for the first four moments available. As was demonstrated in [9] or [10],
these moments can be characterized in their standardized forms, i.e., by the mean
M, variance V , skew S and excess kurtosis K as

M = E
[
Ft
]

= f

V = µ2 =
α̃2

ν̃2
(x− 1)

S =
µ3

µ
3/2
2

= ρ̃(x+ 2)
√
x− 1

K =
µ4

µ2
2

− 3 = (x− 1)

(
1 + 4ρ̃2

5
(x3 + 3x2 + 6x+ 5) + 1

)
,

where
µi = E

[
(Ft − f)i

]
and x = eν̃

2t.

Having these moments available, we proceed in the spirit of [9] and [29], and con-
sider an approximation of this distribution using a parametric distribution of a
specific form. In [9] this was demonstrated in the case where the approximating
parametric distribution was the normal-inverse Gaussian (NIG) distribution. This
distribution has four underlying parameters and explicit formulas for its moments.
It is, therefore, possible to set up a well posed system of equations to determine
the underlying parameters by matching the moments of the distributions. Corre-
sponding algorithms to determine the parameters of the NIG distribution based
on the nSABR moments can be found in [9] or [14].

Instead of considering the NIG distribution, we will use the Johnson’s-SU distribu-
tion (see [24]). Johnson’s-SU distribution defines a random variable, X, through
a transformation of a standard normal random variable, Z, given by

X = ξ + λ sinh

(
Z − γ
δ

)
.

The probability density function of this random variable, φS, is specified in terms
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of the standard normal density function, φN , as

φS(x) =
δ

λ
√(

x−ξ
λ

)2
+ 1

φN

(
γ + δ sinh−1

(
x− ξ
λ

))
.

As outlined in [10], both the distributions generated by the nSABR model, as well
as Johnson’s-SU distribution can be seen as special cases of the hyperbolic normal
stochastic volatility model. This underscores the similarity of the distributions and
motivates our choice. As in the case of the NIG distribution, the Johnson’s-SU
distribution has four underlying parameters and explicit formulas for the first four
moments, see, e.g., [10] or [31]. This allows the use of the matching algorithm pro-
posed by Tuenter [31] to determine the underlying parameters of the distribution.
An outline of the algorithm is given in Algorithm 1, for all technical details we
refer to the original paper [31].

Algorithm 1: Matching algorithm proposed by Tuenter [31].

Data: Moments M, V , S, K
Result: Johnson’s-SU distribution parameters δ, γ, λ, ξ
set β1 = S2 and β2 = K + 3;

define m(ω) = −2 +
√

4 + 2(ω2 − β2+3
ω2+2ω+3

);

define f(ω) = (ω − 1−m(ω))(ω + 2 + 0.5m(ω))2;
compute boundaries (ω1, ω2) using procedure in [31];
if f(ω1) ≤ β1 then

break;
end
solve for ω∗ s.t. f(ω∗) = β1;

set m = m(ω∗) and Ω = −sgn(S) sinh−1(
√

ω∗+1
2ω∗ (ω

∗−1
m
− 1));

set δ = 1
log(ω∗)

, γ = Ω
log(ω∗)

, λ =
√
V

ω∗−1

√
2m
ω∗+1

and

ξ =M− sgn(S)
√
V

ω∗−1

√
ω∗ − 1−m;

Having determined the underlying parameters, we now have a completely specified
probability distribution with explicit formulas for the density function. In the case
of the NIG distribution, explicit formulas for the characteristic function are also
available and allow the application of popular computation techniques using the
fast Fourier transform (FFT) [8].

To extend these results to more complex models, such as dZABR, the following
steps may be used:
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(i) Using EMP, project the dZABR model onto the nSABR model.

(ii) Using the moment matching algorithm, fit a Johnson’s-SU or NIG distribu-
tion to the nSABR model.

(iii) Using the Johnson’s-SU or NIG distribution, explicit formulas for the density
function and/or the characteristic function are available.

This procedure allows us to describe the distribution of the dZABR model at a
fixed maturity by an explicit analytical formula.

6 Numerical Results

In order to evaluate the quality of our new approximation technique we perform
a series of numerical experiments. We start by considering the various matching
algorithms described in Section 2.4 and investigate their ability to fit the local
volatility function. Thereafter, we explore the implications on the implied volatility
surface and demonstrate the flexibility obtained when pricing various interest rate
derivatives. We conclude by analysing the accuracy of the distribution matching
approach proposed in Section 5.

