
Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 21/07

D. Gaul, K. Klamroth and M. Stiglmayr

Event-based MILP models for ride-hailing
applications

March 1, 2021

http://www.imacm.uni-wuppertal.de

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Event-based MILP models for ride-hailing applications

Daniela Gaula,1, Kathrin Klamrotha, Michael Stiglmayra

aSchool of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal,
Germany

Abstract

Ride-hailing services require efficient optimization algorithms to simultaneously
plan routes and pool users in shared rides. We consider a static dial-a-ride prob-
lem (DARP) where a series of origin-destination requests have to be assigned to
routes of a fleet of vehicles. Thereby, all requests have associated time windows
for pick-up and delivery, and may be denied if they can not be serviced in rea-
sonable time or at reasonable cost. Rather than using a spatial representation of
the transportation network we suggest an event-based formulation of the prob-
lem. While the corresponding MILP formulations require more variables than
standard models, they have the advantage that capacity, pairing and precedence
constraints are handled implicitly. The approach is tested and validated using
a standard IP-solver on benchmark data from the literature. Moreover, the im-
pact of, and the trade-off between, different optimization goals is evaluated on
a case study in the city of Wuppertal (Germany).

Keywords: ride-hailing, dial-a-ride problem, mixed-integer programming,
event-based graph representation, on-demand transportation services,
weighted-sum objective

1. Introduction

Cities are increasingly suffering from particulate pollution and congestion. As a
consequence, modern concepts for traffic management and transportation plan-
ning have to compromise between customer satisfaction and economical and
ecological criteria. One way to address these challenges is the concept of ride-
hailing: an ‘on-demand ride-hailing service’ is a taxi-like service, typically op-
erated by mini-buses, where users submit pick-up and drop-off locations via
smartphone. Users with similar origin or destination are assigned to the same
ride whenever this is economically or ecologically useful. Since rides may be

Email addresses: gaul@math.uni-wuppertal.de (Daniela Gaul),
klamroth@math.uni-wuppertal.de (Kathrin Klamroth), stiglmayr@math.uni-wuppertal.de
(Michael Stiglmayr)

1Corresponding author.

March 1, 2021

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

shared, users may have to accept longer ride times. In exchange, they can be
offered lower fares.

To encourage people to use ride-hailing services, an efficient and fair route
planning is of central importance. From a modelling perspective, the dial-a-
ride problem (DARP) consists of scheduling transportation requests with given
pick-up and delivery times and assigning them to a set of vehicle routes. Com-
mon optimization objectives are to accept as many user requests as possible, to
minimize the overall routing costs, and to minimize the maximum and/or the
total waiting times and ride times. For an individual user request, the following
options can be considered:

• the request may be integrated (optimally) in an already existing tour
(which can be modified by the new request),

• the request may initiate a new tour (operated by an additional vehicle),
or

• the request may be denied.

The DARP is motivated by a variety of real-life applications. Dial-a-ride sys-
tems originated as door-to-door transportation, primarily in rural areas, where
public transport is rarely available with buses going only a couple of times a day.
Another application occurs in health care transport: Elderly, injured or disabled
persons are often not able to drive on their own or to use public transport, and
dial-a-ride services are a convenient alternative to expensive taxi services. Re-
cently, several so-called ‘on-demand ride-hailing services’ have emerged. Promi-
nent examples are Uber2, DiDi Chuxing3, Lyft4 or moia5. Ride-hailing ser-
vices complement public transport and are usually established in urban areas.
They are an alternative to motorized private transport and thus help to reduce
the number of vehicles in the cities. This paper is motivated by a particular
ride-hailing service that was established in the city of Wuppertal (Germany) in
collaboration with the project bergisch.smart6. This ride-hailing service is run
by the local public transport provider and is designed to complement the bus
service.

In this paper, we focus on the static DARP assuming that all user requests
are known in advance, i.e. before the DARP is solved. This is in contrast to
the dynamic DARP where requests are revealed during the day and vehicle
routes are updated whenever a new request arrives. While the static DARP is
important on its own right and most research focuses on the static DARP, see
e. g. Ho et al. (2018), we note that static DARP models can also be extended
to the dynamic scenario by using a rolling-horizon strategy.

2https://www.uber.com/de/en/ride/uberpool/
3https://www.didiglobal.com/travel-service/taxi
4https://www.lyft.com/rider
5https://www.moia.io/en/how-it-works
6https://www.bergischsmartmobility.de/en/the-project/

2

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

2. Literature Review

The following literature review focuses specifically on variants of the static multi-
vehicle dial-a-ride problem with time windows. For a broader review the reader
is referred to Cordeau and Laporte (2007) who cover research on the DARP up
to 2007, and to Molenbruch et al. (2017) or Ho et al. (2018) for more recent
surveys.

Early work is carried out by Jaw et al. (1986), who develop one of the first
heuristics for the multi-vehicle DARP. Depending on the users’ earliest possi-
ble pick-up times, the heuristic determines the cheapest insertion position in
an existing route in terms of user satisfaction and operator costs. Desrosiers
et al. (1991), Dumas et al. (1989) and Ioachim et al. (1995) first identify groups
of users to be served within the same area and time. In a second step, these
‘clusters’ are combined to obtain feasible vehicle routes. This decomposition ap-
proach, however, leads in general to suboptimal solutions. Cordeau and Laporte
(2003) are the first to apply tabu search to the DARP. In doing so they make
use of a simple neighborhood generation technique by moving requests from
one route to another. Their reported computational results on real-life data as
well as on randomly generated instances validate the efficiency of the heuristic.
Recent work on the static multi-vehicle DARP related to tabu search is based
on Cordeau and Laporte (2003), see, for example, Detti et al. (2017); Guerriero
et al. (2013); Kirchler and Calvo (2013); Paquette et al. (2013). Cordeau (2006)
is, to the best of our knowledge, the first to apply a branch-and-cut (B&C) algo-
rithm to the DARP. In addition to valid inequalities derived from the traveling
salesman problem, the vehicle routing problem, and the pick-up and delivery
problem, new valid inequalities are added as cuts to a mixed-integer linear pro-
gramming (MILP) formulation of the DARP. While the MILP model of Cordeau
(2006) is based on three-index variables, and is a standard formulation of the
basic DARP that has been used as well for further problem extensions (see Ho
et al. (2018)), Ropke et al. (2007) propose an alternative MILP formulation of
the DARP using two-index variables. Furthermore, Ropke et al. (2007) derive
three more classes of valid inequalities and combine them with some of the cuts
presented by Cordeau (2006) to develop a branch-cut-and-price (BCP) algo-
rithm. Some of these inequalities are employed in more recent works on more
complex versions of the DARP, see, for example, Braekers et al. (2014); Parragh
(2011). The former work proposes a B&C algorithm to exactly solve small-sized
instances as well as a deteministic annealing meta-heuristic for larger problem
instances, while Parragh (2011) proposes deterministic annealing and insertion
heuristics, respectively. There exist several exact solution approaches that are
based on branch-and-bound (B&B) frameworks. For example, Cortés et al.
(2010) combine B&C and Bender’s decomposition to solve a DARP that allows
users to swap vehicles at specific locations during a trip. Liu et al. (2015) devise
a B&C algorithm and formulate two different models for a DARP with multiple
trips, heterogeneous vehicles and configurable vehicle capacity. They introduce
eight families of valid inequalities to strengthen the models. Qu and Bard (2015)
propose an exact method based on BCP with heterogeneous vehicles and con-

3

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

figurable vehicle types. Gschwind and Irnich (2015) develop a new exact BCP
algorithm for DARP which outperforms the B&C algorithm suggested by Ropke
et al. (2007). They show that their algorithm is capable of solving an instance
with 8 vehicles and 96 users which is, to the best of our knowledge, to date the
largest instance of the standard DARP solved by an exact method.

Since exact branching based procedures are usually limited to small to
medium-sized instances, there has been some work on hybridizing B&B-like
methods with heuristics. For example, Hu and Chang (2014) apply a branch-
and-price (B&P) algorithm to a DARP with time-dependent travel times, in
which the pricing subproblem is solved by large neighborhood search. As a side
result, they observe that the length of time windows can have a significant im-
pact on the size of the fleet, the objective function value, the CPU time, the
average ride time or the average pick-up time delay. While exact solution ap-
proaches are often based on B&B, at the level of heuristics and meta-heuristics
there is a wide set of methods that can be applied. Jorgensen et al. (2007)
propose an algorithm which assigns passengers to vehicles using a genetic al-
gorithm. In a second step, routes are constructed sequentially by means of
a nearest neighbor procedure. Genetic algorithms are also used by Cubillos
et al. (2009), who obtain slightly better results than Jorgensen et al. (2007).
Atahran et al. (2014) devise a genetic algorithm within a multi-objective frame-
work. Belhaiza (2017) and Belhaiza (2019) combine genetic crossover operators
with variable neighborhood search and adaptive large neighborhood search, re-
spectively. A hybrid genetic algorithm is also developed by Masmoudi et al.
(2017), who according to Ho et al. (2018), achieve the second-best results on
benchmark instances of the standard DARP. Hosni et al. (2014) present a MILP
formulation which is then decomposed into subproblems using Lagrangian re-
laxation. Feasible solutions are found by modifying the subproblems in a way
that generates a minimal incremental cost in terms of the objective function.
Gschwind and Drexl (2019) develop a meta-heuristic solution method for the
DARP, which is at the moment probably the most efficient heuristic method to
solve the standard DARP. They adopt an adaptive large neighborhood method
that was developed by Ropke and Pisinger (2006) for the pick-up and delivery
problem with time windows. The resulting algorithm integrates a dynamic pro-
gramming algorithm into large neighborhood search. Souza et al. (2020) present
a simple heuristic based on variable neighborhood search combined with a set
covering strategy. A heuristic repair method based on a greedy strategy, that
reduces the infeasibility of infeasible intital routes is developed by Chen et al.
(2020). Their repair method improves about 50% of the fixing ability of a local
search operator.

While most of the literature on the DARP focuses on the single-objective
DARP, the DARP is examined from a multi-objective optimization perspective
as well. As stated by Ho et al. (2018), this line of research can be divided
into three main categories: use of a weighted sum objective, a lexicographic
approach and determination of (an approximation of) the Pareto front, the set
of all non-dominated solutions. Weighted sum objectives have been used e. g. by
Jorgensen et al. (2007); Melachrinoudis et al. (2007); Mauri et al. (2009); Kirch-

4

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

ler and Calvo (2013) or Bongiovanni et al. (2019). Next to the customers’ total
transportation time, which is a common objective in single-objective DARPs,
the weighted sum objective introduced by Jorgensen et al. (2007) is composed
of the total excess ride time, the customers’ waiting time, the drivers’ work
time as well as several penalty functions for the violation of constraints. The
weights on these criteria are chosen with respect to the relative importance of
the criteria from a user-perspective. While the methods to solve DARP with a
weighted sum objective range from a genetic algorithm (Jorgensen et al. (2007)),
to tabu search (Melachrinoudis et al. (2007); Kirchler and Calvo (2013)), simu-
lated annealing (Mauri et al. (2009)) or B&C (Bongiovanni et al. (2019)), most
of the authors either adapt the weights introduced by Jorgensen et al. (2007) or
choose them with respect to individual assessments of their relative importance.
Garaix et al. (2010); Schilde et al. (2014) and Luo et al. (2019) consider a lex-
icographic ordering of the objective functions w.r.t. their relative importance.
In this context, Luo et al. (2019) have proposed a two-phase BCP-algorithm
and a strong-trip based model. The model is based on a set of nondominated
trips that are enumerated by a label-setting algorithm in the first phase, while
in the second phase the model is decomposed by Benders and solved using BCP.
The Pareto front is examined e. g. by Parragh et al. (2009); Zidi et al. (2012);
Chevrier et al. (2012); Paquette et al. (2013); Atahran et al. (2014); Hu et al.
(2019) or Viana et al. (2019). A comparison of six evolutionary algorithms to
solve the multi-objevtive DARP is provided by Guerreiro et al. (2020).

