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Summary

In this paper, we introduce the Python framework PyMGRIT, which implements the
multigrid-reduction-in-time (MGRIT) algorithm for solving the (non-)linear systems
arising from the discretization of time-dependent problems. The MGRIT algorithm
is a reduction-based iterative method that allows parallel-in-time simulations, i. e.,
calculating multiple time steps simultaneously in a simulation, by using a time-grid
hierarchy. The PyMGRIT framework features many different variants of the MGRIT
algorithm, ranging from different multigrid cycle types and relaxation schemes, as
well as various coarsening strategies, including time-only and space-time coarsen-
ing, to using different time integrators on different levels in the multigrid hierachy.
The comprehensive documentation with tutorials and many examples, the fully doc-
umented code, and a large number of pre-implemented problems allow an easy start
into the work with the package. The functionality of the code is ensured by auto-
mated serial and parallel tests using continuous integration. PyMGRIT allows serial
runs for prototyping and testing of new approaches, as well as parallel runs using
the Message Passing Interface (MPI). Here, we describe the implementation of the
MGRIT algorithm in PyMGRIT and present the usage from both user and developer
point of views. Three examples illustrate different aspects of the package, including
pure time parallelism as well as space-time parallelism by coupling PyMGRIT with
PETSc or Firedrake, which enable spatial parallelism through MPI.

KEYWORDS:
Multigrid-reduction-in-time (MGRIT), parallel-in-time integration

1 INTRODUCTION

The classical approach for solving an initial value problem is based on a time-stepping procedure, which computes the solution at
a point in time based on the solution at one or more previous time steps and, thus, propagates the solution over time. The method
is optimal, i. e., of order 

(

Nt
)

forNt time steps, and gives the solution afterNt applications of the time integrator. However,
time-stepping algorithms are completely sequential in time and limit potential parallelization to the spatial domain. In recent
years, the structure of modern computer systems has been characterized by a growing number of processors, as the clock rates
of the individual processors stagnate. As a consequence, possibilities of spatial parallelization are quickly exhausted, although
further resources are available. Promising approaches for using these modern computer systems to further reduce the runtime of
simulations of initial value problems are parallel-in-time methods, which allow not only spatial but also temporal parallelism.
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One of these approaches is the iterative multigrid-reduction-in-time (MGRIT) algorithm1, which applies multigrid reduction
principles to the time domain. The idea of the algorithm is based on using a hierarchy of time grids, where the finest grid contains
the same points in time as in the time-stepping approach and the number of points on the coarser grids decreases, so that the
coarsest grid consists of only a few points. While time integration is applied to the coarsest grid sequentially, time subdomains
are handled in parallel on the other grids. Over the recent years, the algorithm has been successfully applied to various problems,
e. g., linear and nonlinear parabolic problems1, 2, compressible fluid dynamics3, power grids4, 5, eddy-current simulations6–8,
linear advection9, 10, and machine learning11.
Besides the MGRIT algorithm, there are many other iterative and direct parallel-in-time methods. Probably the most well-
known method is Parareal12, whose success is due to its simplicity and applicability: For the use of the algorithm only an
expensive and a cheap time integrator is needed. This idea of Parareal can be interpreted in a variety of frameworks of numer-
ical schemes. In particular, Parareal can be seen as a two-level MGRIT variant1. The parallel full aproximation scheme in
space and time (PFASST)13 is based on spectral deferred corrections (SDC)14 and allows space-time parallelism by simultane-
ously executing several SDC “sweeps” on a space-time hierarchy. Another method, the revisionist integral deferred correction
method (RIDC)15, 16 allows time parallelism through the pipelined parallel application of integral deferred corrections. A
more detailed, structured, and general overview of parallel-time-integration approaches is given in17. Furthermore, the website
https://parallel-in-time.org offers many more references and information about parallel-in-time methods.
Despite the increasing number of algorithms, concepts, and papers in the field of parallel-in-time integration, the number of
accessible stand-alone parallel-in-time libraries providing parallelization in time or allowing space-time parallelism is relatively
small. The following libraries are most noteable: The XBraid18 library, written in C provides an implementation of the MGRIT
algorithm and libridc16 is a C++ implementation of the RIDC algorithm. The PFASST method is implemented by various
libraries which are summarized in19, in particular by the Fortran library libpfasst, PFASST++ written in C++, and the Python
implementation pySDC. Besides these, there are a number of other implementations of parallel-in-time concepts, butmost of them
are either more specialized or more difficult to access, such as the SWEET code20 or various implementations of the PARAEXP
method21. This paper describes the new Python framework PyMGRIT, which implements the MGRIT algorithm. PyMGRIT is
designed to be easy to use, ranging from the very simple installation of the package to calling or overriding functions, making
it ideal for testing the application of MGRIT to problems, or for prototyping new ideas and strategies for the MGRIT algorithm.
More precisely, PyMGRIT allows on the one hand the simple, pure application of different variations of the MGRIT algorithm to
problems without having to worry about implementation details, parallel communication, etc., but on the other hand, it allows
flexible adaptations of individual components of the algorithm by overriding existing functions. This allows users to try MGRIT
for their application, and it makes PyMGRIT particularly attractive for the training of students. Furthermore, PyMGRIT allows
easy coupling with other software that already exists as Python packages, e. g., Matplotlib22 for creating static and interactive
visualizations or Firedrake23 for using the Finite Element Method (FEM). Additionally, PyMGRIT allows space-time parallel
runs that go far beyond prototyping.
The following sections of this paper are organized as follows: Section 2 describes the MGRIT algorithm. Based on this, Section
3 introduces the PyMGRIT framework and describes the implementation of the algorithm and its variations. Then, the use of
PyMGRIT is examined, describing first basic usage of the package, followed by a description of implementing a custom appli-
cation using PyMGRIT. In Section 4, different aspects and possibilities of using PyMGRIT are demonstrated in three numerical
examples. Finally, conclusions are drawn and possible extensions of the package are discussed in Section 5.

