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Abstract

Deep neural networks (DNNs) for the semantic segmen-
tation of images are usually trained to operate on a pre-
defined closed set of object classes. This is in contrast to
the “open world” setting where DNNs are envisioned to be
deployed to. From a functional safety point of view, the abil-
ity to detect so-called “out-of-distribution” (OoD) samples,
i.e., objects outside of a DNN’s semantic space, is crucial
for many applications such as automated driving. A natu-
ral baseline approach to OoD detection is to threshold on
the pixel-wise softmax entropy. We present a two-step pro-
cedure that significantly improves that approach. Firstly,
we utilize samples from the COCO dataset as OoD proxy
and introduce a second training objective to maximize the
softmax entropy on these samples. Starting from pretrained
semantic segmentation networks we re-train a number of
DNNs on different in-distribution datasets and consistently
observe improved OoD detection performance when eval-
uating on completely disjoint OoD datasets. Secondly, we
perform a transparent post-processing step to discard false
positive OoD samples by so-called “meta classification”.
To this end, we apply linear models to a set of hand-crafted
metrics derived from the DNN’s softmax probabilities. In
our experiments we consistently observe a clear additional
gain in OoD detection performance, cutting down the num-
ber of detection errors by 52% when comparing the best
baseline with our results. We achieve this improvement sac-
rificing only marginally in original segmentation perfor-
mance. Therefore, our method contributes to safer DNNs
with more reliable overall system performance.

1. Introduction

In recent years spectacular advances in the computer
vision task semantic segmentation have been achieved by
deep learning [43, 46]. Deep convolutional neural networks
(CNNs) are envisioned to be deployed to real world appli-

Baseline segmentation mask Baseline entropy heatmap

Our segmentation mask Our entropy heatmap

Figure 1: Comparison of segmentation mask and softmax
entropy before our OoD training (top row) and after (bottom
row). While there are minor differences in the segmentation
masks, the annotated unknown object (marked with yellow
lines) becomes clearly recognizable in the entropy heatmap
due to our OoD training. In the heatamp high values are red.

cations, where they are likely to be exposed to data that is
substantially different from the model’s training data. We
consider data samples that are not included in the set of a
model’s semantic space as out-of-distribution (OoD) sam-
ples. State-of-the-art neural networks for semantic segmen-
tation, however, are trained to recognize a predefined closed
set of object classes [11, 29], e.g. for the usage in environ-
ment perception systems of autonomous vehicles [22]. In
open world settings there are countless possibly occurring
objects. Defining additional classes requires a large amount
of annotated data (cf. [10, 47]) and may even lead to perfor-
mance drops [13]. One natural approach is to introduce a
none-of-the-known output for objects not belonging to any
of the predefined classes [45]. In other words, one uses a
set of object classes that is sufficient for most scenarios and
cover all OoD objects by enforcing a specific model out-
put for such samples. This additional output can be imple-
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mented by introducing an additional class or by setting a
threshold on the softmax entropy as well as any other dis-
persion or uncertainty measure. From a functional safety
point of view, it is a crucial but yet missing prerequisite that
neural networks are capable of reliably indicating when they
are operating out of their proper domain, i.e., detecting OoD
objects, in order to initiate a fallback policy.

As images from everyday scenes usually contain many
different objects, of which only some could be out-of-
distribution, knowing the location where the OoD object
occurs is desired for practical application. Therefore, we
address the problem of detecting anomalous regions in an
image, which is the case if an OoD object is present (see
figure 1) and which is a research area of high interest
[5, 18, 30, 39].

This so-called anomaly segmentation [4, 18] can be pur-
sued, for instance, by incorporating sophisticated uncer-
tainty estimates [2, 16] or by adding an extra class to the
model’s learnable set of classes [45].

In this work, we detect OoD objects in semantic segmen-
tation with a different approach which is composed of two
steps: As fist step, we re-train the segmentation network
to predict class labels with low confidence scores on OoD
inputs by enforcing the segmentation model to output high
prediction uncertainty. In order to quantify uncertainty, we
compute the softmax entropy which is maximized when a
model outputs uniform probability scores over all classes
[27]. By deliberately including annotated OoD objects as
known unknowns into the training process and employing a
modified multi-objective loss function, we observe that the
semantic segmentation network generalizes learnt uncer-
tainty to unseen OoD samples (unknown unknowns) with-
out significantly sacrificing in original performance on the
primary task, see figure 1.

The primal model for semantic segmentation is trained
on the Cityscapes data [11]. As proxy for OoD sam-
ples we randomly pick images from the COCO dataset
[29] excluding the ones with instances that are also avail-
able in Cityscapes, cf. [17, 20, 34] for a related approach
in image classification. We evaluate the pixel-wise OoD
detection performance via entropy thresholding for OoD
samples from the LostAndFound [39] and Fishyscapes [5]
dataset, respectively. Both datasets share the same setup as
Cityscapes but include OoD road obstacles.

The second step incorporates a meta classifier flagging
incorrect class predictions at segment level, similar as pro-
posed in [31, 41, 42] for the detection of false positive in-
stances in semantic segmentation. After increasing the sen-
sitivity towards predicting OoD objects, we aim at removing
false predictions which are produced due to the preceding
entropy boost (cf. [8]). The removal of false positive OoD
object predictions is based on aggregated dispersion mea-
sures and geometry features within segments (connected

components of pixels), with all information derived solely
from the neural network’s softmax output. As meta classi-
fier we employ a simple linear model allowing to track and
understand the impact of each metric.

To sum up our contributions, we show that only a little
modification of training is required to make semantic seg-
mentation networks much more sensitive to the detection
of OoD samples. Re-training segmentation networks with
a specific choice of OoD images from COCO [29] clearly
outperforms the natural baseline approach of plain softmax
entropy thresholding [19] by up to 73 percent points in av-
erage precision. In addition, we are the first to demon-
strate that entropy based OoD object predictions in semantic
segmentation can be meta classified reliably, i.e., classified
whether one considered OoD prediction is true positive or
false positive without access to the ground truth. For this
task we employ simple logistic regression. Combining en-
tropy maximization and meta classification therefore is an
efficient and yet lightweight method, particularly suitable as
an integrated monitoring system of safety-critical real world
applications based on deep learning.

2. Related Work
Methods from prior works have already proven their ef-

ficiency in identifying OoD input for image data. The pro-
posed methods are either modifications of the training pro-
cedure [17, 20, 27, 28, 34] or post-processing techniques
adjusting the estimated confidence [14, 19, 27]. How-
ever, most of these works treat entire images as out-of-
distribution.