For most of our examples we shall consider dZABR models specified using the
parameter sets listed in Table 1. In the case where γ = 1 these models reduce
to dSABR models. In this simpler setting, the main difference, when compared
with the nSABR model, is the additional parameter β. We, therefore, highlight
the dependence on this parameter and consider various values for it.

Parameter Set 1 Set 2 Set 3 Set 4

f 0.005 0.005 0.005 0.005
α 0.3f 1−β 0.3f 1−β 0.3f 1−β 0.3f 1−β

d 0.002 0.002 0.002 0.002
ν 0.3 0.3 0.3 0.5
ρ −0.3 −0.7 0 −0.3
T 5 5 10 1
γ 0.8 0.9 0.8 0.9

Table 1: Parameter values for dZABR models used in numerical experiments.
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6.1 Local Volatility

To apply the different matching algorithms described in Section 2.4 we require
additional parameters to be specified. In particular, other than the at-the-money
value, two additional matching points are required to implement the EMP-MP
algorithm. To demonstrate the influence of these points on the projection, we
evaluate the local volatility function for the dZABR model using parameter set 1
with β = 0.2 and β = 0.8, and generate the curve using the EMP-MP algorithm for
different values of the matching points. The errors observed between the original
model and the approximating curves are presented in Tables 2 and 3.

x dZABR x1=0.5f
x2=2f

x1=0.5f
x2=3f

x1=2f
x2=3f

0.5f 8.48e−6 0 0 3.08e−6

0.75f 4.57e−6 −2.45e−7 −3.48e−7 1.04e−6

f 2.58e−6 0 0 0
1.5f 5.73e−6 5.92e−7 1.41e−6 −4.36e−7

2f 1.97e−5 0 2.47e−6 0
3f 8.37e−5 −8.22e−6 0 0
4f 1.99e−4 −2.90e−5 −1.17e−5 −4.32e−6

Table 2: Values of the local volatility function for the dZABR model using param-
eter set 1 with β = 0.2, and the error in the EMP-MP local volatility function for
different values of the matching points, x1 and x2.

x dZABR x1=0.5f
x2=2f

x1=0.5f
x2=3f

x1=2f
x2=3f

0.5f 3.56e−6 0 0 4.10e−6

0.75f 3.55e−6 −2.18e−7 −3.55e−7 1.49e−6

f 3.75e−6 0 0 0
1.5f 5.85e−6 6.35e−7 1.73e−6 −7.33e−7

2f 1.18e−5 0 3.28e−6 0
3f 4.09e−5 −1.09e−5 0 0
4f 1.01e−4 −4.24e−5 −1.94e−5 −9.58e−6

Table 3: Values of the local volatility function for the dZABR model using param-
eter set 1 with β = 0.8, and the error in the EMP-MP local volatility function for
different values of the matching points, x1 and x2.

For this example we observe a reasonably good fit in all cases. Here the match
including the point x1 = 0.5f provides the best fit for the left wing, whereas the
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match including the additional points x1 = 2f and x2 = 3f provides an excellent
fit for the longer right wing. The latter also provides a reasonably good fit for the
left wing. Thus, from now on, when we refer to the EMP-MP algorithm we shall
use the additional points x1 = 2f and x2 = 3f .

In Figure 2 we graph the local volatility functions generated by the original dZABR
model in comparison with the local volatility functions generated by the EMP-MP,
EMP-ATM and EMP-NP algorithms. When implementing the EMP-NP algorithm
we minimized the relative mean squared error evaluated at equally spaced grid
points from 0.5f to 3f , using steps of length 0.5f . It is observed that the EMP-MP
and EMP-NP approaches seem to outperform the EMP-ATM matching procedure.
With our choice of x1 = 2f and x2 = 3f as the additional matching points in the
EMP-MP algorithm, we observe a better fit along the right wing, whereas the
EMP-NP algorithm provides better results along the left wing.
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Figure 2: Local volatility functions for the different EMP algorithms using param-
eter set 1.

In conclusion we observe good fits for the projected dZABR model using EMP.
Comparing the matching algorithms, the multiple point algorithms seem to out-
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perform the ATM matching algorithm in terms of stability and quality of approx-
imation.

