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Abstract: In this work we investigate a probabilistic method for electricity price forecasting that1

overcomes traditional forecasting methods. We will start from a statistical method for a point forecast.2

We compare these approaches in terms of efficiency, accuracy and reliability. Last but not least, we3

also aim to compare the previously cited results with those obtained using neural networks, with the4

ultimate goal of developing hybrid solutions for a more general set of electricity forecasting tasks.5

Keywords: electricity price; statistical method; autoregressive; probabilistic forecast; neural network6

1. Introduction7

The electricity market has always aroused the interest of many people because of the importance8

of its product. One can find the beginnings of electricity price forecasting in the early 90s. We must9

remember that electricity is a special commodity. It cannot be stored economically and therefore10

requires a constant balance between production and consumption; it depends on weather conditions,11

the season and the nature of human activity. These characteristics are unique and lead to a price12

dynamic that is not found on any other market. It is often possible to recognize a day, weekly or yearly13

seasonality and possible sudden, short-term and generally unforeseen price peaks. Moreover, the14

presence of possible cycles characterizing this product can be characterized by irregularities, being15

then difficult to be properly modelled.16

Electricity Price Forecasting (EPF) is a branch of energy forecasting that focuses on predicting spot17

and forward prices on the wholesale electricity markets. It has become a fundamental input for energy18

companies in their decision-making and investment process. An important aspect in many areas of19

finance is the time horizon. In the literature, there are usually three types of forecasting horizons:20

short, medium and long-term. Short-term generally means a period of time ranging from few minutes21

to few days in advance; medium-term means a period of time ranging from few days to few months;22

and long-term means a period of time ranging from some months to years. In most cases, the forecast23

horizons are of the first two types, with particular emphasis on day ahead previsions. Nevertheless, it is24

worth underlying that each of the above mentioned horizons has its own importance, a company being25

obliged to program its activities at different time scales. Within such a scenario, different modeling26

approaches can be exploited. In particular, mainly used techniques belong to the following five groups:27

statistical models, intelligent computing models, reduced form, fundamental and multi-agent models.28

In this paper we will start focusing on the first two families, to then combine them as to end up with a29

hybrid proposal which represents the major novelty of the present paper.30
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Furthermore, we can also classify the type of prediction. For point forecasts the goal is to predict31

the energy price at a given hour or day, usually within the short time horizon framework. To this end, a32

high accuracy level is mandatory. During recent years, previous task lost in relevance in favour of so33

called probabilistic predictions. based on intervals forecasting w.r.t. the determination of related quantiles34

or even aiming at predicting the characterizing entire probability distribution. Next we will look at all35

the EPF’s aforementioned aspects in more detail and then try to apply some models to a specific data36

set. It contains the average daily prices of the German electricity market from 2016 to 2018.37

This paper is structured as follows: Section 2 briefly describes the possible types of forecasts38

and the main characteristics of the German electricity market. Section 3 explains the special case of a39

probabilistic forecast. Section 4 presents in detail the models we will use for data analysis, especially40

about the SARIMA model (Seasonality AutoRegressive Integrate Moving Average) and the methods41

of artificial neural networks (ANN). The last chapter deals with the implementation of these models42

and the analysis of the data available to us. At the end we give some conclusions and critical remarks.43

2. General overview44

Price forecasts are a fundamental topic for making decisions and determining a possible market45

strategy for an industry or company. Especially in the electricity price forecasting (EPF) literature,46

we can distinguish three types of predictions based on this term. First, we can speak of short-term47

horizons, ranging from minutes to days, horizons for which reliable meteorological forecasts for48

temperature, wind speed, cloud cover, etc. are available. Short-term forecasts are mainly relevant for49

market operations, intraday trading and system stability, see [1].50

Medium-term forecasts cover horizons beyond reliable meteorological predictions, but without51

the major impact of political and technological uncertainty, with lead times measured in weeks,52

months or even years. The practical relevance results mainly from maintenance planning, reallocation53

of resources, bilateral contracts, valuation of derivatives, risk management and budgeting. After all,54

long-term horizons refer to everything from a few years to several decades. This type of forecasting is55

needed, for example, to address problems as an investment in the future, see [2].56

Price forecasting is essential for the energy market with its special features. It is typically a57

day-ahead market that does not allow continuous trading. Agents place their bids and offers for58

electricity deliveries during each hour of the next day before a certain market close time. Then prices59

are determined for all load periods of the next day at the same time during a unit price auction, [1].60

In electricity markets with zonal price formation, as in Europe, there are day-ahead markets and61

intraday markets. These markets start operating after the announcement of the results of the day-ahead62

auction and run until a few minutes before delivery. They attempt to compensate for deviations63

resulting from positions in day-ahead contracts and unexpected changes in demand or supply.64

2.1. Type of forecasts65

Time series forecasting is the prediction of system behavior in the future, based on information66

about the current and past status of the phenomena we observe. There are different types of prediction67

approaches, and the right choice depends on the goal to be achieved.68

Point forecast69

The day-ahead price series is usually the result of an auction held once a day, in which all hourly70

prices for the next day are announced at once. In the intraday markets, load periods can be shorter71

than one hour, e.g. at the European Power Exchange (EPEX), half-hourly and quarter-hourly products72

are also traded. In both cases the day can be divided into a finite number of load periods h = 1, . . . , H.73

Therefore it is obvious to use Pd,h to denote the price for the day d and the load period h. A point74

forecast of Pd,h denoted by P̂d,h is usually understood in the EPF literature as the expected value of the75

price random variable, i.e. E(Pd,h). This term can easily be extended to quantile forecasts, which are a76

possible starting point for probabilistic predictions.77
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Probabilistic forecast78

There are two main approaches for probabilistic predictions. The more popular one is based
on point prediction and the associated error distribution. The other approach directly considers the
distribution of the spot price and is used for example in Quantile Regression Average (QRA), see
Nowotarski and Weron [3]. In both cases, the focus can be on prediction intervals, selected quantiles
or the overall predictive distribution. Let us consider the mean price at a future point in time, i.e.
P̂d,h = E(Pd,h), as a "point prediction", then we can write Pd,h = P̂d,h + εd,h, which implies:

FP(x) = Fε(x− P̂d,h), (1)

where Fε is the distribution of errors associated with P̂d,h. This means that the distribution of errors has79

an identical form as the distribution of prices, only it is shifted to the left by P̂d,h on the horizontal axis.80

The corresponding quantile function q̂α,ε is also shifted with respect to q̂α,P. Equivalent in the sense of81

the inverse empirical cumulative distribution function (CDF) one can write: F̂−1
P (α) = P̂d,h + F̂−1

ε (α).82

They also form the basic framework for the generation of probabilistic predictions from distributions83

of prediction errors. The choice of a probabilistic prediction can be useful, for example, if you need84

some information for a huge investment in the future.85

Ensemble forecast86

The probabilistic prediction concept is very general, sometimes it is not sufficient to solve many87

problems in energy prediction and it might be difficult to verify its validity. The reason for this is that88

P̂d,h is considered on its own, independent of the predictions for the neighboring hours. However,89

instead of considering the H univariate price distributions, we should focus on the H-dimensional90

distribution FP of theH-dimensional price vector Pd = (Pd,1, . . . , Pd,H). We therefore need a prediction91

for the multivariate distribution. Unfortunately, many models cannot provide such a direct distribution92

forecast. The solution to the latter problem could be to compute an ensemble forecast. An ensemble is93

defined as a collection of M paths EM(P̂d,h) = (P̂1
d, . . . , P̂M

d ) simulated from a forecast model, typically94

using Monte Carlo methods.95

2.2. Modelling Approaches96

Usually the techniques for electricity price forecasting (EPF) are divided into five groups of97

models: statistically, computationally intelligent, reduced form, fundamental and multi-agent. We will focus98

on statistical and computational intelligent (CI) models.99

2.2.1. Statistical Approaches100

Statistical approaches forecast the current price by a weighted combination of past prices and/or
current values of exogenous variables that could be associated with the electricity (e.g. demand
or weather forecasts), typically in a linear regression. Autoregressive terms take into account the
dependencies between today’s prices and those of the previous days, e.g. could be a possible structure:

