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Abstract

High-order lattice Boltzmann methods provide an elegant and systematic
way to incorporate thermal and compressible effects and represent a promis-
ing approach for the study of beyond-hydrodynamics regimes characterized
by finite Knudsen numbers. However, the presence of multiple layers makes
the definition of boundary conditions non-trivial, since one needs to define
the missing information for particle distributions across several boundary
layers. In this work we present a thermal extension of a recently proposed
non-equilibrium bounce-back boundary condition and compare it against es-
tablished algorithms by simulating standard benchmarks with wall-bounded
flows.

Keywords: Lattice Boltzmann Method, Thermal Boundary Conditions,
High Order Multispeed Models, Non Equilibrium Bounce Back Boundary
Conditions, D2Q17, D2Q37

1. Introduction

Over the last few decades, the Lattice Boltzmann Method (LBM) has emerged
as a computationally efficient tool for solving the Navier Stokes equations
[1, 2]. Continuous efforts are being made to broaden the range of applicabil-
ity of the LBM and tackle problems such as thermal compressible flows, for
which a macroscopic description is provided by the laws of Navier-Stokes-
Fourier. There are currently two main approaches to thermal LBM present
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in the literature: i) the double distribution approach, where a second set
of populations is used to evolve the temperature field and ii) the multispeed
approach, where the velocity space is discretized using high order quadrature
rules, which imply the adoption of larger velocity sets defined over several
layers.
The former approach tends to be more popular, since it supports a vari-
able Prandtl number and allows using standard lattices. On the other hand,
multispeed models offer a natural coupling between the evolution of velocity
and temperature, with viscous dissipation and compression work naturally
emerging from kinetic theory. There are also indications that higher order
models based on multispeed stencils contribute to enhanced numerical sta-
bility [3]. Finally, in a more general perspective, it is certainly valuable to
have alternative approaches available.
The presence of multiple boundary layers clearly makes the formulation of
Boundary Conditions (BC) for multispeed stencils more complex. Proper
BCs are thus even more important in this setting, since naive formulations
may cancel the gains in terms of stability obtained when employing higher
order models.
In spite of this, not much work has been devoted to the development of
boundary conditions for thermal multispeed LBM. In this article, we intro-
duce an extension to thermal models for a recently proposed Non-Equilibrium
Bounce-Back (NEBB) BC [4], originally developed for isothermal multispeed
LBM. We evaluate and benchmark several different implementations of the
NEBB BC, comparing its performance against the established diffusive BC
[5, 6] for a few selected standard benchmarks of wall-bounded thermal flows.
This article is organized as follows: in section 2 we provide a brief description
of the thermal LBM used in this work. In section 3 we provide the mathe-
matical formulation of the thermal NEBB BC, which are then numerically
evaluated in section 4. Concluding remarks and future directions are then
given in section 5.

2. Thermal Lattice Boltzmann Model

In this section, we provide a brief introduction of the thermal LBM adopted
in this work, which correctly reproduces the equation of state of a perfect
gas (p = ρT ). The model takes root from a minimal version of the Boltz-
mann equation, in which the momentum space is discretized on a regular
lattice. The lattice description is based on a set of discrete probability dis-
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tribution functions fi(x, t), to which we will refer to as lattice populations.
Each population is associated with a given lattice velocity ci, i = 1, . . . , q.
It is customary to distinguish between LBM models following the DdQq
nomenclature, in which d indicates the number of spatial dimensions, and
q the number of discrete velocities forming the stencil. The discrete veloc-
ities ci can be defined as the abscissa of a Gauss-Hermite quadrature rule
{(ωi, ci) : i = 1, . . . , q}, which allows for the exact calculation of the first
N moments of the particle distribution function. It has been shown that
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Figure 1: Two-dimensional high-order velocity sets: (left) D2Q17, third order, and (right)
D2Q37, fourth order

