
Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 21/02

Tatiana Kossaczká, M. Ehrhardt and Michael Günther

Enhanced fifth order WENO Shock-Capturing Schemes
with Deep Learning

January 13, 2021

http://www.imacm.uni-wuppertal.de

Enhanced fifth order WENO Shock-Capturing Schemes

with Deep Learning

Tatiana Kossaczká∗, Matthias Ehrhardt, Michael Günther

Institute of Mathematical Modelling, Analysis and Computational Mathematics
(IMACM), Chair of Applied Mathematics and Numerical Analysis, Bergische Universität

Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany

Abstract

In this paper we enhance the well-known fifth order WENO shock-capturing
scheme by using deep learning techniques. This fine-tuning of an existing
algorithm is implemented by training a rather small neural network to mod-
ify the smoothness indicators of the WENO scheme in order to improve the
numerical results especially at discontinuities. In our approach no further
post-processing is needed to ensure the consistency of the method, which
simplifies the method and increases the effect of the neural network. More-
over, the convergence of the resulting scheme can be theoretically proven.

We demonstrate our findings with the inviscid Burgers’ equation, the
Buckley-Leverett equation and the 1-D Euler equations of gas dynamics.
Hereby we investigate the classical Sod problem and the Lax problem and
show that our novel method outperforms the classical fifth order WENO
schemes in simulations where the numerical solution is too diffusive or tends
to overshoot at shocks.

Keywords: Weighted essentially non-oscillatory method, Hyperbolic
conservation laws, Smoothness indicators, Deep Learning
2000 MSC: 65M06, 68T07, 76L05

∗corresponding author
Email addresses: kossaczka@uni-wuppertal.de (Tatiana Kossaczká),

ehrhardt@uni-wuppertal.de (Matthias Ehrhardt), guenther@uni-wuppertal.de
(Michael Günther)

Preprint submitted to Elsevier January 13, 2021

1. Introduction

Typically, numerical fluid mechanics deals with nonlinear hyperbolic par-
tial differential equations (PDEs). In its simplest one-dimensional form, these
equations can be represented as

∂u

∂t
+
∂f(u)

∂x
= 0, t > 0, (1)

where x represents space, t denotes time, u(x, t) is conserved quantity and
f(u(x, t)) is its flux. Discontinuous initial data develops after finite time a
discontinuity (’shock wave’) or a rarefaction wave (regardless of the smooth-
ness of the initial or boundary data). Hence, suitable numerical methods for
these problems must be designed to properly handle especially the accurate
solution of the discontinuities. First in 1980, Crandall and Majda [1] pro-
posed the class of monotone schemes that are nonlinearly stable in the L1

norm and satisfy certain entropy conditions. It can be proven that the corre-
sponding solutions converge to bounded variation entropy solutions including
error estimates. However, these schemes are only first order accurate and by
the fundamental Godunov theorem [2] it is known that one has to consider
nonlinear non-oscillatory schemes to overcome this accuracy barrier.

In this direction so-called shock-capturing schemes were developed that
were able to resolve sharply a shock or a sharp gradient region without intro-
ducing too much diffusion or overshoot behaviour [3]. Additionally, to remedy
the above mentioned drawback, at regions with smooth flow these schemes
exhibit a rather high order of convergence. The well-known representative of
this class of methods are the essentially non-oscillatory (ENO) schemes [4]
with high order accuracy in smooth regions and sharply resolving shocks in
an essentially non-oscillatory way using a smoothness indicator function, see
e.g. [5]. Later on Jiang and Shu [6] further improved these schemes and pro-
posed a weighted ENO (in the sequel abbreviated with WENO-JS) scheme,
that is still regarded as a state-of-the-art solution approach.

Subsequently, different new strategies were developed by modifying the
WENO-JS schemes, i.e. by altering by smoothness indicators [7, 8, 9, 10,
11, 12] or by modifying the nonlinear weights [13]. Besides, another goal in
optimizing these schemes was to minimize the dispersion error (dispersion-
relation-preserving (DRP) schemes) [14, 15], also combined with the WENO
approach leading to optimized WENO (OWENO) schemes [16].

Recently, machine learning was widely used to compute the solution of
PDEs. We refer to [17, 18, 19], where the neural network algorithm is used

2

to approximate a solution of a particular PDE problem. Following that
approach, the solution of particular PDE is an output of a neural network
training procedure. Another idea is to improve a specific numerical scheme
using neural networks. The training of neural network is made offline and
results in a new numerical scheme applicable to a wider class of problems.
This idea was recently used by Beck et al. [20] for discontinuous Galerkin
methods or by [21] for learning iterative PDE solvers and we also follow this
approach.

The recent work of [22] introduces new WENO-NN scheme based on
neural network algorithm. In their work, the finite-volume coefficients of
WENO-JS are perturbed, while maintaining the original smoothness indica-
tors and nonlinear weights. Another neural network based WENO scheme
was developed by Liu and Wen [23], where the new smoothness indicators
are an output of the neural network algorithm.

In our work we will implement another WENO extension based on deep
learning. This approach will improve the classic WENO-JS and WENO-Z
[7] scheme. We present these two WENO schemes, but let us note, that
the introduced algorithm could be efficiently applied also to other WENO
modifications. For this purpose we will train a rather small neural network
to perturb the smoothness indicator functions of the WENO-JS scheme. As
we do not develop any new smoothness indicators as in [23], but only their
multiplicative perturbations, we are able to prove the convergence of the
resulting scheme. We call this new scheme WENO-DS (Deep Smoothness),
as we modify the smoothness indicators using neural networks. This scheme
has less diffusion and less overshoot in shocks than the WENO-JS and the
WENO-Z scheme, while maintaining fifth order accuracy in smooth regions.
Unlike the recent work of Stevens and Colonius [22], we do not need any
post-processing steps, which simplifies the procedure and also increases the
effect of the deep learning part.

Finally, let us note that the use of WENO methods is not limited to
hyperbolic PDEs, see e.g. [24] for an application in finance.

The paper is structured as follows. In Section 2 we introduce the WENO-
JS and WENO-Z schemes under consideration in detail. Next, in Section 3
we introduce our deep learning approach, where neural networks are used to
further improve WENO methods without any post-processing. The corre-
sponding convergence proofs for two WENO schemes are given in Section 4.
Then we present our numerical results in Section 5, which illustrate the
improvements of our proposed method. Finally, we conclude our work in

3

Section 6.

2. The WENO Scheme

Let {Ii} be the partition of a spatial domain with the i-th cell Ii =
[xi− 1

2
, xi+ 1

2
]. We consider a uniform grid defined by the points xi = x0 + i∆x,

i = 0, . . . , N , which are the centers of the cells with cell boundaries defined
by xi+ 1

2
= xi+

∆x
2

. The value of a function f at xi is indicated by fi = f(xi).