Pd,h = βh,0 + βh,1Pd−1,h + βh,2Pd−2,h + βh,3Pd−7,h

+ βh,4Pd−1,min + βh,5Ld,h

+ βh,6Dsat + βh,7Dsun + βh,8Dmon + εd,h,

(2)

where Pd,h denotes the price for day d and hour h, Pd−1,min is the minimum of the 24-hour prices of the101

previous day (example of a non-linear component), Ld,h refers to the load forecast for day d and hour h102

(known on day d-1), and the three dummies (Dsat, Dsun, Dmon) model the weekly seasonality. Some103

authors refer to such parsimonious structures as expert models, because they are based on a certain104

amount of prior knowledge of experts.105
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The standard approach for estimating the model (2) is Ordinary Least Squares (OLS). The106

procedure uses the electricity prices of the past D days to predict the prices for the following day(s).107

The optimal value D is not given a priori, so it should be chosen so that the estimation sample is "long108

enough" to extract samples, but not "too long" to give too much weight to the distant past. Overall,109

there are no standard parameters. Many studies assume one or two years with hourly prices, but some110

use 10-13 days as short time windows, while others are up to four years long, see Marcjasz et al. [4].111

While autoregression models represent the largest subset of statistical models, this class includes112

• similar-day methods, like the naive method which sets P̂d,h = Pd−7,h for Monday, Saturday or113

Sunday, and P̂d,h = Pd−1,h otherwise,114

• the generalized autoregressive conditional heteroskedasticity (GARCH) models, typically in115

connection with volatility forecasting,116

• shrinkage techniques, as the least absolute shrinkage and selection operator (LASSO) but also117

Ridge regression and elastic nets.118

Statistical models are attractive because physical interpretations can be added to the regressors,119

can therefore be useful to identify significant variables and it allows operators to better understand120

their behavior and obtain a model with a meaningful structure. A well-known disadvantage of121

statistical models is the representation of nonlinear factors, even if they can be approximated by122

linear ones under certain conditions. Nevertheless, non-linear dependencies can be included explicitly123

by non-linear variables, like Pd−1,min in (2). Alternatively, the spot prices for electricity (as well as124

exogenous variables) can be transformed using nonlinear functions before fitting a statistical model.125

2.2.2. Computational Intelligence Methods (CI)126

CI methods are a completely different group of methods that were developed to solve problems127

that cannot be treated efficiently with statistical methods, for example non-linearity or when a128

distribution-free approach is required. They combine different elements to create approaches which129

are able to adapt to complex dynamic systems, i.e. they do not need exact knowledge, but they can130

also be confronted with incompleteness. CI models are flexible and can deal with different types131

of nonlinearity, but at the cost of high computational complexity. Nevertheless, they are used for132

short-term predictions. Statistics is more concerned with the analysis of finite samples, misspecification133

of models and computational considerations, while probabilistic modeling is inherent in computational134

intelligence. There are several ANN algorithms; in general, one can mainly focus on three aspects to135

identify a specific ANN algorithm for a prediction task: the complexity of the solution, the desired136

prediction accuracy and the data characteristics, see [5].137

To summarize the conceptual difference between these two approaches, we can observe Figure 1.138

Computational intelligence works more like a "black box" in which we can decide only a few139

parameters; each time we train a network, we can get similar but slightly different results; the statistical140

approach on the right models a certain relationship between the data.141

Figure 1. The CI method and statistical approaches.
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Figure 2. Electricity generation and consumption in August and September 2019. It shows the total
electricity generation and consumption on each day in the period, see [7] (CC BY 4.0 license).

2.3. The German electricity market142

We will use price data from the German electricity market. The EPEX is the most important143

trading platform for electricity prices in Europe, it is the most important in terms of volume. It is also144

relevant from a policy point of view, since, for example, several regulatory calculations are based on145

the day-ahead EPEX price, such as the feed-in tariffs for renewable energies. It offers trading, clearing146

and settlement in both the day-ahead and intraday market. Day-ahead hourly prices in Germany are147

traded on EPEX and are referred to as "Phelix", Physical electricity index. This index is the daily mean148

value of the system price for electricity traded on the spot market, calculated as the arithmetic mean of149

the 24-hour market clearing price.150

The day-ahead market is the primary market for electricity trading. Here, buyers and sellers151

set up hourly contracts for the delivery of electricity the following day. This is done through a daily152

auction, usually at 12:00, where the market clearing price, commonly known as the spot price, is153

determined by matching supply and demand. Most market designs choose a uniform-price auction154

market (see [6]): buyers with bids above the clearing price pay that price, and suppliers with bids155

below that price receive the same price.156

The demand for electricity is a function of temperature, seasonality and consumption patterns,157

from which the periodic character of electricity prices is derived. Since consumers have few options158

available to them in response to price changes, demand is very price inelastic in the short term. Positive159

price peaks are often caused by high (unexpected) demand. On the other hand, the merit-order curve160

plays a decisive role in the electricity price formation process. The merit order curve, also called supply161

curve, is derived by arranging the suppliers’ offers according to rising marginal costs. The point of162

intersection of the demand curve with the merit order curve defines the market clearing price, i.e. the163

electricity spot market price.164

In times of low demand, base load power plants such as nuclear power plants and coal-fired165

power plants generally serve as price-determining technologies. These plants are inflexible due to166

their high costs. In contrast, in times of high demand, the prices are set by expensive peak load power167

plants such as gas and oil-fired power plants. These plants have high flexibility, high marginal costs168

and lead to a convex shape of the merit order curve. With the lowest marginal costs, renewable energy169

sources are at the lower end of the merit order curve. Wind and solar energy have attracted the most170

attention in Germany, and regulatory changes are also the main driver for the growth of renewable171

energies, as several subsidies and political measures have been introduced recently. There is a large172

share of intermittent renewable energy sources, which makes the difficult task of forecasting and173

describing prices of changing energy markets. The hours of increased renewable energy supply are174

causing difficulties for inflexible plants that should be running continuously. This is because inflexible175

base-load plants have shutdown and start-up costs that force them to accept negative marginal returns176

in order to generate electricity continuously. This has a lowering effect on electricity prices. Negative177

prices are mainly caused by high wind production in times of low demand. Therefore negative price178

peaks occur mainly at night. For further details we refer the reader to [8].179
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3. The Probabilistic Approach180

The probabilistic approach means a forecast in the form of a probability distribution of future181

quantities or events. It is possible to treat different types of problems and to extend the spectrum of182

the point estimation approach. For example, a long-term forecast becomes possible and feasible.183

3.1. The Problem184

For the definition of the probabilistic forecasting problem one can use a point forecast of the
electricity spot price (i.e. the "best estimate" or expected value of the spot price), see [9]. Note that the
actual price at t, Pt, can be expressed as:

Pt = P̂t + εt, (3)

where P̂t is the point forecast of the spot price at time t, which was made at an earlier time, and εt is185

the corresponding error. In the vast majority of the EPF papers the analysis ends at this point because186

the authors focus only on point forecasts, see [1].187

The most common extension from point to probabilistic forecasts is the construction of prediction188

intervals (PI). For this purpose, a number of methods can be used, the most popular of which consider189

both the point prediction and the corresponding error: the center of the PI at the (1− α) confidence190

level is set equal to P̂t and its bounds are defined by the α
2 th and 1− α

2 th quantile of the CDF of εt. For191

example, for the 90% PIs, the 5% and 95% quantiles of the error term are required.192

A forecaster can further expand his study and construct multiple PIs. The final result can be a
series of quantiles at many levels. Such a set of 99 quantiles (q = 1%, 2%, . . . , 99%) is also a reasonable
discretization of the price distribution. In general, a density forecast corresponding to (3) can be
defined as a set of PIs for all α ∈ (0, 1). In other words, the calculation of a probabilistic prediction
requires an estimate of P̂t and the distribution of εt. Equivalently, the problem can be formulated in
terms of the inversion of the CDF of Pt and εt:

F−1
Pt

(q) = P̂t + F−1
εt (q). (4)

We can define the probabilistic forecast as a forecast in the form of a probability distribution193

over future quantities or events and assign them to a random variable. In our case, this means, the194

distribution of the electricity spot price itself, i.e. F̂Pt . The latter approach is used in QRA.195

Now two important aspects of the problem have to be mentioned. First, we do not mention196

the Probability Density Function (PDF) of εt in the discussion above. The second point relates to the197

statistical nature of the prediction of day-ahead prices. Since 24-hour prediction distributions must be198

created at once, their interdependencies and their common distribution should be taken into account.199

In [9] two main approaches are presented. The first is to model and predict the correlation between200

the boundary distributions. However, this has a major disadvantage: it allows to capture only linear201

relationships between hours and raises the question of how to evaluate them correctly. The second202

solution requires the simulation of 24-hour paths of day-ahead prices, which then can be treated as203

vectors from the joint 24-dimensional distribution (multivariate models).204

3.2. Construction of Probabilistic Forecasts205

There are several ways to construct a probabilistic interval. We report four of them from [9].206

Historical simulation207

The method for calculating empirical (or sample) PIs is simple and is called historical simulation208

in the Value-at-Risk (VAR) literature. It is a model-independent approach, which consists of the209

calculation of sample quantiles of the empirical distribution of one-step-ahead prediction errors, εt.210
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Distribution-based probabilistic predictions211

For time series models driven by Gaussian noise (AR, ARIMA, etc.), the density forecasts can be212

set equal to the Gaussian distribution approximating the error density and the PIs can be calculated213

analytically as quantiles of this distribution. This approach differs from the historical simulation in214

that first the standard deviation of the error density, σ̂, is calculated and then the lower and upper215

bounds of the PI are set equal to the selected quantiles of the N (0, σ̂2) distribution.216

Bootstrapped PIs217

The third approach often used in studies on neural networks EPF is the bootstrap. For a step-ahead218

forecast the method consists of the following steps:219

1. Estimate the set of model parameters, θ̂, obtain a fit and the corresponding residuals, εt.220

2. Generate pseudo-data recursively using θ̂ and sampled normalized residuals ε∗t : – For a model
with no autoregression on Pt (like the neural network model) simply set P∗t = f̂ (Xt) + ε∗t where
ε∗t is the sampled residual and f̂ (Xt) is an estimated function of exogenous variables Xt. – For
a more general case of an autoregressive model of order r with exogenous variables first set
P∗1 = P1, . . . , P∗r = Pr and then recursively set:

P∗t = β̂1P∗t−1 + · · ·+ β̂rP∗t−r + f̂ (Xt) + ε∗t , for all t ∈ {r + 1, . . . , T}. (5)

3. Estimate the model again and compute the bootstrap-implied one step-ahead (point) forecast for221

time t = T + 1.222

4. Repeat steps 2 and 3 B times and obtain the bootstrap sample of the predicted price, {P̂i
T+1}B

i=1.223

5. Compute desired quantiles of {P̂i
T+1}B

i=1 to obtain PIs.224

On the one hand, this type of construction has the advantage that it takes into account not only the225

historical forecast errors but also the parameter uncertainty and is therefore more accurate. On the226

other hand, it is less convenient from a computational point of view because it requires more effort.227

Quantile Regression Averaging228

The QRA method, proposed by Nowotarski and Weron [3], involves applying a quantile regression
to a pool of point forecasts of individual (i.e. not combined) forecast models. It works directly with
the distribution of the electricity spot price, F̂Pt without having to split the probabilistic forecast into a
point forecast and the distribution of the error term. The quantile regression problem can be written as

QPt(q|Xt) = Xt βq, (6)

where QPt(q|Xt) is the conditional q-th quantile of the electricity price distribution, Xt are the229

explanatory variables (or regressors) and βq is a vector of parameters for the q quantile. The parameters230

are estimated by minimizing the loss function for a given q-th quantile. There is no limitation of the231

components of Xt. As long as it includes forecasts of individual models, it is considered QRA.232

3.3. Validity233

In case of a probabilistic forecast, the most important problem is that the true distribution of234

the underlying process is not known. We cannot compare the predictive distribution with the actual235

distribution of the electricity spot price only with observed prices in the past. There are several ways236

to evaluate probabilistic forecasts and the approach depends on the final intention. At this point we237

need some tests and parameters to check the validity of the model and to have criteria for choosing the238

optimal model. An evaluation is usually based on reliability, sharpness and resolution.239

The reliability (also called calibration or unbiasedness) refers to the statistical consistency between240

the distributional forecasts and the observations. For example, if a 90% PI covers 90% of the observed241

prices, then this PI is considered reliable, well calibrated, or unbiased.242
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Sharpness, on the other hand, refers to how closely the predicted distribution covers the actual243

distribution, i.e. the concentration of the predicted distributions. Unlike reliability, which is a joint244

property of predictions and observations, sharpness is a property of the forecasts only.245

Then resolution refers to how strongly the predicted density varies over time, in other words, to246

the ability to provide probabilistic forecasts (e.g. wind power) depending on the forecast conditions247

(e.g. wind direction).248

To formally check whether there is an "unconditional coverage" (UC), i.e. whether P(Id,h = 1) =249

(1− α) where Id,h = 1 if Pd,h is in the interval, we can use the approach of Kupiec (1995), which checks250

whether Id,h, also known as an indicator for "hits and misses", is i.i.d. Bernoulli with an average of251

(1− α), i.e. violations are assumed to be independent. Since the Kupiec test is not based on the order252

of the PI violations, but only on the total number of violations, Christoffersen (1998) introduced the253

independence test and the conditional coverage test (CC).254

Testing for the goodness-of-fit of a predictive distribution is generally more difficult than assessing
the reliability of a PI. The most common approach is to use the probability integral transform (PIT)

PITd,h = F̂P(Pd,h). (7)

If the distribution forecast matches the true distribution of the spot price process, then PITd,h is255

independent and uniformly distributed, which can be shown with a formal statistical test, see [10].256

In contrast to reliability, which is a joint property of predictions and observations, sharpness is
only one property of predictions. Sharpness is closely linked to the concept of correct scoring rules.
Indeed, the scoring rules evaluate reliability and sharpness simultaneously, [10]. The pinball loss
(PL) for quantile predictions and the continuous ranked probability score (CRPS) for distribution
predictions are the two most popular correct valuation rules for energy forecasting. The pinball loss
(PL) is a special case of an asymmetric piecewise linear loss function:

PL(Q̂Pd,h(α), Pd,h, α) =

{
(1− α) (Q̂Pd,h(α)− Pd,h) for Pd,h < Q̂Pd,h(α)

α (Q̂Pd,h(α)− Pd,h) for Pd,h > Q̂Pd,h(α)
(8)

so PL depends on the quantile function and the actually observed price. The PL is a strictly correct257

score for the α-th quantile. To get an aggregated score, the PL can be averaged over different quantiles.258

It is also necessary to have statistically significant conclusions about the outperformance of the
forecasts of one model by those of another model. For this purpose we use the Diebold Mariano (DM)
test, which is an asymptotic z-test of the hypothesis that the mean value of the loss differential series:

δd,h = S1(F̂Pt , Pt)− S2(F̂Pt , Pt) (9)

is zero, where Si(∗, ∗) is the score of the forecasts of the model (i = 1, 2). In the context of probabilistic
or ensemble forecasts, any strictly correct scoring rule can be used, for example the pinball loss. Given
the loss difference series, we calculate the statistics:

DM =
√

T
µ̂(δd,h)

σ̂(δd,h)
, (10)

where µ̂(δd,h) and σ̂(δd,h) is the sample mean or standard deviation of δd,h and T is the length of the259

test period outside the sample. The key hypothesis of equal predictive accuracy (i.e. equal expected260

loss) corresponds to E(δd,h) = 0, in which case, assuming a steady-state covariance of δd,h, the DM261

statistic is asymptotically standard normal and one- or two-sided asymptotic tail probabilities are262

easily calculated. The DM test compares the forecasts of two models, not the models themselves.263