quadratures with an degree of precision of a least nine are the minimum re-
quirement to recover the Navier-Stokes-Fourier equations, since they allow
correct capturing of momentum, temperature and their fluxes [7]. Minimal
on-lattice quadrature rules satisfying this requirement that make only use of
integer valued velocity components with absolute value less or equal to three
consist of q = 37 velocities in two spatial dimensions and q = 103 velocities
in three spatial dimensions [8, 9]. These stencils are referred to as D2Q37
and D3Q103 respectively. When dealing with mildly compressible flows, or in
cases where the contribute of the heat flux is known to be negligible, it could
be sufficient to employ models based on a seventh order quadrature. Mini-
mum velocity sets in this case are given by the D2Q17 and D3Q39 models,
which offer a trade-off between computational cost and numerical accuracy.
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In what follows, we will focus our analysis to the 2-dimensional case, thus
adopting the 17 and 37 velocities configurations depicted in Fig. 1.
We adopt the single relaxation time collisional operator provided by the
Bhatnagar-Gross-Krook (BGK) model. The discrete lattice Boltzmann equa-
tion, describing the time evolution of each population fi is given by

fi(x + ci∆t, t+ ∆t)− fi(x, t) = −∆t

τ

(
fi(x, t)− f eq

i (x, t)
)
, (1)

where τ is the relaxation time and f eq
i is the (discrete) equilibrium distribu-

tion function for which we make use of a fourth order Hermite-expansion of
the Maxwell-Boltzmann distribution:

f eq
i (ρ,u, T ) =ωiρ

(
1 + u · c +

1

2c2
s

[
(u · c)2 − u2 + (T − 1)(c2 − d)

]
+

u · c
6c4

s

[
(u · c)2 − 3u2 + 3(T − 1)(c2 − d− 2)

]
+

1

24c6
s

[
(u · c)4 − 6(u · c)2u2 + 3u4

+ 6(T − 1)
(
(u · c)2(c2 − d− 2) + |u|2(2 + d− c2)

)
+ 3(T − 1)2(c4 − 2(d+ 2)c2 + d(d+ 2))

])
,

where cs denotes the lattice speed of sound.
The time evolution of Eq. 1 follows a stream and collide paradigm, in which
the streaming step moves the populations to neighboring nodes along the
directions defined by the stencil, while the collision step performs all the
mathematical operations needed to update the distributions and the macro-
scopic quantities at each grid point.
The macroscopic quantities of interest, such as density ρ, velocity u and
temperature T are given by the moments of the particle distribution function,
which—thanks to the quadrature rule—can be expressed in terms of discrete
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summations over the lattice populations:

ρ =

q∑
i=1

fi, (2)

ρu =

q∑
i=1

fici, (3)

dρT =

q∑
i=1

fi|ci − u|2. (4)

In order to incorporate external forces into the algorithm, we follow the
approach given in [10], where the equilibrium f eq is calculated with respect
to a shift in the velocity and temperature fields:

ū = u + τg, T̄ = T +
τ(∆t− τ)|g|2

d
.

It can be then shown via a Chapman-Enskog expansion that the hydrody-
namic quantities governed by Navier-Stokes-Fourier equation can be obtained
from the lattice formulation as follows:

ρ(H) := ρ, u(H) := u +
∆t

2
g, T (H) := T +

(∆t)2|g|2

4d
.

Notice, we use the superscript (H) to indicate these hydrodynamic quantities.

3. Non-Equilibrium Bounce-Back Boundary Condition

Unless working in fully periodic domains, the streaming step generally leaves
several populations undefined, since boundary nodes do not have fluid neigh-
bors to draw the corresponding populating from. The task of any boundary
condition is to specify these unknown populations. Let us label the differ-
ent boundary layers with the index l, where l = 1 denotes the outermost
boundary layer. Furthermore, let U (l) denote the set of indices of unknown
post-streaming populations in the boundary layer l.
In a hydrodynamic description, one typically wants to define BC in terms
of macroscopic fields rather than particle distributions. Since there are in
general more unknown populations than macroscopic quantities, one needs
to define a suitable ansatz to define a closed system of equations to work
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out the expressions for the unknown populations. One possible choice is to
follow the Zou-He BC [11], in which a bounce-back condition is assumed to
be valid on the non-equilibrium part of the boundary nodes:

fi − f eq
i = fī − f eq

ī
, i ∈ U (l), (5)

where ī represent the opposite direction with respect to the one present in
the U (l) ensemble (i.e., c ī = −ci). The ansatz in Eq. 5 is commonly employed
to define BCs for standard single-speed LBM models. Its generalization to
multi-speed models have been recently introduced by Lee et al. [4]. The
general idea is to define a closed system of equations by introducing further
momentum-correction terms in Eq. 5.
By following the same approach, we propose the following ansatz for unknown
populations in the boundary layer l:

fi = f eq
i + fī − f eq

ī
+Mi

(
d∑

k=1

ckiQk + c2
iQt

)
, i ∈ U (l), (6)

where Qk denotes the momentum correction for the k-th vector component,
and Qt denotes a scalar temperature correction. The expression Mi can be
chosen to be either one or ωi, i.e., the lattice weight corresponding to the
unknown population. While the former (unscaled model) might seem to be
the more natural choice, the latter (scaled model) has been reported to allow
for a lower attainable viscosity [4], potentially a very welcome feature given
the fact that the stability range for NEBB based BC is in general more narrow
when compared to other BC schemes [12].
Regardless of the chosen velocity stencil, the d+1 equations Eq. 3 and Eq. 4,
combined with the ansatz in Eq. 6, deliver a closed system which can be
solved for the d + 1 correction terms, yielding a Dirichlet BC. The authors

Figure 2: Internal and external population replacement strategy for a bottom boundary
and the D2Q37 velocity stencil. In the internal treatment (left panel), only the unknown
post-streaming populations are set. In the external treatment (right panel), all boundary
layers share the same set of unknown populations.
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in [4] distinguish between the internal and external boundary treatment. In
the internal treatment, only the missing populations are assigned in each
boundary layer (Fig. 2, left), which results in a different system of equations
per boundary layer. Here, the macroscopic quantities to be imposed at inner
boundary layers can simply be the same as at the outermost layer. Alterna-
tively, said values may be obtained by interpolation between the outermost
boundary layer – where certain macroscopic values are explicitly imposed –
and the first full fluid layer.
Conversely, in the external treatment all boundary nodes are subjected to
identical macroscopic values, and missing populations are all handled alike,
meaning that the missing populations from the outermost layer are to be
replaced in all remaining layers, regardless how they interact with the inner
nodes (Fig. 2 right).
Now, it is possible to combine and implement four different NEBB BC
schemes: i) unscaled-internal (UI) ii) scaled-internal (SI), iii) unscaled-external
(UE), iv) scaled-external (SE). In Appendix A, we provide an example with
the analytic expressions for the UE case applied to the D2Q17 model.
We need to remark that the BC as originally formulated by Lee et al. [4]
do not ensure mass conservation. Since this is generally a desirable feature
of LBM, we here introduce a procedure to reinforce mass conservation by
keeping track of the outflowing mass entering the calculation of ρ.
We start by defining at each boundary node the quantity

∆m =
∑
i∈U(l)

fi −
∑
i∈O(l)

f ?
i .

In the above, O(l) denotes the set of populations pointing out of the compu-
tational domain in boundary layer l and f ?

i are pre-streaming populations.
Then, ∆m is added to the rest population, i.e., f0 = f0 + ∆m.

4. Numerical Results

In this section, we analyze the accuracy of the BC schemes introduced in
the previous section, testing them with standard numerical benchmarks. We
consider three well-known wall-bounded flows in d = 2 spatial dimensions
within a rectangular computational domain: Poiseuille flow, Couette flow,
and Rayleigh-Bénard convection. For all benchmark cases, we have imple-
mented the different NEBB-BC schemes to impose the desired macroscopic
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values at the upper and lower plates, while periodic boundary conditions are
used for the lateral boundaries. For simplicity, we impose the same macro-
scopic values at all boundary layers in the internal treatment of the NEBB-
BC. We also compare the numerical accuracy of the NEBB-BC against that
provided by an implementation of diffusive boundary conditions for multi-
speed models [6].
Important control parameters for the simulations behavior are the Reynolds,
Mach and Knudsen numbers:

Re =
U0 · L
ν

, Ma =
U0

cs

, Kn ∼ Ma

Re
,

where, in lattice units, L is the grid resolution, U0 the characteristic flow
velocity, and ν the kinematic velocity