2 MGRIT

The idea of MGRIT is to enable parallelism in a traditionally sequential process. For time-dependent problems, starting with an
initial value, the solution is classically computed step by step, i. e., starting with the initial condition, the solution at each time
step is computed based on the solution at one or more previous time steps. This sequential time-stepping process is shown in
Figure 1, which displays the initial condition of a simple linear heat conduction problem along with the solutions after 512 and
1024 time steps.
In contrast, the iterative MGRIT algorithm solves the problem by updating the solution at many points in time simultaneously.
Thereby, the initial guess of the solution can be chosen arbitrarily for all points in time. The idea of the algorithm is based on a
multilevel hierarchy for the problem. While the finest level contains the same points in time as in the time-stepping approach,
on coarse levels only a subset of these points are considered. Optimally, the coarsest grid contains only a very small number of
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Initial value 512 time steps 1024 time steps

FIGURE 1 Sequential time stepping for a simple heat conduction problem. Starting with the initial condition (left), the solution
is propagated over time (middle, right).

relaxation

restriction interpolation

relaxation

restriction interpolation

Iteration 0 Iteration 1

FIGURE 2 Two MGRIT iterations for a simple heat conduction problem.

points in time, e. g., three or five, and can therefore be solved exactly and quickly by the classical time-marching approach. This
solution on the coarsest grid is used in the algorithm to update the solution on the finer grids until the solution on the finest grid
is accurate enough based on a predefined tolerance. More precisely, one iteration of the algorithm consists of the following steps:

1. Relaxation on the finest grid for multiple points in time simultaneously. Relaxation corresponds to a local application of
the time integrator, which is also used for time stepping.

2. Transferring the solution to the next coarser grid, which contains only a subset of the points in time.

3. Repeating steps 1 and 2 for the next coarser grid until the coarsest grid is reached.

4. Solving the problem on the coarsest grid directly.

5. Interpolating the solution from the coarsest grid to the finest grid, improving the solution on all grid levels.

These steps are applied iteratively until a desired quality of the solution is achieved. Figure 2 shows this process for two
MGRIT iterations. While this is only a rough description of the algorithm, it reveals one of the key features of MGRIT: its non-
intrusiveness. The only requirement for the algorithm is a time-stepping procedure, which is also used in the time-marching
approach and, thus, this procedure already exists for many problems and can be integrated easily into a parallel framework with
MGRIT.
After the previous schematic representation of time stepping and the MGRIT algorithm, we now want to examine both
approaches algorithmically. Therefore, we consider an initial value problem of the form

u′(t) = f (t,u(t)), u(t0) = g0, t ∈ (t0, tf ], (1)

which can, for example, be a system of ordinary differential equations after the spatial discretization of a space-time partial
differential equation. We discretize the time interval on a grid with uniformly distributed points ti = iΔt, i = 0, 1,… , Nt with
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Fine level
t0 t1 t2 ⋯ tm tNtΔt

Coarse level
T0 T1 ⋯ TNT

ΔT = mΔt

FIGURE 3 Fine and coarse temporal grid with uniformly distributed points. The coarse grid is created by removing all F -points
(represented by short markers) of the fine grid.

constant time step Δt = (tf − t0)∕Nt and let ui ≈ u(ti) for i = 0,… , Nt with u0 = u(0). Note that non-uniform distributions are
also possible, but are not considered here for reasons of simplicity. Further, let�i be a time integrator, propagating the solution
ui−1 from a time point ti−1 to time point ti, including forcing from the right-hand side. Then, the one-step time integration method
for the time-discrete initial value problem (1) can be written as

ui = �i(ui−1), i = 1, 2,… , Nt,

or, considering all time points at once, as the space-time system

(u) ≡

⎡

⎢

⎢

⎢

⎢

⎣
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⎥

⎥

⎥

⎦

≡ g. (2)

Sequential time-stepping solves problem (2) through a sequential forward solve, yielding the discrete solution after Nt
applications of the time integrator and, thus, sequential time-stepping is optimal, i. e., of order 

(

Nt
)

.
In order to embed the time integrator �i into a multi-level algorithm that iteratively solves problem (2), we first define the
components of the algorithm and then construct the algorithm.More precisely, we define a coarse grid system, a restriction and a
prolongation operator between temporal grids, and a relaxation scheme. For a given fine temporal grid ti = iΔt, i = 0, 1,… , Nt,
and a given integer coarsening factor m > 1, we define a splitting of the fine grid points into F - and C-points, where every m-th
point is a C-point and all other points are F -points. Looking only at the C-points, we obtain a coarser grid Tic = icΔT , ic =
0, 1,… , NT , withNT = Nt∕m and time step ΔT = mΔt, as shown in Figure 3.
As the time-step size is different on the coarse grid, a time integrator �ic is needed for the coarse level. We choose a re-
discretization of the problem with time step ΔT , but several choices are possible, such as coarsening in the order of the
discretization24, 25. Next, we define two types of relaxation strategies, i. e., schemes of local applications of the time integrator.
The first scheme, the so-called F -relaxation, performs a relaxation of all F -points by propagating the solution from a C-point
to all following F -points up to the next C-point. Each interval of F -points can be executed in parallel, whereby each interval
consists of m − 1 sequential applications of the time integrator. The second scheme, the C-relaxation, analogously performs a
relaxation of all C-points consisting of propagating the solution from the preceding F -point to a C-point. Again, all intervals of
C-points can be updated simultaneously. Both relaxation schemes are shown in Figure 4 and can be combined to new schemes.
The FCF -relaxation, i. e., an F -relaxation followed by a C- and another F -relaxation, is the typical choice for the MGRIT
algorithm, but other combinations are also possible. Finally, we define two operators for the transfer between the temporal fine
and coarse grid, more precisely a restriction and a prolongation operator. While restriction is an injection, we define the “ideal”
prolongation as an injection at C-points followed by an F -relaxation.
Using the full approximation storage (FAS) framework26 for solving both linear and nonlinear problems, the two-level MGRIT-
FAS algorithm3 extended by spatial coarsening2 can be written as in Algorithm 1.
In algorithm 1, l(u(l)) = g(l) specifies the space-time problem on levels l = 1, 2, which can be either linear or nonlinear, and
the two operators RI and P denote the transfer operators between temporal grids. Additionally, the algorithm allows for spatial
coarsening and we defineRs as spatial restriction and Ps as spatial prolongation. The relaxation scheme can be controlled by the
parameter �, whereby at least one F -relaxation is performed per iteration and then � subsequent CF -relaxations are executed.
Typically � = 1, i. e., an FCF -relaxation scheme, is chosen for the MGRIT algorithm. Note that the two-level variant with
F -relaxation is equivalent to the parareal method12. To extend the two-level MGRIT-FAS algorithm to a multilevel setting, the
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

�1�2�3 �5�6�7 �9�10�11

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

�4 �8 �12

F -relaxation C-relaxation

FIGURE 4 F - and C-relaxation for a temporal grid with 13 time points and a coarsening factor of four. In both relaxations, the
independent intervals (blue) can be updated simultaneously.