6.2 Implied Volatility

The above results for the local volatility function seem promising. From a practical
perspective it is, however, not clear how differences in these local volatility curves
translate into pricing differences. We, therefore, generate implied volatility curves
for call prices using each algorithm. In Figures 3 and 4 the normal implied volatility
curves for the original model, using the framework described in [16] and [19],
are compared with the curves generated by the nSABR model using the EMP-
MP and EMP-NP algorithms, under the same framework and parameters. The
curves are computed using parameter sets 1 and 2. We observe a good fit of the
implied volatility curves for both approaches. In particular, the right wing is nearly
perfectly matched. The greatest difference is observed in the left wing and for the
largest value of β = 0.8.
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Figure 3: Normal implied volatility curves in bp computed using parameter set 1.
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Figure 4: Normal implied volatility curves in bp computed using parameter set 2.

Similar results are observed in Tables 4 and 5, which show implied volatilities for
parameter sets 3 and 4. Once again, the largest deviation in values is observed in
the left wing, which is still reasonable given that we are using an arbitrage free
approximation. In particular, for parameter set 3 we observe a better fit for the
EMP-MP algorithm at all points considered. This demonstrates the influence of
matching the entire local volatility curve on implied volatilities—even though the
EMP-NP algorithm yields a better fit to the local volatility function in the area
up to 3f , larger strikes have an impact on the resulting implied volatility.

Remark 6.1. Note that the matching algorithms do not necessarily guarantee that
the resulting value of ρ is bounded by −1 and 1. To ensure that the nSABR models
are arbitrage free we imposed an additional bound of 0.999 on the absolute value
of ρ.
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β = 0.2 β = 0.8

x dZABR EMP-MP EMP-NP dZABR EMP-MP EMP-NP
0.5f 21.14 18.12 17.76 19.14 18.88 17.29
0.75f 21.49 19.67 19.27 20.37 20.78 19.07
f 22.19 20.96 20.73 21.85 22.35 20.89

1.5f 25.98 25.11 25.15 25.57 25.95 24.96
2f 30.96 30.22 30.22 29.83 30.15 29.18
3f 40.90 40.17 40.02 38.62 38.69 37.33
4f 50.30 49.50 49.19 47.23 46.86 45.00

Table 4: Normal implied volatility in bp for the dZABR model computed using
parameter set 3 in comparison with the normal implied volatilities generated by
EMP.

β = 0.2 β = 0.8

x dZABR EMP-MP EMP-NP dZABR EMP-MP EMP-NP
0.5f 21.20 22.58 21.18 20.28 25.18 20.13
0.75f 18.69 19.59 18.74 19.89 22.60 19.56
f 16.83 16.87 17.03 19.91 20.16 20.05

1.5f 18.37 17.55 18.99 22.10 19.95 23.25
2f 23.33 22.48 23.94 26.34 24.18 27.53
3f 33.80 32.85 34.15 36.28 33.92 36.29
4f 43.80 42.66 43.80 46.35 43.42 44.66

Table 5: Normal implied volatility in bp for the dZABR model computed using
parameter set 4 in comparison with the normal implied volatilities generated by
EMP.

6.3 Pricing of Interest Rate Derivatives

Having shown that the approximation techniques yield satisfactory results, we go
a step further and demonstrate the possible benefits for interest rate derivative
pricing. To demonstrate the advantages consider the following toy model:

6.3.1 Setup

For our concrete application we shall consider the 1y2y- and the 1y5y-swap rates
as underlying rates and model them using dZABR models. We assume that the
payment date corresponds to the exercise date T = 1. To show the additional
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1y2y 1y5y

f 0.003 0.005
α 0.0009 0.0015
ν 0.3 0.3
ρ −0.5 −0.7

Table 6: Parameters of the nSABR models used to generate sample data for swap
rates.

V1 V2 V3

β 0.4 0.4 0.5
γ 0.8 0.9 0.8
d 0.002 0.002 0.002

Table 7: Additional parameters for three versions of the dZABR model.

flexibility of using dZABR models in comparison to, for example, nSABR models,
we construct some sample data around the ATM values for each of the swap rates.
These sample points were constructed using the nSABR model with the parameters
presented in Table 6.