In day-ahead power markets, forecasts for all 24 hours of the next day are made at the same time264

with the same information, so forecast errors for a given day usually have a high serial correlation. It is265

therefore advisable to run the DM tests separately for each load period (e.g. each hour of the day) [11].266
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4. Models267

We now present the theory behind some possible models for forecasting the energy price. We will268

see two statistical models and then one from the group of computational intelligence.269

4.1. (S)ARIMA Models270

Auto Regressive Moving Average (ARMA) models represent an important class of statistical
models for analyzing and forecasting time series data. The autoregressive component uses the
dependencies between observations and a given number of delayed observations; the moving average
component uses the dependency between an observation and a residual error from a moving average
model applied to delayed observations. This type of model relates the signal to its own past and does
not explicitly use information from other possible related time series. An ARMA(p, q) is defined as

φ(B) Xt = θ(B) εt, (11)

where B denotes the backward shift operator, i.e. Bh = xt−h, φ(B) is the notation for the polynomial of
the autoregressive component

φ(B) = 1− φ1B− · · · − φpBp,

θ(B) for the polynomial of the moving average component

θ(B) = 1 + θ1B + · · ·+ θpBp,

and εt denotes a white noise WN(0, σ2). Thus p and q are the orders of the two polynomials. The
observed time series is considered as realization of a stochastic process, whose parameters are the
coefficients of the polynomials of the operator B, which determine the properties of persistence (and
also the variance of the white noise). This kind of model assumes that the time series is stationary,
i.e. mean and covariance of the time series shall be time independent. Usually, the series has to be
transformed into the stationary form by differentiation. A model that explicitly includes differentiation
is a generalization of the ARMA model for non-stationary time series: the "Auto Regressive Integrated
Moving Average" (ARIMA) models. The equation of a ARIMA(p, d, q) is given by

φ(B)∇dXt = θ(B) εt, (12)

where ∇xt ≡ (1 − B)xt is the lag 1 differencing operator, a particular case of the general lag-h
differencing operator given by

∇h xt ≡ (1− B)h xt. (13)

If d = 0, ARIMA(p, 0, q) ≡ ARMA(p, q), i.e. ARIMA processes reduce to ARMA processes when271

differenced finitely many times.272

Seasonality fluctuations are indeed caused by changing climatic conditions that influence demand
and supply. For this reason, we introduce a model that can handle this behavior: the Seasonal
Autoregressive Integrated Moving Average (SARIMA) process. The notation for a SARIMA model
with both seasonal and non-seasonal parameters is ARIMA(p, d, q)× (P, D, Q)s. Here (p, d, q) indicates
the order of the non-seasonal part, while (P, D, Q)s is the seasonal part. The parameter s represents
the number of observations in the seasonal pattern, e.g. for monthly data we would have s = 12, for
quarterly observations s = 4, etc.. The SARIMA model is defined by the following formula:

φ(B)Φ(Bs)∇d∇D
s Xt = θ(B)Θ(Bs)εt. (14)

Any SARIMA model can be transformed into an ordinary ARMA model in the variable B̃ = ∇d∇D
s B.273

Consequently, the estimation of the parameters of ARIMA and SARIMA models is analogous to that274

for ARMA processes.275
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Time series analysis in the simple case of an ARMA model276

We now briefly discuss the steps of time series analysis in the simple case of an ARMA model, for277

more details see [12]. This approach is known as Box and Jenkins method: they let the data drive to278

the model and not vice versa, so that the time series can "speak for itself". Here is the main scheme:279

1. Preliminary analysis: It is necessary to know the main features of the series and one checks e.g.280

the stationarity. There are so-called "unit roots tests" and often the Dickey-Fuller test [13] is used.281

2. Order selection or identification: It is important to select appropriate values for the orders p and q.282

One can start by analyzing the total Autocorrelation Function (ACF) and Partial Autocorrelation283

Function (PACF) and make some initial guesses based on their characteristics, see [12].284

From these, one can obtain more reliable results using various "Information Criteria" (IC),285

such as Akaike Information Criteria (AIC) and Baesyan Information Criteria (BIC). ICs are an286

index, which tries to find a balance between the goodness of fit and the number of parameters.287

A "penalty factor" is included in the ICs to discourage the fitting of models with too many288

parameters. Hence, the preferred model is the one that minimizes the IC.289

3. Estimation of the coefficients: once p and q are known, the coefficients of the polynomials can290

be estimated, e.g. by a least squares regression or with a maximum likelihood method. In most291

cases, this problem can be solved with numerical methods.292

4. Diagnostic check: to check whether the residuals follow a random process. If the fitted model293

is suitable, the rescaled residuals should have similar properties to a "white noise" WN(0, 1)294

sequence. One can observe the sample "autocorrelation function" (ACF) of the residuals and295

perform tests for randomness, e.g. the Ljung-Box test (see Chapter 1 in [12]).296

If the results are not satisfactory, one can restart with a different order selection and repeat the297

procedure. Once the model has successfully passed the verification phase, it can be used for forecasting.298

4.2. Seasonality and its decomposition299

There are different ways to deal with seasonality. One possible idea is to try to find out what kind300

of seasonality we have and see if it is possible to include it in the model, for example with the SARIMA301

model. Another possibility is to remove the seasonality.302

For deseasonalization we will use the MATLAB function "deseasonalize" written by Weron, which
was described in [6], and now we will describe in more detail the mathematical basis of this function.
This function returns the deseasonalized data, the Short-Term Seasonal Component (STSC) and the
Long-Term Seasonal Component (LTSC) obtained from the original data series. It also creates the
periodograms of the original and deseasonalized data. With more detail, spectral analysis is about
identifying possible cyclical patterns of data. The main goal of this type of analysis is to break down a
seasonal time series into a few underlying sine (sine and cosine) functions of certain wavelengths. It
is known that the variability of many physical phenomena can depend on frequency. Therefore, the
information about frequency dependence could lead to a better knowledge of the true mechanisms.
Spectral analysis and its basic tools, such as the periodogram, can help in this direction. For an
observation vector x1, . . . , xn the periodogram (or the pattern analog of spectral density) is defined as:

In(ωk) =
1
n
|

n

∑
t=1

xt e−i(t−1)ωk |2, (15)

where ωk = 2π(k/n) are the Fourier frequencies expressed in radians per unit time, k = 1, . . . , [n/2],303

and [x] denotes the largest integer less than or equal to x, for further technical details see e.g. [14].304

This function implements a simple but quite efficient method to eliminate the short-term seasonal305

component. The idea is to divide the time series into a matrix with rows of length T (e.g. 7 element306

rows for a week period, calculated in average daily data) and taking the mean or median of the data in307

each column. The resulting row vector of length T is the estimate of the seasonal component and can308

be subtracted from the original data.309
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The wavelet decomposition for the long-term seasonal component310

After removing the weekly or daily seasonality from the data, one often has to deal with the311

annual cycle. Although in many cases a sine function is a good first approximation of the annual cycle,312

there are markets where it could hardly be used, and the German market is one of them. This market313

has no clear annual seasonality, and spot prices behave similarly throughout the year, with peaks314

sometimes in winter and sometimes in summer, as can be seen in Figure 3. As suggested by Weron in315