When considering the semantic space to be fixed,
anomaly segmentation, i.e., treating pixels as OoD, is nec-
essarily based on estimates of uncertainty for neural net-
works. Early approaches to uncertainty estimation involve
Bayesian neural networks (BNNs) yielding posterior distri-
butions over the model’s weight parameters [32, 37]. In
practice, approximations such as Monte-Carlo dropout [16]
or stochastic batch normalization [2] are mainly used due
to cheaper computational cost. Frameworks using dropout
for uncertainty estimation applied to semantic segmenta-
tion have been developed in [3, 24]. Other approaches to
model uncertainty consist of using an ensemble of neural
networks [26], which captures model uncertainty by aver-
aging predictions over multiple models, and density esti-
mation [5, 9, 36, 40] via estimating the likelihood of sam-
ples with respect to the training distribution. Methods for
OoD detection in semantic segmentation based on label-
prediction (or classification) uncertainty have been analyzed
in [6, 21, 23, 30, 33, 38].

Using BNNs for estimating uncertainty in deep neural
networks is associated with prohibitive computational cost.
Uncertainty estimates that are generated by multiple mod-
els or by multiple forward passes are still computationally
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expensive compared to single inference based ones. In our
approach, we unite semantic segmentation and OoD detec-
tion in one model without any modifications of the under-
lying network’s architecture. Therefore, our re-training ap-
proach can be even combined with existing OoD detection
techniques and potentially enhance their efficiency.

Works with similar training approaches as ours use a dif-
ferent OoD proxy and are presented in [5, 23]. They train
neural networks on the unlabeled objects in Cityscapes as
OoD approximation. The training process includes only
one single dataset, but in our experiments we observe that
the unlabeled data lacks in diversity and therefore tends to
be too dataset specific. With respect to other OoD datasets,
such as LostAndFound and Fishyscapes on which we per-
form our experiments, we observe in our tests that these
methods fail to generalize. Furthermore, in contrast to those
works we incorporate a post-processing step that signifi-
cantly leverages the OoD detection performance.

Another line of work detects OoD samples in semantic
segmentation by incorporating autoencoders [1, 4, 12, 30].
Training such a model only on specific samples from a
closed set of classes, it is assumed that the autoencoder
model performs less accurately when fed with samples from
never-seen-before classes. The identification of an OoD
sample then relies on the reconstruction quality. In this way,
no OoD data is required, except for further adjusting the
sensitivity of the method.

Autoencoders are in fact deep neural networks them-
selves. For the goal of safe real-time semantic segmen-
tation, e.g., necessary for automated driving [22], more
lightweight approaches are favorable. We avoid incor-
porating deep auxiliary models at all and only employ a
lightweight linear model instead. Furthermore, usually the
more complex a model, the greater the lack of interpretabil-
ity. As monitoring systems are supposed to make deep
learning models safer, one seeks for simpler and thereby
more explainable approaches. We post-process our entropy
boosted semantic segmentation network output via logis-
tic regression whose computational overhead is negligible.
This linear model is transparent as it allows us to analyze
the impact of each single feature fed into the model and
it demonstrates in our experiments to efficiently reduce the
number of OoD detection errors.

3. Entropy based OoD Detection
In this section, we present our training strategy to im-

prove the detection of OoD pixels in semantic segmentation
via spatial entropy heatmaps.

3.1. Training for high Entropy on OoD Samples

Let f(x) ∈ (0, 1)q be the softmax probabilities after pro-
cessing the input image x ∈ X with some machine learning
model f : X → (0, 1)q and let q ∈ N be the number of

classes. For the sake of brevity, we omit the consideration
of image pixels in this section. We compute the softmax
entropy via

E(f(x)) = −
q∑

j=1

fj(x) log(fj(x)) . (1)

By (x, y(x)) ∼ Din we denote an “in-distribution” sam-
ple with y(x) ∈ {1, . . . , q} being its corresponding ground
truth class label, by x′ ∼ Dout we denote an “out-
distribution” sample for which there is no label given. We
aim at minimizing the overall objective

L := (1− λ) E(x,y)∼Din
[`in(f(x), y(x))]

+ λ Ex′∼Dout
[`out(f(x′))] , λ ∈ [0, 1]

(2)

where

`in(f(x), y(x)) := −
q∑

j=1

1j=y(x) log(fj(x)) and (3)

`out(f(x′)) := −
q∑

j=1

1

q
log(fj(x

′)) (4)

with the indicator function 1j=y(x) ∈ {0, 1} being equal
to one if j = y(x) and zero else. In other words, for in-
distribution samples we apply the commonly used empir-
ical cross entropy loss, i.e., the negative log likelihood of
the target class. For out-distribution samples, we consider
the negative log likelihood for each class, weighted inverse
proportionally to the number of classes.

By that choice of out-distribution loss function, minimiz-
ing `out(f(x′)) is equivalent to maximizing the softmax en-
tropy E(f(x)), see equation (1). Since the softmax defini-
tion implies fj(x) ∈ (0, 1) and

∑q
j=1 fj(x) = 1, Jensen’s

inequality applied to the convex function − log(·) yields

`out(f(x)) ≥ − log

(
q∑

i=1

1

q
fj(x)

)
= log(q) (5)

and applied to the concave function log(·)

E(f(x)) ≤ log

(
q∑

i=1

fj(x)
1

fj(x)

)
= log(q) (6)

with equality (for both inequalities inequalities (5) and (6),
respectively) if fj(x) = 1/q ∀ j = 1, . . . , q, i.e., if the soft-
max probabilities are uniformly distributed over all classes.

In order to control the impact of each single objective
on the overall objective L, the convex combination between
expected in-distribution loss and expected out-distribution
loss is included in equation (2) which can be adjusted by
varying the parameter λ.
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Entropy heatmap w/o OoD training OoD prediction w/o OoD training

Entropy heatmap w/ OoD training OoD prediction w/ OoD training

Figure 2: Comparison of softmax entropy heatmap and
OoD prediction mask with our OoD training (top row) and
without (bottom row). The yellow lines in the entropy
heatmaps mark the annotation of the OoD object. The OoD
object prediction is obtained by simply thresholding on the
entropy heatmap (in this example at t = 0.7 yielding the
red pixels in the OoD prediction masks).