ν = ρ0T0(τ − 1

2
) c2

s, (7)

with ρ0 and T0 respectively a reference density and reference temperature
values.
In order to compare the BCs, we keep the Reynolds number fixed when
varying grid resolutions. This can be realized by modifying either the value
of U0 or of ν, as long as the assigned parameter values are within the range
of applicability of the LBM. More precisely, the velocity must remain in the
low Mach number regime and the viscosity cannot be chosen arbitrarily close
to zero. Moreover, the Knudsen number has to be sufficiently small to justify
a hydrodynamic approach.
Further relevant parameters used in simulations are the Prandtl and Eckert
numbers

Pr =
ν

α
, Ec =

U2
0

cp ∆T

with thermal diffusivity α, specific heat at constant pressure cp = d
2

+ 1 and
temperature difference between top and bottom plate ∆T . In this work we
will restrict ourself to flows at Pr = 1.
In order to quantify the accuracy of the different BC schemes, we introduce
the relative L2-error for a generic macroscopic quantity A, calculated with
respect to the the exact solution Aex along a vertical slice through the center
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of the computational domain:

eA =

√√√√√√√√
L∑

j=1

(
Asim(xi, yj)− Aex(yj)

)2

L∑
j=1

(
Aex(yj)

)2
.

4.1. Thermal Poiseuille flow

We consider a fluid between two stationary horizontal plates placed at a
distance H. The top plate is heated, i.e., Ttop > Tbot, and a constant ac-
celeration acts along the x-axis. The analytic steady state solutions [13] for
velocity and reduced temperature T̂ =

(
T−Tbot

∆T

)
read as

uex
x (y) =

g · y
2ν̄

(H − y) uex
y ≡ 0,

T̂ ex(y) =
y

H
+

Pr · Ec

3

(
1−

(
1− 2y

H

)4
)
.

In the above, ν̄ = ρ0T0ν, where ρ0 and T0 denote the system averaged density
and temperature respectively; g denotes a constant external acceleration act-
ing along the x-axis. Unless stated otherwise, the simulations were conducted
using Re = 100, Ec = 1, Ma = 0.05 and Tbot = 1; this directly determines
the values for g, ν and Ttop.
In Fig. 3, we show a few examples for the steady state profiles of velocity
and temperature.
A grid-convergence study is presented in Fig. 4, where we compare the differ-
ent implementation of the NEBB BC using both the D2Q17 and the D2Q37
models. Looking at the overall picture, we observe that the convergence
speed and accuracy of NEBB is found to be very similar to that of diffusive
BC for most of the settings taken into account.
While diffusive BC ensure stability for the D2Q17 even at the most coarse
grid resolutions, the external NEBB suffer from instabilities due to low vis-
cosity values. These instabilities are cured when using finer grids, or higher
order models; indeed the D2Q37 proves stable over all the parametric range
explored in the present analysis.
When results are not affected by stability issues, the convergence rate is
approximately of the second order. An interesting exception is given by the
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NEBB-UE
NEBB-UI
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Figure 3: Steady state profiles for a thermal Poiseuille flow. Top: Velocity profiles obtained
using the different BC with the D2Q37 stencil at Ec = 1. Inlet: Zoom in the proximity
of the top plate. The internal NEBB BC cause a small overshoot. Scaled versions have
been omitted since they perform very similar to their unscaled counterparts. Bottom:
Temperature profiles at different Eckert numbers for both the D2Q17 and D2Q37 models,
obtained with the NEBB-UE BC. All simulations have been performed on a L = 512 grid,
with Re = 100, Ma = 0.05 and Tbot = 1.
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(dx2)

Figure 4: Grid convergence test for the thermal Poiseuille flow, comparing different BC
models. Top panels show the comparison with respect to the error in the velocity profiles,
while at bottom panels the error is computed with respect to the temperature profile. On
the left panels we report results for the D2Q17 model, while on the right we report results
obtained using the D2Q37 model. All simulations have been performed with Re = 100,
Ma = 0.05, Ec = 1 and Tbot = 1.
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external NEBB, which on one hand presents a first order convergence speed
for what concerns the error in the velocity profile, but—on the other hand—
offers significantly lower error levels than all the other BC over the grid sizes
considered.
Finally, if we consider the errors in the velocity profiles we do not observe
relevant differences comparing the accuracy of the scaled NEBB BC against
that offered by their corresponding unscaled version, consistently with the
findings in [4]; on the other hand, scaled NEBB seem to offer slightly more
accurate results when inspecting the temperature profiles.