Algorithm 1 MGRIT-FAS(,u, g)
1: Apply F -relaxation to1(u(1)) = g(1)
2: For 0 to �:
3: Apply CF -relaxation to 1(u(1)) = g(1)
4: Inject the approximation and its residual to the coarse grid:

u(2) = RI (u(1)),
g(2) = RI (g(1) −1u(1))

5: If spatial coarsening:
u(2) = Rs(u(2))
g(2) = Rs(g(2))

6: Solve2(v(2)) = 2(u(2)) + g(2)
7: Compute the error approximation: e = v(2) − u(2)
8: If spatial coarsening:

e = Ps(e)
9: Correct using ideal interpolation: u(1) = u(1) + P(e)

two-level algorithm can be called resursively in step 6. Depending on the type and number of recursive calls, different multi-level
variants can be defined.
The two-level MGRIT-FAS algorithm is based on an initial guess. This initial guess can be chosen arbitrarily; however, a good
initial guess offers natural advantages for the runtime convergence of the algorithm. If prior knowledge of the solution exists, it
should be chosen as an initial guess. If nothing is known, an improved initial guess can be computed by the nested iteration27, 28

strategy. The idea of nested iteration is to compute an initial approximation on the coarsest level and to interpolate it to the finer
levels. Note that, independent of the initial guess, the MGRIT algorithm provides the exact discrete solution of the fine grid
afterNt∕m orNt∕ (2m) iterations for F - or FCF -relaxation, respectively1.

3 THE PYMGRIT FRAMEWORK

In the previous section, we have familiarized ourselves with the way MGRIT works and how the algorithm looks like. In this
section, we introduce the PyMGRIT framework. First, we describe the structure and availability of the framework.We then present
the implementation of the MGRIT algorithm in PyMGRIT. In terms of algorithmic parameters, many choices must be made such
as the relaxation scheme or the cycling strategy that lead to many different variants of the algorithm. PyMGRIT pursues two goals:
On the one hand, PyMGRIT should enable the use of MGRIT with a minimal choice of algorithmic parameters. On the other
hand, PyMGRIT should be as flexible as possible and give users the possibility to adjust all settings with little effort. Section 3.2
gives an overview of the most important MGRIT parameters and their implementation in PyMGRIT. Pursuing the first goal, most
parameters have default values, but various choices are possible for pursuing the second goal. Section 3.3 presents a simple but
typical code example for an application, while in Section 3.4, we take a developer’s view of PyMGRIT and describe the classes
required for implementing a custom application.
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1 from pymgrit import Mgrit
2

3 mgrit = Mgrit ( problem=problem )
4 mgrit . solve ( )

Listing 1: Example for the minimal generation of an instance of the class Mgrit. Only a problem hierarchy is required, all other
parameters have default values.

3.1 Availability and structure
The PyMGRIT framework consists of three components: the code repository29, the documentation30, and the Python Package
Index (PyPI) version31. The installation of the package is typically done using pip, and only a few requirements have to be
fulfilled. First, a Python version ≥ 3.6 is required and second, the following packages must be installed: NumPy32, SciPy33,
Matplotlib22, and mpi4py34. While NumPy and SciPy are used throughout the complete package, Matplotlib is mainly used
for the visualization in different examples. The package mpi4py provides Python bindings for parallelization using the Message
Passing Interface (MPI) standard. The requirements are listed in the file setup.py and will be installed automatically if PyPI
and pip are used for the installation of the PyMGRIT package.
The code repository on GitHub29 contains the latest version of the current code. After each commit on the master branch,
GitHub Actions are used as a continuous integration tool to trigger automated processes. Automated serial and parallel tests
are performed for all Python versions ≥ 3.6 using pytest35 and tox36. Additionally, the code coverage of the tests is calculated
and the coverage is automatically uploaded to Codecov37, where the results can be viewed. Furthermore, an up-to-date version of
the documentation is created using Sphinx. The documentation consists of two parts, a pure application programming interface
(API) documentation and a documentation of the features of PyMGRIT. While the API documentation is automatically generated
from the Python comments, the feature documentation includes a quick start, tutorial, and many examples for both basic and
advanced usage of PyMGRIT. By creating a new release on GitHub, the current repository version is automatically uploaded to
PyPI and is available via pip afterwards.
The PyMGRIT package primarily consists of four directories:

• src: this directory contains the core features of PyMGRIT, namely implementations of the MGRIT algorithm and of
template classes of other required components. It also contains a number of sample problems and their implementation.

• examples: in this directory, a number of application examples can be found, both for basic and advanced usage of PyMGRIT,
including all examples from the tutorial and from the documentation.

• tests: the test directory contains all written tests that are automatically executed after each commit on the master branch.
Tests include core functions of PyMGRIT as well as sample applications.

• docs: contains the documentation for the examples, quick start, tutorial, etc.

3.2 MGRIT in PyMGRIT
PyMGRIT is based on classes, with the exception of some auxiliary functions. Two steps are required to use theMGRIT algorithm:
First, an instance of the Mgrit class from PyMGRIT’s core must be created. In this step, all algorithmic choices and settings can
be selected by parameters. TheMGRIT implementation of PyMGRIT offers high flexibility for different variants of the algorithm,
but at the same time the possibility to solve a problem with minimal specifications by using default values for most parameters.
The second step is the actual solving of the problem, which is executed by simply calling a method of the Mgrit class.
Listing 1 provides a minimal example of creating an instance of the class with subsequent solving of the problem. Only the
problem hierachy has to be passed to the class via constructor parameters in line 3 (the structure of a problem hierarchy is
described in section 3.2.1). Other parameters of the constructor have default values, but can also be set manually. In line 4, the
problem is then solved by calling the member function solve. The most important parameters of PyMGRIT’s core class Mgrit
and their effects are presented below; a complete list of all parameters can be found in the documentation.
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FIGURE 5 Structure of V - and F -cycles for four grid levels.

FIGURE 6 Structure of nested iteration when using four grid levels.

