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Abstract. We investigate the stationary diffusion equation with a coefficient given by a (trans-
formed) Lévy random field. Lévy random fields are constructed by smoothing Lévy noise fields with
kernels from the Matérn class. We show that Lévy noise naturally extends Gaussian white noise
within Minlos’ theory of generalized random fields. Results on the distributional path spaces of Lévy
noise are derived as well as the amount of smoothing to ensure such distributions become continuous
paths. Given this, we derive results on the pathwise existence and measurability of solutions to the
random boundary value problem (BVP). For the solutions of the BVP we prove existence of moments
(in the H1-norm) under adequate growth conditions on the Lévy measure of the noise field. Finally,
a kernel expansion of the smoothed Lévy noise fields is introduced and convergence in Ln (n ≥ 1) of
the solutions associated with the approximate random coefficients is proven with an explicit rate.

Key words. Random differential equation • generalized random field • Lévy noise • extreme
value theory • approximation with finite dimensional distributions
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1. Introduction. Random differential equations, i.e., initial and boundary value
problems with uncertain data modeled as random variables or stochastic processes,
have become an active area of research as a mathematical technique for uncertainty
quantification. The linear stationary diffusion problem

(1.1) −∇ · (a∇u) = f, u|∂D = 0, D ⊂ Rd bounded,

with a random field as diffusion coefficient a has been extensively investigated as
a model problem for a variety of numerical approximation methods. A number of
physical phenomena can be modeled by such a random diffusion equation, among
these Darcy flow in a porous medium with an uncertain spatial variation in hydraulic
conductivity. In the latter example, the stochastic conductivity model a = a(x, ω)
is typically chosen to be lognormal, with the mean and covariance structure of the
underlying Gaussian random field log a estimated using a variety of geostatistical
methods. In each case, the random variation of the input data serves as a mathemat-
ical model for the uncertainty associated with these quantities, and the objective is
typically to derive the statistical properties of functionals of the solution often refered
to as quantities of interest.

Early existence and uniqueness results for the random linear elliptic diffusion
problem (1.1) in an uncertainty quantification (UQ) setting for variational formula-
tions in Bochner spaces modelling the combined deterministic and stochastic varia-
tion were presented in [23, 6, 7, 8, 43, 25] with a focus on numerical methods for
their approximate solution. Subsequent work extended these initial results, formu-
lated for random fields characterized by finite-dimensional parameters, to the infinite-
dimensional setting [20, 21, 33, 18, 19, 48, 10, 9, 24]. In the absence of uniform ellip-
ticity, as in the case for a lognormal diffusion field a, variational formulations in the
Bochner space setting require more intricate variational formulations [26, 30, 47].

These analysis and approximation methods are based on the assumption that re-
alizations of the diffusion coefficient lie in L∞(D) or a subspace of smoother functions.
Moreover, it is assumed that the diffusion field displays positive covariance at distinct
locations, as this is typically the case for many modeled phenomena originating in
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the physical sciences and engineering, and differential equation models featuring cor-
related data are sometimes distinguished by the term random differential equations
as opposed to the more general designation of stochastic differential equations, which
may contain rougher stochastic processes. Indeed, early work on stochastic partial
differential equations such as [62] was aimed at generalizing stochastic ODEs driven
by rougher processes in the Itô, Skorohod or Stratonovich sense (see [49] for a more
recent account). For stationary PDEs, Holden et al. [34] considered random diffusion
coefficients with values in spaces of distributions, i.e., distribution-valued random
variables, and interpreted the product a∇u as a Wick product. Regularity results
on the stationary diffusion equation in Wick sense are given in [13]. See [42, 57] for
numerical methods for Wick-random PDEs.

While much of the cited work employs random models based on transformed
Gaussian random fields, there are effects which a Gaussian model cannot capture,
particularly discontinuities and heavy-tail behavior, which nonetheless occur in ap-
plications such as flow in fractured media, anomalous diffusion and the modeling of
heterogeneous materials [58, 17]. It is thus of interest to consider more general stochas-
tic models for the diffusion coefficient, and in this work we extend the Gaussian model
to random fields which follow a Lévy distribution [39, 5, 31].

Lévy random fields have been studied in a number of contexts, including among
others stochastic analysis [4], physics [2], statistics [63] and simulation [63]. For
extensions that include interaction between the discrete, discontinuous particle sources
of Lévy fields, see [1, 31].

In geostatistical applications, Gaussian random fields with Matérn covariance
function have been obtained by a stochastic pseudo differential equation driven by
Gaussian noise [40]. In this work, we generalise this approach by thoroughly analysing
the notion of noise as generalized random fields in the sense of Minlos [46, 28]. In fact,
the resulting class of Lévy fields coincides with those studied in [2] in the context of
(Euclidean) quantum field theory.

We also mention recent work on numerical methods for Lévy diffusion fields in
[12] .

Our work is most closely related to that of Sarkis et al. [51, 26, 27], who consider
(1.1) in the absence of uniform ellipticity and boundedness, allowing for a diffusion
coefficient which is a smooth transformation of Gaussian white noise.

The contribution of this work consists of three parts: First, we show that Lévy
random fields naturally extend [40] and [51, 26, 27] by passing from Gaussian white
noise to Lévy noise, see e.g. [28, 3]. To this end, we characterize noise fields as
generalized (distribution-valued) random fields “Z(x)” in the sense of Minlos [46,
28, 36], where Z(f) =“

∫
Z(x)f(x)dx” is only defined as a random variable after

“integrating” the distribution-valued random variable “Z(x)” against a test function
f . Here we restrict to fields that also can be “integrated” over bounded regions Λ,
i.e., Z(1Λ) = “

∫
Λ
Z(x) dx” can be defined in a suitable sense, where 1Λ denotes the

indicator function of the set Λ. Noise fields can be characterized by the property of
independent increments, i.e., Z(1Λj ) are independent random variables for mutually
disjoint sets Λj . Furthermore, we are interested in stationary noise fields, for which,
roughly speaking, “Z(x)” and the translated field “Z(x−a)” follow the same statistical
distribution. Under conditions made precise below, we show that all such noise fields
are actually Lévy noise fields. Therefore, passing from Gaussian white noise to Lévy
noise naturally extends the approach in [40]. We also give sufficient conditions on
Matérn smoothing kernels k(x) under which the smoothed noise field has continuous
paths. This analysis relies on a detailed analysis of Hilbert-Schmidt embeddings of
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test function spaces to prove that the paths of Lévy noise fields lie within suitable dual
spaces. Technically, this is based on the harmonic analysis of the Hamiltonian operator
of the harmonic oscillator |x|2−∆, following Itô [36]. We determine conditions under
which such dual spaces are mapped to continuous functions by Matérn smoothing
kernels and thus conclude that Zk(x)=“

∫
k(x − y)Z(y)dy” has continuous paths.

By composition with a continuous positive function T of real arguments, we obtain
Lévy models a(x) = T (Zk(x)) of strictly positive random coefficients. The associated
random boundary value problem (1.1) can then be solved strongly, i.e., path-wise for
almost all paths a(x). T (z) = exp(z) should be seen as the standard choice for the
transformation T (z) leading to the well-established log-normal random coefficients, if
the noise field is Gaussian white noise. But other choices of T (z) are of interest, e.g.
a (smoothed) step function which then, in combination with purely Poisson noise,
results in a smoothed version of the penetrating spheres model for two-phase random
composite materials, see e.g. [58].

Our second contribution is a proof of integrability of the random solutions of (1.1).
Avoiding the variational approach, we base our investigations on a priori estimates
of elliptic partial differential equations. These crucially depend on the minimal value
of the coefficient a(x) on the domain D. Given that T (z) assumes finite minimal
values on bounded intervals, the minimal value problem for T (Zk(x)) turns into an
extremal value problem for |Zk(x)| on the domain D. We thus have to control the
tails of the distribution of supx∈D |Zk(x)|. This set of problems has been intensively
studied in the context of empirical processes by exploiting metric entropy estimates
and concentration phenomena [29, 56, 61]. Here we follow this approach for the
Gaussian part of the Lévy field, relying on a metric entropy estimate by Talagrand
[55]. For its Poisson part, standard metric entropy estimates are not available (see
however [56, Chapter 11] for some results for a different class of Lévy processes), as
these are based on the theory of sub-Gaussian processes, and the Poisson part of
a Lévy field is non sub-Gaussian. We instead develop Chernov-like bounds for the
non-Gaussian part under the assumption that the Lévy measure defining the Poisson
contributions has a Laplace transform. Instead of developing a general theory based
on chaining-like arguments, we exploit the explicit representation of the Poisson part
as an infinite sum of smoothed point processes. Combining both estimates for the
suprema of Gaussian and Poisson parts with the a priori estimate, we prove that
u ∈ Ln((Ω,A,P);H1(D)), where n ≥ 1, (Ω,A,P) is the underlying probability space
and H1(D) is the Sobolev space of weakly differentiable functions.

Our paper’s third contribution consists of a suitable adaptation of the Karhuhnen-
Loève (KL) expansion for smoothed Lévy noise fields. As Lévy fields, unlike the Gaus-
sian case, are not determined by their covariance function, we expand the smoothing
kernel function k(x−y) instead of the covariance function. This kernel, by translation
invariance, always has a continuous spectrum as an integral operator on L2(Rd,dx).
Restriction of the field to the domain D, however, only constrains x, and we there-
fore have to ’cut off’ the noise field “Z(y)” and restrict it to some larger domain Λ
containing D. With both variables in k(x− y) restricted to Λ, Mercer’s theorem (e.g.
[41, Theorem 1.80]) provides us with an expansion for k(x− y) as an integral kernel
on L2(Λ,dx). If k(x) is of Matérn type, the effect of the cut-off outside Λ vanishes
exponentially in the distance between D and the boundary of Λ. The expansion of
the kernel function is then restricted to Λ gives k(x − y) =

∑∞
i=1 λiei(x)ei(y) with

the eigenfunctions ei(x) and the eigenvalues λi depending on Λ. Rate estimates for
the uniform convergence of this series are obtained via a thorough spectral analysis
of the integral operator defined by k(x − y) using circular embeddings and refining
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techniques from [11]. Truncating the expansion at N , we obtain an approximation

of Zk(x) by Zk,N (x) =
∑N
j=1 λjej(x)Z(ej) which thus only depends on the finite-

dimensional Lévy distribution of the random vector (Z(e1), . . . , Z(eN )). We obtain
approximate solutions uN to the solution u of (1.1) with a(x) = T (Zk(x)) by replacing
Zk(x) by Zk,N (x). We then prove, under suitable conditions, convergence uN → u in
Ln((Ω,A,P);H1(D)). We also provide convergence rates for the combined exponen-
tial decay in the cut-off to Λ and the truncation of the series via a suitable choice of
Λ(N).

The paper is organised as follows: In Section 2 we recall the theory of generalized
random fields and state results on path properties in dual spaces to certain spaces
of test functions. We also determine the amount of smoothing with Matérn kernels
needed to map such distributions to continuous functions and thus prove continu-
ity of the paths for smoothed generalized random fields. In Section 3 we introduce
Lévy noise and present a classification theorem which states that noise fields with
certain continuity properties that allow ’integration over a region’ and that have ex-
pected values are Lévy noise fields. We also recall the well-known decomposition of
Lévy noise in deterministic, Gaussian and Poisson contributions and derive the rep-
resentation of Poisson noise as an infinite sum over compound Poisson point process.
Section 4 contains the existence of solutions to the random PDE (1.1) and their in-
tegrability properties. In Section 5 we present the convergence of solutions obtained
from finite dimensional approximations of smoothed Lévy random fields and establish
convergence rates. In the last Section 6 we shortly comment on future directions of
research. Numerous technical results are presented in the Appendices A – C.

2. Smoothing of Generalized Random Fields. In this section, we define
Lévy noise fields as a generalization of Gaussian random fields. In contrast to the
latter, realizations of random fields which follow a Lévy distribution cannot be repre-
sented as functions with values defined pointwise, and so more general mathematical
concepts are needed. This is reflected by the term noise, which besides connoting the
perturbation of a signal also refers to the lack of spatial correlation of such random
fields, a feature already exhibited by Gaussian white noise. Such a mathematical
framework is provided by the theory of generalized random fields, the definition and
basic properties of which we recall for the reader’s convenience below.