Contribution. In this paper we suggest an event-based formulation of ride-
hailing problems which is based on an abstract graph model and, in contrast
to other approaches, has the advantage of implicitly encoding vehicle capacities
as well as pairing and precedence constraints. The event-based graph model
is the basis for two alternative mixed-integer linear programming formulations
that can be distinguished by the approach towards handling ride time and time
window constraints. The model has the potential to be used in a rolling-horizon
strategy for the dynamic version of the DARP, as it can serve to solve small-sized
benchmark instances in a short amount of time. In particular, we show that
both suggested MILP formulations outperform a standard formulation from the
literature. Furthermore, conflicting optimization goals reflecting, e.g., economic
efficiency and customer satisfaction are combined into weighted sum objectives.
In addition, we distinguish between average case and worst case formulations.
The impact of these objective functions is tested using artificial request data for
the city of Wuppertal, Germany.

This paper is organized as follows. After a formal introduction of the problem
in Section 3, the event-based graph and based on that two variants of an MILP
formulation of the static DARP are presentend in Section 4. The models are
compared and tested using CPLEX, in Section 5. The paper is concluded with
a summary and some ideas for future research in Section 6.

5

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

3. Problem Description

The DARP considered in this paper is defined as follows: Let n be the number
of users submitting a transport request. Each request (submitted by a user)
i ∈ R := {1, . . . , n} specifies a pick-up location i+ and a drop-off location i−.
The sets of pick-up and drop-off locations are denoted by P := {1+, . . . , n+}
and D := {1−, . . . , n−}, respectively. A homogeneous fleet of vehicles K with
capacity Q is situated at the vehicle depot, which is denoted by 0. A number
of requested seats qi ≥ 1 and a service duration of si ≥ 0 are associated with
each request i ∈ R and we set qi+ = qi− := qi, si+ = si− := si and q0 := 0 as
well as s0 := 0. The earliest and latest time at which service may start at a
request location j ∈ P ∪D∪{0} is given by ej and `j , respectively, so that each
request location has an associated time window [ej , `j]. At the same time, the
time window [e0, `0] corresponding to the depot contains information about the
overall start of service e0 and the maximum duration of service T := `0 − e0.
The maximum ride time corresponding to request i ∈ R is denoted by Li. A
feasible solution to the DARP consists of at most |K| vehicle routes which start
and end at the depot. If a user is served by vehicle k ∈ K, the user’s pick-
up and drop-off location both have to be contained in this order in vehicle k’s
route. The vehicle capacity of Q may not be exceeded at any time. The start
of service at every location has to be within the time windows. It is possible to
reach a location earlier than the start of service and wait. At each location j, a
service duration of sj minutes is needed for users to enter or leave the vehicle.
In addition, the acceptable ride time of each user i is bounded from above by
Li. Vehicles have to return to the depot at least T minutes after the time of the
overall start of service e0. We note that this is a common setting for the static
DARP, see, e.g., Gschwind and Drexl (2019); Ropke et al. (2007). Moreover,
dial-a-ride problems are often characterized by conflicting objectives. In this
paper, we focus on

• economic efficiency, e.g., minimization of routing costs, and

• user experience, e.g., minimization of unfulfilled user requests, waiting
time and ride time,

and combine these objectives into an overall weighted sum objective. Note that
this weighted sum objective can be interpreted as a scalarization of a multi-
objective model in which all objective functions are equitably considered. Con-
sequently, by variation of the weights every supported efficient solution can be
determined as a solution of the weighted sum scalarization, see e.g. Ehrgott
(2005). Other options would be to consider a lexicographic multi-objective
model or to treat one objective function, e.g., economic efficiency, as objective
and to impose constraints on the other to ensure a satisfactory user experience,
which corresponds to the ε-constraint scalarization.

Mixed integer linear programming formulations based on these assumptions
are presented in the following section.

6

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

4. Mixed Integer Linear Programming Formulations

Classical models for DARP are based on a directed graph that can be con-
structed in a straight-forward way by identifying all pick-up and drop-off loca-
tions and the depot by nodes in a complete directed graph, see e.g. Cordeau
(2006) or Ropke et al. (2007). In contrast to this, we suggest an event-based
graph G = (V,A) in which the node set V consists of Q-tuples representing
feasible user allocations together with information on the most recent pickup or
drop-off. As will be explained later, this modelling approach has the advantage
that many of the complicating routing and pairing constraints can be encoded
directly in the network structure: vehicle capacity, pairing (i.e. users’ pick-up
and drop-off locations need to be served by the same vehicle) and precedence
constraints (i.e. users’ pick-up locations need to be reached before their drop-
off locations are reached) are implicitly incorporated in the event-based graph.
Moreover, a directed arc a ∈ A is only introduced between a pair of nodes if the
corresponding sequence of events is feasible w.r.t. the corresponding user allo-
cation. Thus, a tour in G is feasible if it does not violate constraints regarding
time windows or ride times.

Using the event-based graph, DARP can be modeled as a variant of a min-
imum cost flow problem with unit flows and with additional constraints. In
particular, we consider circulation flows in G and identify the depot with the
source and the sink of a minimum cost flow problem. Each dicycle flow in G
then represents one vehicle’s tour.

4.1. Event-based graph model
The event-based MILP formulations presented in this paper are motivated by
the work of Bertsimas et al. (2019) who propose an optimization framework for
taxi routing, where only one passenger is transported at a time. Their algorithm
can handle more than 25, 000 users per hour. Bertsimas et al. (2019) propose a
graph-based formulation in which an arc (i, j) represents the decision to serve
passenger j directly after dropping off passenger i.

The allocation of users to a vehicle with capacity Q can be written as a
Q-tuple. Unassigned user slots (i.e., empty seats) are indicated by zeros. If,
for example, Q = 3 and two requests, request 1 and request 2 with q1 = q2 =
1, are assigned to the same vehicle, the user allocation may be, for instance,
represented by the tuple (2, 1, 0). Accordingly, an empty vehicle is represented
by (0, 0, 0). To additionally incorporate information about the most recent pick-
up or drop-off location visited, we write

(2+, 1, 0) or (2−, 1, 0),

if user 1 is seated and user 2 has just been picked-up or dropped-off, respectively.
Note that this encoding implicitly specifies the location of the vehicle since, in
this example, user 2 is picked-up at his or her pick-up location 2+, i.e., the 3-
tuple (2+, 1, 0) can be associated with the location 2+, and user 2 is dropped-off
at his or her drop-off location 2−, i.e., the 3-tuple (2−, 1, 0) can be associated
with the location 2−. The node 0 = (0, 0, 0) is associated with the depot.

7

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Since all permutations of such a Q-tuple specify the same user allocation, we
order the components of the Q-tuple such that the first component contains the
information regarding the last pick-up or drop-off stop and the remaining Q− 1
components are sorted in descending order. Users can only be placed together
in a vehicle if the total number of requested seats does not exceed the vehicle
capacity. This constraint limits the possible combinations of users in the vehicle
and hence the set of possible Q-tuples representing user allocations.

Now DARP can be represented by a directed graph G = (V,A), where the
node set V represents events rather than geographical locations. The set of
event nodes corresponds to the set of all feasible user allocations. The set of all
nodes that represent an event in which a request (or user) i ∈ R is picked up is
called the set of pick-up nodes and is given by

Vi+ :=

{
(v1, v2, . . . , vQ) : v1 = i+, vj ∈ R ∪ {0} \ {i} ∀j ∈ {2, . . . , Q},

(
vj > vj+1 ∨ vj+1 = 0

)
∀j ∈ {2, . . . , Q− 1},

Q∑

j=1

qvj ≤ Q
}
.

Similarly, the set of drop-off nodes corresponds to events where a request (or
user) i ∈ R is dropped off and is given by

Vi− :=

{
(v1, v2, . . . , vQ) : v1 = i−, vj ∈ R ∪ {0} \ {i} ∀j ∈ {2, . . . , Q},

(
vj > vj+1 ∨ vj+1 = 0

)
∀j ∈ {2, . . . , Q− 1},

Q∑

j=1

qvj ≤ Q
}
.

Note that for each request i ∈ R there is only one pick-up and one drop-off loca-
tion, but more than one potential pick-up node and drop-off node. Hence, there
is a unique mapping of nodes to locations, while a location may be associated
to many different nodes. For convenience, we write V0 := {0}. The overall set
of nodes V is then given by

V = V0 ∪
n⋃

i=1

Vi+ ∪
n⋃

i=1

Vi− .

The arc set A of G is defined by the set of possible transits between pairs of
event nodes in V . It is composed of six subsets, i.e.,

A =
6⋃

i=1

Ai,

where the subsets Ai, i = 1, . . . , 6 are defined as follows:

• Arcs that describe the transit from a pick-up node in a set Vi+ , i.e., from
a user i’s pick-up location, to a drop-off node in Vj− , i.e., to the drop-off

8

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

location of a user j, where j = i is possible, but where j may also be
another user from the current passengers in the vehicle:

A1 :=
{((

i+, v2, . . . , vQ
)
,
(
j−, w2, . . . , wQ

))
∈ V × V :

{j, w2, . . . , wQ} = {i, v2, . . . , vQ}
}
.

Note that such arcs reflect the case that the vehicle travels from a user i’s
pick-up location to a user j’s drop-off location, and all users except user
j (if there are any) remain seated.

• Arcs that describe the transit from a pick-up node in a set Vi+ , i.e., from
a user i’s pick-up location, to another pick-up node from a set Vj+ with
j 6= i, i.e., to another user j’s pick-up location:

A2 :=
{((

i+, v2, . . . , vQ−1, 0
)
,
(
j+, w2, . . . , wQ

))
∈ V × V :

{i, v2, . . . , vQ−1} = {w2, . . . , wQ}
}
.

Arcs in A2 thus represent the trip of the vehicle from a user i’s pick-up
location to another user j’s pick-up location, where user j additionally
enters the vehicle.

• Arcs that describe the transit from a drop-off node in a set Vi− , i.e., from
a user i’s drop-off location, to a pick-up node in a set Vj+ , j 6= i, i.e., to
another user j’s pick-up location:

A3 :=
{((

i−, v2, . . . , vQ
)
,
(
j+, v2, . . . , vQ

))
∈ V × V : i 6= j

}
.