3.2.1 Problem hierarchy and coarsening
The only mandatory parameter for instantiating an object of the Mgrit class is a problem hierarchy. This problem hierarchy
is a list of problems (objects of classes that inherit from PyMGRIT’s core Application class) that defines the time-multigrid
hierarchy. The exact structure of the problems and how to implement a problem in an application class is described in Section
3.4. At this point, it is sufficient to know that the time-multigrid hierarchy, i. e., the number of levels and the coarsening factor
for the MGRIT solver, is given by this problem hierarchy. The problem for each level contains a vector with all time points for
that level. The only requirement for the time points of each coarse level is that the time points are a subset of the time points
of the finest level. This allows great flexibility in the choice of the coarsening factor, as it allows the implementation of regular
coarsening strategies, coarsening strategies with different coarsening factors per level, and also semi-coarsening strategies very
easily.

3.2.2 Cycling and relaxation strategies
Two of the most important parameters for MGRIT are the cycling and the relaxation strategy. Both parameters have a significant
impact on the convergence, parallelism, and efficiency of the algorithm. PyMGRIT provides two cycling strategies: V - and F -
cycles. These can be controlled by the parameter cycle_type, i. e., by adding the cycling strategy via cycle_type=‘V’ or
cycle_type=‘F’ to the constructor call. The structure of the two cycles is shown in Figure 5, which differs primarily in how
often coarse grids are used. The V -cycle is the recursive implementation of algorithm 1, visiting the coarsest grid only once
per MGRIT iteration. In contrast, the F -cycle visits the coarsest level several times per iteration, going back to the coarsest grid
after having reached each level for the first time. As a consequence, an F -cycle better approximates the two-level method and,
thus, faster convergence can be expected for F -cycles. However, F -cycles require more communication on intermediate coarse
grids and more serial work on the coarsest grid, leading to worse parallel scalability compared to V -cycles for large numbers of
processes.
Furthermore, an improved initial guess can be computed by using the nested iteration strategy, which can be controlled by
the Mgrit constructor parameter nested_iteration. By default, nested iteration is active, but it can be disabled by passing
nested_iteration=False to the constructor. As described at the end of Section 2, nested iteration computes an initial solution
guess on the fine grid from coarse grids. More precisely, starting on the coarsest grid, an approximate solution is computed
and interpolated to the next finer grid until the finest grid is reached. On each grid level, one V -cycle is used to compute an
approximate solution, except on the coarsest grid, where the problem is solved directly. The resulting structure is illustrated in
Figure 6. Note: In PyMGRIT, nested iteration is part of the setup phase of the algorithm, since it provides an initial solution guess
on the finest grid.
The relaxation scheme in PyMGRIT can be set by the parameter cf_iter. This parameter specifies how many CF -relaxations
follow an always executed F -relaxation. By default, the parameter is set to 1, i. e., an FCF -relaxation scheme. By varying this
parameter, the user can easily switch between F -, FCF -, FCFCF -relaxation, and other relaxation schemes. Again, the choice
of the scheme has a direct impact on the convergence of the algorithm. Usually, the more relaxation steps are performed, the
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FIGURE 7 Decomposition of a space-time domain used for parallelizing computations in classical time-stepping algorithms
(left) and in MGRIT (right).

better is the convergence. However, this improved convergence comes from the additional work performed in each iteration. The
choice of the relaxation scheme also depends on the cycling strategy used. While an FCF -relaxation scheme is often a good
starting point for a V -cycle, only F -relaxation is often sufficient for an F -cycle1. Note that the always performed F -relaxation on
the finest grid is skipped after the second MGRIT iteration, because the updates during this F -relaxation are already performed
during the post-relaxation of the ideal interpolation of the previous iteration.

3.2.3 Stopping criterion
Another important parameter is the stopping tolerance of the algorithm, i. e., a threshold which stops the iterations if crossed.
By default, PyMGRIT uses the absolute (space-)time residual of system (2) to check convergence. More precisely, denoting the
residual of system (2) at the ic-th C-point of the finest grid at iteration k by r

(k)
ic
, where ic is an integer index for looping over all

C-points, convergence is measured in the 2-norm based on the absolute (space-)time residual,

‖r(k)‖ =

(

∑

ic

‖r(k)ic ‖
2

)1∕2

,

where the computation of the norm of the residual at each C-point, ‖r(k)ic ‖, is specified by the user in a class that inherits from
PyMGRIT’s core Vector class (see Section 3.4 for details). The convergence tolerance defines when to stop the iterations by
checking ‖r(k)‖ < tol at each iteration, where the tolerance can be set using the constructor parameter tol; by default, tol is
set to 10−7. Currently, the only stopping criterion implemented in PyMGRIT is based on the (space-)time residual; however, the
documentation includes examples of how to customize and change this criterion.

3.2.4 Parallel decomposition and computation
In implementations based on a classical time-stepping approach, typically solution values are stored for one time point (or for
a few time points in case of a multistep method) at a time, and values are updated at each step of the method. Therefore, such
algorithms only offer the possibility to decompose the computational domain of the problem in space and, thus, allow spatial
parallelism only to speed up the calculation. On the contrary, PyMGRIT stores the solution at every point in time and, thus,
PyMGRIT provides another dimension for the decomposition of the computational domain: the time dimension. Figure 7 shows
both decompositions of a space-time domain, reflecting the parallelization strategies applied in classical space-parallel time-
stepping algorithms and in space-time-parallel MGRIT. Notice, that the partitioning of the temporal domain into time slices is
added to the spatial decomposition, allowing a distribution of the time slices across additional parallel processing units. PyMGRIT
provides a function split_communicator that splits a communicator into spatial and temporal components and returns two
communicators for these components. The two communicators can be passed to the Mgrit constructor using the parameters
comm_x for the space communicator and comm_t for the time communicator.
PyMGRIT distributes the time points of the finest grid equally over all processes contained in the time communicator. The
distributions on coarser grids are based on the decompositions on their parent fine grids as each coarser grid contains a subset
of their parent fine grid. The only exception is the coarsest grid, on which the problem is solved sequentially by one process.
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Level 0

Level 1

Level 2

Process 0
Process 1

FIGURE 8 Example of the distribution of time points across two processes in PyMGRIT. The time points of the finest level are
distributed evenly, and the coarser levels contain all C-points of their parent fine grids. On the coarsest grid, one process holds
all time points.