The spatial discretization of the one-dimensional conservation laws (1)
yields a system of ordinary differential equations (’method of lines’) and the
resulting semi-discrete scheme is

dui
dt

= − 1

∆x
(f̂i+ 1

2
− f̂i− 1

2
), (2)

where f̂ is a numerical approximation of the flux function f . Following [6],
if we define a function h implicitly by

f
(
u(x)

)
=

1

∆x

∫ x+ ∆x
2

x−∆x
2

h(ξ) dξ, (3)

then (2) is approximated by

f ′
(
u(xi)

)
=

1

∆x

(
hi+ 1

2
− hi− 1

2

)
, hi± 1

2
= h(xi± 1

2
), (4)

where hi± 1
2

approximates the numerical flux f̂± 1
2

with fifth order of accuracy

f̂± 1
2

= hi± 1
2

+O(∆x5). (5)

This results in a conservative numerical scheme.
To guarantee the stability of the method and avoid entropy violating

solutions, the flux splitting method is applied, thus

f(u) = f+(u) + f−(u), where
df+(u)

du
≥ 0 and

df−(u)

du
≤ 0. (6)

The numerical flux f̂i± 1
2

is then represented by f̂i± 1
2

= f̂+
i± 1

2

+ f̂−
i± 1

2

and the

final scheme is formed as

dui
dt

= − 1

∆x

[(
f̂+
i+ 1

2

− f̂+
i− 1

2

)
+
(
f̂−
i+ 1

2

− f̂−
i− 1

2

)]
. (7)

Next, only the construction of f̂+
i± 1

2

is considered. The negative part can be

then obtained using symmetry (see e.g. [25]).

4

2.1. Fifth order WENO scheme

For a construction of f̂i± 1
2
, the fifth order WENO method uses a 5-point

stencil
S(i) = {xi−2, . . . , xi+2} (8)

divided into three candidate substencils, which are given by

Sm(i) = {xi+m−2, xi+m−1, xi+m}, m = 0, 1, 2. (9)

To form the numerical flux over the entire 5-point stencil, the numerical flux
for each of these substencils f̂m

i+ 1
2

= hi+ 1
2
+O(∆x3) is calculated. These fluxes

are then averaged in such a way, that fifth order convergence is ensured in
the smooth regions. In regions with discontinuities, the weights should partly
remove the contribution of these stencils, so that the solution near the shock
can be approximated in more stable manner.

Let f̂m(x) be the polynomial approximation of h(x) on each of the subs-
tencils (9). Then, evaluated at i+ 1

2
we obtain

f̂m(xi+ 1
2
) = f̂m

i+ 1
2

=
2∑
j=0

cm,j fi+m−2+j, i = 0, . . . , N, (10)

where cm,j are the Lagrangian interpolation coefficients, dependent on m (see
[6]). They take an explicit form

f̂ 0
i+ 1

2
=

2f(ui−2)− 7f(ui−1) + 11f(ui)

6
,

f̂ 1
i+ 1

2
=
−f(ui−1) + 5f(ui) + 2f(ui+1)

6
, (11)

f̂ 2
i+ 1

2
=

2f(ui) + 5f(ui+1)− f(ui+2)

6
,

and the numerical fluxes f̂m
i− 1

2

can be obtained by shifting each index by −1.

Using the Taylor series expansion it can be shown that:

f̂m
i± 1

2
= hi± 1

2
+ Am∆x3 +O(∆x4). (12)

Then, the convex combination of the interpolated values f̂m(xi± 1
2
) given

by

f̂i± 1
2

=
2∑
j=0

ωm f̂
m(xi± 1

2
) (13)

5

yields the WENO approximation of the value hi± 1
2
, where ωm are the non-

linear weights defined as, cf. [6]

ωJSm =
αJSm∑2
i=0 α

JS
i

, where αJSm =
dm

(ε+ βm)2
. (14)

The scheme using these nonlinear weights is denoted as the WENO-JS scheme.
The parameter ε guarantees that the denominator does not become zero, and
the coefficients d0, d1 and d2 are called ideal weights, which would form the
upstream fifth order central scheme for the 5-point stencil and satisfy (5).
Their values are:

d0 =
1

10
, d1 =

6

10
, d2 =

3

10
. (15)

The parameter βm is called the smoothness indicator and is analyzed in the
next section.

2.2. Smoothness Indicators

The role of smoothness indicators is to measure the regularity of the
polynomial approximation f̂m(x) in each of three substencils. As developed
in [6], they are defined as:

βm =
2∑
q=1

∆x2q−1

∫ x
i+ 1

2

x
i− 1

2

(dqf̂m(x)

dxq

)2

dx. (16)

Corresponding to the flux approximation f̂i+ 1
2

they take an explicit form

β0 =
13

12

(
f(ui−2)− 2f(ui−1) + f(ui)

)2
+

1

4

(
f(ui−2)− 4f(ui−1) + 3f(ui)

)2
,

β1 =
13

12

(
f(ui−1)− 2f(ui) + f(ui+1)

)2
+

1

4

(
−f(ui−1) + f(ui+1)

)2
, (17)

β2 =
13

12

(
f(ui)− 2f(ui+1) + f(ui+2)

)2
+

1

4

(
3f(ui)− 4f(ui+1) + f(ui+2)

)2
,

6

and their Taylor expansions at xi are:

β0 = f 2
x∆x2 +

(13

12
f 2
xx −

2

3
fxfxxx

)
∆x4

+
(
−13

6
fxxfxxx +

1

2
fxfxxxx

)
∆x5 +O(∆x6),

β1 = f 2
x∆x2 +

(13

12
f 2
xx +

1

3
fxfxxx

)
∆x4 +O(∆x6),

β2 = f 2
x∆x2 +

(13

12
f 2
xx −

2

3
fxfxxx

)
∆x4

+
(13

6
fxxfxxx −

1

2
fxfxxxx

)
∆x5 +O(∆x6).

(18)

These indicators are designed to come closer to zero for smooth parts of the
solution so that the nonlinear weights ωm come closer to the ideal weights
dm. In the case that the stencil Sm contains a discontinuity, βm is O(1) and
the corresponding weight ωm becomes smaller, therefore the contribution of
the substencil Sm is reduced.

Following [13], we obtain the necessary and sufficient conditions for a fifth
order convergence. Firstly, it can be shown that demanding (5) it has to be
satisfied:

2∑
m=0

(ω±m − dm) = O(∆x6), (19)

ω±m − dm = O(∆x3). (20)

However, considering the overall finite difference formula f̂j+ 1
2
− f̂j− 1

2
=

f ′(x)∆x+O(∆x6), it can be shown, that (20) may be relaxed and we obtain
the following sufficient and necessary conditions:

2∑
m=0

(ω±m − dm) = O(∆x6), (21)

2∑
m=0

Am(ω+
m − ω−m) = O(∆x3), (22)

ω±m − dm = O(∆x2). (23)

Note that due to the normalization, the first condition (21) is always fulfilled.

7

The convergence analysis was performed in [6] and it was shown that if

βm = D
(
1 +O(∆x2)

)
, (24)

the condition (23) is satisfied and the scheme has the expected fifth order
accuracy, where D is a non-zero constant independent of m. However, it
was shown in [13] that at the critical points where the first derivative of
f vanishes, the convergence order of the scheme from [6] decreases to the
third order. Moreover, if the second derivative also vanishes, the order is
further reduced, namely to the second order. For a further explanation of
this problem we refer to [13].