[6], one possible option is to use a wavelet decomposition.316

A wavelet family consists of pairs of a "father" (ϕ) and a "mother" (ψ) wavelet. The former
represents the "low-frequency" smooth components: those that require wavelets with the greatest
support, while the latter intercepts the "higher-frequency" detail components. In other words, father
wavelets are used for the trend or cycle components, and parent wavelets are used for any deviation
from the trend, see [15] and [6]. More specifically, wavelet decomposition of a signal uses a sequence
of mother wavelets and only one father wavelet:

f (t) = SJ + DJ + · · ·+ D1, (16)

where SJ = ∑k sJ,k ϕJ,k(t) and Dj = ∑k dj,kψj,k(t). The coefficients sJ,k, dJ,k, dJ−1,k, . . . , d1,k are the317

wavelet transform coefficients that measure the contribution of the corresponding wavelet function318

to the approximating sum, while ϕJ,k and ψj,k(t) are the approximating father and mother wavelet319

functions, respectively. As soon as the signal is decomposed with (16), the procedure can be inverted to320

get an approximation to the original signal. If you want to use an unrefined scale, f (t) can be estimated321

by SJ . For a higher degree of refinement the signal can be estimated by SJ−1 = SJ + DJ . At each322

step we obtain a better estimate of the original signal by adding a mother wavelet Dj to a lower scale323

j = J − 1, J − 2, . . . . The reconstruction process can always be interrupted, especially when we reach324

the desired accuracy. The resulting signal can be treated as a de-noised (or filtered or smoothed) time325

series. Figure 3 shows the results of the deseasonalization for the three years and the periodogram.326

(a) Deseasonalisation (b) Periodogram

Figure 3. Example of results of "deseasonalize" on the three years
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4.3. Expert models327

The basic structure of an expert model is an autoregressive model, but other exogenous or input328

variables are also introduced. This setting is because electricity prices are not only related to their own329

past, but it is easy to understand that they are influenced by the current and past values of various330

exogenous factors, such as energy loads and weather changes.331

The ARX Model332

Within this expert model the centred log-price on day d and hour h is given by:

Pd,h = βh,1Pd−1,h + βh,2Pd−2,h + βh,3Pd−7,h + βh,4Pd−1,min + βh,5Ld,h

+ βh,6Dsat + βh,7Dsun + βh,8Dmon + εd,h
(17)

where the εd,h are assumed to be independent and identically distributed (i.i.d.) normal random333

variables. We abbreviate this autoregressive benchmark with ARX to reflect the fact that in (17) the334

(zonal) load forecast is used as an exogenous variable. In contrast to the naive models, which did not335

require parameter estimation, we have to estimate the parameters in this type of linear model.336

The mARX Model337

It can be advantageous to use different model structures for different days of the week, not only
different parameter sets, see [11]. For example, the so-called multi-day ARX model or mARX reads

Pd,h =
(
∑
i∈I

βh,1,iDi

)
Pd−1,h + βh,2Pd−2,h + βh,3Pd−7,h + βh,4Pd−1,min + βh,5Ld,h

+ βh,6Dsat + βh,7Dsun + βh,8Dmon + βh,11DmonPd−3,h + εd,h

(18)

where I ≡ {0, Sat, Sun, Mon}, D0 ≡ 1 and the term DmonPd−3,h explains the autoregressive effect of338

Friday’s prices on the prices for the same hour on Monday. Note that this structure resembles periodic339

autoregressive models to a certain extent (i.e. PAR, PARMA). Both autoregressive models (ARX and340

mARX) could be estimated with least squares (LS) methods.341

4.4. Artificial Neural Networks (ANNs)342

These algorithms gradually learn from input data, and they are based on the idea of the structure343

and functions of the neural networks of the brain and for this reason they are called Artificial Neural344

Networks (ANNs, or we can simply call them NNs). A remarkable property of NNs that distinguishes345

them from statistical methods is the fact that they are trained from data through a "learning process".346

An NN is based on a collection of interconnected nodes called artificial neurons, like the structure347

of a human brain. Each connection, like the synapses, can transmit a signal to other neurons. They348

are organized in the form of layers. We have an input layer of source nodes that projects onto an349

output layer of neurons. Then we have the presence of one or more hidden layers whose function is to350

mediate between the external input and the network output. The more hidden layers, the more higher351

order statistics are accessible, [16].352

Over the years, many varieties of NNs with different properties and applications have been353

introduced. An important distinction is made between NNs whose compounds form "cycles" and354

those whose compounds are "acyclic". NNs with cycles are called feedback, recursive or recurrent355

neural networks, while NNs without cycles are called feedforward neural network (FNN). However,356

they have the three basic components of an NN in common: a set of synapses, each of which is357

characterized by a weight representing the strength of the synapses between neurons; an adder358

for summing the input signals; an activation function for limiting the amplitude of a neuron and359

introducing nonlinearity into the output of a neuron.360
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Figure 4. Example of a structure of a simple NN

In mathematical terms we can describe a neuron k by writing the following:

vk =
m

∑
j=1

wkj xj and yk = ϕ(vk), (19)

where xj are the signals, wj are the synaptic weights of a neuron k, ϕ is the activation function, that361

maps a node’s inputs to its corresponding output, and yk the output signal of the neuron.362

There exist different activation functions, e.g. the logistic sigmoid function or the tanh function:

σ(x) =
1

1 + exp(−x)
, or tanh(x) =

e2x − 1
e2x + 1

. (20)

One can observe that these two functions are related by the following linear transformation:

tanh(x) = 2σ(2x)− 1. (21)

This means that any function computed by a neural network with a hidden layer of tanh units can be363

computed by another network with logistic sigmoid units and vice-versa.364

The weights are optimized using an optimization algorithm that minimizes a loss function. The365

standard optimizer in this context is called Stochastic Gradient Descent (SGD) and one common loss366

function is the Root Mean Squared Error (RMSE). The basic idea of gradient descent is to find the367

derivative of the loss function with respect to each of the network weights and then adjust the weights368

in the direction of the negative slope. A possible efficient method for calculating this gradient can be369

the technique known as "back-propagation", for details we refer to [17,18].370

Once all data points have passed through the network, we say that an epoch is complete, i.e. an371

epoch refers to a single pass of the entire data set through the network during training. This procedure372

is repeated several times: this is what "training the network" means. At the end of each epoch the loss373

of a single output is evaluated and it is possible to calculate the gradient of this loss in relation to the374

selected weight. The path to this minimized loss occurs in several stages, and its magnitude depends375

on the learning rate, which is typically between 0.01 and 0.0001. Therefore, the new weight is the old376

weight minus the learning rate times the gradient.377

In summary, the workflow for the general NN design process comprises six primary steps: creating378

the network, configuring the network, initializing the structure, training the network, validating the379

network (post-training analysis) and using the network, see [16]. For our data analysis, we will use a380

special category of Recurrent Neural Network (RNN) called Long Short Term Memory (LSTM).381
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4.4.1. Recurrent and Long-Short Term Memory Networks382

RNNs allow cyclic connections, i.e. when time series are involved and we do not want to lose383

information about past relationships between data. In fact, an RNN with a sufficient number of hidden384

units can approximate any measurable sequence-to-sequence mapping with any degree of accuracy385

[19]. The recursion allows the network to remember earlier inputs: the output of the network at time t386

is not only connected to the input at time t, but also to recursive signals before time t. A problem is that387

in some cases the gradient becomes too small, which effectively prevents the weight from changing388

its value, and sometimes this can completely prevent the neural network from further training, see389

[20]. This weakness of the RNN therefore makes it unsuitable when time series prediction applications390

require learning of dependencies over long distances or long-term storage of contexts. This problem391

can be solved by a variant of the RNN: the long-term short-term memory (LSTM) architecture [20].392

We will now briefly review how LSTM works, for more details see [20,21]. For the description393

of these steps, σ and tanh from (20) are used as activation functions, but others can be implemented394

depending on the purpose.395

• We define an input in the time step t as (Xt) and the hidden state from the previous time step as396

(St−1), which is inserted into the LSTM block. Then the hidden state (St) is to be calculated.397

• It is important to decide which information from the cell state should be discarded. This decision
is made by the following "forget gate":

ft = σ(Xt U f + St−1 W f + b f ). (22)

• Then you must decide which new information should be stored in the cell state. This part consists
of two steps: First, the "Input-Gate" layer (it) decides which values are updated. Secondly, a tanh
layer, which creates a vector of new candidate values C̃t . These two folds can be described as

it = σ(Xt Ui + St−1 Wi + bi), C̃t = tanh(Xt Uc + St−1 Wc + bc). (23)

• Then, update the old cell state, Ct−1 into the new cell state Ct, which can be given as:

Ct = Ct−1 ⊗ ft ⊕ it ⊗ C̃t. (24)