2.1. Generalized Random Fields. Rather than by points in a subset of Rd,
generalized random fields are families of random variables indexed by elements of an
abstract vector space V , which we will take to be a locally convex space over the
real numbers. Specifically, V is a topological vector space possessing a base of convex
zero-neighborhoods. The assumption of local convexity ensures the existence of a
non-trivial dual space.

For a probability space (Ω,A,P) we denote by L0(Ω,A,P) the vector space of
Borel measurable random variables. As usual, we do not distinguish notationally
between a random variable and its equivalence class resulting from almost sure (a.s.)
equality. Moreover, we set

‖X‖L0 := E [|X| ∧ 1] =

∫

Ω

(|X| ∧ 1) dP, X ∈ L0(Ω,A,P)

and
d0(X,Y ) := ‖X − Y ‖L0 , X, Y ∈ L0(Ω,A,P).

It is easily seen that d0 is a (translation-invariant) metric on L0(Ω,A,P) making
L0(Ω,A,P) a Hausdorff topological vector space. Moreover, since for any ε ∈ (0, 1)
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and X ∈ L0(Ω,A,P) we have

εP(|X| > ε) ≤ ‖X‖L0 ≤ P(|X| > ε) + ε,

it follows that convergence with respect to the metric d0 coincides with convergence
in probability. It is well known that the metric space (L0(Ω,A,P), d0) is complete
(see e.g. [37, Lemma 3.6]).

Definition 2.1 (Generalized Random Field). A generalized random field Z
indexed by a locally convex topological vector space V is a collection of real-valued
random variables {Z(f)}f∈V on a common probability space (Ω,A,P) such that the
following conditions hold:

(i) Linearity: Z(αf + βg) = αZ(f) + βZ(g) a.s. for all f, g ∈ V and α, β ∈ R.
(ii) Stochastic continuity: f → f0 in V implies Z(f)→ Z(f0) in probability.

Thus, a generalized random field on (Ω,A,P) indexed by V is a continuous linear
mapping Z : V → L0(Ω,A,P), where L0(Ω,A,P) is endowed with the metric d0.

We call two generalized random fields Z and Z̃ on probability spaces (Ω,A,P)
and (Ω̃, Ã, P̃) indexed by V equivalent (in law) if their finite-dimensional distributions
coincide, i.e., if

P
(
Z(f1) ∈ A1 ∧ · · · ∧ Z(fn) ∈ An

)
= P̃

(
Z̃(f1) ∈ A1 ∧ · · · ∧ Z̃(fn) ∈ An

)

holds for all n ∈ N, f1, . . . , fn ∈ V and A1, . . . , An ∈ B(R), where B(R) denotes the
Borel σ-algebra on R.

Remark 2.2.
(i) For the (topological) dual V ′ of a metrizable locally convex vector space V

and measurable X : (Ω,A,P)→ (V ′,B), with B a σ-algebra on V ′ for which
the evaluation maps V ′ → R, u 7→ u(f), f ∈ V, are measurable, an application
of Lebesgue’s Dominated Convergence Theorem shows that

Z : V → L0(Ω,A,P), f 7→ (ω 7→ X(ω)(f)) =: X(f) =: Z(f, ω)

is a generalized random field. In other words, in this setting V ′-valued random
variables are generalized random fields. However, for a general (metrizable)
locally convex space V it is not true that every generalized random field Z
indexed by V can be realized (up to equivalence) in the above way by a V ′-
valued random variable. This does, however, hold for nuclear locally convex
spaces V by Minlos’ Theorem, see below.

(ii) Let Ṽ be a locally convex space and let the subspace V ⊆ Ṽ be dense. If
Z : V → L0(Ω,A,P) is a generalized random field, then, due to the fact
that L0(Ω,A,P) endowed with the topology of convergence in probability
is a complete Hausdorff space, it follows that there is a unique continuous
linear extension Z̃ : Ṽ → L0(Ω,A,P) of Z (see e.g. [45, Lemma 22.19]). In
particular, every generalized random field Z on a locally convex space V can
be extended to a unique generalized random field on the completion of V .

In finite dimensions, Bochner’s theorem [52, Theorem 1.4.3] establishes that dis-
tributions of Rd-valued random variables are in one–to–one correspondence with con-
tinuous, positive definite functions ϕ : Rd → C with ϕ(0) = 1 by way of the Fourier
transform as E

[
eiX(f)

]
= ϕ(f) with f ∈ Rd and X(f) = X · f denoting the Eu-

clidean inner product on Rd. Although not every generalized random field indexed
by a locally convex space V can be represented by a V ′-valued random variable as
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mentioned above, the one–to–one correspondence between generalized random fields
(up to equivalence in law) indexed by V and characteristic functionals on V remains
valid in this general setting.

Definition 2.3 (Characteristic Functional). A characteristic functional on a lo-
cally convex space V is a mapping ϕ : V → C with the following properties

(i) ϕ(0) = 1,
(ii) ϕ is continuous,

(iii) ϕ is positive definite, i.e., the matrix [ϕ(fi − fj)]ni,j=1 is Hermitian and positive
semidefinite for all n ∈ N and f1, . . . , fn ∈ V .

The following basic result on generalized random fields can be found e.g. in [36,
Theorem 2.4.5]. Note that positive definite functions on a locally convex space are
continuous if and only if they are continuous at 0, which holds if and only if they are
uniformly continuous, i.e., if for every ε > 0 there is a continuous seminorm p on V
such that |ϕ(f)− ϕ(g)| < ε whenever p(f − g) < 1 [14].

Theorem 2.4. Let V be a locally convex space and ϕ : V → C a characteris-
tic functional. Then there exists a generalized random field Z indexed by V which
is unique (up to equivalence in law) and satisfies ϕ(f) = E

[
eiZ(f)

]
, f ∈ V . Con-

versely, for any generalized random field Z indexed by V , its Fourier transform
ϕ(f) := E

[
eiZ(f)

]
, f ∈ V , is a characteristic functional.

As mentioned in Remark 2.2 (i), it is not always possible to represent a gener-
alized random field Z indexed by a locally convex space V as a V ′-valued random
variable. A sufficent condition for this to hold is that the characteristic functional of
Z be continuous not only with respect to the topology given on V , but also in the
Sazonov topology of V , which is the strongest of all multi-Hilbertian topologies which
are Hilbert–Schmidt-weaker than the topology of V . For a precise definition of the
Sazonov topology we refer to [22] and [36] (where it is referred to as the Kolmogorov-
I-topology).

In general, the Sazonov topology of V is strictly weaker than the original topology
of V . However, a notable exception to this is the case when the locally convex space
V is nuclear. Recall that a locally convex space V is nuclear if there is a directed
family P of continuous Hilbert seminorms on V that generate its topology such that
for every p ∈P there exists q ∈P with p ≤ q and such that the so-called canonical
linking map ipq : Vq → Vp, i.e., the extension of the inclusion from the pre-Hilbert
space (V/{f ∈ V ; q(f) = 0}, q) into the pre-Hilbert space (V/{f ∈ V ; p(f) = 0}, p)
to their respective completions Vq and Vp, is a Hilbert–Schmidt operator.

In order to formulate the version of Minlos’ Theorem which will be crucial for
our considerations, we introduce the following notation. For a continuous seminorm
p on a locally convex space V we denote as above by Vp the local Banach space
corresponding to p, i.e., the completion of the quotient V/{f ∈ V : p(f) = 0}
equipped with the quotient norm associated with p. By abuse of notation we denote
the quotient norm as well as the norm on Vp again by p. Then the dual space V ′p
of Vp can be identified in a canonical way with the subspace {ω ∈ V ′ : ∃C >
0 ∀ f ∈ V : |ω(f)| ≤ Cp(f)} of V ′. Finally, we denote the Borel σ-algebra on V ′

generated by the weak*–topology σ(V ′, V ) by B(V ′). Due to the Banach-Alaoglu-
Bourbaki Theorem, for every continuous seminorm p on V and every n ∈ N the set
{ω ∈ V ′ : |ω(f)| ≤ np(f) ∀ f ∈ V } is σ(V ′, V )-compact which implies V ′p ∈ B(V ′). For
the following version of Minlos’ Theorem, see [22, Proof of Theorem III.1.1] combined
with [60, Theorem I.3.4].
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Theorem 2.5 (Minlos). Let V be a nuclear space and V ′ its topological dual.
For a functional ϕ : V → C the following are equivalent:

(i) ϕ is a characteristic functional.
(ii) There is a probability measure µ on (V ′,B(V ′)) such that its Fourier transform

µ̂ coincides with ϕ, where

(2.1) µ̂(f) :=

∫

V ′
eiω(f) µ(dω), f ∈ V.

Moreover, for a characteristic functional ϕ the probability measure µ in (2.1) is
uniquely determined.

Additionally, if for a characteristic functional ϕ on a nuclear space V there is
a continuous Hilbert seminorm p on V such that ϕ is continuous with respect to p,
then for the corresponding unique probability measure µ on (V ′,B(V ′)) we have that
µ(V ′q ) = 1 for every continuous Hilbert seminorm q on V for which the canonical
linking map ipq : Vq → Vp is Hilbert-Schmidt.

Remark 2.6.
(i) For an arbitrary locally convex space V and any probability measure µ on

(V ′,B(V ′)), the mapping

(V ′,B(V ′), µ)→ R, ω 7→ ω(f)

defines a (scalar) random variable for each f ∈ V . Therefore, the mapping

Z : V → L0(V ′,B(V ′), µ), f 7→ (ω 7→ ω(f))

defines a generalized random field indexed by V which is called the canonical
process associated with µ. It should be noted that the canonical process satisfies
a stronger continuity property than an arbitrary generalized random field since
(Z(fι))ι∈I converges also pointwise on V ′ (in particular µ-almost everywhere)
to Z(f) whenever (fι)ι∈I is a net converging to f in V .

(ii) Let ϕ be a characteristic functional on the nuclear space V which is continuous
with respect to the continuous Hilbert seminorm p and let µ be the corresponding
probability measure on (V ′,B(V ′)). Moreover, let q ≥ p be a continuous Hilbert
seminorm on V such that the canonical linking map ipq is Hilbert-Schmidt. It
is straightforward to show that the trace σ-algebra B(V ′) ∩ V ′q coincides with
B(V ′q ), the Borel σ-algebra of V ′q generated by the weak*–topology σ(V ′q , Vq).
Thus, for the canonical process

Z : Vq → L0(V ′q ,B(V ′q ), µ|V ′q )

associated with the restriction µ|V ′q it holds that whenever D ⊆ Rd is open and
a mapping

D → Vq, x 7→ fx

is continuous, (Z(fx))x∈D is a random field indexed by D which has almost
surely continuous paths. The characteristic function of the random variable
Z(fx) is given by ϕ(fx) for each x ∈ D; note that the characteristic functional
ϕ is uniformly continuous with respect to p by assumption and thus can be
extended in a unique way to a uniformly continuous functional on Vp ⊇ Vq.
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We follow the approach outlined in Remark 2.6 (ii) below for the space S (Rd)
of Schwartz functions on Rd as the index space of generalized random fields Z whose
characteristic functionals are continuous with respect to a specific norm. These ran-
dom fields Z will then be convolved with Matérn kernels to yield random continuous
functions on Rd with known pointwise distributions.

2.2. Generalized random fields indexed by S (Rd) and their convolution
with Matérn kernels. We now set the stage for a more precise characterization of
the path properties of Lévy noise fields. We denote by S = S (Rd) the space of
(real-valued) rapidly decreasing smooth functions on Rd endowed with its standard
topology so that S is a separable nuclear Fréchet space, see e.g. [45]. Clearly, S is
a subspace of L2(Rd).

In view of Minlos’ Theorem 2.5, it will be important for us to know when link-
ing maps between local Hilbert spaces of S are Hilbert-Schmidt. To facilitate this
determination, we introduce a sequence of (semi-)norms on S which generate the
same locally convex topology (cf. [36, Section I.1.3], [45, Example 29.5 (2)], or [50,
Appendix to Section V.3] for the case d = 1) but for which this property can be easily
verified. For k ∈ N0 we denote by hk the k-th Hermite function on R, defined as

hk(x) := (2kk!
√
π)−1/2(−1)kex

2/2

(
d

dx

)k
e−x

2

, x ∈ R,

and for α ∈ Nd0 we denote by hα := hα1 ⊗ · · · ⊗ hαd the tensorized Hermite function

hα(x) :=
∏d
j=1 hαj (xj) on Rd. As is well known, the (hα)α∈Nd0 form an orthonormal

basis of L2(Rd). Denoting the inner product on L2(Rd) by (·, ·), we observe that for
every p ∈ R the set

Sp :=

{
f ∈ L2(Rd) : |f |2p :=

∑

α∈Nd0

(2|α|+ d)2p|(f, hα)|2 <∞
}

is a subspace of L2(Rd) containing S , | · |p is a norm on Sp with associated inner
product

(f, g)p :=
∑

α∈Nd0

(2|α|+ d)2p(f, hα)(hα, g), f, g ∈ Sp,

and Sq ⊆ Sp with continuous (even contractive) inclusion for every p ≤ q. Further-
more, we have that

S =
⋂

p∈R
Sp =

⋂

p≥0

Sp =
⋂

p∈N0

Sp

and (| · |p)p∈R is an increasing family of norms on S which generates the standard
topology on S .