• Arcs that describe the transit from a drop-off node in a set Vi− , i.e., from
a user i’s drop-off location, to a node in Vj− , j 6= i, i.e., to another user
j’s drop-off location:

A4 :=
{((

i−, v2, . . . , vQ
)
,
(
j−, w2, . . . , wQ−1, 0

))
∈ V × V :

{v2, . . . , vQ} = {j, w2, . . . , wQ−1}
}
.

Thus, the arcs in A4 reflect the case that a vehicle travels from a user i’s
drop-off location to a user j’s drop-off location, and all users except user
i remain in the vehicle until user j is dropped-off. In particular, user j
must already be in the vehicle when user i is dropped-off.

• Arcs that describe the transit from a drop-off node in a set Vi− , i.e., from
a user i’s drop-off location, to the depot:

A5 :=
{((

i−, 0, . . . , 0
)
, (0, . . . , 0)

)
∈ V × V

}
.

9

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

(0, 0, 0)

(
1+, 0, 0

) (
2+, 0, 0

) (
3+, 0, 0

)(
1−, 0, 0

) (
2−, 0, 0

) (
3−, 0, 0

)

(
2+, 1, 0

) (
1+, 2, 0

)

(
1−, 2, 0

) (
2−, 1, 0

)

Figure 1: Graph representation of an example with three users.

• Arcs that describe the transit from the depot to a pick-up node in a set
Vi+ , i.e., to a user i’s pick-up location:

A6 :=
{(

(0, . . . , 0),
(
i+, 0, . . . , 0

))
∈ V × V

}
.

Example 1. We give an example of the event-based graph G = (V,A) with
three users and vehicle capacity Q = 3. Let R = {1, 2, 3}, q1 = q2 = 2 and
q3 = 3. By the above definitions we obtain the graph illustrated in Figure 1.
Note that there are no nodes v ∈ V that simultaneously contain users 1 (i.e., 1+
or 1−) and 3 (i.e., 3+ or 3−) as the total number of requested seats specified by
these users exceeds the vehicle capacity. Similary, the seats requested by users
2 and 3 together exceed the vehicle capacity of three. Two feasible tours for a
vehicle in G are given, for example, by the dicycles

C1 =
{((

0, 0, 0
)
,
(
1+, 0, 0

))
,
((
1+, 0, 0

)
,
(
2+, 1, 0

))
,
((
2+, 1, 0

)
,
(
2−, 1, 0

))
,

((
2−, 1, 0

)
,
(
1−, 0, 0

))
,
((
1−, 0, 0

)
,
(
0, 0, 0

))}

and

C2 =
{((

0, 0, 0
)
,
(
3+, 0, 0

))
,
((
3+, 0, 0

)
,
(
3−, 0, 0

))
,
((
3−, 0, 0

)
,
(
0, 0, 0

))}
.

In order to evaluate the complexity of this event-based graph repsentation
of DARP, we first evaluate the respective cardinalities of the node set V and of
the arc set A. Note that the number of nodes and arcs in the event-based graph
model depends on the vehicle capacity, the number of users and the number
of requested seats per user. Given Q and n, the number of nodes and arcs is

10

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

maximal if all users request only one seat, i.e. if qi = 1 for all i ∈ R. In this
case, it is easy to see that

|V | = 1 + 2n

Q−1∑

j=0

(
n− 1

j

)

and

|A| = 2n+ n

Q−1∑

j=0

(
n− 1

j

)
(j + 1) + 3n (n− 1)

Q−2∑

j=0

(
n− 2

j

)

+
n(n− 1) · . . . · (n−Q)

(Q− 1)!
,

where we use the convention that
(
m
k

)
:= 0 when k > m.

From the above formulas, we deduce that the number of nodes is bounded
by O(nQ) for n ≥ Q and the number of arcs is bounded by O(nQ+1) for n ≥
Q + 1. This is in general considerably more than what is obtained when a
classical, geometrical DARP model on a complete directed graph is used, which
has only O(n) nodes and O(n2) arcs, see e.g. Cordeau (2006); Ropke et al.
(2007). However, in practice, ride-hailing services are usually operated by taxis
or mini-busses, so that Q ∈ {3, 6}. Moreover, the number of nodes and thereby
the number of arcs, reduce substantially if we do not consider the “worst-case-
scenario” qi = 1 for all i ∈ R, in which all combinations of requests are possible
user allocations in the vehicle. Besides that, the event-based formulation has
the clear advantage that important constraints like vehicle capacity constraints,
pairing constraints and precedence constraints that have to be formulated in
classical models are implicitly handled using the event-based graph model, as
will be seen in the next section.

4.2. Event-based MILP models
With the above definitions, DARP can be modeled as a minimum cost integer
flow problem with additional constraints, where both the source and the sink are
represented by the node 0. We will formulate corresponding MILP models in the
subsequent subsections. Therefore, we need the following additional parameters
and variables, which are also summarized in Tables 1 and 2.

Since each node in V can be associated with a unique request location j ∈
P ∪D ∪ {0}, we can associate a routing cost ca and a travel time ta with each
arc a = (v, w) ∈ A. More precisely, both values ca and ta are calculated by
evaluating the actual routing cost and travel time from the location associated
with v to the location associated with w. We assume that all routing costs
and all travel times are nonnegative and satisfy the triangle inequality. Finally,
let δin(v) := {(u,w) ∈ A : w = v} and δout(v) := {(u,w) ∈ A : u = v} denote
the set of incoming arcs of v and the set of outgoing arcs of v, respectively.
Moreover, for a ∈ A let the variable value xa = 1 indicate that arc a is used
by a vehicle, and let xa = 0 otherwise. Thus, a vehicle tour is represented by a

11

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Parameter Description

n number of transport requests
R set of transport requests

i+, i− pick-up and drop-off location of request i
P , D set of pick-up locations/requests, set of drop-off locations
K fleet of vehicles
Q vehicle capacity
qj load associated with location j
sj service duration associated with location j

[ej , `j] time window associated with location j
T maximum duration of service
Li maximum ride time associated with request i
V node set

Vi+ , Vi− set of pick-up nodes, set of drop-off nodes corresponding to request
i

A arc set
ca routing cost on arc a
ta travel time on arc a
ti travel time along the shortest path for request i

δin(v), δout(v) incoming arcs, outgoing arcs of node v

Table 1: List of parameters.

Variable Description

pi binary variable indicating if user i is transported or not
Bv continuous variable indicating the start of service time at node v
xa binary variable indicating if arc a is used or not
di excess ride time of user i w.r.t. ei−
dmax maximum excess ride time

Table 2: List of variables.

sequence of events in a dicycle C in G where xa = 1 for all a ∈ C. A request is
matched with a vehicle if the vehicle’s tour, i.e., the sequence of events in the
corresponding dicycle, contains the event of picking-up and dropping-off of the
corresponding user. Since we allow users’ requests to be denied, let the variable
value pi = 1 indicate that request i ∈ R is accepted, and let pi = 0 otherwise.
Let the variable Bv store the information on the beginning of service time at
node v ∈ V , which can be deduced from the variable values x and p. Recall
that the beginning of service time has to be within the associated time window
of the respective location of node v.

Based on the event-based graph model, we are now ready to formulate our
first MILP model for DARP.

12

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

4.3. Basic MILP for DARP
In this subsection, we propose an event-based mixed integer linear program for
DARP. First, we present a nonlinear mixed integer programming formulation,
which is based on the event-based graph model presented in Section 4.1 above.
In a second step, this model is transformed into an MILP by a reformulation of
time window and ride time constraints, i.e., constraints involving the variables
Bv, v ∈ V , using a big-M method.

The DARP can be formulated as the following nonliner mixed integer pro-
gram:

min
∑

a∈A
ca xa (1a)

s. t.
∑

a∈δin(v)
xa −

∑

a∈δout(v)
xa = 0 ∀v ∈ V, (1b)

∑

a∈δin(v)
v∈Vi+

xa = 1 ∀i ∈ R, (1c)

∑

a∈δout(0)
xa ≤ |K|, (1d)

ej ≤ Bv ≤ `j ∀j ∈ P ∪D ∪ {0}, v ∈ Vj (1e)

(Bw −Bv − si+)
∑

a∈δin(v)
xa

∑

a∈δin(w)

xa ≤ Li ∀i ∈ R, v ∈ Vi+ , w ∈ Vi− , (1f)

Bw ≥ (Bv + sv1 + t(v,w))x(v,w) ∀(v, w) ∈ A, (1g)
xa ∈ {0, 1} ∀a ∈ A, (1h)
Bv ≥ 0 ∀v ∈ V. (1i)

The objective function (1a) minimizes the total routing cost. While constraints
(1b) are flow conservation constraints, it is ensured by constraints (1c) that each
request i ∈ R is accepted and that exactly one node of all nodes which contain
the request’s pick-up location is reached by exactly one vehicle. Together with
constraints (1b) and (1c), the number of feasible dicycles in G is bounded from
above by the number of vehicles in constraints (1d). For all nodes in V the
start of service has to take place within the time window corresponding to the
associated location of the node, which is handled by constraints (1e). An upper
bound on the ride time is ensured by constraints (1f). Note that we only impose
a bound on the variables Bw, Bv, if both v ∈ Vi+ and w ∈ Vi− are in fact the
pick-up and drop-off nodes that are used to serve request i. Finally, constraints
(1g) define the difference in time needed to travel from one node to another.
Vehicle capacity, pairing and precedence constraints are ensured by the structure
of the underlying network.

This formulation is nonlinear due to constraints (1f) and (1g). In the follow-
ing MILP these constraints are substitued by a linearized reformulation:

13

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Model I.

min
∑

a∈A
ca xa (2a)

s. t. constraints (1b)− (1e)

Bw −Bv − si+ ≤ Li +Mi

(
1−

∑

a∈δin(v)
xa+ 1−

∑

a∈δin(w)

xa

)

∀i ∈ R, v ∈ Vi+ w ∈ Vi− , (2b)

Bw ≥ Bv + sv1 + t(v,w) − M̃v,w (1− x(v,w)) ∀(v, w) ∈ A, (2c)
xa ∈ {0, 1} ∀a ∈ A, (2d)
Bv ≥ 0 ∀v ∈ V, (2e)

whereMi ≥ `i−−ei+−Li−si+ and M̃v,w ≥ `v1−ew1+sv1+t(v,w) are sufficiently
large constants.

To include the option to deny requests in DARP, variables pi ∈ {0, 1}, i ∈ R
have to be added to Model I and constraints (1c) have to be changed to

∑

a∈δin(v)
v∈Vi+

xa = pi ∀i ∈ R. (3)

Hence, if a user is not picked-up (i.e., if pi = 0), then none of the nodes which
contain his or her pick-up location are traversed by any vehicle. Note that in
this case a reasonable objective function (see Section 4.5) has to penalize the
denial of user requests since otherwise an optimal solution is given by p = 0,
x = 0 and Bv = ev1 for all v ∈ V . In the computational experiments in Section 5
we consider both cases, i.e., the scenario that all users have to be served and
the scenario that some requests may be denied.