3.2. OoD Object Prediction in Semantic Segmenta-
tion via Entropy Thresholding

The softmax probabilities output of neural networks for
semantic segmentation f(x) ∈ (0, 1)|H|×|W|×q, x ∈ X ⊆
[0, 1]|H|×|W|×3, can be viewed as pixel-wise probability
distributions that express how likely each potential class af-
filiation j = 1, . . . , q of a given pixel z ∈ H × W is, ac-
cording to the model f . Let fz(x) ∈ (0, 1)q denote the
softmax output in pixel location z which we implicitly con-
sidered throughout the previous section. In semantic seg-
mentation one minimizes the averaged pixel-wise classifi-
cation loss over the image, cf. equation (2). For the sake of
simplicity, we consider the normalized entropy Ē(fz(x)) at
pixel location z in the following, which we obtain by divid-
ing E(fz(x)) by log(q)−1. One pixel is then assumed to
be out-of-distribution if the normalized entropy Ē(fz(x))
at that pixel location z is greater than a chosen threshold
t ∈ [0, 1], i.e., z is predicted to be OoD if

z ∈ Ẑout(x) := {z′ ∈ H ×W : Ē(fz
′
(x)) ≥ t} . (7)

A connected component k ∈ K̂(x) ⊆ P(Ẑout(x)) (the lat-
ter being the power set of Ẑout(x)) consisting of neighbor-
ing pixels fulfilling the condition in equation (7) gives us
an OoD segment / object prediction. An illustration can be
viewed in figure 2. Obviously, the better an in-distribution
pixel can be separated from an out-distribution pixel by
means of the entropy, the more accurate the OoD object pre-
diction will be.

4. Meta Classifier in Semantic Segmentation

By training the segmentation network to output uniform
confidence scores as presented in section 3, we increase the
sensitivity towards predicting OoD objects, aiming for an
“entropy boost” on OoD samples. However, it is not guar-
anteed that only OoD samples have a high entropy. There-
fore, detecting OoD samples via entropy boosting poten-
tially comes along with a considerable number of false OoD
predictions, resulting in an unfavorable trade-off.

In this context, we consider one entire OoD object pre-
diction (see section 3.2) as true positive if its intersection
over union (IoU , [15]) with a ground truth OoD object is
greater than zero. More formally, let Zout(x) be the set
of pixel locations in x which are labeled OoD according to
ground truth. Then k ∈ K̂(x) is true positive (TP) if

IoU(k,Zout(x)) > 0

⇔ ∃ z ∈ k : Ē(fz(x)) ≥ t ∧ z ∈ Zout(x) .
(8)

In [8] it has been demonstrated that false-positives due
to increased prediction sensitivity can be removed based
on a meta classifier’s decision, achieving improved trade-
offs between error rates. This meta classifier is essentially
a binary classification model added on top of an underly-
ing segmentation network [31, 41, 42]. We construct hand-
crafted metrics per connected component of pixels by ag-
gregating different pixel-wise uncertainty measures derived
from the softmax probabilities, one of which is the entropy.
The entropy metric has proven to be highly correlated to
the segment-wise IoU and therefore contributes greatly to
the meta classifier’s performance, cf. [41]. Different to ex-
isting approaches, that consider neighboring pixels sharing
the same class label as segment, we generate metrics per
segment above the given entropy threshold t. Given the im-
portance of entropy for meta classifiers in combination with
entropy based segment generation, we expect the learned
entropy maximization on OoD objects to leverage the meta
classification performance.

Given the softmax output, we include further pixel-wise
dispersion measures such as the probability margin, the dif-
ference between highest and second highest softmax prob-
ability, and variation ratio, the maximum softmax probabil-
ity. They all have proven their efficiency in terms of meta
classification performance [8, 31, 42]. Moreover, we also
consider geometry features, such as the segment’s size or
its ratio between interior and boundary [41]. These metrics
serve as inputs for the auxiliary meta model that classifies
into true positive and false positive (FP) OoD object predic-
tion, i.e., classifying k ∈ K̂(x) into the classes / sets

C1 := {k′ ∈ K̂(x) : IoU(k,Zout(x)) > 0} and

C2 := {k′ ∈ K̂(x) : IoU(k,Zout(x)) = 0} .
(9)

4



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

in-distribution out-distribution

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

op
y

Baseline

in-distribution out-distribution

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

op
y

Epoch 4, λ = 0.9

(a) LostAndFound

in-distribution out-distribution

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

op
y

Baseline

in-distribution out-distribution

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

op
y

Epoch 4, λ = 0.9

(b) Fishyscapes

Figure 3: Relative pixel frequencies of LostAndFound (a) and Fishyscapes (b) OoD pixels, respectively, at different entropy
values for the baseline model, i.e., before OoD training (a & b left), and after OoD training (a & b right). The red lines
indicate the thresholds of highest accuracy. See also appendix A for more details and see appendix E for a visualization.

The outlined hand-crafted metrics form a structured dataset
of features where the rows correspond to predicted seg-
ments and the columns to metrics, see also appendix B.

5. Setup of Experiments
Semantic segmentation is one of the basic components

in environment perception systems of autonomous vehicles
[22]. We therefore consider the semantic segmentation for
the Cityscapes dataset [11] as original task, i.e., we consider
Cityscapes as in-distribution dataDin. The (standard) train-
ing split consists of 2,975 pixel-annotated urban street scene
images. As original model, we use the state-of-the-art se-
mantic segmentation DeepLabv3+ model with a WideRes-
Net38 backbone trained by Nvidia [46]. This model is ini-
tialized with publicly available weights and serves as our
baseline model. For testing, we evaluate the OoD detection
performance on two datasets comprising street scene im-
ages and unexpected obstacles. We consider images from
the LostAndFound test split [39], containing 1,203 images
with annotations of small obstacles and road in front of
the (ego-)car, and Fishyscapes Static [5], containing 30 im-
ages with annotated anomalous objects extracted from Pas-
cal VOC [15] which are then overlayed in Cityscapes im-
ages. Both datasets share the same setup as Cityscapes but
include small road obstacles.

In order to perform the OoD training as proposed in sec-
tion 3.1, we approximate the out-distribution via images
from the COCO [29] dataset. This dataset contains images
of everyday objects captured from everyday scenes. Be-
sides that, we only consider COCO images with instances
that are not included in Cityscapes (no persons, no cars, no
traffic lights, ...) and images that have a minimum height
and width of at least 480 pixels. After filtering, there remain
1,489 images serving as our proxy forDout (see appendix C
for experiments with another OoD proxy).