2.3. The WENO-Z scheme

In this paper we consider the modified WENO scheme of Borges et al. [7]
with a new global smoothness indicator, which is characterized by

τ5 = |β0 − β2|. (25)

It is easy to see from the equations (18) that

τ5 =
13

3
|fxxfxxx|∆x5 +O(∆x6). (26)

The new WENO-Z weights are then defined by

ωZm =
αZm∑2
i=0 α

Z
i

, where αZm = dm

[
1 +

(
τ5

βm + ε

)2
]
. (27)

Borges et al. [7] have shown that when using these nonlinear weights, fifth
order convergence is preserved, even at the critical points where f ′(u) = 0.

3. The Deep Learning Approach for WENO Schemes

To better capture discontinuities and avoid oscillations, we propose to
apply deep learning to develop new smoothness indicators. We construct
them as products of the original smoothness indicators βm and multipliers
δm which are outputs of a neural network algorithm. We refer to these
new smoothness indicators as βDSm , where index DS corresponds to the new
WENO-DS scheme:

βDSm = βm(δm + C), (28)

8

where C is a constant, which role is crucial for the proof of consistency
and convergence and we will explain how to choose it in the Section 4. We
emphasize that this formulation is very advantageous in a sense that the
consistency and convergence properties of the original WENO method are
preserved. In the case that the solution is smooth and the original smoothness
indicator βm converges to zero, the smoothness indicator βDSm behaves in the
same way. If the smoothness indicator βm is O(1), the multiplier δm can
change it so that the final scheme performs better.

In the original WENO method, the stencil (8) is used to approximate
the solution in xi, and the fluxes are being reconstructed in the points xi− 1

2

and xi+ 1
2
. To define f̂m

i− 1
2

we use (10) and shift each index by −1. In our

approach we proceed as in the classical WENO method [5] and compute the
smoothness indicators as described in (16) in the Section 2.2. We use them
for a flux reconstruction f̂i+ 1

2
and then by shifting each of the index by −1 we

compute the smoothness indicators corresponding to the flux approximation
f̂i− 1

2
. We denote them as βm,i+ 1

2
and βm,i− 1

2
, respectively. For a fixed m we

could make the multiplier δm for βm,i+ 1
2

and βm,i− 1
2

dependent on the location
of the substencils corresponding to βm,i+ 1

2
and βm,i− 1

2
. This would result in

two different multipliers for βm,i+ 1
2

and βm,i− 1
2
. However, experimentally we

got the superior results by using the same multiplier δm,i for both βm,i+ 1
2

and βm,i− 1
2
, dependent only on the position i of the global stencil. The new

smoothness indicators are then computed as

βDS
m,i+ 1

2
= βm,i+ 1

2
(δm,i + C), (29)

βDS
m,i− 1

2
= βm,i− 1

2
(δm,i + C), (30)

and the values δ0, δ1, δ2 are obtained, such that it holds

δ0,i+1 = δ1,i = δ2,i−1, i = 0, . . . , N. (31)

Finally, we obtain the flux approximations:

f̂p
i− 1

2

and f̂n
i+ 1

2
, (32)

which are used for approximating of a solution in a point xi. Superscripts p
and n indicate the difference between the values at the same location xi+ 1

2

when we approximate the solution in points xi and xi+1 (resp. at the same

9

f(xi-k), f(xi-k+1), … , f(xi+k)

β0,i+1/2

β1,i+1/2

β2,i+1/2

index shift by -1

β0,i -1/2

β1,i -1/2

β2,i -1/2

neural network

δ0,i

δ1,i

δ2,i

x x

βDS
0,i+1/2

βDS
1,i+1/2

βDS
2,i+1/2

βDS
0,i -1/2

βDS
1,i -1/2

βDS
2,i -1/2

δ i

index shift by -1

index shift by +1

ωDS
0,i+1/2

ωDS
1,i+1/2

ωDS
2,i+1/2

ωDS
0,i -1/2

ωDS
1,i -1/2

ωDS
2,i -1/2

f ̂ 0
i+1/2

f ̂ 1
i+1/2

f ̂ 2
i+1/2

index shift by -1

f ̂ 0
i -1/2

f ̂ 1
i -1/2

f ̂ 2
i -1/2

x x

f ̂
i+1/2 f î -1/2

smoothness indicators computation

nonlinear weights computation nonlinear weights computation

substencil flux
computation

Figure 1: The structure of the WENO method combined with the neural network algo-
rithm. The white parts of the graph correspond to the original WENO method. The
grey parts are added to this method, so that the whole graph corresponds to the new
method WENO-DS. 2k + 1 is the size of the receptive field of the whole CNN, x denotes
the element-wise multiplication.

location xi− 1
2

when we approximate the solution in points xi−1 and xi). We
present the whole algorithm of the method in the Figure 1.

As we mentioned before, the flux splitting technique (6) is used. Each
part of a flux, f+ and f− represents different type of input data to the
neural network. Therefore we use two neural networks, for the positive
and negative part of a flux with the input values f+(xi) to the first neu-
ral network and f−(xi) to the second neural network, i = 0, . . . , N . Each
of the neural networks produces different outputs, multipliers correspond-
ing to the positive and negative part of a flux. For simplicity we further
drop the superscripts ± and when we talk about the inputs to the neural

10

network we always mean both f+(xi) and f−(xi). We denote by f̄(x) the
vector (f(x0), f(x1), . . . f(xN)) and formulate the neural network as a func-
tion F

(
f̄(x)

)
.

To ensure consistency we propose the use of a convolutional neural net-
work (CNN). Firstly, this type of neural network is computationally efficient
and secondly, we make the multipliers independent of their position in the
spatial grid, so the final numerical scheme is spatially invariant. To ensure
the convergence of the method, we use the differentiable activation functions
like the exponential linear unit (ELU) and the sigmoid function. If the layers
of the neural network are differentiable functions, then their composition,
the neural network function F (·), is also a differentiable function. The ELU
activation function has the advantage that it does not cause the dying gradi-
ent problem, the sigmoid activation function ensures that the output of the
neural network is between 0 and 1.

Let us note that we use for the implementation Python with the library
PyTorch [26] (https://pytorch.org/) containing neural networks which
could be GPU accelerated.

4. Convergence analysis of the new WENO scheme (WENO-DS)

4.1. Convergence analysis of WENO-JS scheme with new smoothness indi-
cators βDS

m,i± 1
2

Let us express the multipliers δm,i for the smoothness indicators βm,i± 1
2
,

m = 0, 1, 2 used in the node xi as the outputs of a neural network function.
Using the fact, that the layers of the CNN are differentiable functions and
that CNN is spatially invariant, we can write

δ0,i = F
(
f̄(x̄i−1)

)
= Φ(x̄i −∆x) = Φ(x̄i)−O(∆x),

δ1,i = F
(
f̄(x̄i)

)
= Φ(x̄i),

δ2,i = F
(
f̄(x̄i+1)

)
= Φ(x̄i + ∆x) = Φ(x̄i) +O(∆x),

(33)

where

x̄i = (xi−k, xi−k+1, . . . , xi+k),

f̄(x̄i) = (f(xi−k), f(xi−k+1), . . . , f(xi+k)),
(34)

where 2k+ 1 is the size of the receptive field of the whole CNN and Φ is the
function composition F ◦ f̄ . Then using (24) it holds

βDS
m,i± 1

2
= βm,i± 1

2
(δm,i + C) = D

(
1 +O(∆x2)

)(
Φ(x̄i) +O(∆x) + C

)
. (35)

11

We denote P (x̄i) = Φ(x̄i)+C and we set C such that Φ(x̄i)+C > κ > 0 with
κ fixed. Then we ensure that P (x̄i) = O(1). Performing the multiplication
in (35) we obtain

βDS
m,i± 1

2
= D

(
P (x̄i) + P (x̄i)O(∆x2) +O(∆x) +O(∆x3)

)
= DP (x̄i)

(
1 +O(∆x)

)
= D̃

(
1 +O(∆x)

)
.