Next, we specify a few variations of the dZABR model for consideration. The
values for the additional parameters in each of the versions are presented in Table 7.
For each rate and each version the parameters α, ν and ρ are calibrated using
the ATM samples. To be more precise we use sample points from 70%-ATM to
130%-ATM in steps of 5%. In Figure 5 and Figure 6 we graph the corresponding
implied volatility curves for the rates. Call prices were computed using the explicit
formulas presented in [21]. In these figures the additional flexibility available for
controlling the wings is clearly visible.

To price the interest rate derivatives presented in Section 3 we must specify the
correlation structure between swap rates. Here we assume a single driving Brown-
ian motion for the stochastic volatility and impose a correlation structure between
the rates of the form  1 ω ρ1y2y

ω 1 ρ1y5y

ρ1y2y ρ1y5y 1

 .
Using the results described in Section 4, we evaluate vanilla and quadratic call
options on a basket of nSABR models. To determine the dynamics of the spread
we use the results of Hagan et al. [21] to express the spread, S(T ), of two nSABR
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Figure 5: Normal implied volatility curves in bp for the dZABR models calibrated
to the 1y2y swap rate.
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Figure 6: Normal implied volatility curves in bp for the dZABR models calibrated
to the 1y5y swap rate.
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models with parameters (f1, α1, ν1, ρ1) and (f2, α2, ν2, ρ2) as a nSABR model with
parameters given by

fs = f2 − f1,

αs =
√
α2

2 − 2ωα1α2 + α2
1,

νs =
1

α2
s

(α2
2ν2 − ωα1α2(ν1 + ν2) + α2

1ν1),

ρs =
1

αs
(α2ρ2 − α1ρ1).

These parameters are derived under the measure H at the exercise time T .

Remark 6.2. We note that these parameters are a rough approximation. For a more
precise approximation the additional terms Γ and κ of [21] must be considered.
Moreover, similar parameters may be computed for the weighted spread. For both
generalizations we refer to [21].

6.3.2 CMS Spreads

Using the method described in Section 4, we can price call options on the CMS
spread if we correctly specify the convexity coefficient. To determine the convexity
coefficient we follow the approach of Antonov [5] and assume a flat yield curve.
The convexity coefficients are then given by

λi =
Ti − T

2
,

with a complete derivation of this expression provided in Appendix A.4.

Having defined all necessary terms we use the parametrization presented in Table 6
to compute the implied volatility of a call on a 5y − 2y spread with a maturity
of 1 year. The correlation parameter ω was set to 0.5, and, in order to evaluate
the expectations, we used the explicit formulas of [21]. In Figure 7 the implied
volatility curves for all possible combinations of the dZABR rates are presented.
The additional correlation parameter ω was calibrated to match the area from
90%-ATM to 110%-ATM with steps of size 2%. Here, we clearly see how the
additional control of the wing of the swap rates allows good control of the wing of
the CMS spread. In particular, this is useful when the quality of the data in the
wings is questionable but the entire curve is required for risk management.

27



0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
strike

12

14

16

18

20

22

24

im
pl

ie
d 

vo
la

til
ity

CMS Spread
Original nSABR
dZABR V1 V1
dZABR V1 V2
dZABR V1 V3
dZABR V2 V1
dZABR V2 V2
dZABR V2 V3
dZABR V3 V1
dZABR V3 V2
dZABR V3 V3

Figure 7: Normal implied volatility curves in bp for a caplet on the CMS spread.
All possible combinations of the dZABR models specified in Table 7 are presented.

6.3.3 Mid-Curves

In a manner similar to that used above we approximate the convexity coefficients
as

λ̂i =
T + Ti − T1 − T2

2
.

Using the approach described in Section 4.3 we evaluate the call prices on mid-
curves. For the annuity factors we use further approximations and set the initial
values to be

Amc(0) ≈ T2 − T1

A1(0) ≈ T1 − T
A2(0) ≈ T2 − T.