We use the above set of seminorms to construct Hilbert–Schmidt embeddings:

Proposition 2.7. For each p ∈ R and ` > d
2 the linking map

ipp+` : (Sp+`, | · |p+`)→ (Sp, | · |p)
from the local Hilbert space Sp+` to the local Hilbert space Sp is Hilbert-Schmidt.

Proof. Defining

hp,α :=

d∏

j=1

(2αj + 1)−phαj , p ∈ R, α ∈ Nd0,
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it follows that for fixed p ∈ R the family (hp,α)α∈Nd0 is an orthonormal basis of the

pre-Hilbert space (S , | · |p) whose completion we denote by (Sp, | · |p). Because for
β ∈ Nd0, ` ≥ 0 we have

|hp+`,β|2p =
∑

α∈Nd0

(2|α|+ d)2p|(hp+`,β, hα)|2 =
(2|β|+ d)2p

∏d
j=1(2βj + 1)2(p+`)

and because there is 1 ≤ j ≤ d with βj ≥ |β|/d, it follows that

|hp+`,β|2p ≤
(2|β|+ d)2p

(2 |β|d + 1)2(p+`)
=

d2(p+`)

(2|β|+ d)2`
.

Noting that for given k ∈ N0 the number of β ∈ Nd0 for which |β| = k is equal to(
k+d−1
k

)
, we conclude

∑

β∈Nd0

|hp+`,β |2p ≤ d2(p+`)
∞∑

k=0

(
k + d− 1

k

)
1

(2k + d)2`

=
d2(p+`)

(d− 1)!

∞∑

k=0

(k + d− 1)!

k!

1

(2k + d)2`

≤ d2(p+`)

(d− 1)!

∞∑

k=0

(2k + d)d−1−2`

which proves the assertion.

Clearly, for f ∈ S

|||f ||| :=
(
‖f‖2L1(Rd) + ‖f‖2L2(Rd)

)1/2
=
(
‖f‖2L1(Rd) + |f |20

)1/2

defines a continuous norm on S . For m ∈ N,m > d/2, we set

cm :=

∫

Rd

dx

(1 + |x|2)m
,

which is finite. For another suitable constant Cm we conclude using Hölder’s inequality
that, for all f ∈ S ,

|||f |||2 ≤ cm
∫

Rd
(1 + |x|2)m|f(x)|2 dx+

∫

Rd
|f(x)|2 dx

≤ (1 + cm)2m−1

∫

Rd
(1 + |x|2m)|f(x)|2 dx

≤ (1 + cm)(2d)m−1

∫

Rd

(
1 +

d∑

j=1

x2m
j

)
|f(x)|2 dx

= (1 + cm)(2d)m−1

(
|f |20 +

d∑

j=1

|xmj f |20
)

≤ (1 + cm)(2d)mCm|f |2m
2
.

(2.2)

In the last step we have used the estimate that for each m ∈ N there exists Cm > 0
such that

|xmj f |20 ≤ Cm|f |2m2 , for all 1 ≤ j ≤ d and for all f ∈ S ,
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which follows easily by induction from the well-known three-term recurrence relation

xjhα(x) =

√
αj
2
hα−ej (x) +

√
αj + 1

2
hα+ej (x), 1 ≤ j ≤ d, α ∈ Nd0, x ∈ Rd

satisfied by the Hermite functions. Here ej = (δ`,j)1≤`≤d denotes the j-th unit coor-
dinate vector in Rd. Combining the above considerations we can now easily prove the
following theorem.

Theorem 2.8. Let ϕ : S → C be a positive definite functional which is con-
tinuous with respect to the norm |||·||| and which satisfies ϕ(0) = 1. Then there is a
unique probability measure µ on (S ′,B(S ′)) such that µ̂ = ϕ. Moreover, µ(S ′q) = 1

if q > 3d
4 .

Proof. It follows from inequality (2.2) and the continuity of ϕ that ϕ is continuous

with respect to | · |m
2

whenever m > d/2. Because i
m/2
m/2+` is Hilbert-Schmidt for every

` > d/2 by Proposition 2.7, the assertion follows from Minlos’ Theorem 2.5.

For a tempered distribution ω ∈ S ′ and a rapidly decreasing function f ∈ S the
convolution

ω ∗ f : Rd → R, y 7→ 〈ω, τy(f∨)〉 = 〈ωx, f(y − x)〉
is a smooth function, where as usual we denote by u(g) = 〈u, g〉 the application of
u ∈ S ′ to g ∈ S . In addition, (τyg)(x) := g(x − y) denotes the translation of g by
y ∈ Rd, g∨(x) := g(−x) the reflection of g at the origin, and the subscript ωx indicates
that the tempered distribution ω acts on test functions depending on the variable x.

Similarly, for q ∈ N0 and ω ∈ S ′q , whenever f ∈ Sq is a function such that

τy(f∨) ∈ Sq for every y ∈ Rd, the convolution

Rd → R, y 7→ 〈ωx, τy(f∨)〉

is defined and is obviously continuous whenever the mapping

Rd → Sq(Rd), y 7→ τy(f∨)

is continuous. Therefore, whenever ϕ is a |||·|||-continuous characteristic functional on
S with associated probability measure µ on (S ′,B(S ′)), it follows from Theorem
2.8 that for µ-almost all ω the convolution ω ∗ f is a well-defined function on Rd for
each f ∈ Sq, q >

3d
4 , for which τy(f∨) ∈ Sq for every y ∈ Rd, and this convolution

yields a continuous function on Rd whenever

Rd → Sq, y 7→ τy(f∨)

is continuous. We are particularly interested in the case when f is a Matérn kernel.

Definition 2.9. For α ∈ R and m > 0 we introduce the function

k̂α,m : Rd → R, ξ 7→ 1

(|ξ|2 +m2)α

and define the Matérn kernel (with parameters α and m) as the inverse Fourier
transform

kα,m := F−1(k̂α,m).

Note that k̂α,m is a polynomially bounded smooth function and thus belongs to S ′,
hence its inverse Fourier transform is well-defined.
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The proof of the following lemma is somewhat technical and we have relegated it
to Appendix A.

Lemma 2.10. For q ∈ N0, α ∈ R, and m > 0 in the following statements, (i)
implies (ii), (ii) implies (iii), and (iii) implies (iv).

(i) α > d
4 + q + max{0, q−3

2 }.
(ii) For every y ∈ Rd the translation τy(k∨α,m) lies in Sq and the mapping

Rd → (Sq, | · |q), y 7→ τy(k∨α,m)

is continuous.
(iii) For every y ∈ Rd the translation τy(k∨α,m) lies in Sq.

(iv) α > d
4 + q.

In particular, if q ∈ {0, 1, 2, 3} then (ii), (iii), and (iv) above are equivalent.

We can now state sufficient conditions on the amount of smoothing required
in order that a random field with a |||·|||-continuous characteristic functional have
continuous realizations after smoothing by convolution with kα,m.

Theorem 2.11. Let ϕ be a positive definite |||·|||-continuous functional on S =
S (Rd) with ϕ(0) = 1. Then there is a unique probability measure µ on (S ′,B(S ′))
satisfying µ̂ = ϕ and such that for all α > d + max{0, 3d−12

8 }, every m > 0, the
function

(2.3) Rd → R, y 7→ ω ∗ kα,m(y) =
〈
ω, τy(k∨α,m)

〉

is defined and continuous for µ-almost all ω ∈ S ′. Moreover, for fixed y ∈ Rd the
distribution of the random variable

(S ′,B(S ′), µ)→ (R,B(R)), ω 7→ ω ∗ kα,m(y)

has the Fourier transform ϕ
(
τy(k∨α,m)

)
.

Proof. By Theorem 2.8 there is a unique probability measure µ on (S ′,B(S ′))
such that µ̂ = ϕ and µ(S ′q) = 1 whenever q > 3d

4 . Now, for α > d
4 + 3d

4 +

max{0,
3d
4 −3

2 } = d+max{0, 3d−12
8 } there is q > 3d

4 such that α > d
4 +q+max{0, q−3

2 }
so that by Lemma 2.10 the mapping

Rd → (Sq, | · |q), y 7→ τy(k∨α,m)

is correctly defined and continuous which, since µ(S ′q) = 1 and hence µ(S ′ \S ′q) = 0,
implies that for µ-almost all ω ∈ S ′

Rd → C, y 7→
〈
ω, τy(k∨α,m)

〉
= ω ∗ kα,m(y)

is the composition of continuous functions and therefore continuous.
Finally, since ϕ is |||·|||–continuous it follows from inequality (2.2) that ϕ is also |·|p-

continuous for every p > d
4 . In particular, ϕ is | · |q-continuous for q as above. Because

τy(k∨α,m) belongs to Sq, the | · |q-completion of S , there is a sequence (fn)n∈N in S
which converges to τy(k∨α,m) with respect to | · |q. Applying Lebesgue’s Dominated
Convergence Theorem thus yields

ϕ(τy(k∨α,m)) = lim
n→∞

ϕ(fn) = lim
n→∞

∫

S ′
ei〈ω,fn〉 µ(dω)

= lim
n→∞

∫

S ′q

ei〈ω,fn〉µ(dω) =

∫

S ′q

ei〈ω,τy(k∨α,m)〉 µ(dω),

which proves the theorem.
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3. Lévy Random Fields. In this section we employ the setting introduced in
Section 2 in order to construct smoothed Lévy noise fields. These—composed with
suitable transformations—will then be used as random coefficient functions in the
diffusion equation.

3.1. Classification of Noise Fields. In this section we introduce and investi-
gate the class of Lévy noise fields.

Definition 3.1. Let b ∈ R, σ2 ≥ 0, and let ν be a σ-finite Borel measure on
R\{0} satisfying

∫
R\{0}min{1, s2} ν(ds) <∞. Then the function

ψ : R→ C, ψ(t) := ibt− σ2t2

2
+

∫

R\{0}

(
eits − 1− its1{|s|≤1}(s)

)
ν(ds)

is called the Lévy characteristic with characteristic triplet (b, σ2, ν).
A generalized random field Z indexed by S is called a Lévy noise field if there

is a characteristic triplet (b, σ2, ν) such that for the characteristic functional ϕ of Z
there holds

ϕ(f) = exp

(∫

Rd
(ψ ◦ f)(x) dx

)
, f ∈ S ,

where ψ is the Lévy characteristic associated with (b, σ2, ν). (In particular, this as-
sumes ψ ◦ f ∈ L1(Rd) for all f ∈ S .) We then say that Z is associated with the
characteristic triplet (b, σ2, ν).

A classical reference for Lévy noise fields is [28]. See also [2, 1].

Lemma 3.2. A Lévy noise field Z can be decomposed as Z = ZD +ZG +ZJ with
deterministic part ZD, Gaussian white noise ZG, and pure jump noise ZJ , each of
which are independent random fields with characteristic functionals

ϕZD (f) = eib
∫
Rd f(x)dx,

ϕZG(f) = e
− 1

2σ
2‖f‖2

L2(Rd) , and

ϕZJ (f) = e
∫
Rd

∫
R\{0} eisf−1−isf1{|s|≤1}ν(ds)dx,

respectively.

Proof. This is a direct consequence of Definition 3.1, which implies the factoriza-
tion of the characteristic functional ϕZ(f) = ϕZD (f)ϕZG(f)ϕZJ (f).

In view of Lemma 3.2, Lévy noise is seen to be a generalization of Gaussian noise,
to which it simplifies when the pure jump part ZJ is omitted.