(36)

Here we can proceed as in [13], but for the reader’s convenience we repeat
the steps of the proof: insert (36) into (14) and take ε = 0

αDS
m,i± 1

2
=

dm(
D̃(1 +O(∆x)

)2 =
dm

D̃2

(
1 +O(∆x)

)
. (37)

This implies that
2∑

m=0

αDS
m,i± 1

2
=

1

D̃2

(
1 +O(∆x)

)
, (38)

where we used the fact that
∑2

m=0 dm = 1. Finally, substituting into (14) we
obtain

ωDS
m,i± 1

2
= dm +O(∆x), (39)

where the superscript DS denotes the enhancement of the nonlinear weights
(14) using our novel method. We see, that neither the condition (20), nor (23)
is satisfied. However, as (39) holds, we can still guarantee convergence for the
WENO-JS scheme with the smoothness indicators (28) with a convergence
order degraded to the third order, cf. [7].

4.2. Convergence analysis of WENO-Z scheme with new smoothness indica-
tors βDS

m,i± 1
2

Let us now analyse the convergence of the scheme (27) with the new
smoothness indicators (28). From (18) we see that the smoothness indicators
βm,i± 1

2
are of the form

βm,i± 1
2

= f 2
x∆x2 +O(∆x4) (40)

and the global smoothness indicator (25)

τ5 = O(∆x5). (41)

12

Then it holds

βDS
m,i± 1

2
= βm,i± 1

2
(δm,i + C) =

(
f 2
x∆x2 +O(∆x4)

)(
P (x̄i) +O(∆x)

)
= f 2

xP (x̄i)∆x
2 +O(∆x3).

(42)

We take ε = 0 and choose C such that Φ(x̄i) + C > κ > 0, with κ fixed.
Then we see that in the non-critical points where fx 6= 0

τ

βDS
m,i± 1

2

= D̂∆x3 +O(∆x4), (43)

where D̂ =
13
3
|fxxfxxx|
f2
xP (x̄i)

. Substituting this into (27) we obtain

αDS
m,i± 1

2
= dm

(
1 +O(∆x6)

)
and

2∑
m=0

αDS
m,i± 1

2
=
(
1 +O(∆x6)

)
, (44)

so it follows directly
ωDS
m,i± 1

2
= dm +O(∆x6) (45)

and the condition (20) is satisfied. Since we ensure P (x̄i) > C > κ > 0, the
multipliers P (x̄i) do not introduce any further critical points. Therefore the
analysis of the critical points with fx = 0 remains the same as in [7]. Thus
we can guarantee the fifth order convergence of the scheme (27) with the
smoothness indicators (28) also in the critical points.

5. Numerical Results

For the system of ordinary differential equations resulting from (2) we use
a third-order total variation diminishing (TVD) Runge-Kutta method [27]
given by

u(1) = un + ∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)),

(46)

where L = − 1
∆x

(f̂i+ 1
2
− f̂i− 1

2
) and un is the solution at the time step n.

For (6) we consider in our examples the Lax-Friedrichs flux splitting

f±(u) =
1

2

(
f(u)± αu

)
, (47)

where α = max
u
|f ′(u)|.

13

The Neural Network Structure

The proposed neural network algorithm can be generally applied to any
type of conservation laws. For the equations where discontinuities or shocks
are present, we propose to train the neural network separately for each equa-
tion class. Then we can better adjust the size of a neural network and its
structure as well as the loss function, which leads to better results.

As we mentioned earlier, the inputs to the CNN are the values f+(xi)
and f−(xi), i = 0, . . . , N and we train two neural networks for a positive and
negative part of a flux. (The superscripts ± will be further dropped.)

The first layer of the neural network is not learned, but represents a
preprocessing of the solution from the last time step into a set of features
that we assume to be suitable inputs for the following learned layers. Since
our goal is to improve the smoothness indicators, we first compute the first
and second central finite differences of f(xi), i = 0, . . . , N . These parameters
give us information about the smoothness of the solution and can facilitate
and speed up the training of the CNN, and we can use a rather small CNN
that still remains powerful. So we have the following values as input for the
first learned hidden layer:

fdiff1 = f(xi+1)− f(xi−1), fdiff2 = f(xi+1)− 2f(xi) + f(xi−1). (48)

The values fdiff1, fdiff2 computed from f+ from (47) represent the input values
for the first neural network and the values fdiff1, fdiff2 computed from f−

represent the input values for the second neural network.
Next, we use a fixed number of hidden layers, each with a specific kernel

size and number of channels. We set these CNN parameters separately for
each of the equation classes and experimentally find the best setting for each
equation, keeping the size of proposed CNN small. We move the kernel
by one space step so the stride is set to 1, and we use an ELU activation
function in all hidden layers except the last one where we use sigmoid. In all
our experiments, we set C = 0.1 in (28), which we experimentally found to
be efficient. Let us note, that due to subsequent normalization of βDSm during
the computation of nonlinear weights, using large value of C would decrease
the effect of the trained multipliers. On the other hand, for C close to zero
the experimental order of convergence could be smaller on rough grids (but
still achieved for ∆x→ 0). We use the nonlinear weights as defined in (27),
replacing βm with βDSm . The value of ε is set to 10−13.

14

As the first choice of the loss function we use the mean square error

LOSSMSE(u) =
1

N

N∑
i=0

(ui − uref
i)2, (49)

where ui is a numerical approximation of u(xi) and uref
i is the corresponding

reference solution. An advantage of this L2-norm based loss function in con-
trast to the L1-norm based loss function are stronger gradients with respect
to ui resulting in faster training.

5.1. The Buckley-Leverett equation

In the first example, we apply our neural network algorithm to the Buckley-
Leverett equation, which was also considered, for example, in [27, 28, 6]. It
is a typical example with a non-convex flux function modeling a two-phase
fluid flow in a porous medium [29]. The flux is given by

f(u) =
u2

u2 + a(1− u)2
, −1 ≤ x ≤ 1, 0 ≤ t ≤ 0.4, (50)

where a < 1 is a constant indicating the ratio of the viscosities of the two
fluids. The initial condition is set as

u(x, 0) =

{
1, if − 0.5 ≤ x ≤ 0,

0, if elsewhere
(51)

and we use periodic boundary condition.
In our implementation, we use the CNN with 3 hidden layers with the

structure described in Figure 2. The inputs to the learned hidden layers
are the features (48). First, we create the dataset for which we compute
the reference solution for the equation (1) with the flux (50) and the initial
condition (51). We randomly generate the parameter a from a uniformly
distributed range [0.05, 0.95]. We divide the computational domain [−1, 1]
into 1024 spatial steps and the solution is computed up to time T = 0.4,
where the time domain is divided into 8960 time steps. We use the WENO-Z
method to compute this reference solution.