Assuming qi = 1 for all requests i ∈ R and n ≥ Q + 1 the total number of
variables in Model I can be bounded by O(nQ+1) with O(n2Q−1) constraints,
of which O(n2Q−1) constraints are ride time constraints (2b). If qi ∈ {2, . . . , Q}
for some requests, the number of variables and constraints decreases.

In each of the ride time constraints in Model I, the sums
∑
a∈δin(v) xa

and
∑
a∈δin(w) xa are evaluated. This is computationally expensive, as will be

demonstrated in the computational tests carried out in Section 5. By taking
advantage of the relationship between the pick-up and drop-off time windows
associated with request i, we show in the following how constraints (2b) can
be reformulated without using big-M constraints, resulting in a second MILP
formulation referred to as Model II.

4.4. Reformulation of time-related constraints
The MILP model presented in this subsection differs from the previous

model, Model I, in the formulation of time windows and ride time constraints.

14

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

In Model I, the ride time constraints are modeled as big-M constraints that are
used to deactivate the respective constraints for pick-up and drop-off nodes that
are not contained in a vehicle’s tour. By reformulating the time window con-
straints and using the relationship between earliest pick-up and latest drop-off
times, the numerically unfavorable big-M constraints can be replaced by sim-
pler constraints in the following model (Model II). This model is faster to solve
which is verified by the numerical experiments presented in Section 5.

In this model, the ride time constraints, which ensure that a user does not
spend more than Li minutes in the vehicle, are given by

Bw −Bv − si+ ≤ Li ∀i ∈ R, ∀v ∈ Vi+ , ∀w ∈ Vi− . (4)

To show that these constraints, together with a reformulation of constraints
(1e), reflect the modeling assumptions, we first observe that in general ap-
plications of DARP, as described for example in Cordeau (2006), users often
formulate inbound requests and outbound requests. In the first case, users spec-
ify a desired departure time from the origin, while in the case of an outbound
request, users specify a desired arrival time at the destination. In both cases
a time window is constructed around the desired time, so that we end up with
a pick-up time window for inbound requests and a drop-off time window for
outbound requests. Now the remaining time window is constructed as follows
(based on Cordeau (2006)): For an inbound request the drop-off time window
is given by the bounds

ei− = ei+ + si+ + ti and `i− = `i+ + si+ + Li, (5)

where ti denotes the direct travel time t(v,w) from a node v ∈ Vi+ to a node
w ∈ Vi− , i.e. ti = t(v,w) with v = (i+, 0, . . . , 0) and w = (i−, 0, . . . , 0). Similarly,
for an outbound request the pick-up time window is defined by

ei+ = ei− − Li − si+ and `i+ = `i− − ti − si+ . (6)

Secondly, we define the notion of an active node v ∈ V : We say that a node
v ∈ V is active if at least one of its incoming arcs is part of a dicycle flow, i.e.,
if ∑

a∈δin(v)
xa = 1.

Otherwise, we call v inactive. Note that due to constraints (1c), for each request
i ∈ R we have exactly one associated active pick-up node and one associated
active drop-off node. In case we include the option of denying user requests, i.e.
we use constraints (3) instead of constraints (1c) and add variables pi ∈ {0, 1},
i ∈ R to the MILP, each request either has exactly one active pick-up and drop-
off node (in this case we have pi = 1), or no associated active node at all (this
is the case when pi = 0).

Now, if both v and w in constraints (4) are active nodes, inequalities (4)
and (2b) coincide. In case both v and w are inactive, the values Bv, Bw can be
ignored in an interpretation of an optimal solution, as v and w are not contained

15

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

in any of the vehicle tours. Hence, the critical two cases are the cases where one
of the nodes is active and the other node is inactive. Let voff and von denote
the inactive and the active node from the set {v, w}, respectively. Then, we do
not want that Bvoff influences the value of Bvon in constraints (4):

Case 1: v is active, w is inactive. Resolving (4) for Bv we obtain Bv ≥
Bw−Li− si+ . Now, we do not want to impose any additional constraints
on Bv. Thus, we demand Bw−Li−si+ ≤ ei+ . Accordingly, it has to hold
that Bw ≤ ei+ + Li + si+ . Recall that here we assume w to be inactive.
If w is active, Bw ≤ `i− needs to hold. Putting these restrictions together
for an inbound request, we get

Bw ≤ ei+ + Li + si+ + (`i− − (ei+ + Li + si+))
∑

a∈δin(w)

xa

= ei+ + Li + si+ + (`i+ + Li + si+ − (ei+ + Li + si+))
∑

a∈δin(w)

xa

= ei+ + Li + si+ + (`i+ − ei+)
∑

a∈δin(w)

xa, (7)

using the reformulation of `i− from equations (5) in the second step. In
the same manner, we use equations (6) to substitute ei+ = ei− −Li − si+
and obtain that

Bw ≤ ei+ + Li + si+ + (`i− − ei−)
∑

a∈δin(w)

xa (8)

has to hold for an outbound request. Without loss of generality, we may
assume that the length of the time window [ei+ , `i+] constructed around
an inbound request has the same length as the time window [ei− , `i−]
constructed around an outbound request, hence the two formulations (7)
and (8) coincide.

Case 2: v is inactive, w is active. Resolving (4) for w we obtain Bw ≤ Li+
Bv + si+ . In order for the latter inequality to be redundant for Bw, we
demand that Li+Bv + si+ ≥ `i− . It follows that Bv ≥ `i− −Li− si+ has
to hold. For an inbound request, using the equivalence from (5), this can
be resolved to

Bv ≥ (`i+ + Li + si+)− Li − si+ = `i+ .

Recall that we assumed that v is inactive. In case v is active, the less
tighter constraint Bv ≥ ei+ has to hold, so that we arrive at

Bv ≥ ei+ + (`i+ − ei+)
(
1−

∑

a∈δin(v)
xa

)
.

In a similar fashion, we obtain

Bv ≥ ei+ + (`i− − ei−)
(
1−

∑

a∈δin(v)
xa

)
,

16

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

for an outbound request. With the same argumentation as above, we
conclude that the two lower bounds on Bv coincide.

As desired, by reformulating the constraints (1e) on the variables Bv, v ∈ V , we
obtain a simpler version of the ride time constraints (2b). We put these results
together in a second MILP formulation of DARP.

Model II.

min
∑

a∈A
ca xa (9a)

s. t.
∑

a∈δin(v)
xa −

∑

a∈δout(v)
xa = 0 ∀v ∈ V, (9b)

∑

a∈δin(v)
v∈Vi+

xa = 1 ∀i ∈ R, (9c)

∑

a∈δout(0)
xa ≤ |K|, (9d)

e0 ≤ B0 ≤ `0, (9e)

ei+ + (`i+ − ei+)
(
1−

∑

a∈δin(v)
xa

)
≤ Bv ≤ `i+ ∀i ∈ R, v ∈ Vi+ , (9f)

ei− ≤ Bv ≤ ei+ + Li + si+ + (`i+ − ei+)
∑

a∈δin(v)
xa ∀i ∈ R, v ∈ Vi− , (9g)

Bw −Bv − si+ ≤ Li ∀i ∈ R, v ∈ Vi+ , w ∈ Vi− , (9h)

Bw ≥ Bv + sv1 + t(v,w) − M̃v,w (1− x(v, w)) ∀(v, w) ∈ A, (9i)
xa ∈ {0, 1} ∀a ∈ A, (9j)
Bv ≥ 0 ∀v ∈ V. (9k)

We substitute ride time constraints (2b) for a simpler version (9h). In return
we use a more complex version of the time window constraints (9e) – (9g) instead
of the short form (1e).

Similar to Model I, variables pi ∈ {0, 1}, i ∈ R may be added to Model II
and constraints (9c) may be substituted by constraints (3) to include the option
of denying user requests. In this case, the objective function should be modified
to contain a term penalizing the denial of requests.

As there are O(n2Q−1) ride time constraints, for each of which two sums∑
a∈δin(v) xa have to be evaluated in the longer version (2b), but only O(nQ)

time window constraints, for each of which one sum of the above form has to
be evaluated in the longer version (9e) - (9g), we obtain a more efficient new
MILP formulation. Similar to Model I, for n ≥ Q+1 there are at most O(nQ+1)
variables and at most O(n2Q−1) constraints, of which O(n2Q−1) constraints are
ride time constraints (9h).

17

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

4.5. Objective functions
In most of the research on DARP only one objective is used, which is often the
minimization of total routing costs. An excellent overview is given by Ho et al.
(2018). Other popular objectives are, for example, the minimization of total
route duration, number of vehicles used, users’ waiting time, drivers’ working
hours, or deviation from the desired pick-up and drop-off times.

In this paper, we focus on three prevalent (and possibly conflicting) criteria,
namely the total routing cost, the total number of unanswered requests and
the total excess ride time or the maximum excess ride time, and combine these
three criteria into weighted sum objective functions. The first and probably
most important criterion is the total routing cost, which can be computed as

fc(x) :=
∑

a∈A
ca xa. (10)

We refer to fc as cost-objective. The second objective function,

fn(p) := n−
∑

i∈R
pi,

measures the total number of unsanswered requests. The next optimization
criterion relates to customer satisfaction: We measure the response time to
a service request by assessing a user’s total excess ride time, which aims at
penalizing overly long travel times as well as possibly delayed pick-up times.

Let the variable di ≥ 0, i ∈ R measure the difference in time compared to a
user’s earliest possible arrival time. We refer to di as a user’s excess ride time.
Moreover, let the variabe dmax ≥ 0 measure the maximum excess ride time. By
introducing constraints

di ≥ Bv − ei− ∀i ∈ R, ∀v ∈ Vi− , (11)
dmax ≥ di ∀i ∈ R, (12)

we can now minimize the total or average excess ride time, or the maximum
excess ride time (i.e., the excess ride time in the worst case), respectively. The
total excess ride time is thus given by the excess-objective

fe(d) :=
∑

i∈R
di, (13)

while the maximum-excess-objective is given by

femax
(dmax) := dmax. (14)

The discussion above highlights the fact that we have to consider differ-
ent and generally conflicting objective functions that are relevant when solving
DARP. While the cost objective fc aims at minimizing total travel cost and thus
takes the perspective of the service provider, the quality of service which rather

18

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

takes a user’s perspective is better captured by objective functions like fn, fe
and femax .

We approach this technically bi- or multi-objective problem by using a
weighted sum approach with fixed weights, i.e., by combining the relevant ob-
jective functions into one weighted sum objective. When using the total excess
time as quality criterion, we obtain

fce(x, d) :=
∑

a∈A
ca xa + α

∑

i∈R
di (15)

which will be referred to as cost-excess-objective, and when using the maximum
excess time as quality criterion, we get

fcemax(x, dmax) :=
∑

a∈A
ca xa + βdmax (16)

which will be referred to as cost-max-excess-objective. The parameters α > 0 and
β > 0 are weighting parameters that can be selected according to the decision
maker’s preferences. We refer to Ehrgott (2005) for a general introduction into
the field of multi-objective optimization.

