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In the absence of wave propagation, transient electromag-
netic fields are governed by a composite scalar/vector potential
formulation for the quasistatic Darwin field model. Darwin-
type field models are capable of capturing inductive, resistive,
and capacitive effects. To avoid possibly non-symmetric and
ill-conditioned fully discrete monolithic formulations, here, a
Darwin field model is presented which results in a two-step
algorithm, where the discrete representations of the electric
scalar potential and the magnetic vector potential are computed
consecutively. Numerical simulations show the validity of the
presented approach.

Index Terms—Computational electromagnetics, electromag-
netic fields, numerical simulation, time domain analysis.

I. INTRODUCTION

ELECTROMAGNETIC field models that do not account
for radiation effects are dubbed quasistatic field models.

For static fields, the Maxwell equations decouple and enable
the consideration of resistive, and capacitive or inductive
effects, with either electrostatic, or magnetostatic formula-
tions, separately. For capacitive-resistive effects, the electro-
quasistatic (EQS) field model is applicable, while resistive-
inductive effects can be modelled with the magneto-quasistatic
(MQS) field approximation [1]. Quasistatic field scenarios
where inductive, resistive, and capacitive effects need to be
considered simultaneously, appear in high-frequency coils and
coils of inductive charging systems, where the capacitive
effects between the coil windings need to be taken into account
and they are a common problem in electromagnetic compat-
ibility, e.g. in automotive engineering. For such scenarios, it
is quite common to use lumped R, L, C parameter circuit-
type models such as Kirchhoff’s model or circuit models
in combination with field models used either for parameter
extraction or in strong/weakly coupled models, and circuit-
formulation oriented partial-element equivalent circuit (PEEC)
methods. Rather recently, also field oriented models based on
the Darwin field formulation are considered. These quasistatic
electromagnetic field models are represented in terms of
combined electric scalar and magnetic vector potentials and
feature a modified version of Ampère’s law by eliminating the
rotational parts of the displacement currents, i.e., by neglecting
the radiation effects in the model. Darwin formulations [2] are
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not gauge-invariant, and thus, a number of different Darwin
model formulations have been considered, [3], [4], [5], [6],
[7], [8], [9], [10], and [11]. The paper is organized as follows.
After this introduction, Darwin field models with different
established gauge conditions are highlighted. In the third
section, a Darwin model is presented which allows to use a
two-step numerical solution scheme. Section IV is comprised
of numerical experiments with the two-step time domain
Darwin formulation, and is followed by conclusions.

II. THE DARWIN FIELD MODEL

Darwin or Darwin-type field models for quasistatic electro-
magnetic field distributions can be obtained by considering
a decomposition of the electric field intensity E into an
irrotational part Eirr and a remaining part Erem,

E = Eirr + Erem, (1)

where the irrotational part is represented as the gradient of
an electric scalar potential ϕ, that is, Eirr = − gradϕ. The
remainder part is represented by the time derivative of a
magnetic vector potential A, i.e., Erem = −∂A/∂t. Hence,

E = − ∂

∂t
A− gradϕ, B = curlA (2)

holds for the electric field intensity and for the magnetic flux
density, respectively.
The assumption of a quasistatic electromagnetic field model
enables the elimination of the rotational parts of the displace-
ment currents, ε∂2A/∂t2 ∼= 0, in Ampère’s law. The result of
this elimination is the so-called Darwin-Ampère equation

curl(ν curlA) + κ
∂

∂t
A + κ gradϕ+ ε grad

∂

∂t
ϕ = JS, (3)

where ν is the reluctivity, κ is the electric conductivity, ε is
the permittivity, and JS is a source current density.
The original formulation of the Darwin model [2] can be
obtained by enforcing a Coulomb gauge div (A) = 0 cor-
responding to a Helmholtz decomposition of the electric field
intensity E, i.e., assuming curlEirr = 0 and divErem =
−div (∂A/∂t) = 0. Intended to model charges in free space
without conductive materials, i.e., κ = 0, ε = ε0 and ν = ν0,
as a consequence to the Helmholtz decomposition, the Gauß
law does not consider the rotational parts of the electric
field and yields the electrostatic Poisson equation as a gauge
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equation. Thus, the original Darwin formulation is given by