4.2. Thermal Couette flow

In this setup, we consider a fluid between two horizontal plates at a distance
H. The heated top plate is moving horizontally with constant velocity U0

and is kept at a fixed temperature Ttop, whereas the bottom plate is kept at
temperature Tbot < Ttop and remains stationary. The benchmark admits an

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

T

exact
D2Q37

Ec = 1
Ec = 10
Ec = 20

Figure 5: Steady state temperature profiles for a thermal Poiseuille flow, simulated us-
ing the D2Q37 model with the NEBB-UE BC, for a few selected Eckert numbers. All
simulations have been performed with a spatial resolution of L = 512 points, Re = 100,
Ma = 0.05 and Tbot = 1.

analytic steady-state solution, here reported for the velocity, reduced tem-
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perature and density [14]:

uex
x (y) = U

y

H
, uex

y ≡ 0,

T̂ ex(y) =
y

H
+

Pr · Ec

2

y

H

(
1− y

H

)
,

ρex(y) =
ρ0T0

T ex(y)

(
1 +

Pr Ma2
e

3

)
,

where Mae = U0√
cpT0

is a lattice-specific Mach number. In Fig. 5, we show a

128 192 256 320 384 448 512
L

10 4

10 3

10 2

eu

128 192 256 320 384 448 512
L

10 4

10 3

10 2

eT

128 192 256 320 384 448 512
L

10 7

10 6

10 5

e
diffusive
NEBB-SE
NEBB-UE
NEBB-SI
NEBB-UI

(dx2)

Figure 6: Grid convergence test for the thermal Couette flow, comparing different BC
models. Shown are L2-Errors with respect to the exact solutions for velocity (top-left), re-
duced temperature (top-right) and density (bottom). All simulations have been performed
with Re = 100, Ma = 0.05, Ec = 1 and Tbot = 1.

few examples of steady state temperature profiles at different Eckert numbers.
Like in the previous section, we perform a grid-convergence study, for which
we report results in Fig. 6. This time we have restricted the analysis to the
D2Q37 model. We have considered simulations with Tbot = 1 and Ttop and
ν tuned in order to keep fixed values Re = 100, Ec = 1, Ma = 0.05. The
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results are consistent with the analysis reported for the thermal Poiseuille
flow: again, we observe approximately second order convergence for the error
in both velocity, temperature and density profiles. An exception is given by
the external NEBB BC which exhibits significantly lower errors than the
other BC over all grid sizes considered, at the price of a lower convergence
speed.
Comparing the scaled and unscaled version of the different NEEB BC, we
do not observe differences for the internal case, while looking at the external
case the scaled version seems to offer a systematic advantage in terms of
accuracy.

4.3. Rayleigh Bénard convection

Ttop

T0

Tbot

Figure 7: Example for the temperature fields in the Rayleigh Bénard convection. Left:
Stratified temperature field in the steady conductive state for low Ra. Right: Steady
convective state near the critical Rayleigh number. White lines represent the velocity
streamlines.

The third and last benchmark considered in this section is the Rayleigh
Bénard convection, a classic example of natural convection occurring in a
fluid subjected to the gravity force and heated from below.
The numerical setup consists of two horizontal walls placed at a distance H,
kept at a fixed temperature, respectively Ttop and Tbot, with Ttop < Tbot. The
gravity-like force acting along the y axis induces an acceleration g = (0,−g)T .
The dynamic behavior of the system can be characterized by the Rayleigh
number, defined as

Ra = Pr
∆T

T0

gH3

ν2
0

, (8)

where the kinematic viscosity ν0 is evaluated at the reference temperature
T0 and reference density ρ0.
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For flows at low Ra (Fig. 7-left), the system is stationary and exhibits a
constant temperature gradient between the hot and the cold plates. When
the Rayleigh number is increased above a critical value Racrit the system
becomes unstable and convective rolls start to appear (Fig. 7-right).
By performing a linear stability analysis, it is possible to show that for a
incompressible fluid Racrit ≈ 1707. This case is arguably the most commonly
studied convection configuration, and is often used to benchmark numerical
methods withing the Boussinesq limit (see e.g. [15, 16, 17] for a few ex-
amples based on LBM solvers). In our case, we will instead work outside
the Boussinesq regime, in order to test the accuracy of our BC scheme in
the presence of seizable compressibility effects. Once again, it is possible to
provide analytical estimates for the critical Rayleigh number, which for the
compressible regime is found to be a function of two main parameters, re-
spectively the non-dimensional temperature jump ∆T/T0 and the polytropic
index m = g H

∆T
[18, 19].

