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Abstract

In this work we study the effects by including threshold, constant and time-dependent correlation
in stochastic volatility (SV) models to capture the asymmetry relationship between stock returns
and volatility. We develop SV models which include only time-dependent correlated innovations
and both threshold and time-dependent correlation, respectively. It has been shown in literature
that the SV model with only constant correlation does a better job of capturing asymmetry than
than threshold stochastic volatility (TSV) model. We show here that the SV model with time-
dependent correlation performs better than the model with constant correlation on capturing
asymmetry, and the comprehensive model with both threshold and time-dependently correlated
innovations dominates models with pure threshold, constant and time-dependent correlation,
and both threshold and constant correlation as well. In our comprehensive model, volatility and
returns are time-dependently correlated, where the time-varying correlation is negative, and the
volatility is more persistent, less volatile and higher following negative returns as expected. An
empirical study is provided to illustrate our findings.

Keywords Asymmetry stochastic volatility model, Threshold, Time-dependent correlation

1 Introduction

Many existing empirical results, e.g., [Glosten et al., 1993, Harvey and Shephard, 1996,
Jacquier et al., 2004, Nelson, 1991, Omori et al., 2007, Yu, 2005] indicate that the relationship
between stock returns and their volatility is asymmetric. The asymmetric volatility is an impor-
tant feature of stock returns, and especially noticeable when the stock market crashes. There are
two widespread explanations for this relationship: the leverage effect [Black, 1976, Christie, 1982]
and the volatility feedback effect [Campbell and Hentschel, 1992, French et al., 1987]. The lever-
age effect states that after negative returns, the financial leverage of a company increases and this
leads to increased volatility [Christie, 1982, Schwert, 1989]. However, it was concluded that the
leverage effect cannot solely be responsible for this asymmetric relationship. Nonetheless, this
explanation has been strongly linked to the asymmetric relationship of return and volatility, that
the leverage effect is often used as a synonym for asymmetric volatility. According to Campel
and Hentschel’s definition of the volatility feedback effect, volatility feedback strengthens large
negative returns and large positive returns are weakened by volatility feedback. There are other
explanations, for example the prospect theory [Kahneman and Tversky, 1979]. In the context of
that theory, one is exposed to loss aversion. Because of that people prefer to avoid losses rather
than make corresponding profits. This also explains the tendency of investors to sell assets that
have increased in value while retaining assets that have decreased in value. Although there is
no consensus about the causes of asymmetric volatility, whose existence plays definitely a major
role in financial market.
Many various models have been developed to capture this asymmetric relationship. Asymmet-
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ric GARCH-models which are able to capture this asymmetric relationship clearly outperform
GARCH-models that do not capture this asymmetric relationship, see [Glosten et al., 1993,
Nelson, 1991]. In these asymmetric GARCH-models, volatility increases more strongly after large
negative returns than after large positive returns. The SV model proposed in [Taylor, 1986]
can be used to model the conditional volatility of a variety of financial time series. An es-
tablished method to capture the asymmetric volatility is to correlate the shocks of the re-
turns and the future volatility. Such correlated SV models, which were first introduced in
[Wiggins, 1989, Chesney and Scott, 1989], generally provide estimates of a negative correlation
between the stock returns and volatility. Another possibilty to capture this asymmetry is the
threshold stochastic volatility (TSV) model[So et al., 2003]. In this model, the parameters that
influence the volatility dynamics change with the sign of the previous stock returns and no cor-
relation between return and volatility is allowed. In [Smith, 2009] a model is introduced which
contains the threshold dynamic and also correlated innovations, and it is shown that modelling
with only constant correlation does a better job of capturing the asymmetric relationship than
the TSV model.
Indeed, the included correlation can not only improve the SV models, it plays generally a
crucial role in modern finance, for example it is significant for pricing financial products.
However, many studies have shown that correlation is hardly constant over time, e.g.,
[Buraschi et al., 2010, Goetzmann et al., 2005, Longin and Solnik, 1995, Teng et al., 2015b,
Teng et al., 2015a, Teng et al., 2016a, Teng et al., 2016b, Teng et al., 2016c, Teng et al., 2016d,
Teng et al., 2018b, Teng et al., 2018a, Teng and Clevenhaus, 2019, Teng et al., 2020,
Tse, 2000]. In [Longin and Solnik, 1995] it was shown that market volatility has changed
somewhat in the past indicating that there is no constant conditional correlation for stock
returns. A high market volatility leads to an increase of the conditional correlation, and
economic variables such as dividend returns and interest rates likely contain information about
future volatility and correlation that is not contained in past returns alone.
To further extend the model in [Smith, 2009] in the context of non-constant correlation, X. Wu
and H. Zhou [Wu and Zhou, 2014] proposed a triple-threshold leverage SV model, in which the
asymmetric correlations between the return and volatility can be captured in the two regimes.
This is to say that two different correlation values are allowed in the model. In this work we
propose a novel SV model which includes both the threshold and time-dependent correlation
instead of constant correlation. Furthermore, by an empirical study on the S&P500 index we
show that the SV model with time-dependent correlation performs better than the model with
constant correlation on capturing asymmetry, and the comprehensive model with both threshold
and time-dependent correlated innovations dominates the pure threshold, constant and time-
dependent correlation, and both threshold and constant correlation as well. Due to the broad
applicability we use the algorithm proposed in [Smith, 2009] to estimate the parameters, i.e., the
maximum likelihood estimation based on the extended Kalman filter and numerical integration
over the volatility process.
In the next section we introduce several variants of SV models. Section 3 is devoted to the
generalization of SV models by including a time-dependent correlation. In Section 4, we show
the estimation of the extended SV models based on the extended Kalman filter and numerical
integration. Finally, we present our empirical results in Section 6 and conclude in Section 7.