Proposition 3.3. Let ψ be a Lévy characteristic with triplet (b, σ2, ν) in which
the Lévy measure satisfies

∫
R\{0} |s|1{|s|>1}(s) ν(ds) <∞. Then,

ϕ : S → C, ϕ(f) := exp

(∫

Rd
(ψ ◦ f)(x) dx

)

is a correctly defined characteristic functional which is continuous with respect to the
norm |||·|||. In particular, there is a Lévy noise field Z (unique up to equivalence in
law) associated with (b, σ2, ν). Moreover, Z is continuous with respect to |||·|||.

Proof. For f ∈ S we have f ∈ L1(Rd) ∩ L2(Rd) so that
∫

Rd

∫

R\{0}
|eisf(x) − 1− isf(x)1{|s|≤1}(s)| ν(ds)dx
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=

∫

Rd

∫

{0<|s|≤1}
|eisf(x) − 1− isf(x)| ν(ds)dx+

∫

Rd

∫

{|s|>1}
|eisf(x) − 1| ν(ds)dx

≤
∫

Rd

∫

{0<|s|≤1}

|s|2|f(x)|2
2

ν(ds)dx+

∫

Rd

∫

{|s|>1}
|s||f(x)| ν(ds)dx

≤1

2

∫

R\{0}
min{1, s2} ν(ds) ‖f‖2L2(Rd) +

∫

{|s|>1}
|s| ν(ds) ‖f‖L1(Rd)

yields ψ ◦ f ∈ L1(Rd) and

‖ψ ◦ f‖L1(Rd) ≤
(
|b|+

∫

{|s|>1}
|s| ν(ds)

)
‖f‖L1(Rd)

+

(
σ2 +

∫
R\{0}min{1, s2} ν(ds)

2

)
‖f‖2L2(Rd).

Thus,

ϕ : S → C, ϕ(f) := exp

(∫

Rd
(ψ ◦ f)(x) dx

)

is correctly defined. Since ϕ(0) = 1, the previous inequality implies that ϕ is contin-
uous at 0 with respect to the norm |||·|||.

Finally, the restriction of ϕ to D(Rd) is positive definite, see [28, Theorem 6 p.
283]. Since ϕ is |||·|||-continuous at 0, the restriction of ϕ to D(Rd) is (uniformly) |||·|||-
continuous. Because the latter subspace of S is |||·|||-dense in S , ϕ is positive definite.
Therefore, by Theorem 2.4 (and inequality (2.2)) there is a generalized random field
Z indexed by S (which is continuous with respect to the |||·|||-norm) whose Fourier
transform is ϕ, which proves the proposition.

Remark 3.4. Convolving a compactly supported continuous function on Rd with
an approximate identity shows that D(Rd) is |||·|||-dense in the compactly supported
continuous functions on Rd. Hence S is dense in L1(Rd) ∩ L2(Rd) when the latter
space is equipped with the norm |||·|||. As noted in Remark 2.2, it thus follows that
for every |||·|||-continuous Lévy noise field Z there is a unique generalized random field
indexed by L1(Rd) ∩ L2(Rd) which extends Z. We denote this extension again by Z.
In particular, for a Borel subset Λ of Rd with finite Lebesgue measure, we can define
the (non-normalized) Λ-average of the Lévy noise field Z by Z(1Λ).

Definition 3.5 (Stationary noise field). A generalized random field Z indexed by
S is called

(i) a noise field if for any choice of index functions f1, . . . , fn ∈ S with mutually
disjoint supports the random variables Z(f1), . . . , Z(fn) are independent;

(ii) a stationary field if for every f ∈ S and each a ∈ Rd the random variables
Z(f) and Z(fa) have the same probability distribution, i.e., Z(f) ∼ Z(fa), where
fa(x) = (τaf)(x) = f(x− a);

(iii) a stationary noise field if it is both a noise field and a stationary field.

Noise fields can be arbitrarily singular, as the distributional derivative of a noise
field is again a noise field. In many situations, one would like to take spatial averages
Z(1A) of a noise field for a bounded and measurable set A ⊆ Rd and also ensure
that this quantity has finite expectation. Note that for such A, the indicator function
1A ∈ V = L1(Rd) ∩ L2(Rd), but 1A 6∈ S which rules out too singular distributional
noises. In the setting outlined above, we obtain the following characterization of
stationarity:
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Theorem 3.6. Let Z be a generalized random field on (Ω,A,P) indexed by S
which is |||·|||-continuous. Assume that the unique |||·|||-continuous extension of Z to
L1(Rd) ∩ L2(Rd) satisfies Z(f) ∈ L1(Ω,A,P) for all f ∈ L1(Rd) ∩ L2(Rd). Then the
following are equivalent.

(i) Z is a Lévy noise field.
(ii) Z is a stationary noise field.

Proof. Assuming first that Z is a Lévy noise field, there is a characteristic triplet
(b, σ2, ν) with associated Lévy characteristic ψ such that the Fourier transform ϕ
of Z satisfies ϕ(f) = exp

( ∫
Rd(ψ ◦ f) dx

)
, f ∈ S . By the translation invariance of

Lebesgue measure we conclude that for all a ∈ Rd there holds ϕ(fa) = ϕ(f), i.e., the
random variables Z(fa) and Z(f) have the same characteristic function and therefore
Z(f) ∼ Z(fa). Hence Z is a stationary field.

Now, for f1, . . . , fn ∈ S with disjoint supports it follows for all (κ1, . . . , κn) ∈ Rn
and every x ∈ Rd that ψ

(∑n
j=1 κjfj(x)

)
=
∑n
j=1 ψ(κjfj(x)) because at most one of

the summands is different from 0 and ψ(0) = 0. Hence,

E
[
ei

∑n
j=1 κjZ(fj)

]
= E

[
eiZ(

∑n
j=1 κjfj)

]
= exp

(∫

Rd
ψ
( n∑

j=1

κjfj(x)
)

dx

)

=

n∏

j=1

exp

(∫

Rd
ψ(κjfj(x)) dx

)
=

n∏

j=1

E
[
eiκjZ(fj)

]
,

i.e., the Fourier transform of the joint distribution of the random variables Z(f1), . . . ,
Z(fn) equals the product of the characteristic functions of the Z(fj), thus Z(f1), . . . ,
Z(fn) are independent, so that (i) implies (ii).

In order to show that (ii) implies (i) we first observe that the |||·|||-continuity of Z
allows, as described in Remark 3.4, to extend Z uniquely to a generalized random field
on L1(Rd) ∩ L2(Rd), where we equip the latter with the norm |||·|||. We denote this
extension again by Z. Since τa is a continuous linear operator on S with respect to
the norm |||·|||, it follows by the |||·|||-density of S in L1(Rd)∩L2(Rd) that Z(fa) ∼ Z(f)
for all f ∈ L1(Rd) ∩ L2(Rd).

By definition, a box in Rd is a set of the form
∏d
j=1[βj , γj) where βj , γj ∈ R, 1 ≤

j ≤ d with γj − βj > 0 independent of j, the so-called (side) length of the box.

Let Λ :=
∏d
j=1[βj , γj) be a box of length L > 0. We subdivide Λ into nd non-

intersecting boxes Λ`, each of side length L/n. Thus for each 1 ≤ `, k ≤ nd we have
Z(1Λ`) ∼ Z(1Λk) by the (extended) stationarity of Z. It follows from the construction

that there are βj , γj ∈ R, γj −βj = L/n, 1 ≤ j ≤ d as well as a(1), . . . , a(nd) ∈ Rd such
that

Λ` =

d∏

j=1

[a
(`)
j + βj , a

(`)
j + γj), ` = 1, 2, . . . , nd.

For ε ∈ (0, L/2n) we define

Λε` :=

d∏

j=1

[a
(`)
j + βj + ε, a

(`)
j + γj − ε), ` = 1, 2, . . . , nd.

Moreover, let φ ∈ C∞c (Rd) be such that suppφ ⊂ (−1, 1)d, φ ≥ 0, and
∫
Rd φ dx =

1. We define φε(x) := ε−dφ(x/ε), ε > 0. Then, for ε ∈ (0, L/2n) it follows that
φε ∗ 1Λε`

, 1 ≤ ` ≤ nd, are functions in C∞c (Rd) satisfying
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(1) ∀ 1 ≤ ` ≤ nd, ε ∈ (0, L/2n) : suppφε ∗ 1Λε`
⊆ Λ`,

(2) ∀ 1 ≤ ` ≤ nd, ε ∈ (0, L/2n) : supx∈Rd |φε ∗ 1Λε`
| ≤ 1.

In particular, for fixed ε ∈ (0, L/2n) the functions φε ∗1Λε`
, 1 ≤ ` ≤ nd, have mutually

disjoint supports and, by Lebesgue’s Dominanted Convergence Theorem, limε→0 φε ∗
1Λε`

= 1Λ` with respect to |||·|||.
By the |||·|||-continuity of Z, Z(φε ∗ 1Λε`

) → Z(1Λ`) in probability if ε ↘ 0, see
Remark 2.2 (ii). Consequently, also the vector (Z(φε ∗ 1Λε1

), . . . , Z(φε ∗ 1Λε
nd

)) con-

verges in probability to (Z(1Λ1
), . . . , Z(1Λ

nd
)). As the random variables Z(φε ∗ 1Λε`

)
are independent, their joint characteristic function factors to a product of individual
characteristic functions, each converging to the characteristic function of the corre-
sponding Z(1Λ`) (as convergence in probability is stronger than convergence in law,
which is equivalent to the point-wise convergence of characteristic functions). Thus,
the joint characteristic function of (Z(1Λ1), . . . , Z(1Λ

nd
)), which coincides with the

limit of the joint characteristic function of (Z(φε ∗ 1Λε1
), . . . , Z(φε ∗ 1Λε

nd
)), factors

to a product of the characteristic functions of Z(1Λ`). This implies that the random
variables Z(1Λ`) are independent.

Defining

B`,n :=

[
β1 + (`− 1)

L

n
, β1 + `

L

n

)
×

n∏

j=2

[βj , γj), 1 ≤ ` ≤ n,

we obtain a partition of Λ into n sets of which each is a disjoint union of a mutu-
ally disjoint subfamily of the Λ1, . . . ,Λnd such that Z(1B1,n

), . . . , Z(1Bn,n) are i.i.d.
random variables. Obviously, Z(1Λ) =

∑n
`=1 Z(1B`,n) and, since n ∈ N was chosen

arbitrarily, Z(1Λ) has an infinitely divisible probability law. Thus, by the Lévy-
Khinchine Theorem [53, Theorem 8.1] there is a uniquely determined characteristic
triplet (bΛ, σ

2
Λ, νΛ) with associated Lévy characteristic ψΛ such that

E
[
eiZ(1Λ)

]
= e|Λ|ψΛ(κ) and E

[
eiκZ(1Λ`

)
]

= e|Λ`|ψΛ(α),

for all κ ∈ R and ` = 1, . . . , nd, where for a Borel set B ⊆ Rd we denote by |B| its
Lebesgue measure.

Let now Λ′ be a box of length L′ > 0 such that L/L′ is a rational number
n/m, n,m ∈ N. As above, we subdivide Λ into nd mutually disjoint boxes Λ` of
side length L/n and Λ′ into md mutually disjoint boxes Λ′k of side length L′/m.
Because L/n = L′/m, it follows from the (extended) stationarity of Z that the random
variables Z(1Λ`) and Z(1Λ′k

) have the same distribution, 1 ≤ ` ≤ nd, 1 ≤ k ≤ md.
This implies

e|Λ`|ψΛ(κ) = e|Λ
′
k|ψΛ′ (κ) ∀κ ∈ R, 1 ≤ ` ≤ nd, 1 ≤ k ≤ md,

so that by |Λl| = (L/n)d = (L/m)d = |Λ′k| and the continuity of the Lévy character-
istics ψΛ and ψΛ′ it follows that there is k ∈ Z with ψΛ(κ) = ψΛ′(κ) + 2π ik. Since
ψΛ(0) = 0 = ψΛ′(0) we conclude ψΛ = ψΛ′ . Hence, there is a characteristic triplet
(b, σ2, ν) with associated Lévy characteristic ψ such that for all boxes Λ with rational
side length E

[
eiκZ(1Λ)

]
= e|Λ|ψ(κ), κ ∈ R. Because Z(1Λ) ∈ L1(Ω,A,P) it follows

from [53, Example 25.12] that
∫
{|s|>1} |s| ν(ds) <∞ so that by Proposition 3.3

ϕψ : S → C, f 7→ exp
(∫

Rd
(ψ ◦ f)(x) dx

)
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is a correctly defined, positive definite functional which is |||·|||-continuous and which
can be extended in a unique way to a |||·|||-continuous characteristic functional on
L1(Rd) ∩ L2(Rd).