−ν0∆A + ε grad
∂

∂t
ϕ = JS, (4)

div gradϕ = −ρE/ε0, (5)

which requires to know the electric charge density ρE and its
motion with JS = ρEv along some velocity vector v.
To eliminate the free space assumption of the original Darwin
model and to include conductors, and permeable and dielectric
materials, an application of the divergence operator to the
Darwin-Ampère equation (3) results in a modified Darwin field
formulation [5], [6], and yields the Darwin continuity equation

div

(
κ
∂

∂t
A + κ gradϕ+ ε grad

∂

∂t
ϕ

)
= divJS. (6)

This Darwin continuity equation lacks the radiation term
div(ε∂2A/∂t2), which is present in the full Maxwell con-
tinuity equation. It was shown [5] that the combined dis-
crete formulation of the Darwin-Ampère equation (3) and
the Darwin continuity equation (6) results in non-symmetric
systems. In addition, the resulting system is singular and
requires an additional gauge for the magnetic vector potential
in the non-conductive regions of the problem, such as artificial
conductivity [5] or an additional Coulomb-type gauge [8], [11]

div

(
ε
∂

∂t
A

)
= 0, (7)

which can be enforced by adding this term with a scaling
factor 1/∆t to the Darwin continuity equation (6), such that
the gauge equation becomes a temporally semi-discrete version
of the full Maxwell continuity equation, expressed in terms
of the electrodynamic potentials A and ϕ. The Coulomb-type
gauge (7) can be additionally imposed as a third equation via a
Lagrange multiplier formulation [8]. Both Darwin model field
formulations, [8] and [11], are symmetric and do not require
additional regularization.

III. TWO-STEP DARWIN MODEL ALGORITHMS

The Darwin continuity equation (6) is extended with an
additional gauge term div (κ∂A/∂t) = 0 [10] to yield the
electro-quasistatic equation

div

(
κ gradϕ+ ε grad

∂

∂t
ϕ

)
= divJS. (8)

The expression div (κ∂A/∂t) omitted in (8) from the Darwin
continuity equation (6), corresponds to explicitly enforcing
divergence-free eddy currents in conductive media, i.e., ne-
glecting eventually arising sources and sinks of current den-
sities due to the irrotational parts of the electric field. The
combination of equation (3) rewritten as

curl(ν curlA)+κ
∂

∂t
A = −κ gradϕ−ε grad

∂

∂t
ϕ+JS, (9)

with equation (8) results in a two-step formulation, where
first the electro-quasistatic total current density Jtotal =
−κ gradϕ−ε grad (∂ϕ/∂t)+JS is used as a solenoidal source
term with divJTotal = 0 to a magneto-quasistatic formulation
for the magnetic vector potential A represented by the lefthand

side of (9). This modified magneto-quasistatic formulation,
however, initially does not not address irrotational parts of
A in the non-conductive regions. While this does not affect
the evaluation of B in (2), the evaluation of the electric field
according to (2) involves the expression ∂A/∂t also in the
non-conductive regions, which is commonly not covered in
magneto-quasistatic field formulations.
To control the irrotational parts of A, the magneto-quasistatic
formulation needs to be regularized. For this, the introduction
of a small artificial electrical conductivity κ̂ in the non-
conducting regions has been suggested [5]. In case that κ �
1/(∆t)ε holds for a given time-step length ∆t, a modified
electrical conductivity as e.g. κ̂ = κ+1/(∆t)ε will regularize
the formulation, where the resulting time-discrete formulations
will feature expressions of the type 1/(∆t)κ + 1/(∆t)2ε as
they occur in second-order time discretization schemes, as e.g.
Newmark-beta schemes used for full wave Maxwell-Ampère
equations [12]. Alternatively, a grad-div term augmentation
for spatially discretized magneto-quasistatic formulations is
applicable [13], [14].
The introduction of a small artificial electrical conductivity κ̂
in the non-conducting regions is also an established technique
to mitigate the static limit instability of the electro-quasistatic
formulation (8) that is known to occur for ∂

∂tϕ→ 0.
By assuming that div (κ∂A/∂t) = 0 holds in equation (6),
the calculation of the electric scalar potential ϕ, using (8), is
decoupled from that of the magnetic vector potential A. Thus,
it is possible to independently first solve an electro-quasistatic
initial-boundary value problem that corresponds to (8), and in
a second step solve the modified magneto-quasistatic problem
(9) with the then available total current densities JTotal, as
depicted in Algorithm 1.