We consider the same setup described in [20] and limit ourselves to the study
of the specific case ∆T/T0 = 0.6, m = 0.98, for which the analytic prediction
of the critical Rayleigh number is Racrit ≈ 1604, and attempt to get a numer-
ical estimate of Racrit from simulations testing the different implementation
of the NEBB-BC described in the previous section.

Table 1: Numerical estimate of the critical Rayleigh number in a non-Boussinesq regime
with ∆T/T0 = 0.6, m = 0.98. The analytic result from a linear stability analysis predicts
Racrit ≈ 1604.

Grid Diffusive NEBB-UE NEBB-SE NEBB-UI NEBB-SI
101× 50 1617 1591 1599 - -
202× 100 1610 1602 1602 1575 1586
404× 200 1603 1608 1607 1568 1568

In order to obtain an estimate of Racrit, we perform simulations at various
Rayleigh numbers by tuning g and ν and track the time evolution of the
average kinetic energy Eavg

kin along a central slice of the domain; this quan-
tity grows in time for supercritical Rayleigh numbers, decreasing instead at
subcritical Rayleigh numbers. We perform a linear fit to extrapolate Racrit

in correspondence of the Rayleigh number that would exhibit a zero growth
rate.
The estimate obtained for the different BC schemes and for different grid
resolutions are reported in Tab. 1. We observe that the external NEBB
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BC, both in the scaled and unscaled version, performs similarly to the diffu-
sive BC, giving results consistent with theoretical predictions. The internal
treatment, on the other other hand, suffers from stability issues at coarse
grid resolutions, which most likely still partly hampers the quality of the
estimates obtained, even for the finer grid sizes taken into account in our
analysis. We have found that working with slightly smaller values of the
polytropic index m = 0.95, which in turn translates in larger values of the
kinematic viscosity, makes simulation stable and in general improves the ac-
curacy of the estimates; for example, using the internal-unscaled NEBB BC
on a 404× 200 grid, leads in this case to Racrit ≈ 1599.

5. Conclusion

In this work, we have presented a NEBB BC for thermal LBM based on
multispeed models, extending previous works which specialized to the iso-
thermal case. We have implemented two schemes, which differ in the way
the boundary layers are handled from a macroscopic point of view, namely an
internal and external approach. The internal approach allows for replacing
only the unknown populations at each boundary layer, but might require
interpolation in order to define the macroscopic fields in the fluid nodes
adjacent to the boundary. Conversely, the external approach treats all the
boundary layers is a unified way, hiding much of the complexities introduced
by multispeed models. From this point of view, the external NEBB BC
represents a promising approach to handle boundary layers, allowing the use
of high order multispeed models even in the presence of complex geometries.
We have compared the NEBB BC considering well known examples of ther-
mal flows bounded between parallel walls, such as the Poiseuille, Couette
flows and Rayleigh-Bénard convections, comparing against the results ob-
tained employing diffusive boundary conditions. In terms of accuracy and
convergence speed NEBB BC are found to be comparable to diffusive bound-
ary conditions. Interestingly, the external NEBB scheme is at times produc-
ing superior results, specially for relatively coarse grid resolutions.
We shall remark that although we have restricted our analysis to the two
dimensional case, the procedure for constructing this class of BC can be
easily extended to three dimensional models, and to stencils formed by even
larger velocity sets (at the price of cumbersome analytic expressions which
would require employing metaprogramming techniques).
Finally, although a more thorough analysis of the stability properties induced
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by the NEBB BC will be object of future works, our analysis hints to the fact
that this class of BC supports a more narrow range of numerical parameters
when compared to the diffusive BC. In a future extended version of the
present work we plan to consider more complex geometries, and to analyze
the stability of the NEBB BC by considering turbulent flows in both 2 and
3 dimensions.