Now let Λ(1), . . . ,Λ(n) be mutually disjoint boxes in Rd of respective side lengths
Lj ∈ Q. By the same arguments as above for the Λ1, . . . ,Λn we obtain via mollification
of the indicator functions of suitably shrunk boxes and the fact that Z is a noise
field, that Z(1Λ(1)), . . . , Z(1Λ(n)) are independent. Considering the simple function
f =

∑n
j=1 κj1Λ(j) , we obtain

ϕ(f) = E
[
eiZ(f)

]
=

n∏

j=1

e|Λ
(j)|ψ =

n∏

j=1

e
∫
Λ(j) ψ(κj) dx = e

∫
Rd

∑n
j=1 ψ(κj)1Λ(j) dx

= e
∫
Rd (ψ◦f)(x) dx = ϕψ(f),

(3.1)

where we have used again that for functions with mutually disjoint (essential) supports
f1, . . . , fn ∈ L1(Rd) ∩ L2(Rd) we have ψ(

∑
j fj) =

∑
j ψ(fj) due to ψ(0) = 0.

Finally, since simple functions of the above form are |||·|||-dense in L1(Rd)∩L2(Rd)
and ϕ as well as ϕψ are |||·|||-continuous it follows from (3.1) that ϕ(f) = ϕψ(f) for
all f ∈ L1(Rd) ∩ L2(Rd). In particular, Z is a Lévy noise field.

For computational purposes such as quadrature or Karhunen-Loève expansion,
knowledge about the expectation of polynomial expressions in the random fields is
needed. It is thus essential to calculate the moments of Lévy noise fields.

Proposition 3.7. Let Z be a |||·|||-continuous Lévy noise field with characteristic
triplet (b, σ2, ν). Suppose the Lévy measure ν is such that the following integrals exist
and are finite

b1 :=

∫

{|s|>1}
s ν(ds) and bn :=

∫

R\{0}
sn ν(ds), n ∈ N, n ≥ 2.

Then Z(f) has moments of all orders for every f ∈ S and

E




n∏

j=1

Z(fj)


 =

∑

I∈P(n)

I={I1,...,Ik}

k∏

`=1

c|I`|

∫

Rd

∏

j∈I`
fj dx.

Here, P(n) is the collection of all partitions of {1, . . . , n} into non-intersecting and
non-empty sets {I1, . . . , Ik}, where k is arbitrary. |I`| denotes the number of elements
in I` and cn is a sequence of constants defined as

cn =





b+ b1 : n = 1,

σ2 + b2 : n = 2,

bn : n ≥ 3.

Proof. Note that this is the cumulant expansion of moments. It can be obtained
by application of Fàa di Bruno’s formula to ϕ(f) = exp{

∫
ψ ◦ fdx}. For details, see

e.g. [2, Proposition 3.6]. A complete proof can be found in Appendix B.

3.2. Smoothed Stationary Noise Fields. So far we have considered |||·|||-
continuous stationary noise fields Z which by definition are indexed by S (Rd) but can
be extended in a unique way to generalized random fields indexed by L1(Rd)∩L2(Rd)
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and this extension will again be denoted by Z. However, we are interested in random
functions on (an open, bounded subset D of) Rd which will serve as conductivity
functions/coefficients for a stationary diffusion equation. We therefore introduce the
following notion.

Definition 3.8 (Smoothed Random Fields). For a |||·|||-continuous stationary
noise field Z on the probability space (Ω,A,P) and a function k ∈ L1(Rd) ∩ L2(Rd)
we define the smoothed random field (with window function, smoothing function, or
smoothing kernel k) as the family of random variables

Zk(x) := Z(kx) ∈ L0(Ω,A,P), x ∈ Rd,

where kx := τx(k∨) = k(x−·). More generally, we shall call a bivariate k : Rd×Rd →
R a smoothing function (window function) if k(x, ·) ∈ L1(Rd) ∩ L2(Rd) for every
x ∈ Rd and Rd → (L1(Rd) ∩ L2(Rd), |||·|||), x 7→ k(x, ·) is continuous. For a bivariate
smoothing function k we set (using the same notation) kx := k(x, ·) and define the
smoothed random field with smoothing function k as the family of random variables
Zk(x) := Z(kx) ∈ L0(Ω,A,P), x ∈ Rd.

Remark 3.9.
(i) Since by Minlos’ Theorem 2.5 every generalized random field Z on (Ω,A,P)

indexed by S (Rd) is given by a S ′(Rd)-valued random variable (again de-
noted by Z), it follows for a window function k ∈ S (Rd) that

Rd → R, x 7→ Z(kx) = 〈Z, k(x− ·)〉 = (Z ∗ k)(x)

is P-almost surely a smooth function as a convolution of a random tempered
distribution with a Schwartz function.

(ii) For stationary noise fields Z it follows from the definition that, for an arbi-
trary window function k ∈ S (Rd), the random variables of the associated
smoothed random field Zk are identically distributed, i.e., Zk(x1) ∼ Zk(x2)
for every x1, x2 ∈ Rd. Moreover, whenever x1, . . . , xn ∈ Rd are such that
τx1

f, . . . , τxnf have mutually disjoint supports, then the random variables
Zk(x1), . . . , Zk(xn) are independent. It follows by standard arguments al-
ready employed in the proof of Theorem 3.6 that for a |||·|||-continuous station-
ary noise field Z the “noise field property” as well as stationarity not only hold
for f1, . . . , fn, f ∈ S (Rd) but for arbitrary f1, . . . , fn, f ∈ L1(Rd) ∩ L2(Rd).

(iii) By Theorem 2.8 it follows that every |||·|||-continuous stationary noise field Z
is given by a S ′q(Rd)-valued random variable, for an arbitrary q > 3d

4 , where

we use the notation introduced in Section 2.2. Therefore, if k ∈ Sq(Rd) is a
function such that

(3.2) Rd → Sq(Rd), x 7→ τxk

is correctly defined, we may consider the smoothed random field Zk with
window function k even if k /∈ L1(Rd) ∩ L2(Rd). Moreover, if the function
in (3.2) is also continuous (when Sq(Rd) is endowed with the Hilbert space
norm | · |q) the resulting smoothed random field is almost surely a continuous
function on Rd. For Matérn kernels as window functions we considered this
smoothing procedure in Theorem 2.11.

(iv) One can also view the smoothed Lévy field Zkα,m as the distributional solution
of the linear stochastic pseudodifferential equation

(−∆ +m2)αZkα,m(f) = Z(f), ∀f ∈ S ,
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where Z is a Lévy noise field and ∆ denotes the Laplacian, see [2, 1]. In this
sense, our approach directly extends the approach given in [40] for sampling
Gaussian fields.

3.3. Examples. We now present some examples for smoothed Lévy random
fields.

3.3.1. Gaussian Fields. Gaussian random fields are obtained as a special case
of Lévy fields by setting ν = 0. The generalized random field associated with the char-
acteristic triplet (b, σ2, 0) results in a stationary, uncorrelated noise field denoted by

G with characteristic functional ϕG(f) = exp
(
ib
∫
Rd f(y) dy − σ2

2 ‖f‖2L2(Rd)

)
. Since

b corresponds to a deterministic background field, we obtain classical white noise for
b = 0. For f ∈ L1(Rd)∩L2(Rd), the corresponding random variable G(f) has variance
σ2‖f‖L2(Rd).

For the Gaussian random field smoothed with window function k ∈ L1(Rd) ∩
L2(Rd) it follows that G(kx) has a Gaussian distribution with mean b

∫
Rd k(y) dy and

variance σ2
∫
Rd k

2(y) dy for each x ∈ Rd. Moreover, a straightforward calculation
shows

(3.3) Cov(Gk(x1), Gk(x2)) = σ2

∫

Rd
k(x1 − τ)k(x2 − τ) dτ = σ2(k∨ ∗ k)(x1 − x2).

In particular, setting k = kα,m we obtain Cov(Gk(x1), Gk(x2)) = σ2k2α,m(x1 − x2),
which is the usual Matérn covariance function with smoothness parameter 2α.

Remark 3.10. In connection with Lemma 4.4 one can see from the preceding that
the lower bound α > d in d = 1, 2, 3 obtained in Theorem 2.11 is not optimal for
the Gaussian case, where 2α > d is sufficient to obtain a continuous modification of
Zkα,m(x) by the Kolmogorov continuity criterion for random fields [38].

3.3.2. Compound Poisson Random Fields. As an example for a Lévy noise
field, we consider a compound Poisson random field, which is a special case with finite
jump activity.

Definition 3.11 (Compound Poisson Random Field). Let ν be a finite Lévy
measure on R\{0}. Setting b :=

∫
{0<|s|≤1} sdν we call the generalized random field

associated with the characteristic triplet (b, 0, ν) a compound Poisson random field,
denoted by P .

The associated characteristic functional is given by

(3.4) ϕP (f) = exp

(∫

Rd

∫

R\{0}

(
eisf(x) − 1

)
ν(ds) dx

)
, f ∈ L1(Rd) ∩ L2(Rd).

Let f ∈ L1(Rd) ∩ L2(Rd) with essential support in a region Λ ⊆ Rd with |Λ| < ∞.
As the Lévy measure ν is finite, we define an intensity parameter λ := ν(R\{0}) and
obtain a probability measure ν̃ on R by setting ν̃ := λ−1ν and ν̃({0}) := 0.

Now, let (Ω,A,P) be a probability space, let NΛ be a Poisson-distributed random
variable with intensity λ|Λ|, and let (X1, S1), (X2, S2), . . . be a sequence of Rd×R\{0}-
valued random variables which are identically distributed with (X1, S1) ∼ dx

|Λ| ⊗ ν̃,

where dx is restricted to Λ, and such that NΛ, (X1, S1), (X2, S2), . . . are independent.

We define PΛ :=
∑NΛ

j=1 SjδXj . Let in addition {Λj}j∈N denote a partition of Rd
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such that any compact set intersects at most finitely many Λj and let the PΛj be
mutually independent. We set P =

∑∞
j=1 PΛj . For f ∈ S with compact support let

I = {j ∈ N : Λj ∩ suppf 6= ∅}. Then,

ϕP (f) = E
[
eiP (f)

]
= E

[
ei

∑
j∈I PΛj

(f)
]

=
∏

j∈I
E
[
eiPΛj

(f)
]

=
∏

j∈I

∞∑

`j=1

P(NΛj = `j)

`j∏

rj=1

E
[
e
iS(j)
rj
f(X(j)

rj
)
]

=
∏

j∈I

∞∑

`j=1

e−λ|Λj |
(λ|Λj |)`j

`j !

(∫

Λj

∫

R
eisf(x) ν̃(ds)

dx

|Λj |

)`j

=
∏

j∈I
exp

(
λ

∫

Λj

∫

R
(eisf(x) − 1) ν̃(ds) dx

)

= exp

(∫

Rd

∫

R\{0}
(eisf(x) − 1) ν(ds) dx

)
.

(3.5)

As the set of compactly supported Schwartz test functions is dense in S , we conclude
(see Remark 2.2 (ii)) that we can extend P (f) to S . As the characteristic functionals
coincide, the so constructed random field P (f) coincides with the field from Theorem
2.5 up to equivalence in law. Using the Borel-Cantelli lemma, it is an easy exercise to
show that also in this representation, the locally finite and discrete signed measure P
actually is a tempered distribution P-a.s..

For the smoothed compound Poisson noise field, we obtain Pk =
∑∞
j=1 PΛj ,k. Let

us assume that k is a continuous, bounded function in L1(Rd) (and hence also in
L2(Rd)), then

PΛj ,k(x) =

NΛj∑

`=1

S
(j)
` k(x−X(j)

` )

shows that PΛj ,k(x) is represented as a continuous function. Although this does not
immediately imply that this is also true for Pk(x), it seems likely that this is true if
k(x) has some global uniform continuity and decays sufficiently fast, see [1, Theorem
3.2] for a related argument.

Remark 3.12. As a useful estimate, we note that the absolute value of the signed

measure |P | is given by
∑
j=1 |PΛj | and |PΛj | =

∑NΛj

`=1 |S
(j)
` | δX(j)

`

holds P-a.s. We

therefore conclude that almost surely

(3.6) |Pk(x)| ≤ |P ||k|(x) ∀x ∈ Rd

holds P-almost surely. Note that the right hand side, for fixed x, is almost surely
finite, as clearly |P | also is a compound Poisson noise field with characteristic triplet
(b+, 0, ν+), where ν+ is the image measure of ν under the mapping s 7→ |s|. Clearly,
ν+ is supported on (0,∞).