Algorithm 1 Two-Step Darwin Time Domain
1: Initialize ϕ(t0) and A(t0);
2: for n← 0 : nEnd − 1 do
3: Solve problem (8) for ϕ(tn+1);
4: end for
5: for n← 0 : nEnd − 1 do
6: Solve problem (9) forA(tn+1);
7: Evaluate E(tn+1) and B(tn+1) with (2);
8: end for

Alternatively, it is possible to consecutively execute a solution
step for an electro-quasistatic and a magneto-quasistatic field
formulation for each discrete timestep, using suitable time
stepping schemes [15].

A. Discrete Two-Step Darwin Time Domain Schemes

Reformulating (6) and (9) with a spatial volume discretization
scheme, such as the finite integration technique [16] or the
finite element method with Nédélec elements [17], results in
a coupled system of time continuous matrix equations

G>MκGφ + G>MεG
d

dt
φ = G>js −G>Mκ

d

dt
a, (10)

C>MνCa + Mκ
d

dt
a = js −MκGφ−MεG

d

dt
φ, (11)
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where a is the degrees of freedom (dof) vector related to
the magnetic vector potential, φ is the dof vector of electric
nodal scalar potentials, js is a vector of transient source
currents, C is the discrete curl operator matrix, G and G> are
discrete gradient and (negative) divergence operator matrices.
The matrices Mν , Mκ, Mε are discrete material matrices of
possibly nonlinear reluctivities, conductivities and permittivi-
ties, respectively, corresponding to the specific discretization
scheme in use. Employing e.g. an implicit Euler backward
differentiation time stepping scheme with time step ∆t to (10)
and (11) and Mσ = Mκ+(1/∆t)Mε yields a coupled system[

G>MσG
]
φn+1 = f1(an+1), (12)[

C>MνC +
1

∆t
Mκ

]
an+1 = f2(φn+1), (13)

where, using the notation ∆an+1 = an+1−an, the right-hand
side vectors are

f1 = G>jn+1
s +

1

∆t
G>MεGφn − 1

∆t
G>Mκ∆an+1, (14)

f2 = jn+1
s +

1

∆t
Mκa

n −MσGφn+1 +
1

∆t
MεGφn. (15)

System (12), (13) are solved for each time step, starting from
initial values a0 = a(t0) and φ0 = φ(t0). Adopting an
iterative solution approach with iteration index i = 0, 1, 2, . . .
for each time step tn+1 requires to provide an initial guess
vector an+1

i=0 with f1,i=0 = f1(an+1
i=0 ). Inserting the solution

vector of (12) rewritten as φn+1 =
[
G>MσG

]−1
f1,i=0 into

the right-hand side vector equation f2,i=0 = f2(φn+1
i=0 ) of (13)

yields an expression for the next iterative solution vector an+1
i=1 .

Left application of the discrete divergence operator G> to this
equation using the relation G>C> = 0 yields the identity
G>Mκa

n+1
i=1 = G>Mκa

n+1
i=0 and by induction

G>Mκa
n+1
i = G>Mκa

n+1
0 ∀i ∈ {0, 1, . . .}, (16)

i.e., in exact arithmetics the converged solution an+1 of the
iterative process will maintain the discrete divergence of its
initial guess solution an+1

i=0 in the right-hand side (14) of (12).
An initial guess an+1

i=0 = an yields the result

G>Mκa
n = G>Mκa

0 ∀n ∈ {0, 1, . . .}. (17)

Thus, with the choice of the initialization vector a0 of the
time integration process at t0 acting as an initial gauge, the
difference expression G>Mκ

[
an+1−an

]
= 0 in (14) vanishes

for all time steps, and thus, system (12), (13) gets decoupled.

IV. NUMERICAL EXPERIMENTS

To verify the performance of the proposed two-step Darwin
time domain algorithm, two three-dimensional copper coil
problems are considered (electrical conductivity κcopper,=
5.96·107 S/m. Both problems are illustrated in Fig. 1. For each
case-study, the computational domain is Ω = (Ω0∪Ωκ)\(ΓE∪
ΓG) ⊂ R3 and is free from charge and current sources. The
bounding surfaces are perfectly conducting, with ΓG being
grounded and ΓE supplying the transient excitation

ϕ(t) = ϕmax · f ·min(t, 1/f) · sin(2πft), (18)

Fig. 1. In both coil case-studies, Ω0 is void, with κ̂ being a small artificial
electrical conductivity (κ̂ = 10−2 S/m), while Ωκ is occupied by copper.