In Table 8 implied volatilities are shown for selected combinations of the dZABR
models. Again, better control of the right wing is achieved. To visualize the effects,
we computed the implied volatility of the expectation of (3.4), i.e., without the
additional factor coming from Amc(0). The results are shown in Figure 8.
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Strikes dZABR V1 V1 dZABR V2 V2 dZABR V3 V3

20 231.0 230.8 230.7
40 121.8 121.7 121.6
60 48.0 48.1 48.2
80 23.4 23.3 23.2
100 18.6 18.2 17.6
150 19.3 18.1 16.6
190 22.0 20.4 18.4

Table 8: Normal implied volatility of a call on the mid-curve for selected combi-
nations of the dZABR models. All values are in bp.
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Figure 8: Normal implied volatility curves in bp for the caplet on the mid-curve
without scaling.

6.4 Explicit Probability Density Function

For our last numerical demonstration we investigate the accuracy of various ap-
proximating distributions using the methodology described in Section 5. To be
more precise, we compute the grid according to the framework described in [19]
and [16] and deduce an average probability density over these intervals. In the no-
tation of [19] this corresponds to the function (θj)j. For Johnson’s-SU distribution
and the NIG distribution we evaluated the corresponding mass over the interval.
The parameters of Johnson’s-SU distribution were computed using the algorithm
described in Section 5, and the NIG parameters were determined using the method
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provided in [14]. In Figure 9 the corresponding averaged probabilities are shown in
comparison with the original dZABR distribution and the approximated nSABR
distribution using the EMP-MP algorithm. The figures were generated using pa-
rameter set 2 of Table 6 with a slight modification of the maturity, which was set
to T = 1.
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Figure 9: Probability over grid intervals for parameter set 2 and maturity T = 1.

As can be seen the approximation yields very good results and manages to cap-
ture the shape of the original distribution. In particular, both approximating
distributions produce a nearly perfect fit to the nSABR model. The quality of
dZABR approximation is of the same order as the EMP nSABR approximation of
dZABR. From a practical perspective, however, this approach must be carefully
applied when considering larger maturities. In Figures 10 and 11 the results of
the approximations are shown for maturities T = 5 and T = 7, with all other
parameters remaining the same.
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Figure 10: Probability over grid intervals for parameter set 2 and maturity T = 5.
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Figure 11: Probability over grid intervals for parameter set 2 and maturity T = 7.
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Here, we observe that the Johnson distribution provides a better fit to the original
distribution than the NIG distribution. For larger maturities this approximation
is far from perfect—the corresponding moments are, however, perfectly matched.
This behaviour can only be explained if the underling distributions cannot be
characterized completely using only four moments. In particular, this implies
one of two possibilities. The first possibility is that the higher moments of the
distribution, which are not matched, become more important and should be taken
into account when matching the parameters. The other possibility is that the
underlying distribution may fall foul of the ‘moment problem’. To provide some
intuition, consider the first example provided in [13, Chapter 3.3.5] concerning the
standard log-normal distribution, of a random variable X, which has probability
density function

φlogN (x) =
1√
2πx

e−
log(x)2

2 for x ≥ 0.

It was shown that the standard lognormal distribution, as well as its modified
versions given by

φa(x) = φlogN (x)(1 + a sin(2π log(x)))

with a ∈ [−1, 1], all share the same moments, for all k, given by

E[Xk] = e
k2

2 .

The problem is that the moments of the log-normal distribution grow too quickly,
see [13, Theorem 3.3.25], where a sufficient condition for good behaviour is given
by

lim sup
k

E[X2k]
1
2k

2k
= r <∞. (6.1)

Considering the leading order of the first four moments of the nSABR model,
provided in Section 5, we assume the moments are of the form

E[Xk] = O(x
(k−1)k

2 ) = O(eν̃
2t

(k−1)k
2 ),

which does not obey the condition in (6.1). In particular, the growth of the
moments increases with increasing maturity, influencing the speed of divergence.
This may be translated into the quality of the matching algorithm, explaining the
good fit for small maturities and the increasing discrepancies for larger maturities.

In conclusion, this suggests that our approach may not be universally applicable.
In particular, when considering larger maturities the results must be analysed
carefully, requiring a possible change of the matching algorithm to ensure the
best fit. For small maturities, however, this approach can yield very good results,
which allows for closed-form formulas describing the distribution and characteristic
functions.
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7 Conclusion

In this paper we have considered the setting of general stochastic volatility models
as introduced by [16]. We have extended this work to allow pricing and calibration
of multi-rate interest rate derivatives. Effective Markovian Projection was used
with the normal SABR model acting as a reference model. This enabled us to
apply the general setting to CMS spread and mid-curve options. Using a moment
matching method based on Johnson distributions we were also able to make use
of closed form solutions for pricing.