3.3.3. Lévy Noise of Infinite Activity. Here we only consider the case where∫
{|s|≤1} |s| ν(ds) <∞. In this case, the deterministic compensator term for the small

jumps
∫
R\{0} s1{|s|≤1}(s) ν(ds) can still be subsumed into the constant b and the
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.

Fig. 1. Realizations of smoothed noise fields: Gaussian (left), Poisson (middle) and bi-gamma
(right) – each with the same Matérn covariance function.

expression for the characteristic functional (3.4) remains valid. Despite these as-
sumptions, important examples such as (bi-) Gamma distributions with ν(ds) =

v1{s>0}(s)
e−ws

s ds (ν(ds) = v e−w|s|

|s| ds), v, w > 0, are included. As in this case and

in others the jump measure ν is infinite, the representation given in the compound
Poisson case has to be extended as follows: The sets Θ0 = {s ∈ R : |s| > 1} and
Θ` = {s ∈ R : 1

` ≥ |s| > 1
`+1} form a partition of R \ {0}. Then the Lévy mea-

sures ν`(ds) = 1Θ`(s)ν(ds) are all finite and define independent compound Poisson
processes P`. With a calculation similar to (3.5), we deduce that (3.4) is still valid
and the same applies to (3.6), where |P | = ∑∞

`=1 |P`|. Also, |P | is a Lévy noise with
triplet (b+, 0, ν+) and the r.h.s. of (3.6) is P-a.s. true ∀x ∈ Rd also in this case.
Figure 1 shows sample paths of Gaussian, Poisson (compound Poisson with ν = δ1)
and bi-directional gamma noise fields with identical covariance.

4. Existence of Moments of Solutions to Random Diffusion Equation.
In this section we first construct pathwise solutions to the diffusion equation with
transformed smoothed Lévy random fields as coefficients. After establishing a connec-
tion to extreme value theory, based on an estimate due to Talagrand for the Gaussian
part combined with a large deviation-type estimate for the Poisson part, we identify
sufficient conditions for the moments of the solution exist.

4.1. Pathwise Existence and Measurability of Solutions. Given a domain
D ⊂ Rd, i.e. D is open, bounded, and connected with a Lipschitz boundary ∂D, a
measurable partition of its boundary ∂D = ∂D ∪ ∂N such that ∂D ∩ ∂N = ∅ and such
that ∂D has positive surface measure, we consider the boundary value problem for
the stationary diffusion equation

(4.1)




−∇ · (a∇u) = f in D,

u = gD along ∂D,
n · a∇u = gN along ∂N ,

where f ∈ L2(D) is a given source term, gD ∈ H
1
2 (∂D) denotes given Dirichlet

boundary data, gN ∈ H−
1
2 (∂N ) given Neumann boundary data, and n denotes the

unit outward normal vector along ∂D. The coefficient function a ∈ L∞(D) models
the conductivity throughout the domain D. As usual, we interpret (4.1) in the weak
sense.

The boundary value problem (4.1) models a great variety of phenomena in the
physical sciences, among these groundwater flow in a porous medium governed by
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Darcy’s law, which expresses the (pointwise) volumetric flux as a function of the hy-
draulic head u by −a(x)∇u(x). In such a setting, the precise value of the conductivity
coefficient is typically uncertain, e.g. derived from sparse information based on limited
observations. Modeling such uncertainty by introducing a probability distribution on
the set of admissible coefficient functions a results in a random PDE.

We now model the coefficient function a as a transformed smoothed random
field a(x) = T (Zk(x)) with a suitable Borel-measurable real-valued function T and a
|||·|||-continuous stationary noise field Z smoothed by a window function k ∈ L1(Rd)∩
L2(Rd). Our goal is the estimation of quantities of interest associated with the solution
u of the random boundary value problem such as statistical moments, the probability
of certain events or the expected or maximal flow through a subdomain or boundary.

As a first step, we establish the pathwise existence and uniqueness of solutions.
For each ω ∈ Ω, the assumption

(4.2) 0 < ess inf
x∈D

a(x, ω) ≤ ess sup
x∈D

a(x, ω) <∞

ensures that the differential operator in the boundary value problem (4.1) obtained
by setting a to be a realization a(·, ω) of the random field a = T ◦Zk is strictly elliptic.
Hence, there exists a unique u = u(·, ω) ∈ H1(D) which solves (4.1) with a = a(·, ω).

Lemma 4.1.
a) For a ∈ L∞(D) with ess inf a > 0, f ∈ L2(D), gD ∈ H

1
2 (∂D), and gN ∈

H−
1
2 (∂N ), the problem (4.1) has a unique solution u ∈ H1(D). Moreover,

there is a constant C ≥ 1 independent of a, f, gD, and gN such that

(4.3) ‖u‖H1(D) ≤ C
1 + ‖a‖∞
ess inf a

(
‖f‖L2(D) + ‖gD‖

H
1
2 (∂D)

+ ‖gN‖
H−

1
2 (∂N )

)
.

One can choose C = (1 + C2
P ) max{1, 2‖E‖, ‖ tr ‖}, where CP > 0 only de-

pends on D and ∂D and where E : H1/2(∂D)→ H1(D) denotes an extension
operator and tr : H1(D)→ H1/2(∂D) the trace operator.

b) Let Z be a |||·|||-continuous generalized random field and k ∈ L1 ∩ L2(Rd) a
window function such that the random field (Zk(x))x∈Rd , has almost surely
continuous paths. Then for a strictly positive, locally Lipschitz continuous
function T on R, we have for the random conductivity a := T ◦ Zk ∈ L∞(D)
as well as ess inf a > 0 almost surely. Denoting the (almost surely) existing
solution of (4.1) with conductivity function a(·, ω) by u(·, ω), the mapping
ω 7→ u(·, ω) is an H1(D)-valued, Borel-measurable random variable.

c) Let Z be a |||·|||-continuous generalized random field and let kα,m be a Matérn
kernel with α > d + max{0, 3d−12

8 }. Then the random field (Zkα,m(x))x∈Rd
has almost surely continuous paths. The same assertion holds for α > d/2 in
case Z is a Gaussian random field.

Proof. Existence and uniqueness in a) are well known and can be found in many
textbooks on elliptic boundary value problems. However, as we could not find a
reference for the a priori bound (4.3), we provide a brief sketch of its proof for the

reader’s convenience. Denoting by tr the trace operator from H1(D) to H
1
2 (∂D), we

seek u ∈ H1(D) with tr(u) = gD on ∂D and

∫

D

a∇u · ∇v dx =

∫

∂N

gN tr(v) dσ +

∫

D

[fv − a∇(EgD) · ∇v] dx (=: `(v))(4.4)
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for all v ∈ H1
D(D) := {w ∈ H1(D); tr(v) = 0 on ∂D}, where E denotes an extension

operator from H
1
2 (∂D) to H1(D). By [59, Theorem 6.1.5.4 (page 358)] (and [44,

Theorem 3.29, Theorem 3.30]), the left-hand side of (4.4) defines an inner product
(·, ·)a on the closed subspace H1

D(D) ⊂ H1(D) whose associated norm ‖ · ‖a satisfies,
for some suitable CP > 0,

(4.5)

√
ess inf a

1 + C2
P

‖v‖H1(D) ≤ ‖v‖a ≤ ‖a‖∞‖v‖H1(D) ∀ v ∈ H1
D(D).

Applying Riesz’ Representation Theorem to the continuous linear functional ` on the
right in (4.4) gives a unique v` ∈ H1

D(D) with (v`, v)a = `(v) ∀ v ∈ H1
D(D) and

‖v`‖H1(D) ≤
1 + C2

P

ess inf a

(
‖f‖L2(D) + ‖a‖∞‖E‖‖gD‖

H
1
2 (∂D)

+ ‖gN‖
H−

1
2 (∂N )

‖ tr ‖
)
.

Hence u := v` +EgD is the unique (weak) solution of (4.1) and the desired inequality
follows with C := (1 + C2

P ) max{1, 2‖E‖, ‖ tr ‖}.
To prove b), we first show that (Ω,A,P) → C(D̄), ω 7→ Zk(·, ω) is measurable

with respect to the Borel σ-algebra generated by the ‖ · ‖∞-norm. In fact, as Zk(x) ∈
L0(Ω,A,P), x ∈ Rd, for any q ∈ C(D̄) and ε > 0 we have that

Z−1
k

(
Bε(q)

)
= {‖Zk − q‖∞ ≤ ε} =

⋂

x∈D̄∩Qd
{|Zk(x)− q(x)| ≤ ε}

is measurable. Since (C(D̄), ‖ · ‖∞) is separable, every open U ⊆ C(D̄) is a countable
union of open balls Bε(q), so the above implies that {Zk ∈ U} is measurable for any
open U ⊆ C(D̄).

Furthermore, due to the local Lipschitz continuity of T , q 7→ T ◦ q is ‖ · ‖∞-
continuous on C(D̄) and thus ‖ · ‖∞-Borel measurable. To see that for fixed f ∈
L2(D), gD ∈ H

1
2 (∂D), and gN ∈ H−

1
2 (∂N ) the solution map

C+(D̄) := {a ∈ C(D̄); inf a > 0} → H1(D), a 7→ ua

is continuous, where ua denotes the unique solution to (4.1) with conductivity a, cf.
[32] or the methods applied in Section 5. Thus, u ∈ L0(Ω, H1(D)), i.e. b) holds.

Finally, c) is an immediate consequence of Theorem 2.11 and Remark 3.10.

4.2. Integrability of the Solution. In this subsection we investigate the in-
tegrability of solutions to the boundary value problem (4.1) with random diffusion
coefficient a given by a transformed smoothed Lévy noise field. More generally, we
are interested in the existence of moments of the Sobolev norm of solutions. Our
first result in this direction states that the moments of the weak solution u can be
estimated using the extreme values of the random diffusion coefficient a = T ◦ Zk.

Lemma 4.2. Let Z be a |||·|||-continuous generalized random field and let k ∈
L1(Rd) ∩ L2(Rd) be a window function such that (Zk(x))x∈Rd has almost surely con-
tinuous paths. Moreover, let T be locally Lipschitz on R such that with h ≥ 0, B, ρ > 0

it holds that B−1e−ρ|z|
h ≤ T (z) ≤ Beρ|z|

h

for all z ∈ R.
Then, for the random conductivity a := T ◦ Zk there is C ≥ 1 such that for all

f ∈ L2(D), gD ∈ H
1
2 (∂D), and gN ∈ H−

1
2 (∂N ) the solution u to the random boundary

value problem (4.1) satisfies

E
[
‖u‖nH1(D)

]
≤ C̃n2n−1(Bn +B2n)

∞∑

j=0

e2nρ(j+1)h P(sup
x∈D
|Zk(x)| ≥ j), ∀n ∈ N
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with C̃ = C(‖f‖L2(D) + ‖gD‖
H

1
2 (∂D)

+ ‖gN‖
H−

1
2 (∂N )

).

Proof. By assumption, there is a P-null set N ∈ A such that (Zk(x))x∈Rd has
continuous paths on N c. Thus, by setting the following functions equal to zero on N
as necessary, both

‖a‖∞ = sup
x∈D

T (Zk(x)) = sup
x∈D∩Qd

T (Zk(x))

and
ess inf a = inf

x∈D
T (Zk(x)) = inf

x∈D∩Qd
T (Zk(x))

are measurable. Applying Lemma 4.1 a) and the law of total probability yields

C̃−nE
[
‖u‖nH1(D)

]
≤ E

[(
1 + supx∈D T (Zk(x))

infx∈D T (Zk(x))

)n]

≤ E

[
(1 +B supx∈D eρ|Zk(x)|h)n

(B infx∈D eρ|Zk(x)|h)−n

]

≤ E

[
2n−1 + 2n−1Bnenρ supx∈D |Zk(x)|h

B−ne−nρ supx∈D |Zk(x)|h

]
≤ 2n−1(Bn +B2n)E

[
e2nρ supx∈D |Zk(x)|h

]

≤ 2n−1(Bn +B2n)
∞∑

j=0

E

[
e2nρ(j+1)h |j ≤ sup

x∈D
|Zk(x)| < j + 1

]
P(sup

x∈D
|Zk(x)| ≥ j)

≤ 2n−1(Bn +B2n)
∞∑

j=0

e2nρ(j+1)hP(sup
x∈D
|Zk(x)| ≥ j).