We finetune the DeepLabv3+ model with loss functions

according to equation (3) and equation (4). As training data
we randomly sample 297 images from our COCO subset
per epoch and mix them into all 2,975 Cityscapes training
images (1:10 ratio of out-distribution to in-distribution im-
ages). We train the model’s weight parameters on random
crops of size 480 pixels for 4 epochs in total and set the
(out-distribution) loss weight λ = 0.9 (see equation (2)). As
optimizer we use Adam [25] with a learning rate of 10−5.

6. Pixel-wise Evaluation
Based on the softmax probabilities, we compute the

normalized entropy Ē for all pixels in the respective test
dataset. This gives us a per-pixel anomaly / OoD score
which we compare with the ground truth anomaly segmen-
tation. For the sake of clarity, in this section we refer to
in-distribution pixels as samples of the negative class and
to out-distribution pixels as samples of the positive class.
We emphasize that none of the OoD objects in the test data
have been seen during our OoD training since we use sepa-
rate datasets for training and testing, with different objects
corresponding to completely disjoint semantic class labels.

6.1. Separability by means of AUROC

On basis of the violin plots in figure 3, one already no-
tices the improved separability of in-distribution and out-
distribution pixels as large masses of the distributions cor-
responding to the respective classes can be well separated
via multiple entropy thresholds. One also notices, that our
OoD training is beneficial with respect to the separability.
This effect can be further quantified with the aid of receiver
operating characteristic (ROC) curves, see figure 4 (a) & (b)
left. The area under the curve (AUC) of ROC curves (AU-
ROC) then represents the degree of separability. The higher
the AUC, the better the separability.

By comparing the ROC curves for LostAndFound (fig-
ure 4 (a)), we observe that there is a performance gain over
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(a) LostAndFound (left: AUROC, right: AUPRC)
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Figure 4: Detection ability for LostAndFound (a) and Fishyscapes (b) OoD pixels, respectively, evaluated by means of
receiver operating characteristic curve (a & b left) and precision recall curve (a & b right). The red lines indicate the
performance according to random guessing.

the baseline model when OoD training is applied. The
baseline curve indicates that the corresponding model has
a lower true positive rate across various fixed false posi-
tive rates, i.e., our model after OoD training assigns higher
uncertainty / entropy values to OoD samples which is bene-
ficial for OoD detection. Although the AUC of the baseline
model is already decent at 0.93, we outperform this AUC
significantly with a value of 0.98, which is 5/7 of what we
could gain due to our OoD training.

We observe the same effect for Fishyscapes. From the
violins already, the discrimination performance seems al-
ready close to perfect due our OoD training. This is con-
firmed by means of the corresponding ROC curve as the
AUC score has increased up to 0.99. In comparison to the
baseline model, there is a gain of 5 percent points which
makes considerable 5/6 of the possible performance gain.

6.2. Separability by means of AUPRC

As the AUROC essentially measures the overlap of dis-
tributions corresponding to negative and positive samples,
this score does not place more emphasis on one class
over the other in case of class imbalance. In both our
test datasets, there is a considerably strong class imbal-
ance, 0.7% and 1.3% OoD samples in LostAndFound and
Fishyscapes, respectively. Therefore, we additionally mea-
sure the separability by means of precision recall curves
(PRC), see figure 4 (a) & (b) right, thus ignoring true neg-
atives and emphasizing the detection of the positive class /
OoD samples. Now the AUC of PRC (AUPRC) serves as
measure of separability.

For LostAndFound as well as for Fishyscapes objects
the re-trained model is superior over the baseline model in
terms of precision when we fix recall to any score. The AUC
quantifies this performance gain and thus further clarifies
the improved capability at detecting pixels corresponding to
an OoD object. Regarding LostAndFound, the OoD train-
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Figure 5: Mean intersection over union (mIoU) for
Cityscapes validation split with OoD predictions at different
entropy thresholds t. The dashed red line indicates the per-
formance loss that we consider to be “acceptable” (∼ 1%).

ing increases the AUC by 0.30 up to a score of 0.76. This
is a relative change with respect to the baseline model of
roughly 66%. Regarding Fishyscapes, the performance gain
is even more significant. We raise the AUC from 0.28 up to
0.81, which is nearly a threefold performance increase. We
conclude that measured by AUPRC scores our OoD training
is highly beneficial for detecting OoD samples.

6.3. Original Task Performance

In order to monitor that the baseline model does not un-
learn its original task due to OoD training, we evaluate the
model’s performance on in-distribution data with OoD pre-
dictions at different entropy thresholds. The original task
is the semantic segmentation of the Cityscapes images and
we evaluate by means of the most commonly used perfor-
mance metric mean Intersection over Union (mIoU, [15]).
Additionally to the Cityscapes class predictions, that is ob-
tained via the standard maximum a posteriori (MAP) deci-
sion principle [7, 35], we consider an extra OoD class pre-
diction if the softmax entropy is above the given threshold.
We compute the mIoU for the Cityscapes validation dataset,
but average only over the 19 Cityscapes class IoUs.
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AUROC ↑ FPR95 ↓ AUPRC ↑ mIoU ↑
Method LostAndFound Test Cityscapes Val.

Lis et al. [30] Best 0.93 - - 0.80
Li et al. [44] Plain 0.91 0.30 0.36 0.80

Zhu et al. [46] Plain 0.93 0.35 0.46 0.90
Ours: Li et al. + OoD T. 0.94 0.12 0.51 0.76

Ours: Zhu et. al + OoD T. 0.98 0.09 0.76 0.89

Fishyscapes Static Cityscapes Val.

Blum et al. [5] Best - 0.13 0.62 0.80
Li et al. [44] Plain 0.85 0.46 0.07 0.80

Zhu et al. [46] Plain 0.94 0.18 0.28 0.90
Ours: Li et al. + OoD T. 0.94 0.21 0.38 0.76

Ours: Zhu et. al + OoD T. 0.99 0.05 0.81 0.89

Table 1: Benchmark results for LostAndFound and Fishy-
scapes with DeepLabv3+ (Zhu et al. [46]) and a slightly
weaker DualGCNNet (Li et al. [44]) CNNs. The gray
rows mark scores with OoD training, otherwise only en-
tropy thresholding is applied (Plain). For comparison, we
included scores reported in [30] and [5] which are, to the
best of our knowledge, the only works comparable to ours.