Future research will entail applying the Effective Markovian Projection method to
non-parametric local stochastic volatility models with further application of these
techniques for pricing derivatives.

A Appendix

A.1 Derivation of Classic Markovian Projection for gen-
eral SABR

We adapt classical Markovian projection in the setting of the Heston model, see
[6, 27], by following the same approach as used for the standard SABR model,
see [26]. Since the derivation is very similar to that found in [6], we only present
the main ideas and results.

We use the same notation as in Section 2.2. Specifically, we consider the scaled
stochastic volatility ut := vt/vt0 , with this scaling applied to the stochastic volatil-
ity processes ui, i ∈ {1, 2}, as well. This means that we have ut0 = ui,t0 = 1. We
start by considering the local volatility model

dFt = σ(t)dB
(1)
t

with the Brownian motion defined in (2.4) and the local volatility function in (2.5).
Imposing the desired form of (2.3) onto this model we can conclude

u2
t = σ2(t)/C(Ft)

2 ≈ (p2
1u

2
1,t + p2

2u
2
2,t − 2ρp1p2u1,tu2,t)/p

2

where we apply a freezing of the forward processes Fi,t, i ∈ {1, 2}, and use the
abbreviations

p2 = p2
1 + p2

2 − 2ρp1p2, pi = vi,t0Ci(fi), qi = vi,t0C
′
i(fi).
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For the case of a displaced diffusion model we use C(x) = p + q(x − f) and to
determine the parameters we consider the expression

E[u2
t |Ft = x]︸ ︷︷ ︸

=:I1

·C2(x) = E[σ2(t)|Ft = x]︸ ︷︷ ︸
=:I2

. (A.1)

To compute the conditional expectations, Taylor series approximations are applied.
The terms in the expression for σ(·) are of the form ui,tuj,tCi,tCj,t, and for u2

t they
are of the form ui,tuj,t. Thus, by expanding around fi, fj, ui,t0 = 1 and uj,t0 = 1
we get

ui,tuj,tCi,t(Fi,t)Cj,t(Fj,t) ≈ C(fi)C(fj)

+(Fi,t − fi)C ′(fi)C(fj) + (Fj,t − fj)Ci(fi)C ′j(fj)
+(ui,t − 1)Ci(fi)Cj(fj) + (uj,t − 1)Ci(fi)Cj(fj)

and for ui,tuj,t we have

ui,tuj,t ≈ 1 + (ui,t − 1) + (uj,t − 1).

Next, we apply a Gaussian approximations by setting

dF̄t = p dB̄
(1)
t

dF̄i,t = pi dW
(1)
i,t

dūi,t = νi dW
(2)
i,t

dB̄
(1)
t =

(
p1 dW

(1)
1,t − p2 dW

(1)
2,t

)
/p

with correlations given by

d〈B̄(1),W
(1)
1 〉t = (p1 − p2ρ)/p︸ ︷︷ ︸

=:ρ1

dt, d〈B̄(1),W
(1)
2 〉t = (p1ρ− p2)/p︸ ︷︷ ︸

=:ρ2

dt,

and

d〈B̄(1), dW
(2)
i 〉t = (p1γ1i − p2γ2i)/p︸ ︷︷ ︸

=:ρ̃i

dt, i ∈ {1, 2}

Then, we derive approximations of the form:

E[Fi,t − fi|Ft = x] ≈ E[F̄i,t − fi|F̄t = x]

E[ui,t − 1|Ft = x] ≈ E[ūi,t − 1|F̄t = x].
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This leads to the expressions

E[Fi,t − fi|Ft = x] ≈ piρi
p

(x− f)

E[ui,t − 1|Ft = x] ≈ νiρ̃i
p

(x− f)

and finally,

E[σ2(t)|Ft = x] ≈ p2 + (x− f)K1

E[u2
t |Ft = x] ≈ 1 + (x− f)K2.

with

K1 = 2(p2
1(q1ρ1 + ν1ρ̃1) + p2

2(q2ρ2 + ν2ρ̃2)− p1p2ρ(q1ρ1 + q2ρ2 + ν1ρ̃1 + ν2ρ̃2))/p

K2 = 2(ν1p1(p1 − p2ρ)ρ̃1 + ν2p2(p2 − p1ρ)ρ̃2)/p3.