This process then distributes the solution values to other processes. Figure 8 shows the distribution of Nt = 33 time points for
two processes in a three-level setting with a coarsening factor of m = 4.
Storing all time points in the MGRIT algorithm enables (additional) parallelism, but at the same time increases memory require-
ments. For each time point, PyMGRIT creates an object for the solution at this time point. Additionally, on coarser levels, two
additional objects must be stored for each time point: one for a restricted copy of the fine-grid object and one for the FAS right-
hand side. There are several ways to reduce the increased memory requirements for the MGRIT algorithm, e. g., storing only
C-points. Yet, this is not implemented in PyMGRIT, but it is a possible extension for future versions.

3.2.5 Spatial coarsening
By default, PyMGRIT applies only temporal coarsening and does not require any additional information about the restriction or
interpolation between spatial grids. If spatial coarsening is desired, the user can pass a list of spatial transfer operators using
the transfer parameter. Thereby, a transfer operator is expected for each transfer between MGRIT levels, which ensures high
flexibility for the user.

3.2.6 Plots
The PyMGRIT class MgritWithPlots provides an extension of the solver with several plotting functions, e. g., for visualizing
MGRIT cycles or the distribution of time points across processes; example plots can be found in Section 4.1.

3.3 Basic usage of PyMGRIT
In this section, we describe how to solve a simple application problem and we explain the structure of a typical main routine of
an application code that uses PyMGRIT. For a simple application problem, we choose the simplest case of a scalar ODE. More
precisely, our goal is solving Dahlquist’s test problem,

u′ = �u in (0, 5] (3)

with u(0) = 1 and � = −1. This and other application problems are included in PyMGRIT. For an overview of the applications
included, see the online documentation. It provides a detailed tutorial and many examples for basic and advanced usage of
PyMGRIT.
The main routine of an application code that uses PyMGRIT to solve Dahlquist’s test problem is presented in Listing 2. The
program uses a two-level MGRIT algorithm to solve Dahlquist’s test problem in the time interval [0, 5]with 101 equidistant time
points. The 101 time points are composed of one point for the start time t = 0 and 100 other time points. Note that one point for
the start time is always included in the time interval in PyMGRIT. The structure of a main routine usually consists of three steps.
First, the problem is created. Then, a multigrid hierarchy is constructed for this problem. Finally, the problem is solved using the
MGRIT algorithm. In our example, for the first step, an instance of PyMGRIT’s class Dahlquist is created in line 2 that describes
the fine problem. The time domain is passed to the problem class by using the parameters t_start and t_stop for specifying the
time interval bounds and the parameter nt for the number of time steps. Afterwards, for the second step, a multilevel hierarchy is
constructed in line 5, based on the problem instance dahlquist. Here, the auxiliary function simple_setup_problem is used
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1 # Create Dahlquist’s test problem with 101 time steps in the interval [0, 5]
2 dahlquist = Dahlquist ( t_start=0 , t_stop=5 , nt=101)
3

4 # Construct a two-level multigrid hierarchy for the test problem using a coarsening
factor of 2

5 dahlquist_multilevel_structure = simple_setup_problem ( problem=dahlquist , level=2 ,
coarsening=2)

6

7 # Set up the MGRIT solver for the test problem and set the solver tolerance to 1e-10
8 mgrit = Mgrit ( problem=dahlquist_multilevel_structure , tol=1e−10)
9

10 # Solve the test problem
11 info = mgrit . solve ( )

Listing 2: Typical main routine of an application code that uses PyMGRIT.

and a two-level hierarchy with a coarsening factor of two is chosen. This results in a coarse level with 51 points in time. Note
that PyMGRIT offers several ways to pass the time domain information to a problem class, as well as for creating a multilevel
hierarchy; see the documentation for more details. For the third step, the MGRIT solver for the test problem is set up in line 8
as an instance of PyMGRIT’s core class Mgrit using the multilevel object dahlquist_multilevel_structure. Furthermore,
the halting tolerance is set to 1e−10. Finally, the problem is solved by calling the solve routine of the solver mgrit in line 11.
The solver returns some statistical information about the run in the dictionary info.

3.4 Developer view
3.4.1 Application structure
PyMGRIT is based on four different types of classes:

• Solver: the solver class provides the implementation of the MGRIT algorithm.

• Vector: vector classes contain the solution of a single point in time. Every vector class must inherit from PyMGRIT’s core
Vector class.

• Application: application classes contain information about the problem we want to solve. Every application class must
inherit from PyMGRIT’s core Application class.

• GridTransfer: grid transfer classes contain information about the transfer of spatial grids between consecutive MGRIT
levels. Every grid transfer class must inherit from PyMGRIT’s core GridTransfer class.

The three types of classes Vector, Application and GridTransfer are all based on abstract super classes. These classes indepen-
dently create some structures that are valid for each type of class and also ensure that all necessary member variables andmember
functions exist in the respective child classes. A developer who wants to create and solve a problem that is not included in the
PyMGRIT package usually only has to specify parts of the four classes. In most cases it is sufficient to write a vector class and an
application class. The grid transfer class is primarily needed for the additional feature of spatial coarsening and, if spatial coars-
ening is not used, it is automatically created by the solver. For the most part, the solver class can be used without modifications,
but changes are possible; see the documentation for examples.

3.4.2 From time-stepping to PyMGRIT
Listing 3 shows a typical time-stepping code for solving problem 2 discretized by backward Euler on a temporal mesh with
101 points. The code consists of three components: first, the initial condition value = 1 is set in line 2. The variable value is
further used to store the propagated solution at the current time. The second component consists of the time information in lines
3 and 4. The temporal grid contains nt = 101 points in the time interval [0, 5] and is created using the Numpy function linspace.
In the last step, we iterate over all points in time and apply the time integration in form of backward Euler. In summary, we
have as components a variable that contains the solution at a point in time, time information belonging to the problem, and the
time-integration loop.
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1 constant_lambda = −1 # set lambda to -1
2 value = 1 # initial solution value
3 nt = 101 # number of time points
4 t = np . linspace ( 0 , 5 , nt ) # time points: nt evenly spaced numbers in interval [0,5]
5 # backward Euler time integration
6 for i in range ( 1 , nt ) :
7 value = 1 / (1 − ( t [ i ] − t [ i − 1 ] ) ∗ constant_lambda ) ∗ value

Listing 3: Example timestepping code for problem 3, discretized by backward Euler on a temporal mesh with 101 points.