2 Asymmetric Stochastic Volatility Models

The volatility is not observable, depends on the random shocks and can not be measured with
observable information and is presented as a separate random process. The estimation and
forecasts are made considerably more difficult by the fact that volatility is latent. It is well-
known that the volatility of an asset is not constant. In the following we introduce the different
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variants of SV models by starting with the standard stochastic volatility model.

2.1 Standard Stochastic Volatility (SV) Model

The standard SV model for the return series rt, as a latent AR(1) process, can be used to
model the log-volatility xt = log σ2t :

rt = µ+ φrt−1 + exp(xt/2)zt, (1)

xt+1 = ω + βxt + σvνt, (2)

where φ describes the autocorrelation, the innovations zt and νt are independent standard nor-
mally distributed random variables, β and σ describe the persistence and variance of volatility,
respectively.

2.2 Correlated Stochastic Volatility (SVA) Model

The correlated stochastic volatility model, denoted SVA, were introduced in [Wiggins, 1989,
Chesney and Scott, 1989] and reads

rt = µ+ φrt−1 + exp(xt/2)zt, (3)

xt+1 = ω + βxt + σvνt, (4)

with
ρ = E(vtzt).

This asymmetric relationship between return and volatility is recorded at ρ < 0, as in this case
the conditional volatility tends to be higher after negative returns than after positive returns.

2.3 Threshold Stochastic Volatility (TSV) Model

In [So et al., 2003] a new way to capture this asymmetric relationship is shown by including a
threshold, where the parameters affecting the volatility dynamics alternate with the sign of the
previous stock returns:

rt = µst−1 + φst−1rt−1 + exp(xt/2)zt, (5)

xt+1 = ωst + βstxt + σv,stvt, (6)

where zt and vt are independent standard normally distributed random variables, and st is the
following indicator function

st =

{
1, rt < 0

0, rt ≥ 0
(7)

and the time-varying coefficients satisfy

µst−1 = µ0 + st−1µ1,

φst−1 = φ0 + st−1φ1,

ωst = ω0 + stω1,

βst = β0 + stβ1,

σ2v,st = σ2v,0 + stσ
2
v,1.

The asymmetric relationship can be captured with the parameter ω. If ω1 > 0, the volatility
will tend to be higher after negative returns than after positive returns. However, this increase
is independent with size of the negative return in this model.
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2.4 Correlated Threshold Stochastic Volatility (TSVA) Model

The TSV model in Sec. 2.3 can be extended by including both the correlation and threshold
dynamic [Smith, 2009], i.e., by allowing a correlation between vt and zt, denoted by TSVA:

rt = µst−1 + φst−1rt−1 + exp(xt/2)zt, (8)

xt+1 = ωst + βstxt + σv,stvt (9)

with ρ = E(vtzt) and

st =

{
1, rt < 0

0, rt ≥ 0
,

µst−1 = µ0 + st−1µ1,

φst−1 = φ0 + st−1φ1,

ωst = ω0 + stω1,

βst = β0 + stβ1,

σ2v,st = σ2v,0 + stσ
2
v,1.

3 Time-dependent correlated Stochastic Volatility Model

In this section we generalize the SVA and TSVA models by using time-dependent correlation
model instead of constant correlation coefficient.