For training, we proceed as follows. At the beginning, we randomly choose
a problem and its reference solution from our dataset. The weights of the
CNN are randomly initialized and we train our model on a solution where

15

Conv1d
in_channels = 2
out_channels = 5
kernel_size = 5
padding = 2

ELU ELU Sigmoid

Conv1d
in_channels = 5
out_channels = 3
kernel_size = 5
padding = 2

Conv1d
in_channels = 3
out_channels = 1
kernel_size = 1
padding = 0

fdiff2

fdiff1

Figure 2: A structure of the convolutional neural network used for the Buckley Leverett
equation (structure is same for both inputs f+(xi) and f−(xi), fdiff1 and fdiff2 are defined
in (48) and are computed from both f+(xi) and f−(xi)).

our computational domain is divided into 128×140 steps and successively
compute the entire solution until the final time T . Using the solution at the
time step n, we compute the solution at the time step n+ 1 and during this
computation the CNN is used to predict the multipliers of the smoothness
indicators. After each of these time steps, we compute the loss and its gradi-
ent with respect to the weights of the CNN using backpropagation algorithm.
Then we use this gradient to update the weights, using the well-known Adam
optimizer [30] with learning rate 0.0001. After the last time step at time T ,
we test a model on a validation set and repeat the above steps. Then we
select the model with the best performance on the validation set as our final
model. For both training and comparing the performance of the models, we
use the loss function defined as

LOSS(u) = LOSSMSE(u) + LOSSOF (u), (52)

where LOSSMSE(u) is defined in (49) and

LOSSOF (u) =
N∑
i=0

|min(ui, umin)− umin|+ |max(ui, umax)− umax| (53)

represents the sum of the overflows of the solution above the maximum and
below the minimum value of u, in our case umax = 1 and umin = 0. By adding
this term to our loss function, we want to avoid the undesirable oscillations
that occur especially in the first time steps of the solution.

The Figure 3 shows how the value of the loss function for the problems
from the validation set (which are not present in the training set) changes
with increasing number of training cycles. As training cycle we denote a
sequence of the training steps performed on a solution for a single randomly
chosen parameter a until the final time T . The loss is then evaluated at this
final time T . We apparently see two optima for different values of a. If there
are more than 50 training cycles, the loss begins to increase significantly for

16

0 10 20 30 40 50 60
number of training cycles

0.0005

0.0010

0.0015

0.0020

0.0025

LO
SS

Figure 3: Loss values for different validation problems at different training cycles (x-axis).

some problems, indicating that further training is not efficient. This may be
caused by overfitting or divergence, so an early stopping algorithm could be
implemented efficiently. Since we want only one final numerical scheme as
output, we choose the model obtained after the 46th training cycle as the
final model and present the result computed with it.

We compare the L∞- and L2-error in the Table 1 for the solution of the
conservation law (1) with (50), a ∈ {0.25, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Let us
note that these parameters were neither in the training, nor in the validation
set. We highlight the best performing WENO method using bold. In column

L∞ L2

a WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

0.25 0.429654 0.435090 0.183302 2.34 0.068405 0.067912 0.034065 1.99
0.4 0.408252 0.405047 0.340068 1.19 0.059344 0.058160 0.056051 1.04
0.5 0.317824 0.320094 0.179696 1.77 0.049913 0.049026 0.033758 1.45
0.6 0.459994 0.456687 0.297523 1.53 0.062155 0.061275 0.048766 1 26
0.7 0.476089 0.475015 0.310196 1.53 0.073021 0.072581 0.049836 1.46
0.8 0.207676 0.197021 0.250032 0.79 0.032560 0.030994 0.038974 0.80
0.9 0.375720 0.367802 0.181120 2.03 0.062257 0.061834 0.038510 1.61

Table 1: Comparison of L∞ and L2 error of WENO-JS, WENO-Z and WENO-DS methods
for the solution of the Buckley-Leverett equation with the initial condition (51). As ’ratio’
we denote the minimum error of the methods WENO-JS and WENO-Z divided with an
error of WENO-DS (rounded to 2 decimal points).

17

denoted ’ratio’ we divide the minimum error of WENO-JS and WENO-Z
with an error of WENO-DS, showing how well our novel method works com-
pared to the better one from the mentioned standard methods. WENO-DS
outperforms the standard WENO methods in most cases. For a = 0.8, the
error of WENO-DS is larger than the errors of the other two methods. How-
ever, this may be caused by the fact that the standard WENO methods
perform disproportionately well for a = 0.8 compared to other values of the
parameter a.

In the Figure 4, we present the solution of the Buckley-Leverett equation
for the test problems with a = 0.25 and a = 0.5. We see that the WENO-DS
gives a better solution quality than the WENO-JS or WENO-Z.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(a) Solution for a = 0.25

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(b) Solution for a = 0.5

Figure 4: Comparison of the WENO-JS, WENO-Z and WENO-DS methods on the solu-
tion of the Buckley-Leverett equation with the initial condition (51), N = 128.

Finally, we verify the theoretically proven fifth-order convergence of the
WENO-DS scheme for a transport equation with a smooth solution given as

∂u

∂t
+
∂u

∂x
= 0, u(x, 0) = sin(πx), 0 ≤ x ≤ 2, 0 ≤ t ≤ 0.5, (54)

with periodic boundary conditions. The results can be found in Table 2.
There is a great improvement when we compare our scheme with the WENO-
NN scheme of Stevens and Colonius [22], where the resulting scheme has only
first-order convergence.

18

WENO-Z WENO-DS
N L∞ Order L∞ Order

20 9.369742e-03 - 9.402549e-03 -
40 2.558719e-04 5.194516 2.558830e-04 5.199496
80 9.466151e-06 4.756500 9.466165e-06 4.756560
160 3.177833e-07 4.896663 3.177834e-07 4.896665
320 9.957350e-09 4.996137 9.957351e-09 4.996138
640 3.117835e-10 4.997145 3.117834e-10 4.997146

Table 2: L∞-norm error and convergence order of WENO-Z and WENO-DS on (54).

5.2. The inviscid Burgers’ equation

In the next example we consider the inviscid Burgers’ equation, where
the flux function in (1) is given by

f(u) =
u2

2
, 0 ≤ x ≤ 2, 0 ≤ t ≤ 0.3. (55)

We consider following initial conditions

u(x, 0) =

{
z1, if 1 ≤ x ≤ 2,

0, if elsewhere,
(56)

u(x, 0) = exp(−z2(x− 1)2), (57)

u(x, 0) = z3 sin(πx), (58)

where
z1 ∈ U [1, 2], z2 ∈ U [10, 30], z3 ∈ U [1, 2]. (59)

Using these initial conditions, we cover problems with both continuous and
discontinuous initial conditions, and we simulate the shocks and discontinu-
ities very well. We use periodic boundary condition.