1 class VectorDahlquist ( Vector ) :
2 def __init__ ( self , value ) :
3 super ( ) . __init__ ( )
4 self . value = value
5

6 def __add__ ( self , other ) :
7 return VectorDahlquist ( self . get_values ( ) + other . get_values ( ) )
8

9 def __sub__ ( self , other ) :
10 return VectorDahlquist ( self . get_values ( ) − other . get_values ( ) )

Listing 4: Vector class for Dahlquist’s test equation. Note: The definition of the class is not complete, the member functions
set_values, get_values, clone, clone_zero, clone_rand, norm, pack, and unpack are not shown.

To implement these components in PyMGRIT, we first write a vector class VectorDahlquist, which stores the solution at a point
in time and inherits from the PyMGRIT core class Vector. Therefore, we create a member variable value, which contains the
solution of a point in time. Furthermore, the following member functions have to be implemented: set_values, get_values,
clone, clone_zero, clone_rand, __add__, __sub__, norm, pack, and unpack. The function set_values receives data
values and overwrites the values of the vector data and get_values returns the vector data. The function clone clones the
object, clone_zero returns a vector object initialized with zeros, and clone_rand similarly returns a vector object initialized
with random data. The functions __add__, __sub__, and norm define the addition and subtraction of two vector objects and
the norm of a vector object, respectively. Finally, the functions pack and unpack define the data to be communicated and how
data is unpacked after receiving it. The definition of the class VectorDahlquist with implementations of the constructor and
of the functions __add__, __sub__ is shown in Listing 4. The implementation of the other functions is straightforward and not
specified in detail here; please refer to the documentation for more information.
Second, we write an application class Dahlquist which contains information about the problem we want to solve. This class
contains information about the time grid and the step function and is shown in Listing 5. The time information is automatically
provided by the PyMGRIT core class Application, from which every PyMGRIT application must inherit from; for more informa-
tion see the tutorial. The function stepmust be defined and contains the time integration routine, which is the same as in Listing
3 except for names and accesses. To compute the new solution, the function receives as parameters the solution of the previous
time point, u_start, as well as the start point and the end point of the time integration step, t_start and t_stop, respectively.
Furthermore, two mandatory member variables, vector_template and vector_t_start, must be created in the application
class. The variable vector_template stores an instance of the corresponding Vector class, i. e., the DahlquistVector class,
and vector_t_start defines the initial condition using the same class. This is all we need for our test problem. We can now
use PyMGRIT to solve our problem as described in Listing 2.

4 NUMERICAL EXPERIMENTS

In this section, we present several examples for using PyMGRIT to run simulations with MGRIT. Each example has its own
focus and highlights different aspects of the framework. The first example gives an overview of runs with different variants of
PyMGRIT’sMGRIT algorithm and shows some plots generated by PyMGRIT. The goal of this example is to provide a better under-
standing of the algorithm. The second example shows how PyMGRIT can dramatically reduce the simulation time of an existing
realistic application. As an example, a two-dimensional electrical machine is used, where a single time step calls the GetDP38–40
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1 class Dahlquist ( Application ) :
2 def __init__ ( self , constant_lambda = −1 , ∗args , ∗∗kwargs ) :
3 super ( ) . __init__ (∗ args , ∗∗kwargs )
4 self . constant_lambda = constant_lambda
5 self . vector_template = VectorDahlquist ( 0 ) # Set the data structure for any time point
6 self . vector_t_start = VectorDahlquist ( 1 ) # Set the initial condition
7

8 # Time integration routine
9 def step ( self , u_start : VectorDahlquist , t_start : float , t_stop : float ) −>

VectorDahlquist :
10 return VectorDahlquist (1 / (1 − ( t_stop − t_start ) ∗ self . constant_lambda ) ∗ u_start

. get_values ( ) )

Listing 5: Application class for Dahlquist’s test equation.

solver. This example also uses spatial coarsening to further reduce the simulation time. The third example demonstrates the cou-
pling of PyMGRIT and PETSc and shows space-time parallel results. The tests of all three examples were performed on an Intel
Xeon Phi Cluster consisting of four 1.4 GHz Intel Xeon Phi processors.

4.1 Using PyMGRIT for implementing various MGRIT variants
In the first example, we compare several variants of the MGRIT algorithm for the one-dimensional heat equation,

ut − auxx = b(x, t) in [0, 1] × [0, 2],

with thermal conductivity a = 1, right-hand side b(x, t) = − sin(�x)(sin(t) − �2 cos(t)), homogeneous Dirichlet boundary
conditions in space, and subject to the initial condition u(x, 0) = sin(�x).
The problem is discretized using second-order central finite differences with 1025 degrees of freedom in space and on an
equidistant time grid with 1024 intervals using backward Euler. We choose five-level MGRIT algorithms with coarsening factor
m = 4 and consider the following variants:

1. V -cycles with FCF -relaxation,

2. V -cycles with FCFCF -relaxation,

3. F -cycles with F -relaxation,

4. F -cycles with FCF -relaxation, and

5. F -cycles with FCFCF -relaxation.

For all variants, the stopping tolerance is set to 10−7 and a random initial guess is used. Note that we are not considering a
five-level V -cycle with F -relaxation, since a multilevel setting with only F -relaxation generally does not provide an optimal
algorithm1. The code for the example can be found in the examples/toms directory of PyMGRIT.
Figure 9 shows the runtimes and number of iterations of the PyMGRIT simulations. The left figure presents the runtime as a
function of the number of processes for up to 64 processes and the right figure shows the number of iterations required to
reach the halting tolerance for the different MGRIT variants. Comparing only the number of iterations, we see that iterations
decrease when stronger (and, thus, more expensive) relaxation schemes are used. Similarly, an F -cycle typically requires fewer
iterations than a V -cycle with the same relaxation scheme due to the extra work in each iteration. As an example, the number of
iterations for the F -cycle with F -relaxation is about one and a half times the number of iterations for with F -cycle variant with
FCF -relaxation. Using the even stronger FCFCF -relaxation, the number can be reduced further, but at a smaller scale.
However, the choice of the relaxation scheme and the cycle type affects the cost per iteration. Looking at the runtimes of V -
cycles, the runtime of the variant with FCFCF -relaxation is always higher than that of the variant with FCF -relaxation,
although fewer iterations are required for the stronger relaxation scheme. Looking at F -cycles, we see that runtimes are higher
than those of V -cycles for the same relaxation scheme, although iteration counts are smaller. Additionally, F -cycles scale worse
than V -cycles.
Figure 10 shows three sample plots that can be automatically generated by the PyMGRIT class MgritWithPlots. Shown are the
plots for the V -cycle variant with FCF -relaxation and using four processes in time. The diagram on the left shows the residual
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FIGURE 9 Results of five MGRIT variants in terms of runtime (left) and number of iterations (right). The runtime results are
shown for using up to 64 processes for parallelizing only in time.