3.1 Time-dependent Correlation Model

This section deals with the time-dependent correlation function proposed in [Teng et al., 2015b,
Teng et al., 2016a], which reads

ρ(t) = E
[
tanh(Xt)

]
, t ≥ 0, (10)

whereXt is any mean-reverting process with positive and negative values. For the known parame-
ters of Xt, the correlation function ρ(t) varies only with t, i.e., t→ (−1, 1). The time-dependent
correlation model (10) fulfills the properties: only takes values in (−1, 1) ∀t ≥ 0; converges
with time due to the mean reversion of Xt. Xt in (10) could be any mean-reverting process
that allows positive and negative outcomes. Let Xt be the Ornstein-Uhlenbeck (OU) process
[Uhlenbeck and Ornstein, 1930]:

dXt = κ(µ−Xt)dt+ σdWt, t ≥ 0,

the time-dependent correlation function defined in (10) can be obtained by

ρ(t) = E
[
tanh(Xt)

]
= E

[
1− e−Xt 2

e−Xt + eXt

]
= 1− E

[
e−Xt

1

cosh(Xt)

]
= 1− 1

2

∫ ∞
−∞

1

cosh(πu2 )
CF (t, i+ u|X0, κ, µ, σ)du,

where CF (t, u|X0, κ, µ, σ) denotes the characteristic function of the OU process Xt, which can
be obtained analytically, e.g. by using the framework of the affine process [Duffie et al., 2003].
This is to say that one can calculate CF (t, i+ u|X0, κ, µ, σ) out as

CF (t, i+ u|X0, κ, µ, σ) = e−A(t)−
B(t)
2

+iu(A(t)+B(t))+u2 B(t)
2

4



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

with

A(t) = e−κtX0 + µ(1− e−κt) and B(t) = −σ
2

2κ
(1− e−2κt). (11)

Finally, the dynamic correlation function can be calculated as

ρ(t) = 1− e−A(t)−
B(t)
2

2

∫ ∞
−∞

1

cosh(πu2 )
eiu(A(t)+B(t))+u2 B(t)

2 du, (12)

where A(t) and B(t) are defined in (11). In fact, X0 in A(t) is equal to artanh(ρ(0)).

3.2 Time-dependent correlated (Threshold) Stochastic Volatility Models

The SVA and TSVA models can be directly generalized to capture time-dependent corre-
lated stochastic volatility (SVAD) and time-dependent correlated threshold stochastic volatility
(TSVAD) models, respectively, by replacing E[νtzt] = ρ by

E[νtzt] = ρ(t),

where ρ(t) is given in (12).

4 Parameter Estimation Algorithm

Due to the fact that the algorithm introduced in [Smith, 2009] has good extensibility, we will
adopt it for the SVAD and TSVAD models. Basically, the model parameters are estimated using
maximum likelihood with a nonlinear numerical integration-based filter. The likelihood function
is defined as the following T-dimensional integral:

L(θ; r) =

∫
f(r|x, θ)f(x|θ)dx,

where r and x denote the T -dimensional sample paths of returns and volatility. Generally,
the parameters of stochastic volatility models is complicated to be estimated because the
volatility is latent. For example, the standard filters can not be used since the observable
variables rt+1 and the log-volatility are not jointly normally distributed. In [Smith, 2009],
the parameters are estimated with an algorithm that implements numerical integration with
brute force over the unobserved latent volatility using the conditional probability formulas
in [Kitagawa, 1987, Fridman and Harris, 1998]. Unlike the standard Kalman filter, this algo-
rithm tracks the conditional density of the log-volatility at a finite set of N points, and the
T -dimensional integral gets reduced to T different 1-dimensional integrals, thus allowing maxi-
mum likelihood estimation.
In the following we introduce the estimation algorithms for the SVAD and TSVAD models.
We start with the SVAD model, let It be the information available to the econometrician and
f(xt|It) be the known conditional density of log-volatility at t. We construct the forecast density
of xt+1 as

f(xt+1|It) =

∫
f(xt+1, xt|It)dxt =

∫
f(xt+1|xt)f(xt|It)dxt,

where f(xt+1|xt) = φ(xt+1;ω + βxt, σ
2
v) and φ(.; a, b) is the probability density function of a

normal random variable with expected value a and variance b. For the log-likelihood function
one needs the conditional density

f(rt+1|It) =

∫ ∫
f(rt+1, xt+1, xt+2|It)dxt+1dxt+2, (13)
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i.e., integration over both current and future return volatility, and note that the return de-
pends on the change in volatility. To compute (13), one needs to calculate the joint density of
(rt+1, xt+1, xt+2) which depends on the two correlated normally distributed innovations zt+1 and
vt+1, which can be expressed as

zt+1 = u1,t+1

and
vt+1 = ρ(t+ 1)u1,t+1 +

√
(1− ρ(t+ 1)2)u2,t+1,

where u1,t and u2,t are two independent standard normally distributed random variables, and
ρ(t) is given in (12). The joint density can thus be calculated as

f(rt+1, xt+1, xt+2|It) = σ−1v exp

(
−xt+1

2

)
φ(u1,t+1)φ(u2,t+1)f(xt+1|It)

with

u1,t+1 = (rt+1 − µ− φrt) exp

(
−xt+1

2

)
and

u2,t+1 = (xt+2 − ω − βxt+1 − ρ(t)σvu1,t+1)σ
−1
v .

Finally, the log-likelihood function can be calculated as

L(r; θ) =

T−1∑
t=0

log f(rt+1|It).