• Finally, the chosen output will be based on the cell state, but will be a filtered version. In this step
the output gate (ot) decides which parts of the cell state should be produced as output. Then the
cell state passes through the tanh layer and is multiplied by the output gate as

ot = σ(Xt Uo + St−1 Wo + bo), St = ot ⊗ tanh(Ct). (25)

Ct−1

St−1

Ct

St

Xt

St

⊗ ⊕

τ

⊗ ⊗

σ σ τ σ

ft

it ot

Figure 5. Example of a LSTM’s memory block, where ft , it , ot are forget, input, and output gates
respectively; τ and σ represents the tanh and sigma activation functions of [21].
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5. Data Analysis398

We have three years with hourly energy prices on the German electricity market, from 01.01.2016399

to 31.12.2018. For our analysis we will consider the daily average for each day, for a total of 1096400

observations. We use historical observations, our endogenous variable, as input, and we want a401

forecast for future values as output. This is a problem of the regression type, because we want to create402

a multilevel forecast of a numerical quantity. Our time series is coherent because the observations are403

collected and structured uniformly over time, for example, because we have a seasonal pattern.404

First of all, it is important to have a general idea of the behavior of the data. As an example, we405

record the data for the year 2016 and additionally their monthly average as well as two weeks in May.406

We can see the pattern of weekly seasonality, see Figure 6(b): We can clearly see the weak seasonality407

and the difference between Mon-Fri and the weekend. This example proves the dependence of the408

price on external factors like business activities etc. There are some outliers and on average the same409

days show a negative price. For more details on how peaks are handled in the energy market, see [22].410

(a) Plot of daily (blue) and monthly
(red) average for the year 2016

(b) Two "ordinary" working weeks in
May

Figure 6. Data visualization

5.1. From the probability density function to a possible realization of the stochastic process411

There are some interesting questions that we would like to answer, for example: whether it412

is possible to estimate a stochastic process that obeys a certain PDF; whether we can create a kind413

of forecast from it; whether it could be a suitable starting point for more structured forecasts. This414

approach could help a user to have a better knowledge of his future probable data for a mid-term415

period. We start by describing the general idea from a mathematical point of view, and we see how we416

can try to apply it. We introduce the rejection method and one of its improvements, for more details417

see e.g. [23]. They generate random variables with the non-uniform distribution.418

The rejection method419

The rejection method creates a random variable with a given PDF f by using two independent420

generators U(0, 1). The idea of John von Neumann is to create a box [a, b]× [0, c] containing the graph421

of f . Then a random point (U, Y) in the box and U is accepted if the point is below the graph. This is a422

simple rejection algorithm that can be generalized for a d-dimensional PDF:423

1. Generate U ∼ U(a, b) from U = a + (b− a)U1 with U1 ∼ U(0, 1).424

2. Generate Y ∼ U(0, c) from Y = cU2 with U2 ∼ U(0, 1).425

3. If Y ≤ f (U) then accept X = U, else reject U and return to step 1.426

Then we know from the Fundamental Theorem of Simulation that the random variable X generated427

by the general rejection algorithm has the PDF f .428
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5.1.1. Marsaglia’s Ziggurat Method429

The Marsaglia’s Ziggurat method is a highly efficient rejection method [24], implemented by430

the MATLAB function randn. It is based on an underlying source of uniformly distributed random431

numbers, but can also be applied to symmetric unimodal distributions, such as the normal distribution.432

An additional random sign ± is generated for the value determined by the Ziggurat method applied433

to the distribution in [0, ∞). Instead of covering the graph of a given PDF f with a box, the idea now434

is to use a "ziggurat of rectangles", a cap and a tail, which all have the same area. These sections are435

selected so that it is easy to choose uniform points and determine whether to accept or reject them.436

Figure 7. The Ziggurat basic idea

For simplicity we assume that f has support in [0, ∞) and decreases monotonously. For a given437

number M we ask for the nodes 0 = x0 < · · · < xM < ∞, so that the ziggurat rectangles Zi and the438

tail Z0 have the same area. Then the Ziggurat method reads:439

1. Choose i ∈ 0, . . . , M at random, uniformly distributed. Generate U ∼ U(0, 1).440

2. If i ≥ 1 then441

• Let X = Uxi.442

• If X < xi−1 then return X,443

else generate Y ∼ U(0, 1) independent of U.444

If f (xi) + Y
(

f (xi−1)− f (xi)
)
< f (X) then accept X, otherwise reject.445

3. If i = 0 then446

• Set X = (νU)/ f (xM)447

• If X < xM, accept X,448

else generate a random value X ∈ [xM, ∞) from the tail.449

It is important to realize that the resulting distribution is exact, even if the ziggurat step function is450

only an approximation of the probability density function.451

5.1.2. The function randn and its possible application452

We consider the summer season (01/06 - 31/08) of the average daily price for the two years453

2016 and 2017 to obtain similar data. The question arises whether it is possible to create a probable454

realization for the summer of 2018 (or only for one period), taking into account the probability density455

functions of the previous data. Before we continue, we standardize the data so that they have a normal456

distribution in the mean. In the following figure we can observe the behavior of our data for this457

particular period. In Figure 8(a), we can observe that 2016 and 2017 are very similar, while the 2018458

data are much higher on average.459

Then we use the MATLAB function randn, which is implemented with the Ziggurat’s algorithm460

with the options: X = randn(_,′ like′, p) returns an array of random numbers like p. X will be our461

possible realization for summer 2018. For example, if we generate 1000 paths and we evaluate the462

RMSE, we get in Figure 9 the following histogram, where we can check that the values are mainly in463

the range [1.35, 1.46]. As an example we could get with RMSE = 1.33:464

It is important to see what could happen if we perform the inverse standardization procedure; the465

results are shown in Figure 9 and Figure 10. This big difference could be due to the fact that summer466
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(a) Original data (b) Standardised data (c) Densities

Figure 8. Behaviour of data and their densities.

(a) Example (b) Histogram of RMSE

Figure 9. Example of a possible realisation with standardised data

2018 was quite different from the last two summer times. Also, the data densities are not completely467

unimodal and symmetric, so the algorithm may not work properly. Therefore, one can say that this468

first approach gives better results if the situation is regular over time and always follows the same469

"trend", or if one has access to additional information and variables that can improve performance. If470

we apply the same procedure only with 2016 for a forecast for 2017, we get in fact the Figure 11. We471

can also note that any possible realization never reaches an "outlier" or a particularly high spike.472

Finally, our opinion is that this approach cannot be very useful from a practical point of view. It473

can help to get a general idea of the medium and long term, but you cannot really rely on its accuracy.474

(a) Example (b) Histogram of RMSE

Figure 10. Use of summer of 2016 and 2017 for possible data of summer in 2018
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(a) Example (b) Histogram of RMSE

Figure 11. Use of only the summer of 2016 for possible data of summer in 2017

5.2. Example with SARIMA model475

In this section we present the results of a forecast obtained by implementing a SARIMA model.476

To calculate the forecast we use the Matlab model sarima with the parameters using the estimator und477

the function forecast to predict the average prices for the next few days. We try to predict two weeks478

of the year 2018, and we will use three different training periods: one year (2017), the spring/summer479

season from April to September 2017, and the autumn/winter period from October 2016 to March480

2017. Table 1 shows the parameters used for each analyzed period. With s = 7 we refer to the fact that481

we implement a weekly seasonality as our kind of data suggests.482

Training Period SARIMA(p, d, q)× (P, D, Q)s

One year (2, 0, 2)× (1, 0, 1)7

Spring/Summer (2, 1, 2)× (1, 1, 1)7

Autumn/Winter (3, 1, 3)× (1, 1, 1)7

Table 1. SARIMA model’s parameters

In addition, a test can also be performed to check the fit of the model, e.g. the well-known483

"Ljung-Box Q-Test", for more details see [25]. We test it for 20 lags with a significance level of 0.05. For484

all the models tested, we do not have to discard the null hypothesis, so that we can consider them as485

good and reasonable models for our data; the correlations in the population from which the sample486

is drawn are 0, so that all the correlations observed in the data result from the randomness of the487

sampling procedure.488

Figure 12 shows the results of the forecasts and their confidence intervals at 95%. In Table 2 we489

see the values of the RMSE: a shorter and more specific time period for the train has a better outcome.490
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(a) Comparison between target and
forecast values for two weeks with a
training of the whole year 2017.