We first create the data set for training, in which we compute the refer-
ence solution of the Burgers’ equation with the initial conditions (56)-(58).
The computational domain is divided into 1024 space steps and 6400 time
steps and the solution is computed up to time T = 0.3 using the WENO-Z
scheme. We use the CNN with 3 hidden layers with the structure described
in Figure 5. For training, we proceed in the same way as in the previous
example. The only differences are that the computational domain is divided

19

Conv1d
in_channels = 2
out_channels = 10
kernel_size = 5
padding = 2

ELU ELU Sigmoid

Conv1d
in_channels = 10
out_channels = 10
kernel_size = 5
padding = 2

Conv1d
in_channels =10
out_channels = 1
kernel_size = 1
padding = 0

fdiff2

fdiff1

Figure 5: The structure of the convolutional neural network used by the Burgers’ equation
(structure is same for both inputs f+(xi) and f−(xi), fdiff1 and fdiff2 are defined in (48)
and are computed from both f+(xi) and f−(xi)).

into 128×100 steps and the learning rate used by the Adam optimizer is
0.001. In this example, we use the mean square error loss function (49) for
training and validation. As the training on Burgers’ equation exhibits much
higher variance than in the Buckley-Leverett case, we performed 3 trainings
each with 90 training cycles and finally selected the model showing the best
performance on the validation set.

L∞ L2

initial
condition

zj WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

(56) 1.19 0.632213 0.632788 0.303060 2.09 0.082373 0.082141 0.046932 1.75
1.53 0.594943 0.58678 0.485714 1.21 0.080341 0.07877 0.067175 1.17
1.84 0.704680 0.694358 0.542599 1.28 0.094967 0.093019 0.076102 1.22

(57) 14.94 0.113498 0.104374 0.100061 1.04 0.016926 0.015137 0.015164 1.00
21.65 0.236125 0.229290 0.196110 1.17 0.032979 0.031680 0.029141 1.09
29.08 0.312595 0.310937 0.388739 0.80 0.040632 0.040199 0.049385 0.81

(58) 1.46 0.059072 0.056751 0.051553 1.10 0.010443 0.010032 0.007307 1.37
1.6 0.063780 0.061391 0.037165 1.65 0.011275 0.010853 0.005552 1.95
1.9 0.072586 0.069995 0.023841 2.94 0.012831 0.012373 0.003396 3.64

Table 3: Comparison of L∞ and L2 error of WENO-JS, WENO-Z and WENO-DS methods
for the solution of the Burgers’ equation with the initial condition parameters inside of
training set intervals (59). As ’ratio’ we denote the minimum error of the methods WENO-
JS and WENO-Z divided with an error of WENO-DS (rounded to 2 decimal points).

We compare the errors on the problems from the test set in Table 3
and 4. These were not in the training or validation set and the parameters
were randomly generated. We observe rather small or no improvement for
problems with the initial condition (57), but the improvement is significant
for the solution with the discontinuous initial condition (56) as well as with
the initial condition (58).

We conclude that the WENO-DS significantly outperforms the classical
WENO methods. It should be noted that although our training set was
created with the parameters sampled from uniform distribution as specified
in (59), the method can also generalise for parameter values outside of these

20

L∞ L2

initial
condition

zj WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

(56) 0.71 0.204162 0.199246 0.150400 1.32 0.031740 0.030740 0.028178 1.09
2.41 1.541714 1.554201 1.004904 1.53 0.199285 0.200194 0.129223 1.54
2.57 1.063823 1.055948 0.755908 1.40 0.140068 0.138411 0.102963 1.34
3.13 0.622858 0.600619 0.287540 2.09 0.087067 0.084495 0.054477 1.55

(57) 33.9 0.351086 0.345278 0.266422 1.30 0.045665 0.044691 0.036426 1.23
34.67 0.285791 0.283237 0.194424 1.46 0.037350 0.036815 0.027150 1.36

(58) 0.94 0.009524 0.007189 0.007898 0.91 0.001737 0.001509 0.001491 1.01
2.12 0.077503 0.074744 0.012296 6.08 0.013701 0.013213 0.001712 7.72
2.44 0.083010 0.080022 0.003978 20.12 0.014675 0.014147 0.000537 26.35

Table 4: Comparison of L∞ and L2 error of WENO-JS, WENO-Z and WENO-DS methods
for the solution of the Burgers’ equation with the initial condition parameters outside of
training set intervals (59). As ’ratio’ we denote the minimum error of the methods WENO-
JS and WENO-Z divided with an error of WENO-DS (rounded to 2 decimal points).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(a) Initial condition (58) with z3 = 1.6.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(b) Initial condition (58) with z3 = 2.12.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.2

0.4

0.6

0.8

1.0

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(c) Initial condition (57) with z2 = 29.08.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.5

1.0

1.5

2.0

2.5

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(d) Initial condition (56) with z1 = 2.41.

Figure 6: Comparison of the WENO-JS, WENO-Z and WENO-DS methods for the solu-
tion of the Burgers’ equation with various initial conditions, N = 128.

21

intervals, as can be seen in Table 4. Especially, we highlight the last two
problems from Table 4, where we see a great improvement.

In the Figure 6 we show the solution of the Burgers’ equation with the
initial condition (56) for z1 = 2.41, (57) for z2 = 29.08, (58) for z3 = 1.6
and (58) for z3 = 2.12. We observe that WENO-DS captures shocks and
discontinuities very well and gives us a better solution compared to WENO-
JS and WENO-Z.

5.3. The one-dimensional Euler equations

We now investigate how WENO-DS behaves when applied to the one-
dimensional Euler system, which is considered a classical benchmark problem
for methods for conservation laws. It has the form

∂ρ

∂t
+
∂(ρu)

∂x
= 0,

∂ρu

∂t
+
∂(ρu2 + p)

∂x
= 0,

∂E

∂t
+
∂(uE + up)

∂x
= 0,

(60)

where ρ is the density, u is the velocity, p is the pressure and E is a total
energy given by

E =
p

γ − 1
+

1

2
ρu2. (61)

We take γ = 1.4, which is the ratio of the specific heats. To compute the
fluxes, we use the characteristic decomposition of the system according to the
steps in [5]. We use the Roe scheme to obtain the eigenvectors and eigen-
values [31] and the Lax-Friedrichs flux splitting to obtain the corresponding
component of the flux. We take the solution based on [32] as the reference
solution.

One of the most common benchmark problems is the Sod problem [33],
where the initial condition is specified as

(ρ, u, p) =

{
(1, 0, 1) 0 ≤ x ≤ 0.5,

(0.125, 0, 0.1) 0.5 < x ≤ 1
(62)

and the solution is computed up to time T = 0.1. We use an adaptive step
size

∆t =
0.9∆x

max(ci + |ui|)
, c2 =

γp

ρ
, (63)

22

where ui is the local velocity and ci the local speed of sound.
The solution consists of the left rarefaction wave, the right travelling

contact wave and the right shock wave. We want to imitate this behavior of
the solution, so we construct our data set as described in Appendix A.

We use the CNN with 3 hidden layers with the structure described in
Figure 7. After projecting the flux and the solution on the characteristic
fields using the left eigenvectors, we use Lax-Friedrichs flux splitting for each
component of characteristic variables. From these values we compute the
features (48), which are the inputs to the learned hidden layers.

Conv1d
in_channels = 6
out_channels = 10
kernel_size = 5
padding = 2

ELU ELU Sigmoid

Conv1d
in_channels = 10
out_channels = 10
kernel_size = 5
padding = 2

Conv1d
in_channels = 10
out_channels = 3
kernel_size = 1
padding = 0

fdiff2

fdiff1

Figure 7: A structure of the convolutional neural network used in the Euler system (struc-
ture is same for both inputs f+(xi) and f−(xi), fdiff1 and fdiff2 are defined in (48) and
are computed from both f+(xi) and f−(xi)).