Now the inference about the distribution xt+1 can be updated by conditioning on the new
information rt+1

f(xt+1|It+1) =

∫
f(rt+1, xt+1, xt+2|It)dxt+2

f(rt+1|It)
,

and the input for the next conditional density is

f(xt+2|It+1) =

∫
f(rt+1, xt+1, xt+2|It)dxt+1

f(rt+1|It)
.

As mentioned before, a numerical integration scheme will be employed to calculate the general
integral ∫

f(x)dx ≈
N∑
i=1

ωif(xi),

where wi is a set of weights and f(xi) denotes the value of the function f, which is evaluated at
N different points xi for i = 1, . . . , N . For example, the Gauss-Legendre integration is used in
[Fridman and Harris, 1998, Smith, 2009]. This is to say that the estimation is implemented by
numerical integration over the common grid of N different volatility points {xi}Ni=1 for both xt+1

and xt+2. In the following we present the algorithm for calculating the log-likelihood function.
The time t + 1 volatility is indexed by i = 1, . . . , N and the time t + 2 volatility is indexed
by j = 1, . . . , N for simplicity. First we truncate the integral in (12) at [aρ, bρ] to compute
time-dependent correlations, namely

ρ̃(t) ≈ 1− e−A(t)−
B(t)
2

2

∫ bρ

aρ

1

cosh(πu2 )
eiu(A(t)+B(t))+u2 B(t)

2 du, (14)
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in our experiment we set [aρ, bρ] = [−20, 20]. This integral gets solved numerically us-
ing global adaptive quadrature. The algorithm is initialized with f(x1 = xi|I0) =
φ(xi|ω(1−β)−1, σ2η(1−β2)−1) and ρ̃(1) and computes the joint density function. Secondly, we gen-
erate the marginal density of the return f(rt+1|It), which is used to calculate the log-likelihood.
Note that, for the (t + 1)-th iteration, the forecast density of the volatility f(xt+1 = xi|It)
together with ρ̃(t+ 1) are used as the input. The inference of volatility can thus be updated as

f(xt+1|It+1) =

∫
f(rt+1, xt+1, xt+2|It)dx2

f(rt+1|It)

and the forecast of future volatility

f(xt+2|It+1) =

∫
f(rt+1, xt+1, xt+2|It)dx1

f(rt+1|It)

together with ρ̃(t+ 2) are used as input for the (t+ 2)-th iteration.
SVAD-algorithm

1. Calculate the joint density for the N ×N possible values of xt+1 and xt+2:

f(rt+1, xt+1 = xi, xt+2 = xj |It) = σ−1v exp

(
−xi

2

)
φ(u

(i)
1,t+1)φ(u

(i,j)
2,t+1)f(xt+1 = xi|It)

for i, j = 1, . . . , N with

u
(i)
1,t+1 = (rt+1 − µ− φrt) exp

(
−xi

2

)
(15)

and
u
(i,j)
2,t+1 = (xj − ω − βxi − ρ̃(t+ 1)σvu

(i)
1,t+1)σ

−1
v , (16)

where ρ̃(t+ 1) is computed using (14).

2. Compute the marginal density of the returns:

f(rt+1|It) ≈
N∑
i=1

N∑
j=1

wiwjf(rt+1, xt+1 = xi, xt+2 = xj |It).

3. Update the log-likelihood:

L(r; θ) = L(r; θ) + log f(rt+1|It).

4. Update the inference about the latent volatility:

f(xt+1 = xi|It+1) ≈
∑N

j=1wjf(rt+1, xt+1 = xi, xt+2 = xj |It)
f(rt+1|It)

.

5. Compute inference about the future volatility

f(xt+2 = xj |It+1) ≈
∑N

i=1wif(rt+1, xt+1 = xi, xt+2 = xj |It)
f(rt+1|It)

and ρ̃(t+ 2), which are used as input for the next iteration.

6. Back to Step 1.
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For the TSVAD model we need to use alternative definitions of the uncorrelated normal inno-
vations in the algorithm above to allow the threshold model parameters. (15)-(16) need to be
modified as

u
(i)
1,t+1 = (rt+1 − µst − φstrt) exp

(
−xi

2

)
and

u
(i,j)
2,t+1 = (xj − ωst − βstxi − ρ̃(t+ 1)σv,st+1u

(i)
1,t+1)σ

−1
v,st+1

.

All other steps are identical to those for the SVAD model. We follow the way proposed in
[Smith, 2009] to construct the unconditional density for initializing. First one defines the two
N ×N matrices A0 and A1 with the element (j, i)

A(j,i)
k = wiφ(xi;ωk + βkxj , σ

2
η,k), k = 0, 1,

which are used to generate
A = lim

n→∞
(0.5A0 + 0.5A0)

n ×A. (17)

Note that one needs to find a suitable starting value and set a large value for n.