The state-of-the-art DeepLabv3+ model [46], which
serves as our baseline throughout our experiments, achieves
an mIoU of 0.90 on the Cityscapes validation dataset with-
out OoD predictions (implying t = 1.0). By re-training
the neural network with entropy maximization on OoD in-
puts, we observe improved OoD-AUPRC scores over the
course of training peaking at 0.76. This gain at detecting
OoD samples in LostAndFound comes with a marginal loss
in Cityscapes validation mIoU down to 0.89. These two
mIoU scores remain nearly constant (deviations less than 1
percent point) for the evaluated thresholds t = 0.3, . . . , 1.0.
In general, the lower the entropy threshold, the more pixels
are predicted to be OoD. For t = 0.2 this results in notice-
able performance decrease, 0.05 for the baseline model and
0.03 for the re-trained model, respectively. As displayed in
figure 5 further lowering the threshold leads to even more
significant sacrifice of original performance. Consequently,
we consider in the following experiments entropy thresh-
olds of t ≥ 0.3 as the performance loss seems acceptable,
especially in view of substantially improved OoD detection
capability. We refer to appendix F for more details.

All the results presented in this section are summarized
in table 1 where we additionally provide the false positive
rates at 95% true positive rate (FPR95). Moreover, we con-
ducted the same experiments as for the DeepLabv3+ model
[46] also for the weaker DualGCNNet [44], see appendix D.
We re-trained the latter model with λ = 0.25 for 11 epochs
in total and report the scores in the table 1 as well.

7. Segment-wise Evaluation
In this section we evaluate the meta classification perfor-

mance on LostAndFound. The main metrics of the segment

OoD Training OoD Training + meta classifier

Figure 6: OoD detection with t = 0.7 after OoD training
and meta classification. The yellow lines mark the annota-
tions of the OoD objects. OoD predictions labeled as back-
ground area according to the ground truth are ignored (this
includes e.g. the garbage bin). See appendix G for more
examples.
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Figure 7: Detection errors of LostAndFound OoD objects.
In this plot, the number of errors when t = 0.7, . . . , 0.3 are
displayed (when in the axes’ range). The pie-chart markers
indicate the road miss rate ε, being entirely red if ε ≥ 0.001.
See also table 2 for exact numbers.

-wise evaluation are the numbers of FPs and FNs with re-
spect to an OoD object prediction, cf. equation (8). As the
removal of FP OoD predictions should not come at cost of
a significant loss in original performance, see figure 6, we
additionally consider the miss rate of road pixels:

ε := 1−
∣∣∣∣∣
⋃

x∈X

(
Ẑin(x) ∩ Zin(x)

)∣∣∣∣∣

∣∣∣∣∣
⋃

x∈X
Zin(x)

∣∣∣∣∣

−1

(10)

with pixel locations predicted to be in-distribution in Ẑin

and annotated as in-distribution in Zin. The road miss rate
ε measures the proportion of actual road pixels in the whole
dataset which are incorrectly identified.

We compute per-segment metrics as outlined in sec-
tion 4 for OoD object predictions in the LostAndFound
test set and feed them through meta classification models,
which are simple logistic regressions throughout our exper-
iments. The segments are then leave-one-out cross validated
whether they are TP or FP, see equation (9).

We consistently observe a gain in OoD detection perfor-
mance due to meta classification. The number of detection
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Entropy Baseline Baseline OoD Training OoD Training
Threshold + Meta Classifier + Meta Classifier

Ē ≥ t FP ↓ FN ↓ ∑ ↓ ε in % ↓ FP ↓ FN ↓ ∑ ↓ ε in % ↓ FP ↓ FN ↓ ∑ ↓ ε in % ↓ FP ↓ FN ↓ ∑ ↓ ε in % ↓
t = 0.10 33,584 77 33,661 7.60 386 314 700 3.24 21,967 99 8277 5.22 245 302 547 2.70
t = 0.20 19,456 136 19,592 2.48 454 307 761 0.93 17,000 127 17,127 2.14 288 316 604 0.18

t = 0.30 7,349 218 7,567 0.38 412 302 714 0.09 8,068 191 8,277 0.30 290 308 598 0.06
t = 0.40 3,214 377 3,591 0.08 280 435 715 0.03 4,035 289 4,324 0.11 251 359 610 0.03
t = 0.50 809 662 1,471 0.01 94 686 780 < 0.01 1,215 415 1,630 0.04 280 447 727 0.02
t = 0.60 158 1,084 1,242 < 0.01 26 1,093 1,119 < 0.01 327 613 940 0.02 149 619 768 0.02
t = 0.70 10 1,511 1,521 < 0.01 3 1,512 1,515 < 0.01 135 879 1,014 0.01 79 881 960 0.01

Table 2: Detection errors for LostAndFound OoD objects at different entropy thresholds t. We consider the road miss rate
ε, see equation (10), as further measure of loss in original performance (for Cityscapes mIoU, see figure 5). Below the
horizontal line, i.e., t ≥ 0.3, we consider the loss in original performance to be acceptable, see section 6.3 for further details.

Entropy Baseline + MSP [19] Baseline + Meta C. OoD T. + Meta C.
Threshold t AUROC AUPRC AUROC AUPRC AUROC AUPRC

t = 0.10 0.8509 0.9817 0.9894 0.9993 0.9915 0.9993
t = 0.20 0.6470 0.9119 0.9859 0.9980 0.9898 0.9980

t = 0.30 0.5333 0.7376 0.9742 0.9884 0.9847 0.9953
t = 0.40 0.3847 0.4671 0.9715 0.9740 0.9808 0.9807
t = 0.50 0.4172 0.2286 0.9628 0.9214 0.9665 0.9536
t = 0.60 0.4906 0.1228 0.9291 0.7252 0.9511 0.8405
t = 0.70 0.5932 0.1334 0.9140 0.5283 0.9444 0.7185

Table 3: Meta classification performance on LostAndFound
at different entropy thresholds t. As comparison to the meta
classifier, we include the detection of OoD prediction errors
via the maximum softmax probability (MSP, [19]).

errors as well as road miss rate ε at different entropy thresh-
olds t are summarized in table 2. The performance of FP
OoD removal is given in table 3.