In this example we repeat the training procedure of the previous examples
with some small modifications. To begin, we randomly generate the initial
state from the dataset described earlier. We divide the spatial domain into
64 steps and compute the solution for the given initial state up to the time
T = 0.1. After each time step we compute loss using the reference solution
from [32]. We use the gradient to update the weights, using Adam optimizer
with learning rate 0.001. At the last time step we test the model and repeat
the procedure with the new initial parameters (ρ, u, p). We use the loss

0 100 200 300 400 500
number of training cycles

0.00053

0.00054

0.00055

0.00056

0.00057

0.00058

LO
SS

(
)

(a) LOSSMSE(ρ)

0 100 200 300 400 500
number of training cycles

0.0034

0.0036

0.0038

0.0040

0.0042

0.0044

0.0046

0.0048

LO
SS

(u
)

(b) LOSSMSE(u)

0 100 200 300 400 500
number of training cycles

0.00056

0.00057

0.00058

0.00059

0.00060

0.00061

0.00062

0.00063

LO
SS

(p
)

(c) LOSSMSE(p)

Figure 8: Development of LOSSMSE(·) values with increasing number of training cycles.

23

function

LOSS(ρ, u, p) = LOSSMSE(ρ) + LOSSMSE(u) + LOSSMSE(p) (64)

for training and validation.
We show in the Figure 8 how the values of LOSSMSE(·) from (64) develop

with the increasing number of training cycles. These values were obtained by
testing the method on the validation problem, which was the Sod problem
with the initial condition (62).

As we can see, loss decreases with the increasing number of training cycles.
However, the final model of WENO-DS should be chosen carefully. In the
Figure 9 and 10 we present the solution of the modified Sod problem with
the initial condition (65)

(ρ, u, p) =

{
(1, 0.75, 1) 0 ≤ x ≤ 0.5,

(0.125, 0, 0.1) 0.5 < x ≤ 1,
(65)

for ρ, u and p using 64 space points and using the models obtained after the
72th training cycle and after the 483th training cycle, where the minimal
value of LOSS(ρ, u, p) is obtained. We compare the corresponding error
values in Table 5. As we can see, the second model of WENO-DS leads to
much smaller errors, compared to WENO-JS and WENO-Z. However, we
observe an oscillation on the solution for p and u. On the other hand, using
the first model obtained after the 72th training cycle, we see qualitatively
very good solution, although the improvement on error is not so large.

We also applied the trained models to a Lax problem [34] with an initial
condition

(ρ, u, p) =

{
(0.445, 0.698, 3.528) 0 ≤ x ≤ 0.5,

(0.5, 0, 0.571) 0.5 < x ≤ 1.
(66)

The solution also has a left rarefaction wave, a right traveling contact wave,
and a right shock wave. In the Figure 11 and 12 we show the solution
produced with both WENO-DS models mentioned before and see the similar
behaviour of the solution. As indicated in Table 6, we observe even greater
improvement on errors than in Sod problem using both models, especially
using the second model.

We can see, that the shape of the density profile is different, when com-
pared to the Sod problem. Finally, let us note, that although we have not
trained the presented models on the parameters that would lead to such a
solution, the models are robust enough and can reliably detect the shocks.

24

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

p

WENO-JS
WENO-Z
WENO-DS
ref. sol.

Figure 9: Solution of Sod problem (65), using the WENO-JS, WENO-Z and WENO-DS
obtained after the 72th training cycle, N = 64.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

p

WENO-JS
WENO-Z
WENO-DS
ref. sol.

Figure 10: Solution of Sod problem (65), using the WENO-JS, WENO-Z and WENO-DS
obtained after the 483th training cycle, N = 64.

L∞ L2

WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

ρ 0.144962 0.145601 0.117874 1.23 0.022758 0.022120 0.020395 1.08
p 0.240541 0.243511 0.187788 1.28 0.027821 0.027364 0.022988 1.19
u 1.047592 1.055905 0.886982 1.18 0.107484 0.106745 0.087345 1.22

(a) WENO-DS method obtained after the 72th training cycle.

L∞ L2

WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

ρ 0.144962 0.145601 0.105094 1.38 0.022758 0.022120 0.018560 1.19
p 0.240541 0.243511 0.132999 1.81 0.027821 0.027364 0.019334 1.42
u 1.047592 1.055905 0.693131 1.51 0.107484 0.106745 0.067311 1.59

(b) WENO-DS method obtained after the 483th training cycle.

Table 5: Comparison of L∞ and L2 error of WENO-JS, WENO-Z and WENO-DS methods
for the solution of the Euler equations of gas dynamics for Sod problem (65). As ’ratio’
we denote the minimum error of the methods WENO-JS and WENO-Z divided with an
error of WENO-DS (rounded to 2 decimal points).

25

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.6

0.8

1.0

1.2

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p

WENO-JS
WENO-Z
WENO-DS
ref. sol.

Figure 11: Solution of Lax problem (66), using the WENO-JS, WENO-Z and WENO-DS
obtained after the 72th training cycle, N = 64.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.6

0.8

1.0

1.2

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p

WENO-JS
WENO-Z
WENO-DS
ref. sol.

Figure 12: Solution of Lax problem (66), using the WENO-JS, WENO-Z and WENO-DS
obtained after the 483th training cycle, N = 64.

L∞ L2

WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

ρ 0.596377 0.609388 0.599831 0.99 0.088800 0.088287 0.071987 1.23
p 1.422278 1.442809 0.775437 1.83 0.141413 0.141420 0.079457 1.78
u 1.283662 1.294909 0.831654 1.54 0.133659 0.132723 0.081986 1.62

(a) WENO-DS method obtained after the 72th training cycle.

L∞ L2

WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio
ρ 0.596377 0.609388 0.507207 1.18 0.088800 0.088287 0.061225 1.44
p 1.422278 1.442809 0.656865 2.17 0.141413 0.141420 0.071175 1.99
u 1.283662 1.294909 0.386022 3.33 0.133659 0.132723 0.052814 2.51

(b) WENO-DS method obtained after the 483th training cycle.

Table 6: Comparison of L∞ and L2 error of WENO-JS, WENO-Z and WENO-DS methods
for the solution of the Euler equations of gas dynamics for Lax problem (66). As ’ratio’
we denote the minimum error of the methods WENO-JS and WENO-Z divided with an
error of WENO-DS (rounded to 2 decimal points).

26

6. Conclusion

In this work, we have improved the fifth-order WENO shock-capturing
scheme by using deep learning techniques. To do this, we trained a rela-
tively small neural network to obtain modified smoothness indicators of the
WENO scheme. This was done in a way that avoided post-processing of
the coefficients to ensure consistency. We applied our enhancement to the
WENO-Z scheme, where the fifth-order convergence on the smooth solu-
tions can be theoretically proven. Our new method, the WENO-DS scheme,
is quite easy to use and significantly improves the numerical results, espe-
cially in the presence of discontinuities, even for cases that have not been
trained before. We have demonstrated our results with the inviscid Burgers’
equation, the Buckley-Leverett equation, and the 1-D Euler equations of gas
dynamics. Finally, let us note, that this paper can be seen as a proof of
concept, that neural networks can be efficiently combined with an existing
numerical scheme, preserving its convergence order.