5 Empirical results

The empirical analysis uses the logarithmic returns of the value-weighted S&P 500 portfolio from
January 1990 to December 2004. For the analysis the adjusted closing price of the returns was
used, which was adjusted for dividends and splits. The development of the 3782 daily returns is
shown in Figure 1.

Figure 1: The daily S&P 500 returns: 1990-2004.

In our empirical analysis we consider a range of SV models with various specifications for asym-
metric volatility, which are all special cases of

rt = µ+ φrt−1 + exp(xt/2)u1,t, (18)

xt+1 = ω0 + stω1 + (β0 + stβ1)xt +
√
σ20,ν + stσ21,ν

(
ρ(t)u1,t +

√
1− ρ2(t)u2,t

)
. (19)

From (18) and (19) one can see that we consider the conditional mean as an AR(1) process, and
only volatility dynamics change with the sign of lagged returns.
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5.1 Results of Parameter Estimations

We report the results of parameter estimation and standard error (in parenthesis) in Ta-
ble 1, the standard errors are computed using a numerically evaluated Hessian matrix. A
comprehensive analysis and comparison between effects of constant correlation and thresh-
old has already been done in [Smith, 2009], we will focus on analyzing the effect of time-
dependent correlation. Furthermore, it has been indicated in [Smith, 2009] that the conclu-
sions about the correlation and threshold effect are not driven by the choice of the numeri-
cal integration-based estimation method, by comparing to the Bayesian Markov chain Monte
Carlo estimation [Meyer and Yu, 2000, Yu, 2005]. A comprehensive comparison to other estima-
tion strategies, e.g., moment matching [Taylor, 1986, Wiggins, 1989], quasi-maximum likelihood
[Harvey et al., 1994, Harvey and Shephard, 1996] etc. can be found in [Smith, 2009]. We do not
repeat those comparisons in this paper, since our aim is to investigate the effect of the included
time-dependent correlation. As in [Smith, 2009], we set both the parameters µ1 and φ1 to be
0 in the threshold models, since the impact on the quality of the models is quite small but the
running time of parameter estimation increases sharply.
The returns are moderately autocorrelated for all the models, with values for φ ranging from
0.01213 to 0.02185, which are small but still of great statistical significance. The included con-
stant or time-dependent correlation, or threshold dynamic leads to an increase in φ. When
comparing the constant correlation with the time-dependent correlation it becomes clear that
the included time-dependent correlation leads to a further increase in the autocorrelation of
the return. However, when comparing the correlated threshold models (TSVA, TSVAD), the
autocorrelation in the TSVAD model is slightly lower.
We see that the volatility is extremely persistent. For the models without the threshold dynamic
(SV, SVA, SVAD), the values of β are between 0.98362 and 0.98965. Although both the constant
or time-dependent correlations lead to a slight reduction in the persistence of the volatility, the
persistence is higher in the SVAD model than it in the SVA model, which implies that the
time-dependent correlation leads to an increase in the persistence compared to the constant
correlation. For the threshold models (TSV, TSVA, TSVAD) there are two parameters for the
persistence of the volatility β0 and β1. In the following, a distinction is made between βst=0 = β0
and βst=1 = β0 + β1, since the persistence in the threshold models at time t depends on the
sign of the return at time t-1. For the TSV model we have βst=0=0.92002 and βst=1=1.0581, for
the TSVA βst=0=0.93619 and βst=1=1.03495 and for the TSVAD βst=0= 0.93887 and βst=1=
1.02709. It can be seen that the volatility is more persistent after negative returns in all those
models, since β1 > 1.
The parameter ω is the constant term of the AR(1) process of the log-volatility. Thus, ω1 is
used for the threshold models to capture an asymmetric relationship between the returns and
volatility. If ω1 > 0, the volatility tends to be higher after negative returns than after positive
returns. For the TSV model ω1 is about 1.47273, for the TSVA model 0.96085 and for the
TSVAD model 0.88053. This shows that for the given data the relationship between return
and volatility is clearly asymmetric. A comparison of the pure correlation models (SVA, SVAD)
shows that the time-dependent correlation leads to a slight increase of the value of the parameter
ω. Again, a close examination of ωst=0 = ω0 and ωst=1 = ω0 + ω1 is useful for the threshold
models. In the TSV model we have ωst=0 = −0.83631 and ωst=1 = 0.63641, in the TSVA
model ωst=0 = −0.58986 and ωst=1 = 0.37099 and in the TSVAD model ωst=0 = −0.54878
and ωst=1 = 0.33175. The consideration of the constant or time-dependent correlation has
thus a great influence on the parameters ω0 and ω1 of the threshold models. By taking any
correlations into account, ωst=0 becomes larger and ωst=1 becomes smaller, i.e., the effect of
threshold dynamics is slightly reduced. This indicate that threshold effects and constant or
time-dependent correlation are complementary.
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nt Table 1: Parameter estimates and standard errors for the various SV models: S&P 500, 1990-

2004.