In general, the higher the entropy threshold, the less
OoD objects are predicted and consequently less data is fed
through the linear models. This explains the observation
that meta classifiers identify FPs more reliably the lower
t. However, also for larger thresholds, meta classifiers still
clearly outperform the natural maximum softmax probabil-
ity (MSP, [19]) approach. Due to our OoD training, the
meta classifiers demonstrate to be even more effective, be-
ing most superior when t = 0.7 with an AUPRC score of
0.72, which is 19 percent points higher than without OoD
training. In our experiments, OoD training in combina-
tion with meta classification at t = 0.3 turns out to be the
best OoD detection approach achieving the best result with
only 598 errors in total while having a road miss rate of
marginally 0.06%. In comparison, there are 7,567 errors
at a road miss rate of 0.38% when applying neither OoD
training nor meta classifiers, which can be reduced to de-
cent scores of 714 and 0.09%, respectively, when adding the
meta classifier. Compared with the best baseline at t = 0.6,
we decrease the number of total errors by 52% from 1,242
down to 598. More safety-relevantly, at the same time we

significantly reduce the number of overlooked OoD objects
by 70% from 1,084 down to 308.

8. Conclusion & Outlook
In this work, we presented a novel re-training approach

for deep neural networks that unites improved OoD de-
tection capability and state-of-the-art semantic segmenta-
tion in one model. Up to now, only a small number prior
works exists for anomaly segmentation on LostAndFound
and Fishyscapes, respectively. We demonstrate that our
OoD training significantly improves the detection efficiency
via softmax entropy thresholding, leading to a performance
superior over existing methods.

Moreover, we introduced meta classifiers for entropy
based OoD object predictions. By applying lightweight lo-
gistic regressions, we have shown that entire LostAndFound
OoD segments are meta classified reliably. This observation
already holds for the tested neural network in its plain ver-
sion. Due to the increased sensitivity of OoD predictions
via entropy maximization, the meta classifiers’ efficiency is
even more pronounced. In view of emerging safety-critical
deep learning applications, the combination of OoD train-
ing and meta classification has the potential to considerable
improve the overall system’s performance.

For future work, we plan to apply OoD training for
the retrieval of OoD objects in order to assess the impor-
tance of their occurrence and whether a new concept is
required to be learned. Our code is publicly available at
https://github.com/robin-chan/meta-ood.

Acknowledgement
The research leading to these results is funded by the

German Federal Ministry for Economic Affairs and Energy
within the project “KI Absicherung – Safe AI for Auto-
mated Driving”, grant no. 19A19013Q. The authors would
like to thank the consortium for the successful cooperation
and acknowledge fruitful discussions with Sharat Gujama-
gadi & Fabian Kunst.

8



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

References
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Appendix

A. Separability by means of Data Distribution

The violin plots in figure 3 visualize the separability
of in-distribution and out-distribution pixels (binary clas-
sification) in LostAndFound and Fishyscapes, respectively.
These plots summarize different statistics such as median
and interquartile ranges and also show the full distribution
of the data. The density corresponds to the relative pixel
frequency at a given entropy value of the considered class.
In the following, we refer to the shape of the violin plots as
distribution.

First, we focus on evaluating LostAndFound OoD ob-
jects, see figure 3 (a). For the baseline model we observe
that a large mass of data corresponding to the negative class
is located at very low entropy values (median 0.02), i.e.,
most road pixels are classified with high confidence. More-
over, the 75th percentile is located at an entropy value of
0.04 and the sample of highest value at 0.57. Regarding the
pixels of the positive class, we see that the distribution is
rather dispersed. The median is at 0.29 and the interquartile
ranges from 0.13 to 0.44. We conclude that, on average,
positive samples have higher entropy values than negative
samples, i.e., pixels of an OoD object are classified with
higher uncertainty than for road pixels. However, for per-
fect performance one seeks a threshold such that both distri-
butions (of positive and negative class) are separated. This
is not the case for the baseline model since a substantial
amount of samples still has very low entropy, e.g. the 10th
percentile of the positive samples is at 0.04, which is also
the median of negative samples.

After OoD training, the distribution of negative samples
remains in large parts similar compared to the baseline only
with little changes. Noteworthy, the median and upper quar-
tile decrease down to entropy values of 0.1 and 0.2, respec-
tively. The distribution’s maximum is at 0.66. On the con-
trary, the changes of the distribution for the positive sam-
ples are significant as a large mass is concentrated at very
high entropy values. The median is located at 0.59 which is
roughly at the same magnitude as the maximum for negative
samples. Moreover, the minimum value for positive pixels
is at 0.01 which equals the median for negative samples. In
particular the latter underlines the significant improvement
of separability due to our OoD training.

We observe the same behavior for Fishysacpes OoD ob-
jects but even more pronounced, see figure 3 (b). After the
OoD training, the medians of the two classes, 0.01 for neg-
ative samples and 0.87 for positive samples, differ by 86
percent points. Besides, the lower quartile of positive sam-
ples at an entropy value of 0.71 as well as the 1st percentile
at 0.03 are still above the median of negative samples. Con-
sequently, we conclude that our OoD training is beneficial
for identifying OoD pixels.

B. Segment-wise Metrics for Meta Classifiers
As outlined in section 4, we train meta classifiers based

on hand-crafted metrics. These metrics are derived from
the softmax probabilities f(x) ∈ (0, 1)|H|×|W|×q, x ∈ X
of deep convolutional neural networks, information we get
in every forward pass. As a reminder, let Ẑout(x) be the
set of pixel locations in image x ∈ X that are predicted
to be OoD, see equation (7). A connected component
k ∈ K̂(x) ⊆ P(Ẑout(x)) represents an OoD segment /
object prediction due to the entropy being above the given
threshold. This is different to other works dealing with
segment-wise meta classification [8, 31, 41, 42] as they con-
sider connected components sharing the same class label as
segments.