FIGURE 10 Plots provided by PyMGRIT’s class MgritWithPlots for solving the one-dimensional heat equation using five-level
MGRIT V -cycles with FCF -relaxation and using four processes in time. While the convergence plot (left) requires running a
full PyMGRIT simulation, the plots visualizing the cycling strategy (middle) and the distribution of time points across processes
(right) can be created directly after setting up the MGRIT solver.

norm after each MGRIT iteration of a PyMGRIT simulation. The other two plots in Figure 10 can be created immediately after
initializing the MgritWithPlots object. The middle plot visualizes theMGRIT cycle and the right plot presents the distribution
of time points across processes for all MGRIT levels.
The figures demonstrate how easy it is to visualize different aspects of PyMGRIT’s MGRIT algorithm. More examples of how
PyMGRIT can be used to create diagrams, e. g., plotting the (space-)time solution of a problem, can be found in the documentation.

4.2 Time parallelism with PyMGRIT and GetDP
In this example, we apply PyMGRIT’s MGRIT algorithm to a simulation of a two-dimensional electrical machine, whereby the
solution of the spatial problem at each time step is executed by the external GetDP solver. The example demonstrates how
an existing time integration routine from a complex simulation code can be integrated into the parallel PyMGRIT framework,
enabling a dramatic reduction of the simulation time. This section summarizes the results presented in7; more details about the
simulation can be found in7 and all files are available in PyMGRIT’s folder examples/induction_machine.
The standard approach for the simulation of electrical machines is given by the so-called eddy current problem, a simplification
of Maxwell’s equations in which the displacement current is neglected, and is defined in terms of the unknown magnetic vector
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potential A ∶ Ω × (t0, tf ]→ ℝ3 as

�)tA + ∇ × (�(⋅)∇ × A) = Js in Ω × (t0, tf ], (4a)
n × A = 0 on )Ω, (4b)

A
(

x, t0
)

= A0(x), (4c)

with spatial domain Ω, consisting of rotor, stator, and the air gap in between, time interval (t0, tf ] and Dirichlet boundary
conditions. The geometry is encoded by the scalar electrical conductivity �(x) ≥ 0 and the (nonlinear) magnetic reluctivity
�(x, |∇ × A|) > 0. Three (ns = 3) homogeneously distributed stranded conductors41 are modeled by the source current density

Js =
ns
∑

s=1
�sis,

with winding functions �s ∶ Ω → ℝ3 and currents is ∶ (t0, tf ] → ℝ3. An attached electrical network provides a connection
between the voltage vs (t) , s = 1, 2, 3, and the so-called flux-linkage.
To consider the rotation of the rotor, the problem is extended by an additional equation of motion,

!(t) =
d� (t)
dt

, t ∈ (t0, tf ], (5a)

I d
2�
dt2

+ C d�
dt
+ �� = Tmag (A) in (t0, tf ], (5b)

�
(

t0
)

= �0, (5c)
!(t0) = !0, (5d)

where the torque Tmag defines the mechanical excitation, ! is the angular velocity of the rotor, I denotes the moment of inertia,
and C and � are the fricition and torsion coefficients, respectively. The moving band approach42 is used to model the movement
of the mesh.
We reduce the three-dimensional (3D) domainΩ into a two-dimensional (2D) domainΩ2D ⊂ ℝ2 in the x, y-plane and discretize
the problem (4), combined with (5), in space using linear finite elements with na degrees of freedom. This yields a system of
equations of the form

Mu′(t) +K(u(t))u(t) = f (t), t ∈ (t0, tf ] (6a)
u(t0) = u0, (6b)

with unknown u⊤ = [a⊤, i⊤, �, !] ∶ (t0, tf ] → ℝn. At one point in time t ∈ (t0, tf ], the solution u (t) ∈ ℝn consists of
the magnetic vector potential a (t) ∈ ℝna , the currents of the three phases i (t) ∈ ℝ3, the rotor angle � (t) ∈ ℝ, and the
angular velocity of the rotor ! (t) ∈ ℝ. Note that problem (6), due to the presence of non-conducting materials, consists of
differential-algebraic equations (DAEs) of index-143, 44.
We use the multi-slice finite element model “im_3_kw”45 of an induction machine for modeling the semi-discrete problem (6).
More precisely, a modified version of the machine46 supplied by a three-phase pulse width modulated voltage source of 20 kHz
is considered. We refer to7 for more details. Gmsh47, 48 is used to construct the mesh representation of the model and a hierarchy
of two nested meshes is considered to allow for spatial coarsening. The fine mesh Ω1, consisting of na = 17,496 degrees of
freedom, is constructed by refining the coarser mesh Ω2 with na = 4449 degrees of freedom. The time step routine calls the
GetDP solver, which implements the time integration using backward Euler.
We apply five differentMGRIT variants to the simulation, choosingΩ1 as the spatial grid, a time stepΔt = 2−20 andNt = 10,753
time steps, resulting in a final time tf ≈ 0.01 s. For all MGRIT variants, we choose a convergence criterion based on the relative
change of joule losses at C-points of two consecutive iterations. The algorithm stops if the maximum norm of the relative
difference of two successive iterations is less than 1%. The following MGRIT variants are chosen: a two-level MGRIT V -cycle
with F -relaxation, a five-level MGRIT V -cycle with FCF -relaxation and a five-level MGRIT F -cycle with FCF -relaxation,
whereby both five-level variants are applied with and without spatial coarsening. Further, a non-uniform temporal coarsening
strategy with coarsening factor 42 on the first level and, for the multilevel variants, a coarsening factor of four on all coarse
levels is chosen.
Figure 11 shows the runtimes for the five different MGRIT variants as a function of the number of processes and, for reference
purposes, the runtime for sequential time stepping on one processor. Thereby, the dashed line represents the runtime results for
sequential time stepping, which is about five days, solid lines represent theMGRIT variants without spatial coarsening and dotted
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FIGURE 11 Runtimes of five different MGRIT variants and sequential time stepping for the nonlinear electrical machine
“im_3_kw”. Solid lines represent variants without spatial coarsening and dotted lines with spatial coarsening. For reference
purposes, the dashed line shows the runtime for sequential time stepping on one processor.

lines with spatial coarsening. While the multilevel variants require about eight processes to achieve the same runtime results
as the sequential method, the two-level variant with eight-way parallelism achieves a runtime of about four days. However, the
multilevel variants show better strong scaling, such that the multilevel variants and the two-level variant using 16 processes
have approximately the same runtime. Increasing the number of processes to 256, the runtime of the fastest multilevel variant
is about 5.5 hours, which corresponds to a speedup of about 22 compared to sequential time stepping.