SV SVA TSV TSVA SVAD TSVAD

µ 0.00058 0.00028 0.00044 0.0003 0.00033 0.00028

(0.00012) ( 0.00013) (0.00012) (0.00013) (0.00013) (0.00012)

φ 0.01213 0.0216 0.01506 0.0211 0.02185 0.02053

(0.0157) (0.01564) (0.01544) (0.01565) (0.01566) (0.01534)

ω0 -0.09852 -0.15618 -0.83631 -0.58986 -0.14888 -0.54878

(0.03613) (0.04404) (0.02038) (0.14354) (0.039) (0.02333)

β0 0.98965 0.98362 0.92002 0.93619 0.98437 0.93887

(0.00382) (0.00468) (0.00198) (0.01555) (0.00417) (0.00165)

σ20,ν 0.01443 0.02379 0.02511 0.04025 0.02323 0.05044

(0.00481) (0.00665) (0.00002) (0.01781) (0.0062) (0.00005)

ρ -0.66539 -0.66284

(0.04866) (0.06157)

ω1 1.47273 0.96085 0.88053

(0.04391) ( 0.27325) (0.01837)

β1 0.13808 0.09876 0.08822

(0.00361) (0.02791) (0.00145)

σ21,ν -0.0248 -0.03244 -0.04959

(0.00002) (0.02147) (0.00005)

κ 0.00798 0.10775

(0.00219) (0.10625)

σρ 0.00323 0.0109

(0.00211) (0.0067)

µρ -9.96561 -0.76642

(1.60657) (0.20593)

ρ(0) -0.28401 -0.76266

(0.16154) (0.05553)

LL 12470.79 12515.01 12505.74 12524.26 12521.46 12526.84

Joint 8.56876 3.87625 2.14291 3.48463 3.63333 3.84495

p-value [0.01378] [0.14397] [0.34251] [0.17511] [0.16257] [0.14624]

Sign 8.55167 3.90394 2.15771 3.52521 3.66229 3.87712

p-value [0.00345] [0.04817] [0.14186] [0.06044] [0.05566] [0.04895]

Neg. Size 5.16399 0.4785 0.30172 0.05241 0.38397 0.3187

p-value [0.02306] [0.4891] [0.58281] [0.81892] [0.53549] [0.57239]
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The parameter σ20,ν describes the variance of the volatility. For the SV model, the corresponding
value is 0.01443. By taking the correlation into account, this value increases to 0.02379 for
the SVA model and 0.02323 for the SVAD model. Both the constant and the time-dependent
correlations have thus a great influence on the parameter σ20,ν as well. For the threshold models

again the parameters σ2st=0,ν= σ20,ν and σ2st=1,ν= σ20,ν + σ21,ν are interesting, which describe the

variance of the volatility after positive and negative returns, respectively. σ2st=0,ν is 0.02511 for

the TSV model, 0.04025 for the TSVA model and 0.05044 for the TSVAD model. σ2st=1,ν is
0.00004 for the TSV model, 0.0168 for the TSVA model and 0.00085 for the TSVAD model. The
variance of volatility is extremely low after negative returns. The comparison of the constant
and the time-dependent correlations in the threshold models show that capturing the time-
dependent correlation decreases the variance of the volatility after negative returns even further
and increase the variance after positive returns, thus amplifying the threshold dynamic in this
context.
Firtsly, we see that the volatility is more persistent, less volatile and higher following negative re-
turns after counting for the constant correlation. This is consistent with findings in [Smith, 2009].
And the phenomenon is further enhanced by using time-dependent correlation instead of con-
stant correlation.

5.2 Comparison of stochastic volatility models

To check whether models are not too complex and do not contain unnecessarily many parameters,
both the Akaike information criterion (AIC) and the Bayes information criterion (BIC) can be
used:

AIC = 2k − 2 logL(θ; y),

BIC = k log(T )− 2 logL(θ; y),

where k is the number of parameters in the model and T is the number of observations (in this
case, the number of given returns). A model is preferred if it has the lower AIC/BIC value. Both
criteria penalize models when they have many parameters, with the BIC penalizing more than
the AIC.