Lemma 4.2 shows the need for a sufficiently sharp estimate of the probabilities
P(supx∈D|Zk(x)| ≥ j), j ∈ N. For a smoothed Lévy noise field Zk we obtain such
an estimate by decomposing Zk into its Gaussian part Gk and its Poisson part Pk
and then separately estimating the extreme values of each. For the estimate of the
Gaussian part, the following result due to Talagrand will be crucial.

Lemma 4.3. (Talagrand, [55, Thm. 2.4]) Let (G(x))x∈D be a centered Gaussian
field with a.s. continuous paths and let σ̄2 = supx∈D E[G(x)2]. Consider the canonical

distance d(x, y) := E
[
(G(x)−G(y))2

]1/2
on D and let N(D, d, ε) be the smallest

number of d-open balls with d-radius ε needed to cover D. Assume that for some
constant A > σ̄, some v > 0 and 0 ≤ ε0 ≤ σ̄, the number N(D, d, ε) is bounded above
by (A/ε)v whenever ε ∈ (0, ε0).

Then there is a universal constant K > 0 such that for g ≥ σ̄2
[
(1 +

√
v)/ε0

]
we

have

(4.6) P

(
sup
x∈D
|G(x)| ≥ g

)
≤ 2

(
KAg√
vσ̄2

)v
Φ
(
− g

σ̄

)
≤
(
KAg√
vσ̄2

)v
e−

g2

2σ̄2 ,

where Φ denotes the CDF of the standard normal distribution. If ε0 = σ̄, the condition
on g is g ≥ σ̄

[
1 +
√
v
]
.

We continue with a technical result which will be needed below.

Lemma 4.4. Let D ⊂ Rd be open and bounded, α > d/2 and m > 0. Then the
following holds:
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(i) For 0 < η < 2α− d there exists C = C(m, η, α) > 0 such that for all x, y ∈ Rd

|kα,m(x)− kα,m(y)| ≤ C(m, η, α) |x− y|η.

(ii) If α > d/2, then |kα,m| is bounded, decreases like f(x) = e−m|x|, and y 7→
supx∈D |τy (kα,m(x)) | ∈ L1(Rd) ∩ L∞(Rd).

Proof. (i) For fixed η ∈ (0, 1) and for all α, β ∈ C with |α − β| ≤ 2 we have
|α−β| ≤ 21−η|α−β|η. We also note that |e−iξx−e−iξy| ≤ 2 and |e−iξx−e−iξy| ≤
|x− y| for all x, y, ξ ∈ Rd. Therefore

|kα,m(x)− kα,m(y)| = 1

(2π)d

∣∣∣∣
∫

Rd

e−iξx − e−iξy

(|ξ|2 +m2)α
dξ

∣∣∣∣

≤ 21−η|x− y|η
∫

Rd

|ξ|η
(|ξ|2 +m2)α

dξ.

The last integral converges if 0 < η < 2α− d.

(ii) By applying the Hankel transform one can see that

F−1(k̂α,m)(x) =
(|x|/m)α−d/2Kα−d/2(|x|m)

2α−1Γ(α)(2π)d/2

Where K is the modified Bessel function of second kind. For a fixed v > 0,
Kv(|x|) ∼ 1

2Γ(v)( 1
2 |x|)−v for |x| → 0 and Kv(|x|) ∼

√
π/(2|x|)e−|x| for |x| → ∞.

This implies that |kα,m| is bounded and decreases as e−m|x|. Therefore since D is
relatively compact, supx∈D |τykα,m(x)| is bounded and exponentially decreasing
as well, which implies the assertion.

The next result is formulated in a more general way than needed in this section.
However, the general result will be used as stated in Section 5 below. The following
assumption will used repeatedly in the following. Recall that for a Borel measure ν
on R\{0} we denote by ν+ its image measure on R+ under | · |.

Assumption 4.5. Let Z be a |||·|||-continuous Lévy field with characteristic triplet
(b, σ2, ν), such that ν is a Lévy measure satisfying

∫
R\{0} |s| ν(ds) <∞ and

∫
R(eβs −

1)ν+(ds) <∞ for some β > 0.

The following proposition gives a Chernov-type exponential upper bound for the
supremum over the Poisson part.

Proposition 4.6. Let P be a compound Poisson field, i.e., a Lévy field with char-
acteristic triplet (

∫
{0<|s|≤1} s ν(ds), 0, ν) with a finite measure ν, which satisfies As-

sumption 4.5. Moreover, let D ⊆ Rd be open and bounded and let kι : Rd×Rd → R, ι ∈
I, be a family of smoothing functions such that with k̃ι(y) := supx∈D |kι(x, y)|, y ∈
Rd, ι ∈ I the following conditions hold:

i) ∀ ι ∈ I : k̃ι ∈ L1(Rd) ∩ L∞(Rd).
ii) κ∞ := supι∈I ‖k̃ι‖L∞(Rd) <∞ as well as κ1 := supι∈I ‖k̃ι‖L1(Rd) <∞.

Then, for all ι ∈ I and p > 0

P

(
sup
x∈D
|Pkι(x)| ≥ p

)
≤ exp


βκ1

κ∞


eβ

∫

{0<s≤1}

|s|ν+(ds) +

∫

{s>1}

eβsν+(ds)





 e

−βp
κ∞ .
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Proof. For ι ∈ I we define κι := ‖k̃ι‖L∞(Rd) as well as

fι : (0,∞)→ [0,∞], fι(ϑ) :=

∫

Rd

∫

R+

(eϑsk̃ι(y) − 1)ν+(ds)dy

and
θι : (0,∞)→ R ∪ {∞}, θι(p) := sup

ϑ>0
ϑp− fι(ϑ).

Then fι is a convex increasing function and θι is its Legendre transform (Fenchel
transform, conjugate function).

With the notation from Remark 3.12 and a calculation analogous to (3.5), for
ϑ > 0 we obtain, abbreviating Pι(x) := Pkι(x), ι ∈ I, x ∈ D,

E[eϑ supx∈D |Pι(x)|] ≤ E[eϑ supx∈D|P ||kι|(x)] ≤ E[eϑ
∑
j

∑NΛj
l=1 |S

(j)
l |k̃ι(X

(j)
l )]

= e
∫
Rd

∫
R+

(eϑsk̃ι(y)−1) ν+(ds) dy
.

Applying Markov’s inequality, this yields for p > 0

P

(
sup
x∈D
|Pι(x)| ≥ p

)
= inf
ϑ>0

P
(
eϑ supx∈D|Pι(x)| ≥ eϑp

)
≤ inf
ϑ>0

E[eϑ supx∈D |Pι(x)|]
eϑp

≤ inf
ϑ>0

e
∫
Rd

∫
R+

(eϑsk̃ι(y)−1) ν+(ds) dy−ϑp
(4.7)

≤ e
− sup
ϑ>0
{ϑp−

∫
Rd

∫
R+

(eϑsk̃ι(y)−1) ν+(ds) dy}
= e−θι(p).

Using the hypothesis on ν+, for 0 ≤ ϑ ≤ β
κι

we derive

fι(ϑ) =

∫

Rd

∫

R+

(
eϑsk̃ι(y) − 1

)
ν+(ds) dy

=

∫

Rd

(∫

{0<s≤1}
+

∫

{s>1}

)(
eϑsk̃ι(y) − 1

)
ν+(ds)dy

≤
∫

Rd

∫

{0<s≤1}
eϑsk̃ι(y)ϑsk̃ι(y) ν+(ds) dy

+

∫

Rd

∫

{s>1}
eϑsk̃ι(y)ϑsk̃ι(y) ν+(ds) dy

≤ ϑ‖k̃ι‖L1(Rd)

(
eϑκι

∫

{0<s≤1}
|s| ν+(ds) +

∫

{s>1}
eβs ν+(ds)

)

≤ ϑκ1

(
eϑκ∞

∫

{0<s≤1}
|s| ν+(ds) +

∫

{s>1}
eβs ν+(ds)

)
,

(4.8)

i.e. fι|[0,β/κι] is finite. From the definition of θι it follows with ϑ = β
κ∞

using also
κ∞ ≥ κι

θι(p) ≥
β

κ∞
p− fι(

β

κ∞
)

for every p > 0. Thus, from (4.7) and the previous inequality the claim follows.

We are finally ready to present this section’s main result.
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Theorem 4.7. Let the Lévy field Z satisfy Assumption 4.5. Moreover, let k :
Rd × Rd → R, k(x, y) := kα,m(x − y) with 2α > d and let T be locally Lipschitz such

that for h ∈ [0, 1], B, ρ > 0 we have B−1e−ρ|z|
h ≤ T (z) ≤ Beρ|z|

h

for all z ∈ R.
Then, for the solution u of the random boundary value problem (4.1) with random

conductivity function a = T ◦ Zk we have u ∈ Ln(Ω;H1(D)), for any n ∈ N if h < 1
and for n < β/2κρ if h = 1, where κ := supx∈D,y∈Rd |kα,m(x− y)|.

In particular, all moments of u exist if h ≤ 1 and
∫
R+

(eβs − 1) ν+(ds) < ∞ for

all β > 0.

Proof. We first show that without loss of generality, we may assume that Z has
the characteristic triplet (b′, σ2, ν) with b′ :=

∫
{0<|s|≤1} s ν(ds). Indeed, (b′, σ2, ν)

is a characteristic triplet whose associated Lévy noise field Z̃ is |||·|||-continuous by
Proposition 3.3. Moreover, for arbitrary α ∈ R, Tα(z) := T (z+α) is locally Lipschitz,

and with ρ̃ := max{1, 2h−1}ρ, B̃ := Beρ̃|α|
h

we have

B̃−1e−ρ̃|z|
h ≤ Tα(z) ≤ B̃eρ̃|z|h .

For the special case αk := (b− b′)
∫
Rd k(y) dy we obtain a = T ◦Zk = Tαk ◦ Z̃k. Hence,

replacing T by Tαk and Z by Z̃, we may indeed assume that Z has the characteristic
triplet (b′, σ2, ν). Therefore, we have Z = G + P , where G is the |||·|||-continuous
generalized centered Gaussian field with characteristic triplet (0, σ2, 0) and P is the
|||·|||-continuous Lévy field with characteristic triplet (b′, 0, ν).

Let d be the canonical distance of the centered Gaussian field (Gk(x))x∈D which
has almost surely continuous paths by Theorem 2.11. We fix η ∈ (0, 2α − d) as well
as a > diam(D) and set σ̄2 := supx∈D E

[
Gk(x)2

]
= σ2‖k‖2L2(Rd).

With the aid of Lemma 4.4 i), for a suitable constant C1 = C1(m, η, 2α) > 0, we
have for arbitrary x, y ∈ D

d(x, y)2 = Var(Gk(x)−Gk(y))

= Var(Gk(x))− Var(Gk(y))− 2Cov(Gk(x), Gk(y)).

= 2σ2(k2α,m(0)− k2α,m(x− y)) ≤ 2σ2C1|x− y|η.
(4.9)

Then, with C ′2 := 2σ2C1, we have for all ε > 0 and x ∈ Rd

B
|·|,( ε2

C′2 )
1
η

(x) :=

{
y ∈ Rd : |x− y| <

( ε2

C ′2

) 1
η

}

⊆ {y ∈ Rd : d(x, y) < ε} =: Bd,ε(x).

(4.10)

SinceD is bounded, we can coverD with a finite numberN of open ballsB
|·|,( ε2

C′2 )
1
η

(x).

By the choice of a, this number N is bounded by (C ′
2
η a/ε

2
η )d = (C ′aη/2/ε)2d/η. By

(4.10) we thus obtain for all ε > 0

N(D, d, ε) ≤ (C ′aη/2/ε)2d/η,

so that d satisfies the covering property of Talagrand’s Lemma 4.3 with v := 2d/η
and A := max{C ′aη/2, σ̄+ 1} for every ε > 0. Thus, by Talagrand’s Lemma 4.3, with
the universal constant K > 0, for every g ≥ σ̄2

(4.11) P

(
sup
x∈D
|Gk(x)| ≥ g

)
≤
(
KAg√
vσ̄2

)v
e−

g2

σ̄2 .