4.3 Space-time parallelism with PyMGRIT and PETSc
In the two previous examples, only parallelization in time was considered. In the last example, we show results for space-
time parallel runs with PyMGRIT. There are several approaches for extending PyMGRIT with spatial parallelism, e. g., the use
of external libraries that take care of spatial parallelism. Two examples, the coupling of PyMGRIT with Firedrake23 and with
PETSc49, are available in the online documentation and in the repository. In this example, we consider the coupling of PyMGRIT
with PETSc via the Python package petsc4py34, which allows access to PETSc data types, solvers and MPI-based parallization
in space without having to use lower-level programming languages like Fortran or C++. Note that petsc4py is not automatically
installed with the installation of PyMGRIT, but can be easily installed using pip. The code for the example can be found in the
examples/toms directory.
To demonstrate space-time parallelization we choose a standard example of parallel-in-time integration methods17. More
precisely, we choose the the forced 2D heat equation,

ut − Δu = b(x, y, t) in [0, 1] × [0, 1] × (t0, tf ],

with initial condition u(x, y, t0) = u0(x, y), homogeneous Dirichlet boundary conditions, and forcing term b(x, y, t) such that the
exact solution is given by

u(x, y, t) = sin(2�x) sin(2�y) cos(t) in [0, 1] × [0, 1] × [t0, tf ].
The problem is discretized using standard central finite differences in space with Nx = 1292 degrees of freedom. In time, the
problem is discretized on a grid withNt = 16,385 points using backward Euler.
We apply two five-level MGRIT variants to the problem, a V -cycle with FCF -relaxation and an F -cycle with F -relaxation.
Both variants use a coarsening strategy with varying coarsening factors m1 = 32, m2 = 16, m3 = 4, m4 = 4, i. e., coarsening
between the finest and the first coarse level is applied using a factor of 32, then a factor of 16 is used, and so on. The stopping
criterion for both variants is based on the discrete 2-norm of the space-time residual with a tolerance of 10−7. For both variants,
the nested iteration strategy is used to get an improved initial guess.
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FIGURE 12 Strong scaling results for two five-level MGRIT variants and space-parallel time-stepping. For the multi-level
variants, four processes in space are used, i. e., 16 processes correspond to four processes in time and four processes in space.

For the implementation of the PyMGRIT application and vector classes for the 2D heat equation, PETSc structures can be used
thanks to the PETSc backend, such that the vector class uses DMDA global vectors as data structure to store the solution at a
point in time and the time-stepping method in the application class uses the linear Krylov space (KSP) solver of PETSc. Then,
space-time parallelism is easily achieved by partitioning the MPI_COMM_WORLD communicator into two communicators: one
time and one space communicator.
Figure 12 presents strong scaling results for the two MGRIT variants and additionally for a time stepping algorithm, with
parallelization only in space. The time-stepping method achieves the fastest runtime for 32 processes in space, so this would
be the optimal value to add time parallelism. However, due to the limited number of cores on the cluster, we select only four
processes in space for the two MGRIT variants, such that 64 processes in the plot correspond to using four processes for spatial
parallelization and 16 processes in time for the MGRIT variants, i. e., a total of 4 ∗ 16 = 64 processes. Note, that a larger
number of processes in space could bring further improvement. With a small number of processes, time stepping is faster than
the multi-level variants, but theMGRIT variants show significantly better results with increasing numbers of processes, whereby
the crossover point is reached at approximately 64 processes. For 256 processes the speedup of the fastest MGRIT variant is
about three compared to space-parallel time-stepping with 32 processes. This could be improved by using even more processes
in space and time.

5 CONCLUSION AND OUTLOOK

This paper introduces the Python framework PyMGRIT, which implements the parallel-in-time method multigrid-reduction-
in-time (MGRIT). The PyMGRIT framework allows the application of the MGRIT algorithm without having to worry about
implementation details, parallel communication and so forth, as well as easy prototyping of new variants of the algorithm, and
(space-)time parallel simulations using MPI. In addition to the Python code, whose functionality is guaranteed by a continuous
integration environment with automated serial and parallel tests, the framework also offers extensive documentation with a
quickstart code example, a tutorial, and many examples demonstrating various features of PyMGRIT. Together with a simple
installation and many pre-implemented ordinary and partial differential equations, the documentation provides an easy start
into working with the package. Advanced usage is described in a separate section of the documentation, and more information
about PyMGRIT’s core classes and functions can be found in the API documentation, which is automatically generated from
Python comments. By coupling PyMGRIT with other libraries, such as Firedrake or PETSc, the time parallelism provided by
the package can be combined with spatial parallelism for space-time parallel simulations.
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The PyMGRIT package already offers many features; however, there are still many possible extensions, open tasks, and new
directions. In the following we summarize possible future work. Due to its structure and iterative nature, the MGRIT algorithm
allows for a large number of variations and adaptations, e. g., considering different cycle types, applying different relaxation
strategies on different MGRIT levels or for different MGRIT iterations, and so forth. While many of these MGRIT variants
are already implemented in the PyMGRIT package, there are still some extensions, such as adaptive time stepping, that are
not implemented yet. Furthermore, for nonlinear problems, options such as the additional storage of an auxiliary vector2 that
provides an improved starting solution for nonlinear solvers, are attractive extensions.
Another area is the improvement of the required storage space. The MGRIT algorithm, as implemented in PyMGRIT requires
more memory than sequential time stepping, because the solution is stored for multiple points in time. There are different
strategies to reduce the memory costs, e. g., storing the solution only at C-points, but these are not implemented yet and are
topics for future work.
PyMGRIT contains examples of coupling the package with Firedrake, PETSc and GetDP, but of course many other powerful
libraries exist. Coupling with more libraries could increase the number of applications for the package and make it easier for
users to implement their specific problem. We mention here the libraries FENiCS50 and PyClaw51, which both provide a wide
range of space-specific algorithms.
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