Table 2: AIC und BIC

LL AIC BIC

SV 12470.79 -24931.58 -24923.69
SVA 12515.01 -25018.02 -25008.55
TSV 12505.74 -24995.48 -24982.86
TSVA 12524.26 -25030.52 -25016.32
SVAD 12521.46 -25024.92 -25010.72
TSVAD 12526.84 -25029.67 -25010.74

The results in Table 2 show that the SV model performs worst in all categories. This is to
be expected since the SV model is the only model that cannot well capture the asymmetric
relationship between the return and volatility. It can be concluded that for the given returns,
capturing the asymmetric relationship by including correlation and threshold leads to a signif-
icant improvement in the modeling. It is also hardly surprising that the SVA model is clearly
superior to the TSV model for both AIC and BIC, since the SVA model already achieves a
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better log-likelihood value even with less parameters. The TSV model is clearly superior to the
SV model and the TSVA model performs better than the SVA model for both the log-likelihood
value and both information criteria. The information criteria also suggests that including both
the correlation and threshold dynamics is useful, as they appear to complement each other. The
included time-dependent correlation instead of constant correlation leads to an increase in the
log-likelihood values of the models. The log-likelihood value of the SVAD model is about 6.45
higher than the log-likelihood value of the SVA model. The difference between the TSVAD and
TSVA models is about 2.58. The SVAD model also achieves better AIC and BIC values despite
having more parameters than the SVA model. The TSVAD model has the best log-likelihood
value of all models, but the TSVAD model performs slightly worse than the TSVA model for
the AIC and BIC due to the higher number of parameters.

5.3 Volatility dynamics of the models

The dynamics of the conditional volatility of the presented stochastic volatility models (cal-
culated with the parameter estimates) is shown in Figure 2, along with the volatility by the
GARCH(1,1) model. Firstly, it is clear that all the presented stochastic volatility models and
GARCH(1,1) model have a similar volatility dynamic. However, for the models that can capture
an asymmetric relationship of return and volatility, the pattern is much more volatile. For the SV
model, which can not capture the asymmetric relationship, the deviation from the GARCH(1,1)
model is on average 0.00053. For all stochastic volatility models that capture the asymmetric
relationship (SVA, SVAD, TSV, TSVA, TSVAD), the value of the average deviation is at least
0.00121. The TSVAD model, which has the best log-likelihood value of all models, also has the
largest average deviation from the GARCH(1,1) model with 0.00175.

Figure 2: Plot of forecast conditional standard deviation for the data in Figure 1

(a) SV (b) SVA
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(c) TSV (d) TSVA

(e) SVAD (f) TSVAD

5.4 Correlation in the models

The correlations between the innovations of the return and the future volatility are -0.66539 and
-0.66284 for the SVA and TSVA models, respectively, and are significant. And the log-likelihood
values are thus significantly improved in both the cases. In Figure 3(a) and 3(b), the constant
correlation are compared with the time-dependent correlations (calculated with the parameter
estimates) for the SVA, SVAD, TSVA, and TSVAD models. Firstly, it is noticeable that the time-
dependent correlations in both SVAD and TSVAD models vary strongly and reasonably. Note
that significantly better log-likelihood values have been obtained in those models. We compare
the constant and time-dependent correlations without threshold effect in Figure 3(a), in which
the time-dependent correlation varies from -0.2846 to -0.8817, and the constant correlation
value (-0.66539) lies approximately in the middle of that range. In Figure 3(b) we compare the
constant and time-dependent correlation in the TSVA and TSVAD models, namely the threshold
effects are included. Obviously, threshold changes values of both constant and time-dependent
correlations, since threshold and correlation work complementarily. Interestingly, we see that
the time-dependent correlation varies from -0.76266 to -0.67122, which seems to converge to the
constant correlation (-0.66284).
In the correlated stochastic volatility models, the volatility after negative returns is higher
than after positive returns. For the pure correlation models (SVA, SVAD), this can be shown
mathematically. The difference depends on the magnitude of the innovation zt of the return,
since zt is negatively correlated with vt. Note that vt = ρ(t)u1,t +

√
1− ρ(t)2u2,t and u1,t = zt,
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Figure 3: Correlations in the SVA-, SVAD-, TSVA- and TSVAD-Models

(a) SVA-SVAD (b) TSVA-TSVAD

if only the sign of zt in the SVA or SVAD model is used, one obtains

E[log σ2t+1|zt < 0]− E[log σ2t+1|zt > 0] = σv(E[vt|zt < 0]− E[vt|zt > 0])

= σv(E[ρ(t)u1,t +
√

1− ρ(t)2u2,t|zt < 0]− E[ρ(t)u1,t +
√

1− ρ(t)2u2,t|zt > 0])

= σv(E[ρ(t)zt|zt < 0]− E[ρ(t)zt|zt > 0])

= −σvρ(t)E[|zt|] = −σvρ(t)
√

2
π .