Last but not least, we consider a form of DARP in which it is allowed to
deny certain user requests. Denying requests can be reasonable if accepting
them would mean to make large detours and in turn substantially increase ride
times or waiting times of other users. This is accomplished by substituting
constraints (1c) in Model I or (9c) in Model II, respectively, by constraints (3)
and adding variables pi ∈ {0, 1}, i ∈ R to Model I or II. In this case, the
number of accepted requests has to be maximized or, equivalently, the number
of unanswered requests has to be minimized. At the same time, routing costs
and excess ride time should be as small as possible. The optimization of these
opposing criteria is reflected by the request-cost-excess-objective given by

frce(x, d, p) :=
∑

a∈A
ca xa + α

∑

i∈R
di + γ

(
n−

∑

i∈R
pi

)
, (17)

where γ > 0 is an additional weighting parameter. While the third part of the
objective refers to the number of unanswered requests and is equal to γ n at
maximum (i.e., if all requests are accepted), the values of the total routing costs
and of the total excess ride time strongly depend on the underlying network and
request data. Note that meaningful choices of the weighting parameters have to
reflect this in order to avoid situations where one part of the objective overrides
the others. This will be discussed in Section 5. We emphasize at this point that
the objective functions fce, fcemax

and frce can be interpreted as weighted sum
objectives of bi-objective and tri-objective optimization problems, respectively.

5. Numerical Experiments

This section is divided into two parts. In the first subsection, we compare the
MILP formulations Model I and II to a standard formulation of DARP from

19

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Inst. Name of instance
n Number of users in the respective instances.
Gap Gap obtained by CPLEX solution (in percent).
CPU Computational time in seconds reported by CPLEX.
CPU? Computational time including time needed to set up MILP in JULIA.
Obj.v. Objective value.
fc Total routing costs.
fe Total excess ride time.
femax Maximum excess ride time.
a.r. Answered requests (in percent).
∆CPU? Change in computational time including time needed to set up MILP in

JULIA (in percent).
∆fc Change in total routing costs in percent).
∆fe Change in total excess ride time (in percent).
∆femax Change in maximum excess ride time (in percent).
∆ a.r. Change in answered requests (in percent).

Table 3: List of abbreviations.

Cordeau (2006). The computational performance is evaluated on a set of bench-
mark test instances. In the second part, we substitute the cost objective function
in Model II with different objective functions as introduced in Section 4.5 and
analyze the effect with respect to economic efficiency and customer satisfaction.
For this purpose, a set of 70 artificial instances from the city of Wuppertal is
generated. The computations are carried out on an Intel Core i7-8700 CPU,
3.20GHz, 32GB memory using CPLEX 12.10. The MILPs are programmed
using JULIA 1.4.2. with the modelling interface JuMP. The time limit for the
solution in all tests is set to 7200 seconds. In the following, the computational
results are discussed in detail. We use the abbreviations listed in Table 3.

When computing the average CPU times over several runs, and an instance
was not solved to optimality within the time limit, then a CPU (or CPU?) time
of 7200 seconds is assumed.

5.1. Benchmark data
We compare our MILP models to a standard formulation of DARP from the
literature. For this purpose, we use the basic mathematical model of DARP
introduced by Cordeau (2006). Note that a tighter 2-index formulation is given
by Ropke et al. (2007). However, this comes at the price of an exponentially
growing number of constraints. It is thus better suited for a solution within a
B&C framework and we did not include it in our comparison.

The model introduced by Cordeau (2006), referred to as C-DARP in the
following, is based on a complete directed graph. The node set comprises all
pick-up and drop-off locations and two additional nodes 0 and 2n + 1 for the
depot. Thus, the node set is equal to the set P ∪ D ∪ {0, 2n + 1}. We use
the MILP formulation with a reduced number of variables and constraints, de-
scribed in Cordeau (2006), which includes aggregated variables Bj (modelling

20

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Instance Q n |K| Li T Instance Q n |K| Li T

a2-16 3 16 2 30 480 b2-16 6 16 2 45 480
a2-20 3 20 2 30 600 b2-20 6 20 2 45 600
a2-24 3 24 2 30 720 b2-24 6 24 2 45 720
a3-18 3 18 3 30 360 b3-18 6 18 3 45 360
a3-24 3 24 3 30 480 b3-24 6 24 3 45 480
a3-30 3 30 3 30 600 b3-30 6 30 3 45 600
a3-36 3 36 3 30 720 b3-36 6 36 3 45 720
a4-16 3 16 4 30 240 b4-16 6 16 4 45 240
a4-24 3 24 4 30 360 b4-24 6 24 4 45 360
a4-32 3 32 4 30 480 b4-32 6 32 4 45 480
a4-40 3 40 4 30 600 b4-40 6 40 4 45 600

Table 4: Characteristics of the benchmark test instances.

C-DARP Model I Model II

Inst. Obj.v. Gap CPU CPU? Obj.v. CPU CPU? Obj.v. CPU CPU?

a2-16 294.2 2.11 2.20 294.2 0.96 8.05 294.2 0.34 2.81
a2-20 344.8 19.61 19.75 344.8 3.80 19.60 344.8 1.14 7.04
a2-24 431.1 108.70 108.92 431.1 12.07 55.87 431.1 2.78 15.28
a3-18 300.5 268.18 268.30 300.5 2.23 11.12 300.5 0.75 4.62
a3-24 346.8 15.6 7200 7200 344.8 33.35 77.35 344.8 14.05 26.25
a3-30 498.0 26.0 7200 7200 494.8 40.43 267.43 494.8 10.89 44.89
a3-36 587.8 19.2 7200 7200 – – – 583.2 103.55 196.45
a4-16 282.7 12.3 7200 7200 282.7 2.22 7.58 282.7 0.96 7.68
a4-24 375.0 27.1 7200 7200 375.0 12.47 56.57 375.0 3.66 16.46
a4-32 N/A N/A 7200 7200 485.5 73.99 426.99 485.5 22.18 78.28
a4-40 N/A N/A 7200 7200 – – – 557.7 279.18 469.18

– Set up of MILP not completed within the time limit.
N/A Not applicable. No integer solution found within the time limit.

Table 5: Solution values and computing times for the benchmark test instances ’a’ using
JULIA.

the beginning of service time) and Qj (modelling the vehicle load) at every node
j except the origin and destination depot. The objective is to minimize the total
routing costs. We do not add any additional valid inequalities to either of the
MILP formulations in this comparison.

We use the two sets of benchmark instances7 set a and set b created by
the same author to compare C-DARP to Model I and II. The characteristics of
the instances are summarized in Table 4. In all test instances we tighten the
remaining time windows, i.e. the time windows not given by the pick-up time
of inbound requests or by the drop-off time of outbound requests, respectively,
as described in Cordeau (2006): The bounds of the missing time windows can
be calculated according to equations (5) and (6) stated earlier in Section 4.

7The instances are available at http://neumann.hec.ca/chairedistributique/data/darp/
branch-and-cut/.

21

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

C-DARP Model I Model II

Inst. Obj.v. Gap CPU CPU? Obj.v. CPU CPU? Obj.v. CPU CPU?

b2-16 309.4 13.97 15.05 309.4 0.36 2.29 309.4 0.19 1.37
b2-20 332.6 8.70 8.84 332.6 0.03 0.39 332.6 0.03 0.31
b2-24 444.7 90.46 90.68 444.7 0.18 1.72 444.7 0.10 1.09
b3-18 301.6 372.63 372.75 301.6 0.08 0.36 301.6 0.08 0.31
b3-24 394.5 1613.31 1613.52 394.5 1.62 11.05 394.5 0.86 4.82
b3-30 531.9 35.1 7200 7200 531.4 1.06 7.98 531.4 0.43 3.62
b3-36 614.5 22.6 7200 7200 603.8 12.29 41.09 603.8 3.02 12.46
b4-16 297.0 804.32 804.42 297.0 0.04 0.10 297.0 0.04 0.96
b4-24 371.4 16.8 7200 7200 371.4 0.56 3.53 371.4 0.30 2.02
b4-32 501.8 28.2 7200 7200 494.8 0.13 1.39 494.8 0.09 1.06
b4-40 N/A N/A 7200 7200 656.6 11.83 57.83 656.6 4.02 16.72

N/A Not applicable. No integer solution found within the time limit.

Table 6: Solution values and computing times for the benchmark test instances ’b’ using
JULIA.

A summary of the computational results can be found in Tables 5 and 6.
For each of the three considered models C-DARP, Model I and II, the objective
value (Obj.v.) of the cost objective, the computational time in seconds (CPU)
and the computational time in seconds including the time needed to set up
the MILP in JULIA before it is handed over to CPLEX (CPU?) are reported.
The last quantity is included because the solve time returned by CPLEX for
Model I and II is rather low, but the time needed to set up the MILP is rather
high compared to the set up time of C-DARP. This is due to the fact that, as
explained in Section 4, in Model I and II the number of variables and constraints
is bounded from above by O(nQ+1) and O(n2Q−1), respectively, while there are
at most O(n2) variables and constraints in C-DARP. For example, in instance
a2-16 the lp-file generated from Model I and II has a size of 180 MB and 24 MB,
respectively, while for C-DARP its size is 474 KB. This is reflected by the high
difference of the values in columns CPU and CPU? for Model I and II. For
C-DARP we also report the relative gap (Gap) as some of the instances have
not been solved to optimality within the time limit of 7200 seconds. By taking
a closer look at Tables 5 and 6, it becomes evident that Model II outperforms
Model I in all of the instances with only one exception at instance b4-16. In all
of the instances the CPU time needed by CPLEX to solve Model II is smaller
than the solution time for Model I. Instances a3-36 and a4-40 are the two largest
instances in terms of the number of users and the possible user allocations in the
vehicle (note that qi = 1 for all i ∈ R in the a-instances). For these instances,
the MILP for Model I could not be set up within 7200 seconds, so that we
had to interrupt the execution of the program. Modelling the same instances
with Model II took about 1.5 minutes (instance a3-36) and about 3 minutes
(instance a4-40). Moreover, one can see clearly from the results that Model II
yields a more efficient formulation than C-DARP: Starting from instance a3-34,
the a-instances could not be solved to optimality within two hours (or even no
integer solution was found) with C-DARP. The computational time needed to

22

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

solve these instances with Model II ranges from 7.68 seconds to less than eight
minutes. In general, with Model II the b-instances are easier to solve than the
a-instances, as all instances but instances b3-36 and b4-40 have been solved in
less than five seconds. This reflects the fact that the size of the MILP decreases
tremendously when users request more than one seat, which can be traced back
to the fact that the size of the event-based graph decreases in this case. With C-
DARP, CPLEX was able to solve more of the b-instances within the time limit
than of the a-instances, but C-DARP still performs poorly when compared to
Model II.