Appendix A. Parameters used for generating the data set for 1-D
Euler equations of gas dynamics

The problem samples representing different versions of the Euler equa-
tions of gas dynamics (62) were defined using parameters generated by the
following algorithm.

Choose randomly s ∈ {0, 1}
if s = 0 then
pl = a+ b, a ∈ U [0.5, 10], b ∈ U [−0.05, 0.05],
pr = 1/c, c ∈ U [5, 10],
ρl = pl,
ρr = pr + d, d ∈ U [−0.05, 0.05],
ul = e, e ∈ U [0, 1],
ur = 0,

else
pl = 1,
pr = 0.1,
ρl = k, k ∈ U [1, 3],
ρr = 1

10
ρl + l, l ∈ U [−0.05, 0.05],

ul = r, r ∈ U [0, 1],
ur = 0,

27

end if

where

(ρ, u, p) =

{
(ρl, ul, pl) 0 ≤ x ≤ 0.5,

(ρr, ur, pr) 0.5 < x ≤ 1.
(A.1)

References

[1] M. Crandall, A. Majda, Monotone difference approximations for scalar
conservation laws, Math. Comput. 34 (1980) 1–21.

[2] S. Godunov, Different Methods For Shock Waves, Ph.D. thesis, Moscow
State University, 1954.

[3] A. Harten, High resolution schemes for hyperbolic conservation laws, J.
Comput. Phys. 49 (1983) 357–393.

[4] A. Harten, B. Engquist, S. Osher, S. Chakravarthy, Uniformly high order
accurate essentially non-oscillatory schemes, III, in: M. Hussaini, B. van
Leer, J. Van Rosendale (Eds.), Upwind and High-Resolution Schemes,
Springer, 1987, pp. 218–290.

[5] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-
oscillatory schemes for hyperbolic conservation laws, in: A. Quar-
teroni (Ed.), Advanced Numerical Approximation of Nonlinear Hy-
perbolic Equations: Lectures given at the 2nd Session of the Centro
Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy,
June 23–28, 1997, Springer, Berlin, 1998, pp. 325–432. URL: https:
//doi.org/10.1007/BFb0096355. doi:10.1007/BFb0096355.

[6] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO
schemes, J. Comput. Phys. 126 (1996) 202–228.

[7] R. Borges, M. Carmona, B. Costa, W. S. Don, An improved weighted
essentially non-oscillatory scheme for hyperbolic conservation laws, J.
Comput. Phys. 227 (2008) 3191–3211.

[8] M. Castro, B. Costa, W. S. Don, High order weighted essentially non-
oscillatory WENO-Z schemes for hyperbolic conservation laws, J. Com-
put. Phys. 230 (2011) 1766–1792.

28

[9] C. H. Kim, Y. Ha, J. Yoon, Modified non-linear weights for fifth-order
weighted essentially non-oscillatory schemes, J. Sci. Comput. 67 (2016)
299–323.

[10] S. Rathan, G. N. Raju, A modified fifth-order weno scheme for hyper-
bolic conservation laws, Computers & Mathematics with Applications
75 (2018) 1531–1549.

[11] Y. Ha, C. H. Kim, Y. J. Lee, J. Yoon, An improved weighted essentially
non-oscillatory scheme with a new smoothness indicator, J. Comput.
Phys. 232 (2013) 68–86.

[12] L. Li, H. B. Wang, G. Y. Zhao, et al., Efficient WENOCU4 scheme with
three different adaptive switches, J. Zhejiang Univ. Sci. A 21 (2020)
695–720. URL: https://doi.org/10.1631/jzus.A2000006.

[13] A. K. Henrick, T. D. Aslam, J. M. Powers, Mapped weighted essentially
non-oscillatory schemes: achieving optimal order near critical points, J.
Comput. Phys. 207 (2005) 542–567.

[14] Y. Liu, Globally optimal finite-difference schemes based on least squares,
Geophysics 78 (2013) T113–T132.

[15] C. K. Tam, J. C. Webb, Dispersion-relation-preserving finite difference
schemes for computational acoustics, J. Comput. Phys. 107 (1993) 262–
281.

[16] Z. Wang, R. Chen, Optimized weighted essentially nonoscillatory
schemes for linear waves with discontinuity, J. Comput. Phys. 174 (2001)
381–404.

[17] I. E. Lagaris, A. Likas, D. I. Fotiadis, Artificial neural networks for
solving ordinary and partial differential equations, IEEE transactions
on neural networks 9 (1998) 987–1000.

[18] J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for
solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–
1364.

[19] J. Berg, K. Nyström, A unified deep artificial neural network approach
to partial differential equations in complex geometries, Neurocomputing
317 (2018) 28–41.

29

[20] A. D. Beck, J. Zeifang, A. Schwarz, D. Flad, A neural network based
shock detection and localization approach for discontinuous Galerkin
methods, J. Comput. Phys. 423 (2020). doi:10.1016/j.jcp.2020.
109824.

[21] J.-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, S. Ermon, Learning
neural PDE solvers with convergence guarantees, 2019. URL: https:
//arxiv.org/abs/1906.01200. arXiv:1906.01200.

[22] B. Stevens, T. Colonius, Enhancement of shock-capturing methods via
machine learning, Theor. Comput. Fluid Dynam. 34 (2020) 483–496.
URL: https://doi.org/10.1007/s00162-020-00531-1.

[23] Q. Liu, X. Wen, The WENO reconstruction based on the artificial
neural network, Adv. Appl. Math. 9 (2020) 574–583. URL: https:

//doi.org/10.12677/aam.2020.94069.

[24] T. Kossaczká, The Weighted Essentially Non-Oscillatory Method for
Problems in Finance, Master’s thesis, Bergische Universität Wuppertal,
Germany, 2019.

[25] R. Wang, R. J. Spiteri, Linear instability of the fifth-order weno method,
SIAM Journal on Numerical Analysis 45 (2007) 1871–1901.

[26] A. Paszke, et al., PyTorch: An imperative style, high-performance deep
learning library, in: H. Wallach, et al. (Eds.), Advances in Neural In-
formation Processing Systems 32, Curran Associates, Inc., 2019, pp.
8024–8035.

[27] C.-W. Shu, S. Osher, Efficient implementation of essentially non-
oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439–
471.

[28] C.-W. Shu, S. Osher, Efficient implementation of essentially non-
oscillatory shock-capturing schemes, II, in: M. Hussaini, B. van
Leer, J. Van Rosendale (Eds.), Upwind and High-Resolution Schemes,
Springer, 1989, pp. 328–374.

[29] R. J. LeVeque, et al., Finite volume methods for hyperbolic problems,
volume 31, Cambridge University Press, 2002.

30

[30] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980 (2014). Published as a conference paper
at ICLR 2015.

[31] P. L. Roe, Approximate Riemann solvers, parameter vectors, and dif-
ference schemes, J. Comput. Phys. 43 (1981) 357–372.

[32] P. Wesseling, Principles of Computational Fluid Dynamics, volume 29,
Springer Science & Business Media, 2009.

[33] G. A. Sod, A survey of several finite difference methods for systems
of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27 (1978)
1–31.

[34] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their
numerical computation, Communications on pure and applied mathe-
matics 7 (1954) 159–193.

31