(b) Comparison between target and
forecast values for two weeks with a
training of spring/summer of 2017.

(c) Comparison between target and
forecast values for two weeks with
a training of autumn/winter of
2016/2017

Figure 12. Comparison between target and forecast values for two weeks with the given training data.

Train Period One Year Spring/Summer Autumn/Winter

RMSE 21.5418 12.5163 8.1396

Table 2. Summary of the RMSE.

The results may not be very accurate, but we must remember that we are considering a daily491

average of the price, and therefore it is more important that the general trend shows similar behavior.492

In addition, we can observe that fluctuations occur for this type of data for certain periods of time, but493

the period is not as regular as for other types of data, so it is more difficult to deal with.494

5.3. ARIMA model495

Since our series are quite long, it may not be sufficient to model a weekly seasonality, but it may496

be necessary to include other components. As in the SARIMA example, we will start by modeling 2017497

to produce a forecast for the first two weeks of 2018, and then we will see results when we look at only498

one period of the year (spring/summer; fall/winter).499

• We decide to deseasonalize the series using the Matlab function written by Rafał Weron called500

deseasonalize, see [6], as we saw earlier in the section 4.2 on seasonality. It considers both a501

short-term and a long-term seasonal component.502
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• We have used an Augmented Dickey-Fuller test to verify that our deseasonalized series is503

stationary. It tests the null hypothesis that a unit root is present in a time series sample. In Matlab504

we can use the function adftest, it returns a logical value with the rejection decision for a unit root505

in a univariate time series. For example, the result ad f = 0 indicates that this test does not reject506

the null hypothesis of a unit root against the trend-stationary alternative.507

In our cases we have that the series is not stationary, so we can differentiate it: with a508

differentiation the series becomes stationary, and this is equivalent to the parameter d equals 1.509

• Our goal now is to find a suitable ARIMA(p, d, q) model to estimate the series. To guess a510

plausible order of the parameters, we consider the autocorrelation and partial autocorrelation511

functions as proposed in the procedure of Box and Jenkins.512

• We try to estimate different types of models, and we choose the one that minimizes the
information criterion AIC and BIC. We choose ARIMA(1,1,2), and we can represent it with

(1− φ1B)(1− B) xt = (1 + θ1B + θ2B2) εt (26)

• Our idea now is to calibrate our parameters to optimize the error in the L2 norm of the difference
between the Probability Density Function (PDF) of the data and the forecast we calculated
based on the estimated model. The PDF is estimated by the Matlab function ksdensity. It uses
a non-parametric method called kernel density estimation. We are interested in estimating the
form of the density function f from a sample of data (x1, . . . , xn); its kernel density estimator is

f̂h(x) =
1

nh

N

∑
i=1

K
( x− xi

h

)
, (27)

where K is the kernel, h > 0 denotes a smoothing parameter called bandwidth and N denotes513

the number of observations. By default K is set as the normal density function.514

• The optimal prediction results from the solution of this problem:

min
φ1,...,φp ,θ1,...,θq

‖PDF(forecast){φ1,...,φp ,θ1,...,θq} − PDF(data)‖2, (28)

where φ1, . . . , φp, θ1, . . . , θq are parameters of the chosen model and we choose a compact interval515

of R where they can vary before solving the problem. With PDF(forecast) we denote the516

estimated density function from the obtained forecasts. To solve this minimization problem we517

use the Matlab function fminsearch, which determines the minimum of a multi-variable function518

using a derivative-free method. In this case, we use the Matlab function arma_forecast for the519

point forecasts, see [26]. In particular, fminsearch uses the Nelder-Mead simplex algorithm. It is520

a direct search method that does not use numerical or analytical gradients. This method depends521

on the given initial values: we use the parameters that come from the first estimate of the ARIMA522

model.523

This approach differs from the one used by Ziel and Steinert [2]. The optimal parameters of the
problem are given by the solution of minimizing the BIC criteria using the lasso technique. The
general idea is that for a linear model Y = β′X + ε the LASSO estimator is given by:

β̂ = min
β
‖Y− β′X‖2

2 + λ‖β‖1 (29)

where λ ≥ 0 is the penalty term.524

• We plot the density functions and see the results in Figure 13.525

• In the Table 3 one can compare between the error of the difference before and after optimization:526
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Figure 13. Estimated density functions of forecasted and original data

Forecasted days Error before Error after
14 1.83 ·103 0.1098

Table 3. Errors before and after the optimization

• Finally we try to implement the idea described in Section 5.1. In view of the PDF of the point527

estimates, we can guess a possible realization of the future period, for example for the first three528

weeks of January 2018. A plausible result can be observed in Figure 14.529

(a) Possible path for three future weeks
of 2018.

(b) Histogram

Figure 14. From PDF to the stochastic process.

Now we follow the same steps - test for stationary, identification of the model, calibration of530

the parameters - to see if we can achieve an improvement of the RMSE by reducing the number531

of observations and choosing a certain time period for training and testing. So we use first the532

autumn/winter period and then the spring/summer period.533

Period ARIMA Forecasted days Error before Error after

Autumn/Winter (2,0,0) 14 days in January 1.7390 0.1223

Spring/Summer (1,1,4) 14 days in June 11.1979 0.1375

Table 4. Summary for the two restricted period.



Version November 24, 2020 submitted to Energies 22 of 30

(a) Estimated PDF (b) Possible path for two weeks
of June 2018

(c) Histogram

Figure 15. Summary of results for spring/summer period.

(a) Estimated PDF (b) Possible path for two weeks
of January 2018

(c) Histogram

Figure 16. Summary of results for autumn/winter period.

We can note that the values of RMSE are now generally not as high as in the case considered in534

Section 5.1, and this is due to the fact that we use a more structured procedure in the preparation of our535

forecast. We are aware that this type of approach may not be appropriate if we want to achieve a high536

degree of accuracy; there are already a lot of other methods for this purpose. Here we try to imagine a537

possible and plausible trend of future data for a medium-term period. As already mentioned and as538

is the case with statistical models, this kind of approach in combination with ARIMA leads to better539

results when the behavior of the series is quite regular.540

5.4. Neural Networks541

For the same data we try to use an ANN to calculate the forecast. In particular, we implement542

in MATLAB the LSTM architecture from Section 4.4.1. The selection of a suitable representation and543

preprocessing of the input data is a very important part of any machine learning task. However,544

neural networks tend to be relatively robust to the choice of input representation, see [17]. The only545

requirements for input representations of NNs are that they are complete, i.e. that they contain all546

the information needed to successfully predict the output. Although irrelevant inputs are not a major547

problem for NNs, a large input space could lead to too many input weights and poor generalization.548

A common procedure is the standardization of the components of the input vectors. This means
that first the mean value and the standard deviation are calculated with the classical estimators:

µ =
1
N

N

∑
i=1

xi, and σ =

√√√√ 1
N − 1

N

∑
i=1

(xi − µ)2, (30)

then calculate the standardised input vector x̂ using x̂ = x−µ
σ .549
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This procedure does not change the information in the training set, but it does improve the550

performance by moving the input values to a range that is more appropriate for the standard activation551

functions. Standardizing the input values can have a huge impact on network performance, [17].552