We estimate uncertainty per OoD segment k by averag-
ing pixel-wise scores at the segment’s pixel locations z ∈ k.
In addition to the plain softmax probabilities fz(x), we also
incorporate three pixel-wise dispersion measures, namely
∀z ∈ k the (normalized) entropy

Ē(fz(x)) = −1

q

q∑

j=1

fzj (x) log(fzj (x)) , (11)

the variation ratio

V (fz(x)) = 1− fzj∗(z)(x) , (12)

and the probability margin

M(fz(x)) = V (fz(x)) + max
j∈{1,...,q}\{j∗(z)}

fzj (x) (13)

with j∗(z) := arg maxj=1,...,q f
z
j (x) being the class label

according to the maximum a posteriori principle.
The segment’s size S(k) = |k| is not only needed for

averaging but also serves as meta classification input on its
own. Moreover, let kin ⊂ k be the set of pixel locations
in the interior of the segment k, i.e., kin = {(h,w) ∈ k :
[h±1]× [w±1] ∈ k}. This also gives us the pixel locations
of the boundary kbd = k \kin. In order to capture geometry
features of a segment, we consider the relative sizes

S̃ = S/Sbd and S̃in = Sin/Sbd (14)

by treating the segment’s boundary and interior separately.
Let knb = {z′ ∈ [h ± 1] × [w ± 1] ⊂ |H| × |W| :

(h,w) ∈ k, z′ /∈ k} be the neighborhood of k. As metric if
one segment is misplaced we include

N(j|k) =
1

|knb|
∑

z∈knb

1{j=j∗(z)} ∀ j = 1, . . . , q (15)

which is the proportion of neighborhood pixels, with class
j ∈ {1, . . . , q} having the highest softmax score, to neigh-
borhood size. Another metric for localization purposes is
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Baseline performance Cityscapes void OoD training

(Detecting Cityscapes unlabeled objects)

Figure 8: Separability between in-distribution and out-
distribution pixels in Cityscapes. Pixels labeled as train
class according to the ground truth are considered as in-
distribution, pixels labeled with the void class as out-of-
distribution. For the results with Cityscapes void OoD train-
ing the baseline model (left) was retrained with entropy
maximization on the Cityscapes void class (right), i.e., us-
ing Cityscapes unlabeled objects as OoD proxy for Dout.

the segment’s geometric center

Ch(k) =
1

S

S∑

i=1

hi and Cw(k) =
1

S

S∑

i=1

wi (16)

with (hi, wi) ∈ k ∀ i = 1, . . . , |k|, i.e., averaging over the
segment’s pixel coordinates in vertical and horizontal direc-
tion.

For each segment k we then have 46 metrics in total (as
q = 19 in our experiments). This forms a structured dataset

µ ⊆ R|∪x∈X K̂(x)|×46 (17)

serving as input for the meta classification model g : µ →
[0, 1], the latter being a simple logistic regression in our
case. By means of this linear model, we learn to dis-
criminate whether a segment k has an intersection with the
ground truth (while all inputs are independent of the ground
truth segmentation), see also equation (9).

C. OoD Training with Cityscapes void Class
Before using the COCO dataset as OoD proxy, we con-

ducted some experiments with the Cityscapes void class as
OoD proxy forDout in order to perform entropy maximiza-
tion. This class includes objects that cannot be assigned to
any of the Cityscapes training classes, therefore they remain
unlabeled and are ignored during training. We refer to this
retraining approach using the Cityscapes unlabeled objects
as OoD proxy as void OoD training. We find the best results
in our experiments for the DeepLabv3+ as baseline model

E
nt

ro
py

Baseline performance Cityscapes void OoD training

(Detecting LostAndFound OoD objects)

Figure 9: Separability between in-distribution and out-of-
distribution pixels in the OoD dataset LostAndFound. For
the results with Cityscapes void OoD training the baseline
model (left) was retrained with entropy maximization on the
Cityscapes void class (right).

after 8 epochs of void OoD training and out-distribution loss
weight of λ = 0.05. With respect to the Cityscapes valida-
tion dataset, the retrained model clearly improves at identi-
fying unseen unlabeled objects, see figure 8.

However, the same retrained model fails to generalize to
unseen OoD objects available in the LostAndFound dataset,
see figure 9. Not only the softmax entropy of OoD pixels is
boosted but also the entropy of a significant amount of in-
distribution pixels. This is even more considerable due to
the strong class imbalance in LostAndFound. With respect
to the AUROC, the void OoD training decreases the OoD
detection score by 5 percent points down to 0.88, while de-
creasing the more relevant metric AUPRC by even 29 per-
cent points down to 0.17 compared to the baseline model.

A visual comparison of the effects of void OoD training
is shown is figure 10. The retraining does not noticeably im-
pact the segmentation performance, neither for Cityscapes
nor LostAndFound. In particular for the segmentation of
the Cityscapes scenes, there are only minor differences vis-
ible, i.e., the difference in performance for the original task
is marginal. This is in line with the observation that retrain-
ing with the multi-criteria loss function, see equation equa-
tion (2), and the COCO dataset as OoD proxy leads only to a
marginal loss of mIoU for the Cityscapes validation dataset.
With respect to the Cityscapes images, the softmax entropy
inside unlabeled objects is clearly boosted due to void OoD
training. This makes identifying such objects easier in com-
parison to the baseline model.

Regarding the LostAndFound segmentations the differ-
ences are more visible although still not being significant.
On the contrary, by comparing the entropy heatmaps for
the baseline model and the model after void OoD training,
one observes that not only the entropy of pixels inside the
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Cityscapes baseline segmentation Cityscapes baseline entropy Lost&Found baseline segmentation Cityscapes baseline entropy

Void OoD training segmentation Void OoD training entropy Void OoD training segmentation Void OoD training entropy

Figure 10: Comparison between baseline model and retrained model, with entropy maximization on Cityscapes unlabeled
objects, for one Cityscapes and one LostAndFound scene. The first and third column displays the segmentations obtained
by the respective models on either a Cityscapes or LostAndFound input image, the second and forth column displays the
corresponding entropy heatmaps. In the entropy heatmaps, the OoD objects are marked with yellow lines.
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Figure 11: Relative pixel frequencies of LostAndFound (a) and Fishyscapes (b) OoD pixels, respectively, at different entropy
values for the baseline model, i.e., before OoD training (a & b left), and after OoD training (a & b right). The red lines
indicate the thresholds of highest accuracy.

OoD objects is boosted but also many in-distribution pix-
els. This has an detrimental impact on the discrimination
performance between in-distribution and out-distribution
pixel as these two classes cannot be separated well via en-
tropy thresholding. These visualizations support the im-
pression of the pixel-wise evaluation that void OoD train-
ing is not suitable for the detection of objects other than the
Cityscapes unlabeled objects.

D. OoD Training for DualGCNNet

As a second model complementary to the DeepLabv3+
model, we performed the same experiments of OoD
training, i.e., retraining with the COCO dataset as OoD
proxy, for the DualGCNNet which is a weaker and
more lightweight network compared to the state-of-the-art
DeepLabv3+ segmentation network. We find the best re-

sults after 11 epochs of OoD training with out-distribution
loss weight of λ = 0.25. As optimizer we used Adam with
a learning rate of 10−6.