TABLE I
NUMBER OF DEGREES OF FREEDOM (DOF)

Lagrange Elements Nédélec Elements

Helical Coil 16 882 118 609
Planar Coil 41 357 292 905

where ϕmax = 12 V is the maximum voltage and f = 10 MHz
is the excitation frequency with a wavelength λ = 30 m in
void. The longest side of the domain Ω associated with the
helical coil is l = 6.3 cm, the one associated with the planar
coil is l = 1.35 cm. Since `� λ in both cases, the radiation-
free assumption of the Darwin field model is justified.
The problems that constitute the two-step algorithm are dis-
cretized in space with the FEM, using first-order Lagrange
elements for the scalar electric problem and zeroth-order
Nédélec elements for the vectorial magnetic problem; see
Table I for the number of degrees of freedom in each finite
element space. Regarding time-discretization, both problems
have been integrated with the trapezoidal method, which is
implicit, second-order accurate, and A-stable, with different
time steps ∆t ∈ {2.5, 1.25, 0.625} ns for a total of tEnd =
(nEnd−1)∆t = 1200 ns. With the excitation functions in (18),
the two-step algorithm is expected to yield an approximation
of a frequency-domain full Maxwell solution, and hence, the
latter is used for obtaining reference solutions on the same
meshes. For all linear systems a direct solver is used.
In Fig. 2, the magnetic flux density and the electric field inten-
sity are depicted for each coil. There, the two-step algorithm
for the Darwin field model, successfully captures, not only the
induction, but also the capacitance between the coil windings.
Table II depicts the relative differences of the electric field
approximations provided by the Darwin field model for the
planar coil model at frequencies ranging from 10 kHz up
through 1 GHz. The results show that the remainder part
−∂A/∂t of the electric field needs to be evaluated in (2) which
necessitates the regularization of (9).
In Fig. 3, the difference between the Maxwell and Darwin
field models is quantified with the norm

‖Re(FM)− FD‖L2(Ω)/‖FM‖L2(Ω), (19)

where F ∈ {B,E} is a physical field quantity, computed as
in (2), and the subscripts M and D stand for the Maxwell and
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Fig. 2. The magnitude of the magnetic flux density and the electric field
intensity for the two coil problems at t = 825 ns.
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Fig. 3. The relative difference between the field quantities B and E for the
helical coil (first row) and for the planar coil (second row), computed using
a full Maxwell frequency-domain solver and the two-step Darwin algorithm.

Darwin field models, respectively. In Fig. 3, the first row of
results is associated with the helical coil, while the second row
with the planar coil. In the same figure, the effect of the time
discretization scheme is also apparent, with a tendency towards
improved accuracy for smaller time steps, since convergence
to the time-harmonic solution is expected.

V. CONCLUSIONS

A two-step algorithm for the transient (A, ϕ) formulation
of the quasistatic Darwin field model is introduced and, for
the first time, numerically validated against the full system

TABLE II
RELATIVE E-FIELD DIFFERENCES AT t = 3.125/f FOR THE PLANAR

COIL AS FUNCTIONS OF THE FREQUENCY f .

f [Hz] ‖Re(EM)−ED‖/‖EM‖ ‖Re(EM)−ED,irr‖/‖EM‖

104 8.22 · 10−6 2.74 · 10−3

105 9.31 · 10−6 2.92 · 10−2

106 4.60 · 10−5 1.59 · 10−1

107 7.33 · 10−4 1.47
108 2.00 · 10−3 2.28
109 1.41 · 10−2 2.22

of Maxwell’s equations. The presented two-step Darwin time
domain quasistatic field formulation accounts for capacitive,
inductive, and resistive effects. The advantages of this scheme
result from consecutively combining an electro-quasistatic and
a modified magneto-quasistatic field model, and thus, it ben-
efits from existing efficient time domain solution techniques
that provide flexibility in terms of material non-linearities and
excitation profiles.
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