For the SVA model, the volatility is 8.189% higher after negative innovations of the return than
it after positive innovations. Interestingly, for the SVAD model, that value varies from 3.502%
to 10.852% with time. How much higher is the volatility following negative returns than it
following positive returns should be different at the different time points, this can be captured
by including time-dependent correlation. Furthermore, a clear asymmetric relationship of return
and volatility is captured in both models.
Vuong test
Another way to test the quality of modeling is the Vuong test [Vuong, 1989]. This is a likelihood
ratio test, which tests the null hypothesis for two non-nested models whether both the models
are equally close to the true distribution or whether one of the models is closer to the true
distribution. The Vuong test shows for two non-nested models whether model 1 is preferred over
model 2 with significance level α if:

Z =
LRN√
NωN

with

LRN = L1
N − L2

N −
K1 −K2

2
logN

and

ω2
N =

1

N

N∑
t=1

[
log

f1(rt)

f2(rt)

]2
−

 1

N

N∑
t=1

log
f1(rt)

f2(rt)

2

exceeds the (negative) (1-α) quantile of the standard normal distribution. In this case, N cor-
responds to the number of given returns, K1 and K2 correspond to the number of parameters
of models 1 and 2, and L1 and L2 correspond to the log-likelihood values of models 1 and 2.
When comparing the SVA model with the TSV model, the value of the Vuong test is Z = 2.1149
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(p-value=0.03445). The pure correlation model is clearly superior to the pure threshold model
here. When comparing the TSVA model with the SVAD model, i.e., threshold plus constant
correlation together against time-dependent correlation, Z is only 0.53151 (p-value=0.59507)
and thus the values are too small to evaluate which of both the models is better.

5.5 Misspecification Tests

In this paper, we use the specification tests proposed in [Smith, 2009]. The following tests are
used to verify that the stochastic volatility models can completely capture the effect of past
returns on conditional volatility. Here, the focus is primarily on the negative returns. For this
purpose, the sign and negative size tests [Engle and Ng, 1993] are well suited. In order to apply
these tests to the presented stochastic volatility models, the probability integral transformation
[Rosenblatt, 1952] is used to construct a pseudo-standardized residual. If a stochastic volatility
model is correctly specified, then the probability integral transform Ft(rt+1) is an independent
uniform random variable and Zt+1 = Φ−1(Ft(rt+1)) is standard normally distributed, i.e., Zt+1

is a pseudo-standardized residual. We test whether Zt+1 is orthogonal to the previous negative
returns. This would indicate that the stochastic volatility model fully captures the information
from the value and sign of the previous returns.
For the sign test, it is of interest whether Z2

t+1 is uncorrelated with st and for the negative size
test, whether Z2

t+1 is uncorrelated with strt. We take the approach using moments m(Zt+1, θ)
proposed in [Breunig et al., 2003]. The null hypothesis under correct specification implies that
E(mt) = τ0 holds. Thus, the following moments are considered for the tests

m(Zt+1, θ) =

(
Z2
t+1st

Z2
t+1strt

)
.

For the specifications, the calculated parameter estimates are used for θ̂. It holds

τ̂ =
1

T

T−1∑
t=0

m(Zt+1, θ̂),

which follows an asymptotic normal distribution

T
1
2 (τ̂ − τ0)→ N(0, Vτ ) (20)

under suitable regulatory conditions with the covariance matrix

Vτ = Vmm −M
′
θI
−1
θθ Mθ,

where Vmm = limT→∞E( 1
T

∑T
t=1m(rt; θ)m(rt; θ)

′
) is the asymptotic covariance matrix of the

moment conditions, Iθθ = limT→∞E(− 1
T

δ2

δθδθ′
) and Mθ = limT→∞E( δm(rt;θ)

δθ′
) is the asymptotic

Jacobian matrix of moment conditions. The results of the Wald tests are reported in Table 1.
For the analysis, the standard significance level α = 0.05 is used. Unsurprisingly, the SV model
fails the joint, sign, and negative size tests, as this model is unable to capture the asymmetric
relationship of the returns and volatility. The other models that are able to capture this asym-
metric relationship and pass the joint and negative size test. The sign test is passed by the TSV,
TSVA and SVAD models, but the SVA model and the TSVAD model fail by a small margin
(p=0.04817 and p=0.04895). When comparing the pure correlation models (SVA, SVAD), it
becomes clear that the time-dependent correlation improves result of the sign test. The result
suggests that Z2

t+1 is not correlated with st in the SVAD model, but correlated in the SVA model.
Furthermore, one can observe that the threshold and correlation, in particular time-dependent
correlation, adversely affect with each other, these indicate again that threshold and correlation
effect are complementary.
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6 Conclusion

In this work we have proposed the SVAD and TSVAD models to capture the asymmetric rela-
tionship between returns and volatility. These new models are constructed by including time-
dependent correlation into the SVA and TSVAD models instead of constant correlation, respec-
tively. This is to say that they nest the basis SV, SVA, TSV and TSVA models. We show how the
model parameters can be estimated by using maximum likelihood with a nonlinear numerical
integration-based filter. Our simulation study results using the S&P 500 returns show that using
time-dependent correlation rather than constant correlation leads to a significant improvement
in modelling. Based on the values of the log-likelihood, AIC and BIC, our SVAD model is pre-
ferred over the SVA model. Furthermore, our most comprehensive TSVAD model can be better
fitted to the data than all other models.
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