5.2. Artificial data – City of Wuppertal
Ride-hailing services are usually operated by taxis or mini-buses, whose pas-
senger capacity is often equal to three or six. Thus, in the artificially created
instances we consider the case that Q ∈ {3, 6}. In the case that Q = 3, we
assume that each user requests one seat each, while for Q = 6 the number
of requested seats per user is chosen randomly from {1, . . . , 6}. Moreover, the
service time sj associated with location j is set to be equal to the number of
requested seats qj . This is in accordance with the benchmark test instances
for DARP created in Cordeau (2006). The instance size is determined by the
number of users. For both Q = 3 and Q = 6 and for each number of users
n ∈ {10, 15, 20, 25, 30, 35, 40} we generate a set of 5 instances with n users each.
We denote the instances by Q3.n.m and Q6.n.m, indicating the m-th instance
with n users, m ∈ {1, . . . , 5}. Pick-up and drop-off locations are chosen ran-
domly from a list of streets in Wuppertal, Germany. The taxi depot is chosen
to be located next to the main train station in Wuppertal. The cost ca for an
arc a in the event-based network is computed as the length of a shortest path
from its tail to its head in an OpenStreetMap network corresponding to the
city of Wuppertal. The shortest path is calculated based on OpenStreetMap
data using the shortest path method of the Python package NetworkX. Due to
slowly moving traffic within the city center, the average travel speed is set to
15 km/h, so that the travel time in minutes is equal to ta = 4 ca. Earliest pick-
up times are chosen randomly from five-minute intervals within the next 15–60
minutes (we consider inbound requests only) and the time windows are chosen
to be equal to 15 minutes, as we assume that users of ride-hailing services in
a city, where public transport operates at high frequencies, want to be picked-
up without long waiting times. A user i’s maximum ride time Li is set to 1.5
times the ride time for a direct ride from the pick-up to the drop-off location.
The maximum duration of service T is set to 150 minutes. A summary of the
artificial instances’ remaining characteristics can be found in Table 7.

It has been shown in the previous subsection that Model II performs better
than Model I. Therefore, we restrict the following tests to Model II. We compare
the impact of employing different objective functions from Section 4.5 on the
economic efficiency and the customer satisfaction of the final routing solution.
The respective objective functions are used in Model II in the place of (9a).
Moreover, for the objective function frce we add variables pi, i ∈ R to Model II
and replace constraints (9c) by constraints (3). In case of the objective functions

23

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Instances Q n |K| Instances Q n |K|
Q3.10.1-5 3 10 6 Q6.10.1-5 6 10 6
Q3.15.1-5 3 15 7 Q6.15.1-5 6 15 9
Q3.20.1-5 3 20 9 Q6.20.1-5 6 20 11
Q3.25.1-5 3 25 9 Q6.25.1-5 6 25 15
Q3.30.1-5 3 30 11 Q6.30.1-5 6 30 16
Q3.35.1-5 3 35 12 Q6.35.1-5 6 35 18
Q3.40.1-5 3 40 15 Q6.40.1-5 6 40 20

Table 7: Characteristics of the Wuppertal artificial test in-
stances.

fe, fce and frce, we add variables di ≥ 0, i ∈ R and constraints (11) to Model II.
In case of the objective functions involving the users’ maximum excess ride time,
i.e. femax

and fcemax
, we additionally add the variable dmax ≥ 0 and constraints

(12) to Model II.
The weights in the objective functions involving more than one criterion

are chosen from a user perspective and based on extensive numerical tests. In
the first part of the computational experiments we consider the single-objective
functions fc, fe and femax

. The weights in fce and fcemax
are then chosen so

that the values of total and maximum excess ride time, respectively, in fce and
fcemax

deviate not more than 2% from the optimal objective values for fe and
femax

. After some preliminary testing the weights are set to α = 3 and β = 3n
5 ,

which yields

fce =
∑

a∈A
ca xa + 3

∑

i∈R
di and

fcemax
=
∑

a∈A
ca xa +

3n

5
dmax.

Note that choosing the weighting parameter β as a function of n ensures that
not only the first term in fcemax

grows with the number of users.
Some pick-up and drop-off times or locations may force the drivers to make

large detours, which may induce significantly increased routing costs or excess
ride times. By using the objective function frce we can measure the impact
of denying certain requests on the served users’ excess ride time and the total
routing costs. The weighting parameter γ in frce defines the trade-off between
the general requirement of answering as many requests as possible on one hand,
and the goal of cost and time efficient transport solutions on the other hand.
After testing several weights, it turns out that γ = 60 is a reasonable choice,
yielding

frce =
∑

a∈A
ca xa + 3

∑

i∈R
di + 60

(
n−

∑

i∈R
pi

)
.

In our numerical experiments, on average at most 10% of the requests are re-
jected when using these weights. Note that several authors using weighted sum
objectives base their choice of weights on Jorgensen et al. (2007) (see e.g. Mauri

24

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

fc fe

n fc fe CPU CPU? fc fe Gap CPU CPU?

Q3
10 78.8 128.2 0.17 1.04 88.1 15.3 0.14 0.93
15 109.1 191.3 0.75 5.20 128.8 34.2 0.79 4.85
20 129.3 240.3 7.04 22.36 154.5 55.6 7.39 21.17
25 156.6 288.1 69.79 111.14 172.7 111.6 73.99 111.86
30 184.7 353.3 179.01 279.99 202.7 141.1 180.42 274.20
35 199.0 403.6 1191.93 1403.76 231.3 131.1 6 3606.83 3756.82
40 241.2 498.0 2944.48 3366.15 280.3 144.6 16 5946.63 6066.63

Q6
10 80.5 92.5 0.02 0.26 86.3 15.2 0.02 0.25
15 119.1 122.4 0.05 0.63 128.7 20.9 0.05 0.61
20 152.4 178.8 0.20 2.00 164.6 48.0 0.23 1.88
25 183.6 228.0 0.88 6.56 211.1 29.9 0.93 6.14
30 222.8 256.5 1.02 7.14 244.6 46.7 1.06 6.39
35 238.0 340.4 45.51 98.10 277.5 44.7 43.80 86.40
40 296.0 360.4 8.65 31.66 324.1 127.5 9.24 30.51

Table 8: Average values on the Q3 and Q6 test instances solved with the objective functions
fc and fe.

et al. (2009); Kirchler and Calvo (2013)). However, the total routing costs, the
total/maximum excess ride time and the number of unanswered requests de-
pend strongly on the test instances and may vary considerably. Since in this
section we create a new class of test instances, we refrain from using these
predetermined weights.

In Tables 8, 9 and 10 the results are summarized. All figures reported
are average values over five instances Q3.n.m, m ∈ {1, . . . , 5} and Q6.n.m,
m ∈ {1, . . . , 5}, respectively. The tables contain information about the total
routing costs, the total excess ride time (and where applicable the maximum
excess ride time and the percentage of answered requests) for each number of
user requests n ∈ {10, 15, 20, 25, 30, 35, 40} of the instance sets Q3 and Q6.
Furthermore, the relative gap, the CPU time returned by CPLEX and the CPU
time including the set up time in JULIA is reported. If no relative gap is shown,
all instances have been solved to optimality.

The computational times show that the artificial instances are harder to solve
than the benchmark instances. This may be explained by a smaller planning
horizon (240–720 minutes for the benchmark instances and 150 minutes for the
artificial instances) during which the same number of user requests have to be
served, i.e. the ratio of user requests per time is higher. This is also reflected
by the number of required vehicles. While there are only two to four vehicles
in the benchmark test instances to serve between 16 and 40 user requests, there
are 6 to 20 vehicles required in the artificial instances. The computational time
needed to solve the Q6-instances deviates strongly from the time needed to
solve the Q3-instances. This is in accordance with the results of the benchmark

25

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

fce frce

n Obj.v. fc fe Gap CPU CPU? Obj.v. fc fe a.r.Gap CPU CPU?

Q3
10 133.6 87.8 15.3 0.10 0.73 129.4 86.2 10.4 98 0.09 0.73
15 230.9 128.2 34.2 0.40 3.56 226.1 121.7 22.4 96 0.35 3.48
20 318.9 151.1 56.0 4.07 14.48 277.9 136.0 15.3 92 3.56 13.50
25 506.0 171.1 111.7 38.91 64.27 409.0 152.9 33.4 90 35.92 61.36
30 624.2 199.7 141.5 99.38 154.37 515.5 183.2 58.8 91 88.15 142.85
35 621.8 227.9 131.3 3 3004.61 3102.21 554.6 216.1 56.8 92 1 2016.91 2113.72
40 712.7 277.3 145.1 9 4945.03 5123.23 638.3 260.7 65.9 92 6 3611.54 3823.74

Q6
10 131.0 85.4 15.2 0.02 0.26 129.7 81.7 8.0 96 0.02 0.26
15 191.0 128.2 20.9 0.05 0.65 189.8 125.6 17.4 99 0.05 0.61
20 308.4 164.2 48.1 0.22 2.04 281.8 154.0 22.6 95 0.18 2.00
25 296.9 206.3 30.2 0.93 6.55 283.9 202.4 19.2 98 0.92 6.57
30 383.7 243.6 46.7 1.04 6.92 359.7 231.8 22.6 97 0.94 6.80
35 410.3 275.3 45.0 43.81 88.24 407.2 266.5 30.9 98 43.23 88.14
40 704.1 318.3 128.6 9.16 31.96 613.6 297.4 53.4 93 8.10 30.94

Table 9: Average values on the Q3 and Q6 test instances solved with the objective function
fce and frce.

femax fcemax

n fc fe femax CPU CPU? Obj.v. fc fe femax CPU CPU?

Q3
10 88.5 40.2 7.3 0.08 0.67 130.0 85.4 46.0 7.4 0.10 0.76
15 130.2 64.2 10.0 0.37 3.35 216.5 126.0 77.8 10.1 0.39 3.63
20 157.0 110.6 11.1 3.70 13.51 280.0 145.5 130.7 11.2 3.69 14.13
25 178.1 179.5 12.3 36.09 59.96 354.4 169.4 199.1 12.3 36.34 62.16
30 210.5 216.0 13.3 87.24 137.65 442.7 201.1 223.5 13.4 87.90 143.22
35 237.2 222.5 10.4 457.55 571.89 448.3 228.6 232.8 10.5 562.73 684.52
40 291.5 258.9 11.4 1139.52 1354.48 552.1 279.1 283.2 11.4 1190.24 1443.64

Q6
10 86.1 27.3 6.1 0.02 0.25 121.6 84.9 26.9 6.1 0.02 0.26
15 130.1 58.6 8.6 0.04 0.59 203.0 125.4 74.0 8.6 0.06 0.63
20 164.8 93.7 9.6 0.21 1.90 276.0 160.3 102.2 9.7 0.21 2.03
25 212.5 70.8 6.9 0.87 6.00 309.6 206.1 83.7 6.9 0.92 6.35
30 249.2 137.0 11.1 1.02 6.25 436.2 236.4 159.6 11.1 1.06 6.79
35 281.4 131.5 9.4 42.73 85.14 459.6 261.5 191.9 9.4 43.18 88.42
40 330.2 252.0 12.6 8.72 29.82 620.0 318.2 272.7 12.6 8.79 31.75

Table 10: Average values on the Q3 and Q6 test instances solved with the objective
functions femax and fcemax .

26

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

fe vs. fc fce vs. fc fce vs. fe femax vs. fc fcemax vs. fc fcemax vs. femax

n ∆fc ∆fe ∆fc ∆CPU? ∆fe ∆CPU? ∆fc ∆fe ∆fc ∆CPU? ∆femax ∆CPU?