Once we have standardized, we train the network with Matlab. We use the function trainNetwork,553

where we specify the train set, the lstmLayers and appropriate options for the training. With the554

function trainingOptions, which is part of the Deep Learning Toolbox, we can set all the parameters555

we need, see Table 5. There is no specific procedure for selecting these values. Contrary to what556

we saw for the (S)ARIMA example, we do not have any criteria or index to justify a choice, but we557

have another one besides the RMSE. Here the decision is made after several attempts. There are two558

main problems to pay attention to. The first is over-fitting. Therefore it is important to prescribe an559

appropriate number of epochs for the training. For example, we can stop once we see that the loss560

function is stable. The second is to try to optimize the parameters: a very high number of hidden561

layers could be complex to handle from a computational point of view.562

In Table 5 we also see the duration of the training. The training time is another difference to the563

statistical methods, which are more immediate. Here the elapsed time is about 1 minute, but for larger564

data sets this value can become hours.565

Number of Epochs 250

Hidden Layers 200

Initial Learn Rate 0.005

Elapsed Time 1 min 8 sec

Table 5. Summary of Neural Network architecture in Matlab

We know that the purpose of the SGD during training is to minimize the loss between566

actual performance and the performance expected by our training masters. Loss minimization is567

progressive. The training process begins with randomly set weights, and then we update these weights568

incrementally as we get closer to the minimum. The size of these steps depends on the learning speed.569

We know that during training, once the loss has been calculated for our inputs, then the gradient of570

that loss is calculated in relation to each of the weights in our model. We can observe this type of571

process in Figure 17(a): We see that the loss function, the RMSE, is minimized epoch by epoch.572

Once we know the value of these gradients, they are multiplied by the learning rate. This is a573

small number, usually between 0.01 and 0.0001, but the actual value can vary and any value we get574

for the gradient will be smaller once we multiply it by the learning rate. If we set the learning rate to575

a number on the higher side of this range, we risk the possibility of overshoot. This happens when576

we take a "too big" step towards the minimized loss function and overshoot beyond this minimum577

and miss it. To avoid this, we can set the learning rate to a number on the lower side of this range.578

Since our steps will be very small with this option, it will take much longer to reach the point of loss579

minimization. Overall, the act of choosing between a higher and a lower learning rate leaves us with580

this kind of compromise idea. All these starting parameters are something to test, and then you can581

choose the more suitable one for the problem, it is impossible to determine them in advance. With582

regard to the example with statistical methods, where we have information criteria that can lead us to583

optimal parameters, in this case we can only observe the final RMSE and the course of the training584

process. For example, if we see high peaks or irregularities until the end of the training, it might585

be necessary to add some epochs; conversely, if the loss function suddenly becomes very low and586

remains constant, we can decide to reduce the number of epochs or decrease the learning rate to avoid587

over-fitting phenomena.588

In the following figures we can see the results: the training procedure, a comparison between589

forecasts and original data and the comparison between densities.590
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(a) Training Process (b) Forecasts

(c) Densities

Figure 17. Summary of results of LSTM network on one year data for two weeks forecast.

As we have done in the previous sections, we can repeat the same procedure using the591

spring/summer period, Figure 18; then using the autumn/winter period, Figure 19.592

Spring/Summer Autumn/Winter

Epochs 280 250

Hidden Layers 190 190

Initial Learn Rate 0.009 0.007

Elapsed Time 56 sec 43 sec

Table 6. Summary of Neural Network architecture in Matlab for the summer and winter period.
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(a) Training Process (b) Forecasts

(c) Densities

Figure 18. Summary of results of LSTM network on spring/summer period for two weeks forecast.

(a) Training Process (b) Forecasts

(c) Densities

Figure 19. Summary of results of LSTM network on autumn/winter period for two weeks forecast.

As in the previous analysis, we can observe that we obtain good results and simplify the593

calculation effort if we shorten the period and make it more precise for a given season.594
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5.5. Hybrid Approach595

In the literature there are other important approaches used to forecast the price of electricity:596

hybrid methods. The reason for this term is intuitive: they are obtained by combining other models,597

and their main feature is the fact that they can capture different patterns that characterize time series.598

A common example of these hybrid models is a combination between a statistical model, such as599

the ARIMA methods, and a model of computational intelligence, as we will present. For a better600

understanding we refer the interested reader to [27].601

We will now see if it is possible to combine our methods to obtain significant results. The simplest
approach is to look at an average of them or find suitable weights wi:

f orecast = w1SARIMA(results) + w2LSTM(results) (31)

This procedure is quite common, it allows good advantages in deciding which component needs to602

be highlighted. In Table 7 we specify the weight of each component we use for the hybrid approach.603

While in Table 8 we can see the final comparison between RMSE. As we can see from these values, the604

hybrid approach can be a valid tool to obtain a lower RMSE.605

One Year Autumn/Winter Spring/Summer

SARIMA 10% 30% 50%

NN 90% 70% 50%

Table 7. Percentage of component for each training period.

One Year Autumn/Winter Spring/Summer

SARIMA 21.54 8.13 12.53

NN 6.05 7.65 9.13

Hybrid 4.15 7.08 9.38

Table 8. A comparison between RMSE.
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(a) Hybrid forecast for one year of
training.

(b) Densities.

(c) Hybrid forecast for autumn/winter
period of training.

(d) Densities.

(e) Hybrid forecast for spring/summer
period of training.

(f) Densities.

Figure 20. Summary of results of hybrid approach for each time period of training.

In the following we also test our idea to capture the underlying possible stochastic process, results606

are shown in Figure 21. We try to get good approximations to the investigated processes on the basis607

of the examined data, assuming that their development can be well shaped by a certain (previously608

specified) type of stochastic process. As we can see from the previous figure, the estimated densities are609

not precise, so our approach does not yield better results. From this point of view, a hybrid approach610

does not yield any improvement.611
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(a) Hybrid forecast for one year of
training.

(b) RMSE

(c) Hybrid forecast for autumn/winter
period of training.

(d) RMSE

(e) Hybrid forecast for spring/summer
period of training.

(f) RMSE

Figure 21. Summary of results of probabilistic hybrid approach for each time period of training for a
time horizon of three weeks.

6. Conclusions612

In this paper we gave a general overview of energy price forecasting and in particular highlighted613

its most important quantitative aspects using two of the most commonly used approaches to analyze614

the corresponding behavior over time. We also included applications to a real-time series. We first615

focused our attention on (S)ARIMA models, which are the starting point for most analyses of time616

series. The results are quite adequate, but we can obtain better results by using approaches based on617

Neural Networks (NNs), especially the LSTM type, the latter being one of the most popular within the618

NNs-oriented community because of its highly accurate results, see e.g. [28]. These improvements are619

accompanied by a more complex computational structure and a higher data processing time.620
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In general, one could say that NNs-based results are often better than those obtained with621

an ARIMA model, cf. Table 8. This is because these networks allow us to obtain and store more622

information, even for more complex seasonal influences. It is also worth remembering that ARIMA623

works better in very regular situations. Both are valuable models, but in this case with this kind of624

data and context, LSTM can be a suitable tool not only for our probabilistic approach, but also for625

point estimation for short and medium term period forecasts, for more details see [27]. With the hybrid626

approach, Section 5.5, we have seen that we can balance our results and achieve some significant627

improvements with the accuracy of the point forecast for two weeks.628

Let us finally emphasize that our results regarding the prediction of the (random) electricity price629

behavior (expressed in the form of a stochastic process) are based on a rather innovative probabilistic630

proposal, which gives us remarkable accuracy results. From a theoretical point of view, the results631

obtained are quite good and the idea is quite original for a probabilistic forecast.632
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Abbreviations640

The following abbreviations are used in this manuscript:641

642

ACF Autocorrelation Function
AIC Akaike Information Criteria
BIC Bayesian Information Criteria
CDF cumulative distribution function
CRPS continuous ranked probability score
DM Diebold Mariano
EPEX European Power Exchange
EPF electricity price forecasting
FNN feedforward neural network
GARCH generalized autoregressive conditional heteroskedasticity
i.i.d. independently identically distributed
LASSO least absolute shrinkage and selection operator
LSTM Long Short Term Memory
LTSC Long-Term Seasonal Component
OLS Ordinary Least Squares
PACF Partial Autocorrelation Function
PDF Probability Density Function
PI prediction intervals
PIT probability integral transform
PL pinball loss
QRA Quantile Regression Average
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SARIMA Seasonal Autoregressive Integrated Moving Average
SDG Stochastic Gradient Descent
STSC Short-Term Seasonal Component
VAR Value-at-Risk

643
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