From (A.1) we have

C(x) ≈

√
p2 + (x− f)K1

1 + (x− f)K2

.

Evaluating this function and its first derivative at the initial value yields

C(f) = p and C ′(f) = q = (p2
1q1ρ1 + p2

2q2ρ2 − p1p2ρq1ρ1 − p1p2ρq2ρ2)/p2.

From the variance process given by

u2
t = (p1u

2
1,t + p2

2u
2
2,t − 2γp1p2u1,tu2,t)/p

2

we deduce, via the Itō formula, that

dut
ut

=
(
p1ν1ρ1 dW

(2)
1,t − p2ν2ρ2 dW

(2)
2,t

)
/p.

This leads to the result

dut = νutdB
(2)
t

with

ν =
√

(p1ν1ρ1)2 + (p2ν2ρ2)2 − 2ξp1p2ν1ν2ρ1ρ2/p

γ =
(
p2

1ν1ρ1γ11 + p2
2ν2ρ2γ22 − p1p2ν1ρ1γ12 − p1p2ν2ρ2γ21

)
/(νp2)

dB
(2)
t = (νp)−1

(
p1ν1ρ1 dW

(2)
1,t − p2ν2ρ2 dW

(2)
2,t

)
.
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A.2 Coefficients for General Stochastic Volatility Models

Here we recall the necessary assumptions that apply to Theorem 1 of [16].

Assumption I. The drift term, µ(·), is differentiable, with derivative µ′(·), and a
solution Y (t, t0, α) to the following PDE exists:

∂tY (t, t0, α) = µ(Y (t, t0, α))

Y (t, t, α) = α

Y (t0, t0, α) = α.

Assumption II. The function Y is differentiable and has an inverse function
y(t0, t, a) such that

Y (t, t0, α) = a ⇔ α = y(t0, t, a).

Assumption III. The functions

X(t, t0, α) = ∂αY (t, t0, α), Z(t, u) = Z(t, u, t0, α) = y(u, t, Y (t, t0, α)),

z(F ) =

∫ F

f

1

C(u)
du, s(t) = S(t0, t, α) =

∫ t

t0

Z(t, u, t0, α)2 du

and

ψ(t, u, Z) = ν
(
Z(t, u)

)
Z(t, u)X

(
t, u, Z(t, u)

)
are well defined, X

(
t, u, Z(t, u)

)−1
exists, and the following integral functions are

defined:

I1(t) = ρ

∫ t

t0

ψ(t, u, Z) du,

I2(t) = 2

∫ t

t0

ν
(
Z(t, u)

)2
X
(
t, u, Z(t, u)

)2
∫ t

u

Z(t, v)X
(
t, v, Z(t, v)

)−1
dv du,

I3(t) = ρ

∫ t

t0

ψ(t, u, Z)

∫ t

u

Z(t, v)X
(
t, v, Z(t, v)

)−1
dv du,

I4(t) = ρ2

∫ t

t0

ψ(t, u, Z)

∫ t

u

∂Z

(
ψ(t, v, Z)

)
X
(
t, v, Z(t, v)

)−1
dv du,

I5(t) =

∫ t

t0

ν
(
Z(t, u)

)2
X
(
t, u, Z(t, u)

)2
du.

Assumption IV. The function C(·) is differentiable at f , with derivative denoted
by C ′(·).
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Given these assumptions the coefficients of Equation (2.9) are given by

a(t) = Y (t, t0, α), c(t) = b(t)2 +
1

a(t)s(t)2
I2(t)− 6b(t)

s(t)2
I3(t) +

2

a(t)s(t)2
I4(t),

b(t) =
1

a(t)s(t)
I1(t), G(t) = −s(t)c(t)− s(t)b(t)Γ0 +

1

a2
I5(t)

and

Γ0 = −C ′(f).

A.3 Basket Dynamics under suitable Numeraire

Let us consider the dynamics of the forward rate Ft given by a general SABR
model 

dFt = utC(Ft) dWt, Ft0 = f,

dut = νut dZt, ut0 = 1,

with d〈Wt, Zt〉t = γ dt.