Q3
10 12 −88 11 −30 0 −22 12 −69 8 −27 2 14
15 18 −82 18 −32 0 −27 19 −66 15 −30 0 8
20 19 −77 17 −35 1 −32 21 −54 12 −37 1 5
25 10 −61 9 −42 0 −43 14 −38 8 −44 0 4
30 10 −60 8 −45 0 −44 14 −39 9 −49 1 4
35 16 −68 15 121 0 −17 19 −45 15 −51 1 20
40 16 −71 15 52 0 −16 21 −48 16 −57 0 7
Avg. 15 −72 13 −1 0 −28 17 −51 12 −42 1 9

Q6
10 7 −84 6 −1 0 1 7 −71 6 3 0 8
15 8 −83 8 3 0 7 9 −52 5 0 0 7
20 8 −73 8 2 0 9 8 −48 5 2 0 7
25 15 −87 12 0 1 7 16 −69 12 −3 0 6
30 10 −82 9 −3 0 8 12 −47 6 −5 0 9
35 17 −87 16 −10 1 2 18 −61 10 −10 1 4
40 9 −65 8 1 1 5 12 −30 7 0 0 6
Avg. 11 −80 9 −1 0 6 12 −54 7 −2 0 7

Table 11: Comparison of the change in total routing costs, total excess ride time and CPU?

(all in percent) on the Q3 and Q6 test instances solved with the objective functions fc, fe,
fce, femax and fcemax .

instances, where the b-instances are much faster to solve than the a-instances.
While the scenario that users may request any number of seats between one and
six reflects the conditions under which ride-hailing services operate in reality, a
uniform distribution of qi in the set {1, . . . , 6} is probably not realistic. In future
work, this should be tested at real world data. Nevertheless, in the context of a
static framework, the results show that Model II can be solved within reasonable
time: For up to 30 users, the average solve time over five Q6 instances is at most
seven seconds. The solve time is less than one second for n ∈ {10, 15}. Thus,
Model II can indeed be applied in a rolling horizon approach for medium sized
instances.

A comparison of the effects of different objective functions in Model II can
be found in Tables 11 and 12. In the second and third column of Table 11
we illustrate the change (in percent) in total routing costs and total excess
ride time when replacing fc by fe. While the excess ride time decreases by
an average of 72% and 80% (Q3- and Q6-instances, respectively), the routing
costs only increase by 15% and 11% on average. This shows that by including
the criterion of excess ride time in the objective function we can spare users
a large amount of unnecessary ride or waiting time. This comes at the cost
of higher routing costs. However, even from a service provider’s perspective
it might be reasonable to accept a rather small loss in order to improve user
convenience and to remain competitive. In column six of the same table we
demonstrate that the weights chosen in the cost-excess objective fce indeed

27

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

fcemax vs. fce frce vs. fce

n ∆fc ∆fe ∆CPU? ∆fc ∆fe ∆CPU? ∆ a.r.

Q3
10 −3 201 4 −2 −32 0 −2
15 −2 127 2 −5 −35 −2 −4
20 −4 133 −2 −10 −73 −7 −8
25 −1 78 −3 −11 −70 −5 −10
30 1 58 −7 −8 −58 −7 −9
35 0 77 −78 −5 −57 −32 −8
40 1 95 −72 −6 −55 −25 −8
Avg. −1 110 −22 −7 −54 −11 −7

Q6
10 0 77 4 −4 −47 2 −4
15 −2 254 −3 −2 −17 −6 −1
20 −2 113 −1 −6 −53 −2 −5
25 0 177 −3 −2 −36 0 −2
30 −3 242 −2 −5 −52 −2 −3
35 −5 326 0 −3 −31 0 −2
40 0 112 −1 −7 −58 −3 −7
Avg. −2 186 −1 −4 −42 −2 −3

Table 12: Comparison of the change in total routing
costs, total excess ride time, CPU? and number of
answered requests (all in percent) on the Q3 and Q6
test instances solved with the objective functions fce,
fcemax and frce.

reflect a user perspective: There is an increase of at most 1% in total excess
ride time compared to solely optimizing w.r.t. fe. Moreover, there is an average
increase in routing costs of 13% (Q3-instances) and 9% (Q6-instances) compared
to the costs when using routing costs as the only optimization criterion, i.e. when
using fc as the objective function. Comparing fce to fc, we observe a decrease
in CPU? time for Q = 3 and n ∈ {10, 15, 20, 25, 30} ranging from 30% to 45%
and resulting in an average decrease of 1% for the Q3-instances. For the Q6-
instances the change (in percent) in CPU? time ranges from -10% to 3%. In
comparison to fe we observe an average decrease in CPU? time of 28% for the
Q3-instances but an average increase of 6% for the Q6-instances.

Similar results are obtained for the objective functions fc, femax and fcemax ,
although the average decrease in excess ride time when comparing femax

to fc
is only 51% (Q3-instances) and 54% (Q6-instances). The meaningful choice of
the weighting parameter in fcemax

is demonstrated by the second last column in
Table 11.

Since both of the weighted sum objectives fce and fcemax improve user con-
venience and increase routing costs compared to fc, we evaluate which of the
objective functions is more effective in this respect. Columns two to four in
Table 12 illustrate that the average computational time over five instances de-
creases by up to 78% when using fcemax

instead of fce. For the Q3-instances we

28

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Figure 2: Vehicle routes of instance Q3n10.3 solved using the objective function fce.

observe an average decrease of CPU? time of 22%, for the Q6-instances there
is an average decrease of 1%. Despite its computational superiority and the
fact that the objective function fcemax generally improves the user satisfaction
of optimal tours, it has some shortcomings. Indeed, if there is one user with
a high excess ride time di, for instance, because he or she is the last user in
a tour to be dropped-off, the time loss of all other users j with dj < di has
no impact on the objective function. Therefore, the other users may not be
driven to their drop-off points as quickly as possible. This is reflected by the
increase in excess ride time using the objective fcemax as compared to fce, shown
in Table 12: 110% (Q3-instances) and 186% (Q6-instances). The routing costs
remain roughly the same; there is an average decrease of 1% (Q3-instances) and
2% (Q6-instances). Due to these shortcomings, we do not consider a tri-criterion
weighted sum objective function frcemax , but restrict our attention to frce in the
remaining discussion.

The last four columns of Table 12, frce vs. fce, illustrate the decrease in the
overall routing costs and excess ride time that is obtained when rejecting some
of the requests. This is illustrated at the instance Q3n10.3 in Figure 2, showing
an optimal tour w.r.t. fce, and Figure 3 where an optimal tour w.r.t. frce is
shown. In Figure 2 the driver has to make a large detour to transport request 6.
When we allow to reject unprofitable requests using frce, variables pi ∈ {0, 1},
i ∈ R and constraints (3) instead of fce and constraints (9c) in Model II, it
becomes obvious from Figure 3 that the service provider benefits from a large
decrease in routing costs. Table 13 contains the corresponding vehicle routes
including pick-up and drop-off times in minutes after the start of service. In the
vehicle tours computed using frce, users 1 and 4 are transported without any

29

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Figure 3: Vehicle routes of instance Q3n10.3 solved using the objective function frce.

fce frce

Tour 1 Location 9+ 9− 9+ 9−

Time[m] 20.0 54.0 20.0 54.0

Tour 2 Location 3+ 3− 2+ 2− 3+ 3− 2+ 2−

Time[m] 15.0 22.3 32.3 45.1 15.0 22.3 32.3 45.1

Tour 3 Location 5+ 5− 4+ 4− 4+ 4−

Time[m] 20.0 25.3 45.8 74. 6 35.0 63.8

Tour 4 Location 8+ 8− 7+ 7− 8+ 8− 7+ 7−

Time[m] 20. 0 28.3 48.7 59.9 20. 0 28.3 48.7 59.9

Tour 5 Location 10+ 10− 10+ 10−

Time[m] 30.0 47.0 30.0 47.0

Tour 6 Location 6+ 6− 1+ 1− 5+ 5− 1+ 1−

Time[m] 20.8 49.1 57.7 65. 0 20.0 25.32 45.0 52.32

Table 13: Vehicle routes (without depot) of instance Q3n10.3 solved using the
objective functions fce and frce.

30

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

time loss.
For the Q3- and Q6-instances, on average 7% less and 3% less of the requests

are answered in comparison to the results obtained with the objective function
fce. In turn, we observe an average decrease of the total routing costs and
the total excess ride time for all instance sizes. While the decrease in routing
costs ranges from 2% to 11%, there are huge savings in excess ride time: There
is an average decrease of 54% and 42% (Q3- and Q6-instances, respectively.)
Furthermore, computational time decreases by 11% (Q3-intances) and 2% (Q6-
instances).

While most real world instances of DARPs are much larger, the proposed
approach could still prove useful as a subroutine also for realistically-sized in-
stances. Particularly, the extension to the online version of DARP in which
requests arrive over time could be a promising application for our models. In-
deed, often only very few new requests arrive simultaneously and re-routing of
already scheduled users is only acceptable if it decreases their arrival time. Con-
sequently, the number of simultaneous users in such a rolling-horizon version of
a dial-a-ride problem is relatively small and could potentially be solved exactly
using one of our models. Note that this does in general not lead to a global
optimal solution of the offline problem.

6. Conclusions

In this paper we suggest a new perspective on modeling ride-hailing problems.
By using an event-based graph representation rather than a geographical model,
we show that capacity, pairing and precedence constraints can be handled im-
plicitly. While the resulting MILP formulations generally have more variables
as compared to classical models, extensive numerical experiments show that the
implicit constraint formulation leads to considerably improved computational
times. Indeed, both for benchmark instances from the literature as well as for
artificial instances in the city of Wuppertal, problems with up to 40 requests
can be solved within a few minutes of computational time, while problems with
up to 20 requests can be solved in less than 15 seconds. The new model is thus
suitable for an incorporation into dynamic models in a rolling-horizon frame-
work.

Moreover, we analyse the effects of including additional optimization criteria
in the model. In addition to the classical cost objective function, we consider the
(total or maximum) excess ride time as well as the number of rejected requests
as measures for user satisfaction. By combining these criteria into a weighted
sum objective function we demonstrate that user satisfaction can be largely
improved at only relatively small additional expenses, i.e., overall routing costs.

In the future, we intend to use machine learning techniques to predict re-
quests based on time series data and locate free vehicles accordingly. Further-
more, dynamic vehicle routing algorithms that take into account the traffic
volume should be developed such that expected driving times can be computed
with high accuracy. The goal is to communicate a reliable estinate of the ex-
pected arrival time to the customer when accepting a request.

31

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Acknowledgements

This work was partially supported by the state of North Rhine-Westphalia (Ger-
many) within the project “bergisch.smart.mobility”.

References

A. Atahran, C. Lenté, and V. T’kindt. A multicriteria dial-a-ride problem with
an ecological measure and heterogeneous vehicles. Journal of Multi-Criteria
Decision Analysis, 21(5-6):279–298, 2014. doi: 10.1002/mcda.1518.