The pixel-wise evaluation results are presented by means
of the violin plots in figure 11 and by ROC as well as PR
curves in figure 12. We evaluated the OoD detection for
the LostAndFound test and Fishyscapes static dataset in the
same manner as for the experiments for DeepLabv3+.

We observe that OoD training is not as effective as for
the DeepLabv3+ model in terms of absolute performance
gain. However, we still observe a decent improvement in
separability. By applying OoD training, the AUROC in-
creases by 3 percent points for LostAndFound and even 9
percent points for Fishyscapes up to a score of 0.94 for both
datasets. With respect to the PR curves, the AUC improves
by 15 percent points up to 0.51 for LostAndFound and by
20 percent points up to 0.38 for Fishyscapes. Noteworthy,
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Figure 12: Detection ability of LostAndFound (a) and Fishyscapes (b) OoD pixels, respectively, evaluated by means of
receiver operating characteristic curve (a & b left) and precision recall curve (a & b right). The red lines indicate the
performance according to random guessing.

Before OoD Training After OoD training

Figure 13: Comparison of softmax entropy heatmaps before
(left) and after OoD training (right). The yellow lines mark
the OoD objects according to their ground truth annotation.

these AUC scores after OoD training are higher than for
the plain DeepLabv3+ (baseline) model which is already a
strong OoD detection model.

These results for the weaker DualGCNNet model further
demonstrate the positive effect on the OoD detection ability
when performing OoD training with the COCO dataset as
OoD proxy.

E. OoD Training Visualization

The improved separation ability due to OoD training is
not only achieved by increasing the softmax entropy of OoD
pixels but also by decreasing the softmax entropy for in-
distribution pixels. This can be also observed by means
of the in-distribution violins, for instance in figure 11. By
comparing the shapes of the violins corresponding to the
DualGCNNet plain model and the model after OoD train-
ing, we notice that the violin shapes remain similar in large
parts. The median and the upper quartile, however, de-
crease down to lower entropy values after OoD training.
This indicates that after entropy maximization the model
is on the one hand more uncertain at OoD pixel locations
and on the other hand more certain about its prediction at
in-distribution pixel locations. The same observation also
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Figure 14: Mean intersection over union (mIoU) for the
Cityscapes validation dataset split over the course of OoD
training.

holds for the DeepLabv3+ model, see figure 3. This is in
line with the observation made in [45] that training with an
OoD proxy may have a regularizing effect.

An illustration is provided in figure 13. For compari-
son purposes, we refer to the entropy heatmaps provided
in figure 10 as both figures show the same scene. The
visualization of heatmaps clearly shows that due to OoD
training pixels with high entropy are more concentrated in-
side OoD objects. Moreover, the in-distribution objects, es-
pecially the pixels corresponding to the road, have lower
entropy values than before OoD training. This makes the
road seem cleaner with respect to the possible occurrence of
OoD objects. After entropy maximization the OoD objects
are (visibly) better recognizable within the softmax entropy
heatmaps. Therefore, we expect that the meta classification
performance is leveraged as the meta classifiers are able to
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OoD training OoD training + meta classifier

Figure 15: OoD detection for one scene with different
combinations of entropy thresholding for the plain model,
entropy thresholding after OoD training and meta classi-
fication. For all the OoD predictions the same threshold
score of t = 0.5 was used. The red segments indicate OoD
object predictions.

OoD training OoD training + meta classifier

OoD training OoD training + meta classifier

Figure 16: OoD detection performed by the OoD-trained
network with and without meta classifiers. The red seg-
ments indicate OoD object predictions.

estimate the shape of OoD objects even better. Moreover,
higher entropy values are stronger correlated with the pres-
ence of OoD objects.

F. Course of OoD Training

In order to monitor that the baseline model does not un-
learn its original task due to OoD training, we evaluate the
model’s original task performance over the training epochs.
We evaluate the mIoU on the Cityscapes validation dataset
against the AUPRC on the LostAndFound test dataset,
displayed in figure 14. The state-of-the-art DeepLabv3+
model, which serves as baseline throughout our experi-
ments, achieves an mIoU of 90.30% when equipped only
with the standard maximum a posteriori (MAP) decision
principle while the same model has an entropy based OoD
detection performance of 46.01% in AUPRC. By fine tun-
ing the neural network with entropy maximization on OoD
inputs, we on the one hand sacrifice only little in mIoU (of
the original task). On the other hand, we observe improved
AUPRC scores over the course of training epochs peaking at
76.45%. This considerable gain at detecting OoD samples
in LostAndFound comes with a marginal loss in Cityscapes
validation mIoU of less than 1 percent point. Moreover, the
course of the OoD training illustrates convergence around
the best AUPRC score with an mIoU loss that is in the same
range as for the best score after OoD training. Concerning
the overall performance of perception systems that rely on
semantic segmentation, e.g., in applications like automated
driving, this is a favorable trade-off in terms of safety that
comes with very little computational overhead.

G. Meta Classification Visualization
The logistic regressions as meta classifiers have proven

their efficiency in identifying and afterwards removing false
positive (FP) / incorrect OoD object predictions. In this sec-
tion we intend to show further examples for the FP OoD
removal and thus show the final output of our two-step pro-
cedure for OoD detection.

For the plain model the meta classifiers are already able
to remove FP OoD predictions reliably, see figure 15 top
row. However, some false positive OoD predictions still re-
main. As pixels with high entropy are more concentrated in-
side OoD objects after the entropy maximization of the OoD
training, the combination of OoD training and meta classi-
fication yields the best result in terms of the number of FP
OoD predictions, see figure 15 bottom row. The examples
in figure 16 further illustrate that the improved OoD detec-
tion performance after OoD training can even be enhanced
by employing meta classifiers. The removed FP OoD pre-
dictions are rather small. However, we already consider one
single pixel as FP OoD object prediction if that pixel is in-
correctly predicted to be OoD. One could also define an
OoD prediction to have a minimum amount of pixels. As
our main focus is the reduction of overlooked OoD objects,
we stick to the definition of equation (8) and consider an
OoD object to be found if at least one pixel of that object is
correctly classified as OoD. Therefore, small OoD segments
are also fed through the meta classification model.

To conclude, our two step method, consisting of entropy
maximization and meta classification, extends segmenta-
tion networks by an improved OoD detection capability and
unites both tasks in one model.
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