Let θ denote the corresponding model parameters, for instance after calibrating
the model to given market data. When we consider forward swap rates we must
determine each convexity-adjusted forward swap rate F̃t. Given payment date Tp
in the future, the convexity adjusted rate at Tp is determined by the conditional
expectation of Ft with regard to the Tp-forward measure, thus,

F̃t = ETp [Ft].

The forward rate Ft is not a martingale with respect to the Tp-forward measure
but the convexity adjusted rate F̃t is. Thus, given a parametrized model for
Ft with model parameters θ we calibrate the respective model for F̃t and get
model parameters θ̃. This is similar to the method applied for the consideration
in Section 3.3

Now, if we consider basket options we can consider each forward rate Fi,t to be
the convexity adjusted forward rate F̃i,t and safely assume that the corresponding
dynamics are martingale, i.e., driftless with regard to the Tp-forward measure.
Then, we proceed to price options on the basket by considering the basket for the
driftless rates F̃i,t.

A.4 Convexity Coefficients

To apply the pricing formulas of Section 3 we need to deduce the interdependence
between the rates and the annuity expressed in terms of the convexity coefficients.
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Due to the currently low interest regime, for our examples we do this by imposing
the simplest form of a flat yield curve structure as in [5], i.e.,

DF (t, T ) = e−(T−t)x(t).

Furthermore, we assume linear dependence of the functions on the factor x, which
means that

DF (t, T ) ≈ 1− (T − t)x(t) +O(x2).

Using the continuous representation of the annuity A(t, T1, T2) we can approximate

A(t, T1, T2) ≈
∫ T2

T1

DF (t, u) du ≈
∫ T2

T1

1− (u− t)x(t) +O(x2) du

= (T2 − T1)− x(t)

∫ T2

T1

(u− t) du+O(x2),

and can further deduce the linear dependence of the swap rates R(t, T1, T2) on the
factor x as

R(t, T1, T2) =
x(t)(T2 − T1)

(T2 − T1)− x(t)
∫ T2
T1

(u− t) du
+O(x2) = x(t) +O(x2). (A.2)

With this we can express the dependence of the annuity on the rates as

A(t, T1, T2) ≈ (T2 − T1)−R(t, T1, T2)

∫ T2

T1

(u− t) du+O(x2).

To evaluate the convexity coefficients let us note that the desired terms are gen-
erally given by the form

M(x(t), x(s)) =
(a+ b(t)x(t))(c+ d(s)x(s))

(c+ d(t)x(t))(a+ b(s)x(s))

≈ 1 +
cb(t)− ad(t)

ac
x(t) +

ad(s)− cb(s)
ac

x(s) +O(x2).

(A.3)
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For our concrete application this yields

Mi(x(T ), x(t)) =
Li(t)

Li(T )
=
Ai(t)DF (T, T0)

Ai(T )DF (t, T0)

≈
(1− (T0 − T )x(T ))((Ti − T0)− x(t)

∫ Ti
T0

(u− t) du)

((Ti − T0)− x(T )
∫ Ti
T0

(u− T ) du)(1− (T0 − t)x(t))

≈ 1 +
−τi(T0 − T ) +

∫ Ti
T0

(u− T ) du

τi
x(T ) +

−
∫ Ti
T0

(u− t) du+ τi(T0 − t)
τi

x(t)

≈ 1 +

∫ Ti
T0
u du− τiT0

τi
(x(T )− x(t)).

where we set τi = Ti−T0. This means we can approximate the convexity coefficients
by

λi =
1

τi

∫ Ti

T0

u du− T0.

For the mid-curve options the convexity coefficient becomes

M̂ i
T (x(T ), x(0)) =

Amc(T )Ai(0)

Ai(T )Amc(0)

≈
((T2 − T1)− x(T )

∫ T2
T1

(u− T ) du)((Ti − T0)− x(0)
∫ Ti
T0
u du)

((Ti − T0)− x(T )
∫ Ti
T0

(u− T ) du)((T2 − T1)− x(0)
∫ T2
T1
u du)

≈ 1 +
τ21

∫ Ti
T0
u du− τi

∫ T2
T1
u du

τ21τi
(x(T )− x(0)).

This means we have

λ̂i =
τ21

∫ Ti
T0
u du− τi

∫ T2
T1
u du

τ21τi
.
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