S. Belhaiza. A data driven hybrid heuristic for the dial-a-ride problem with time
windows. In 2017 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, nov 2017. doi: 10.1109/ssci.2017.8285366.

S. Belhaiza. A hybrid adaptive large neighborhood heuristic for a real-life dial-
a-ride problem. Algorithms, 12(2):39, feb 2019. doi: 10.3390/a12020039.

D. Bertsimas, P. Jaillet, and S. Martin. Online vehicle routing: The edge of
optimization in large-scale applications. Operations Research, 67(1):143–162,
2019. doi: 10.1287/opre.2018.1763.

C. Bongiovanni, M. Kaspi, and N. Geroliminis. The electric autonomous dial-a-
ride problem. Transportation Research Part B: Methodological, 122:436–456,
apr 2019. doi: 10.1016/j.trb.2019.03.004.

K. Braekers, A. Caris, and G. K. Janssens. Exact and meta-heuristic ap-
proach for a general heterogeneous dial-a-ride problem with multiple de-
pots. Transportation Research Part B: Methodological, 67:166–186, 2014. doi:
10.1016/j.trb.2014.05.007.

M. Chen, J. Chen, P. Yang, S. Liu, and K. Tang. A heuristic repair method for
dial-a-ride problem in intracity logistic based on neighborhood shrinking. Mul-
timedia Tools and Applications, apr 2020. doi: 10.1007/s11042-020-08894-7.

R. Chevrier, A. Liefooghe, L. Jourdan, and C. Dhaenens. Solving a dial-a-ride
problem with a hybrid evolutionary multi-objective approach: Application to
demand responsive transport. Applied Soft Computing, 12(4):1247–1258, apr
2012. doi: 10.1016/j.asoc.2011.12.014.

J.-F. Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Opera-
tions Research, 54(3):573–586, 2006. doi: 10.1287/opre.1060.0283.

J.-F. Cordeau and G. Laporte. A tabu search heuristic for the static multi-
vehicle dial-a-ride problem. Transportation Research Part B: Methodological,
37(6):579–594, 2003. doi: 10.1016/s0191-2615(02)00045-0.

J.-F. Cordeau and G. Laporte. The dial-a-ride problem: models and algo-
rithms. Annals of Operations Research, 153(1):29–46, 2007. doi: 10.1007/
s10479-007-0170-8.

32

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

C. E. Cortés, M. Matamala, and C. Contardo. The pickup and delivery problem
with transfers: Formulation and a branch-and-cut solution method. European
Journal of Operational Research, 200(3):711–724, 2010. doi: 10.1016/j.ejor.
2009.01.022.

C. Cubillos, E. Urra, and N. Rodríguez. Application of genetic algorithms for the
DARPTW problem. International Journal of Computers Communications &
Control, 4(2):127, 2009. doi: 10.15837/ijccc.2009.2.2420.

J. Desrosiers, Y. Dumas, F. Soumis, S. Taillefer, and D. Villeneuve. An algo-
rithm for mini-clustering in handicapped transport. Les Cahiers du GERAD,
G-91-02, HEC Montréal, 1991.

P. Detti, F. Papalini, and G. Z. M. de Lara. A multi-depot dial-a-ride prob-
lem with heterogeneous vehicles and compatibility constraints in healthcare.
Omega, 70:1–14, 2017. doi: 10.1016/j.omega.2016.08.008.

Y. Dumas, J. Desrosiers, and F. Soumis. Large scale multi-vehicle dial-a-ride
problems. Les Cahiers du GERAD, G-89-30, HEC Montréal, 1989.

M. Ehrgott. Multicriteria Optimization. Springer, 2005. ISBN 978-3-540-
21398-7. doi: 10.1007/3-540-27659-9. URL https://doi.org/10.1007/
3-540-27659-9.

T. Garaix, C. Artigues, D. Feillet, and D. Josselin. Vehicle routing problems with
alternative paths: An application to on-demand transportation. European
Journal of Operational Research, 204(1):62–75, jul 2010. doi: 10.1016/j.ejor.
2009.10.002.

T. Gschwind and M. Drexl. Adaptive large neighborhood search with a constant-
time feasibility test for the dial-a-ride problem. Transportation Science, 53
(2):480–491, 2019. doi: 10.1287/trsc.2018.0837.

T. Gschwind and S. Irnich. Effective handling of dynamic time windows and its
application to solving the dial-a-ride problem. Transportation Science, 49(2):
335–354, 2015. doi: 10.1287/trsc.2014.0531.

P. M. M. Guerreiro, P. J. S. Cardoso, and H. C. L. Fernandes. A comparison
of multiple objective algorithms in the context of a dial a ride problem. In
Lecture Notes in Computer Science, pages 382–396. Springer International
Publishing, 2020. doi: 10.1007/978-3-030-50436-6_28.

F. Guerriero, M. E. Bruni, and F. Greco. A hybrid greedy randomized adaptive
search heuristic to solve the dial-a-ride problem. Asia-Pacific Journal of Op-
erational Research, 30(01):1250046, 2013. doi: 10.1142/s0217595912500467.

S. C. Ho, W. Szeto, Y.-H. Kuo, J. M. Leung, M. Petering, and T. W. Tou. A
survey of dial-a-ride problems: Literature review and recent developments.
Transportation Research Part B: Methodological, 111:395–421, 2018. doi: 10.
1016/j.trb.2018.02.001.

33

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

H. Hosni, J. Naoum-Sawaya, and H. Artail. The shared-taxi problem: Formula-
tion and solution methods. Transportation Research Part B: Methodological,
70:303–318, 2014. doi: 10.1016/j.trb.2014.09.011.

T.-Y. Hu and C.-P. Chang. A revised branch-and-price algorithm for dial-a-ride
problems with the consideration of time-dependent travel cost. Journal of
Advanced Transportation, 49(6):700–723, 2014. doi: 10.1002/atr.1296.

T.-Y. Hu, G.-C. Zheng, and T.-Y. Liao. Multi-objective model for dial-a-ride
problems with vehicle speed considerations. Transportation Research Record:
Journal of the Transportation Research Board, 2673(11):161–171, jun 2019.
doi: 10.1177/0361198119848417.

I. Ioachim, J. Desrosiers, Y. Dumas, M. M. Solomon, and D. Villeneuve. A
request clustering algorithm for door-to-door handicapped transportation.
Transportation Science, 29(1):63–78, 1995. doi: 10.1287/trsc.29.1.63.

J.-J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H. Wilson. A heuristic algorithm
for the multi-vehicle advance request dial-a-ride problem with time windows.
Transportation Research Part B: Methodological, 20(3):243–257, 1986. doi:
10.1016/0191-2615(86)90020-2.

R. M. Jorgensen, J. Larsen, and K. B. Bergvinsdottir. Solving the dial-a-ride
problem using genetic algorithms. Journal of the Operational Research Soci-
ety, 58(10):1321–1331, 2007. doi: 10.1057/palgrave.jors.2602287.

D. Kirchler and R. W. Calvo. A granular tabu search algorithm for the dial-a-
ride problem. Transportation Research Part B: Methodological, 56:120–135,
2013. doi: 10.1016/j.trb.2013.07.014.

M. Liu, Z. Luo, and A. Lim. A branch-and-cut algorithm for a realistic dial-a-
ride problem. Transportation Research Part B: Methodological, 81:267–288,
2015. doi: 10.1016/j.trb.2015.05.009.

Z. Luo, M. Liu, and A. Lim. A two-phase branch-and-price-and-cut for a dial-
a-ride problem in patient transportation. Transportation Science, 53(1):113–
130, feb 2019. doi: 10.1287/trsc.2017.0772.

M. A. Masmoudi, K. Braekers, M. Masmoudi, and A. Dammak. A hybrid
genetic algorithm for the heterogeneous dial-a-ride problem. Computers &
Operations Res., 81:1–13, 2017. doi: 10.1016/j.cor.2016.12.008.

G. Mauri, L. Antonio, and N. Lorena. Customers' satisfaction in a dial-a-ride
problem. IEEE Intelligent Transportation Systems Magazine, 1(3):6–14, 2009.
doi: 10.1109/mits.2009.934641.

E. Melachrinoudis, A. B. Ilhan, and H. Min. A dial-a-ride problem for client
transportation in a health-care organization. Computers & Operations Re-
search, 34(3):742–759, mar 2007. doi: 10.1016/j.cor.2005.03.024.

34

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Y. Molenbruch, K. Braekers, and A. Caris. Typology and literature review for
dial-a-ride problems. Annals of Operations Research, 259(1-2):295–325, 2017.
doi: 10.1007/s10479-017-2525-0.

J. Paquette, J.-F. Cordeau, G. Laporte, and M. M. Pascoal. Combining multi-
criteria analysis and tabu search for dial-a-ride problems. Transportation Re-
search Part B: Methodological, 52:1–16, 2013. doi: 10.1016/j.trb.2013.02.007.

S. N. Parragh. Introducing heterogeneous users and vehicles into models and al-
gorithms for the dial-a-ride problem. Transportation Research Part C: Emerg-
ing Technologies, 19(5):912–930, 2011. doi: 10.1016/j.trc.2010.06.002.

S. N. Parragh, K. F. Doerner, R. F. Hartl, and X. Gandibleux. A heuristic two-
phase solution approach for the multi-objective dial-a-ride problem. Networks,
54(4):227–242, dec 2009. doi: 10.1002/net.20335.

Y. Qu and J. F. Bard. A branch-and-price-and-cut algorithm for heterogeneous
pickup and delivery problems with configurable vehicle capacity. Transporta-
tion Science, 49(2):254–270, 2015. doi: 10.1287/trsc.2014.0524.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science,
40(4):455–472, 2006. doi: 10.1287/trsc.1050.0135.

S. Ropke, J.-F. Cordeau, and G. Laporte. Models and branch-and-cut algo-
rithms for pickup and delivery problems with time windows. Networks, 49(4):
258–272, 2007. doi: 10.1002/net.20177.

M. Schilde, K. Doerner, and R. Hartl. Integrating stochastic time-dependent
travel speed in solution methods for the dynamic dial-a-ride problem. Euro-
pean Journal of Operational Research, 238(1):18–30, oct 2014. doi: 10.1016/
j.ejor.2014.03.005.

A. L. S. Souza, J. B. C. Chagas, P. H. V. Penna, and M. J. F. Souza. A hybrid
heuristic algorithm for the dial-a-ride problem. In Variable Neighborhood
Search, pages 53–66. Springer International Publishing, 2020. doi: 10.1007/
978-3-030-44932-2_4.

R. J. S. Viana, A. G. Santos, F. V. C. Martins, and E. F. Wanner. Optimization
of a demand responsive transport service using multi-objective evolutionary
algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion. ACM, jul 2019. doi: 10.1145/3319619.3328528.

I. Zidi, K. Mesghouni, K. Zidi, and K. Ghedira. A multi-objective simulated
annealing for the multi-criteria dial a ride problem. Engineering Applications
of Artificial Intelligence, 25(6):1121–1131, sep 2012. doi: 10.1016/j.engappai.
2012.03.012.

35