Appendix A. Analytical Expression for NEBB-UE correction terms

Here, we report an example for the correction terms used in the definition of
the BC (Eq. 6), for the specific case of the NEBB-UE BC. We consider the
D2Q17 model, in the configuration shown in Fig. 1, and a south boundary
layer. The expressions for other boundaries and other stencils can be obtained
in a similar form following the procedure described in the main text. For
convenience, we label the discrete component of the stencil as for Table A.2.

Table A.2: Discrete velocities forming the D2Q17 stencil. Each Group forms a fully
symmetric set of discrete velocities that are assigned the Indices in lexicographic order, i.
e. f1 corresponds to the rest population and f2 = (−1,−1), f3 = (−1, 1), f4 = (1,−1), f5 =
(1, 1).

Group (0, 0) (1, 1) (2, 2) (3, 3) (3, 0)
Indices 1 2− 5 6− 9 10− 13 14− 17

The external treatment allows a unified description of the different boundary
layers. This translates in specifying the same set of unknown populations at
each boundary layer, i.e., U (l) = U for l = 1, 2, 3. The indices of unknown
populations to be set for our specific case are

U = {u1, . . . , u7} = {3, 5, 7, 9, 12, 15, 17}

The solution of the system of equations formed by Eq. 5 and Eq. 6 reads as
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follows:

ρ = −f1 + 2Z1 + 2Z2 + Z3 + +2Z4 + 65Qt+ 15Qy

A0

Qx =
A2(691f1 + 2(1051f11 + 1411Z4 + 3(257Z1 + 337Z2))) + A3f10 − A4f13

28A1

Qy = −2(A10Z4 + 3(A7Z1 + A8Z2)) + A6f1 + A9Z3

4A5

Qt =
A12f1 + 2(A13Z1 + A14Z2 + A16Z4) + A15Z3

4A11

where the auxiliary variables Zi are given in terms of known post-streaming
populations as 

Z1

Z2

Z3

Z4

 =


f2 + f4

f6 + f8

f10 + 2f11 + f13

f14 + f16

 .

The further auxiliary variables Ai are given in terms of αj = f eq
i − f

eq
ī
, with

i ∈ U , and depend on the imposed macroscopic velocity u and temperature
T . We report the most general expression, which would significantly simplify
for the case of a stationary wall:

~A = M~α + ~ω,
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with ~A =
(
A0, . . . , A16

)>
and ~α =

(
α1, . . . , α7

)>
,

M =



1 1 1 1 1 1 1
−306 −306 −81 −81 344 −16 −16

1 −1 2 −2 0 3 −3
133 −1969 1859 −2345 1032 3105 −3201
−1969 133 −2345 1859 1032 −3201 3105
−306 −306 −81 −81 344 −16 −16
523 523 362 362 1056 −483 −483
245 245 148 148 336 −177 −177
457 457 230 230 288 −225 −225
1477 1477 731 731 840 −699 −699
2431 2431 1100 1100 624 −915 −915
−306 −306 −81 −81 344 −16 −16

97 97 46 46 180 −153 −153
141 141 60 60 164 −169 −169
273 273 102 102 116 −217 −217
295 295 109 109 108 −225 −225
493 493 172 172 36 −297 −297
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and

~ω =



1
80c2

sT + 40u2
x + 40u2

y − 465uy + 691
ux

240c2
sT + 120u2

x + 1051ux + 120u2
y − 1395uy + 2073

240c2
sT + 120u2

x − 1051ux + 120u2
y − 1395uy + 2073

80c2
sT + 40u2

x + 40u2
y − 465uy + 691

342c2
sT + 171u2

x + 171u2
y − 865uy

114c2
sT + 57u2

x + 57u2
y − 245uy − 114

114c2
sT + 57u2

x + 57u2
y − 115uy − 456

342c2
sT + 171u2

x + 171u2
y − 280uy − 1539

342c2
sT + 171u2

x + 171u2
y + 305uy − 3078

80c2
sT + 40u2

x + 40u2
y − 465uy + 691

74c2
sT + 37u2

x + 37u2
y − 171uy

74c2
sT + 37u2

x + 37u2
y − 141uy − 74

74c2
sT + 37u2

x + 37u2
y − 51uy − 296

74c2
sT + 37u2

x + 37u2
y − 36uy − 333

74c2
sT + 37u2

x + 37u2
y + 99uy − 666



.
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