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

O. ERNST, H. GOTTSCHALK, T. KALMES, T. KOWALEWITZ AND M. REESE 27

Next, we observe that by Lemma 4.4 ii), we have

k̃(y) := sup
x∈D
|k(x, y)| = sup

x∈D
|kα,m(x− y)| ∈ L1(Rd) ∩ L∞(Rd),

so that by Proposition 4.6 applied to the family of smoothing functions consisting
only of k , there is a constant C2 depending only on ‖k̃‖L1(Rd), ‖k̃‖L∞(Rd), β, and ν
such that for every p > 0

(4.12) P

(
sup
x∈D
|Pk(x)| ≥ p

)
≤ C2e−

β
κp.

Taking into account that Z = G+P , it follows from Lemma 4.2 together with (4.11),
(4.12), and

C3 := max{
(
KA√
v

)v
, C2, 1}

that for all ζ ∈ (0, 1) we have

E[‖u‖nH1(D)] ≤ C̃n2n−1(Bn +B2n)
∞∑

z=0

e2nρ(z+1)h P(sup
x∈D
|Zk(x)| ≥ z)

≤ MC̃n2n−1(Bn +B2n)C3

{ bσ̄[1+
√
v]/ζc∑

z=0

e2nρ(z+1)h(4.13)

+

∞∑

z=bσ̄[1+
√
v]/ζc+1

e2nρ(z+1)h
(
zve−

ζ2z2

2σ̄2 + e−
β
κ (1−ζ)z

)}
.

Thus, in case h < 1 the above series converges. In case h = 1, the above series
converges if n < (1− ζ)β/2κρ. Hence, by choosing ζ sufficiently close to zero, in case
h = 1 the series converges for all n < β/2κρ.

Remark 4.8.
(i) By Theorem 4.7, in the case of h = 1 we get all moments up to an order that

depends on β. The larger β is, the more moments u has w.r.t. the Sobolev
norm.

(ii) If we assume existence of the Laplace transform for ν,
∫
R+

eβs ν+(ds) < ∞
for some β > 0, we exclude noises with infinite activity like Gamma noise.
We therefore employ the more general condition

∫
R+

(eβs − 1) ν+(ds) <∞.

(iii) In the special case where the smoothed Lévy noise field Zk is a Gaussian
field without a compound Poisson noise component, we have θ(p) = ∞ for
all p > 0 so that (4.13) gives us the existence of all moments if h < 2.
Moreover, in case of h = 2, we then obtain the existence of moments of order
n < 1/(4ρσ2‖k‖2L2(Rd)). This improves [16], where this result was shown for

h = 1.

5. Approximability of Solutions of the Random Diffusion Equation. In
this section we approximate the random diffusion coefficient a in (4.1) by a finite
modal expansion, thus reducing the coefficient from an infinite-dimensional Lévy ran-
dom field to a finite-dimensional Lévy random vector. We prove that, under similar
assumptions as for integrability, solutions of the diffusion equation with approximate
diffusion coefficient converge in the Bochner space Ln((Ω,A,P);H1(D)) to that of
the original equation. The remaining problem of the quadrature of high-dimensional
uncorrelated, but possibly not independent, Lévy distributions is left for future work.
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5.1. Dependence on Random Coefficient. Before we can give convergence
results, we need to control the change in the solution u that stems from a change in
the coefficients. This change e.g. can be due to a finite-dimensional approximation
of Karhunen-Loève type, as will be the case below in Section 5.3. The results in this
subsection are of independent interest and can be used, e.g., to control the error in
statistical estimation of the law and smoothing function of the random field. Also,
the results easily generalize to arbitrary continuous random fields and differentiable
transformations T (z) which are exponentially bounded from below and above.

Consider a smoothed Lévy random field Zk with continuous paths and smoothing
function k : Rd × Rd → R. Let k = kN + rN be any decomposition of the smoothing
function k such that limN→∞ kN (x, ·) = k(x, ·) with respect to |||·||| for every x ∈ Rd.
We define the random field ZN (x) := ZkN (x), N ∈ N, to be an approximation to Zk(x)
and RN := ZrN (x) the corresponding remainder such that Zk(x) = ZN (x) + RN (x).
We assume that ZN (x) has continuous paths on D̄ and consequently so does RN (x).
This yields an approximating diffusion coefficient T (ZN (x)) in equation (4.1) with
associated random solution uN to the corresponding weak problem.

To prove convergence of the weak solution uN → u in Ln((Ω,A,P), H1(D)), n ∈
N, as N →∞, we will derive an estimate based on an interpolated diffusion equation
with diffusion coefficient T (ZN,t(x)) where ZN,t(x) := ZkN+trN (x) = ZN (x)+ tRN (x)
with t ∈ [0, 1]. The resulting weak form of equation (4.1) with approximating diffusion
coefficient and homogenized Dirichlet boundary conditions with weak solution u0N,t ∈
H1
D(D) = {v ∈ H1(D); tr(v) = 0 on ∂D} is characterized by

bN,t(u0N,t , v) = `N,t(v) ∀v ∈ H1
D(D),

with

bN,t(u, v) :=

∫

D

T (ZN,t(x))∇u(x) · ∇v(x) dx, u, v ∈ H1
D(D),

and

`N,t(v) :=

∫

D

[f(x)v(x)− T (ZN,t(x))∇EgD(x) · ∇v(x)] dx+

∫

ΓN

gN (x)v(x) dσ,

where EgD ∈ H1(D) is an extension of gD. The weak solution of (4.1) with inhomoge-
neous Dirichlet boundary condition then has the form uN,t = u0N,t +EgD. From now
on we additionally assume that the transformation T is continuously differentiable. It
can then be shown that t 7→ u0N,t (and thus t 7→ uN,t = u0N,t +EgD) is differentiable
with respect to the weak topology [15, 54]. We denote the derivative by u̇0N,t and
u̇N,t, respectively. Moreover, setting

ḃN,t(u, v) :=

∫

D

T ′(ZN,t(x))RN (x)∇u · ∇v(x)dx

˙̀
N,t(v) := −

∫

D

T ′(ZN,t(x))RN (x)∇EgD(x) · ∇v(x) dx

for u, v ∈ H1
D(D), one can show that

(5.1) bN,t(u̇0N,t , v) = ˙̀
N,t(v)− ḃN,t(u0N,t , v) ∀v ∈ H1

D(D).

As one can show using (5.1), t 7→ u̇N,t is continuous with respect to the strong H1-
topology, so we conclude that t 7→ uN,t is also differentiable with respect to the strong
topology and has the derivative u̇N,t [15].
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Lemma 5.1. Let Z be a |||·|||-continuous generalized random field and k : Rd ×
Rd → R a smoothing function such that (Zk(x))x∈D has a.s. continuous paths. More-
over, let ZN,t be as above and assume that T is continuously differentiable. Let uN,t
be the solution to (4.1) with random conductivity a := T ◦ ZN,t. Then there holds

‖u̇N,t‖H1(D) ≤ C sup
x∈D
|T ′(ZN,t(x))| sup

x∈D
|Rw(x)|

(
1 + supx∈D |T (ZN,t(x))|
(infx∈D |T (ZN,t(x))|)2

+
1

infx∈D |T (ZN,t(x))|

)(
‖f‖L2(D) + ‖gD‖H1/2(∂D) + ‖gN‖H−1/2(∂N )

)
,(5.2)

where C = (1 + C2
P )2 max{1, 2‖E‖, ‖ tr ‖} with E : H1/2(∂D) → H1(D) denoting an

extension operator, tr : H1(D) → H1/2(∂D) the trace operator, and where CP > 0
only depends on D and ∂D.

Proof. As noted above, we can write the weak solution to (4.1) as uN,t = u0N,t +

EgD and therefore we have ‖u̇N,t‖H1(D) = ‖u̇0N,t‖H1(D). Hence, setting C̃ := (1 +
C2
P ) max{1, 2‖E‖, ‖tr‖}, by (a generalization of) Poincaré’s inequality (cf. (4.5)),

(5.1), the definition of ḃN,t, ˙̀
N,t, as well as inequality (4.3)

infx∈D |T (ZN,t(x))|
(1 + C2

P )
‖u̇0N,t‖2H1(D) ≤ bN,t(u̇0N,t , u̇0N,t) = | ˙̀N,t(u̇0N,t)− ḃN,t(u0N,t , u̇0N,t)|

≤
∫

D

|T ′(ZN,t(x))RN (x)∇(EgD + u0N,t)(x) · ∇u̇0N,t(x)|dx

≤ sup
x∈D
|T ′(ZN,t(x))| sup

x∈D
|RN (x)| ‖u̇0N,t‖H1(D)‖u0N,t + EgD‖H1(D)

≤ sup
x∈D
|T ′(ZN,t(x))| sup

x∈D
|RN (x)| ‖u̇0N,t‖H1(D)

(
‖E‖ ‖gD‖H1/2(∂D)

+ C̃
1 + supx∈D |T (ZN,t(x))|

infx∈D |T (ZN,t(x))|
(
‖f‖L2(D) + ‖gD‖H1/2(∂D) + ‖gN‖H−1/2(∂N )

))
.

The assertion (5.2) now follows on dividing by
infx∈D |T (ZN,t(x))|

(1+C2
P )

‖u̇0,t‖.
Using the above lemma, we next see that we can estimate the effect of the pertur-

bation RN by a term that is exponentially growing in the extreme values of ZN,t(x)
and a moment in the perturbation. The following assumption on the function T will
be used repeatedly in the following.

Assumption 5.2. For the continuously differentiable function T : R→ R+ there
exist ρ,B > 0, h ∈ (0, 1] such that for all z ∈ R there holds

(5.3) B−1e−ρ|z|
h ≤ T (z) ≤ Beρ|z|

h

and |T ′(z)| ≤ Beρ|z|
h

.

Lemma 5.3. Under the assumptions of Lemma 5.1 in addition to Assumption 5.2
we have that for any % > 1 and 1

% + 1
%′ = 1, n ≥ 1,

(5.4) E
[
‖u− uN‖nH1(D)

]
≤ C̄ E

[
sup
x∈D
|RN (x)|n%′

] 1
%′

sup
t∈[0,1]

E
[
e4%ρn supx∈D |ZN,t(x)|

] 1
%

.

where C̄ = Cn(B2 + B3)n(‖f‖L2(D) + ‖gD‖H1/2(∂D) + ‖gN‖H−1/2(∂N ))
n with C from

Lemma 5.1.
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Proof. Using the properties of the Bochner integral for Banach space-valued func-
tions and Jensen’s inquality for the ordinary integral over [0, 1], we obtain

E
[
‖u− uN‖nH1(D)

]
= E

[∥∥∥∥
∫ 1

0

u̇N,t dt

∥∥∥∥
n

H1(D)

]
≤ E

[(∫ 1

0

‖u̇N,t‖H1(D) dt

)n]

≤ E

[∫ 1

0

‖u̇N,t‖nH1(D) dt

]
=

∫ 1

0

E
[
‖u̇N,t‖nH1(D)

]
dt,

where we made use of the fact that we can interchange the order of integration for
nonnegative integrands. Applying now Lemma 5.1 and Hölder’s inequality, we easily
obtain (5.4).

5.2. Convergence of Solution Moments. From Lemma 5.3 it is clear that
establishing convergence uN → u in Ln((Ω,A,P), H1(D)) can be based on two steps:

(i) A bound on the Laplace transform E
[
e4%ρn supx∈D |ZN,t(x)|] of the extreme

value of ZN,t which is uniform in N and t and

(ii) a proof that E
[
supx∈D |RN (x)|n%′

]
→ 0 as N →∞.

In this subsection we identify suitable conditions on k and kN which imply (i) and (ii).
We then apply this to the natural generalization of the Karhunen-Loève expansion to
smoothed Lévy fields. We first prove a uniform version of Talagrand’s Lemma 4.3.

Proposition 5.4. Let G be a generalized centered Gaussian field, i.e. a |||·|||-
continuous Lévy field with characteristic triplet (0, σ2, 0), σ > 0. Moreover, let D ⊆ Rd
be open and bounded and let kι : Rd×Rd → R, ι ∈ I, be a family of smoothing functions
such that for another smoothing function k : Rd × Rd → R the following hold:

i) ∀ ι ∈ I : supx∈D ‖kι(x, ·)‖L2(Rd) ≤ supx∈D ‖k(x, ·)‖L2(Rd).
ii) The canonical distances dι, ι ∈ I and dc of the centered Gaussian fields

(Gkι(x))x∈D, ι ∈ I, and (Gk(x))x∈D, respectively, satisfy dι ≤ dc, ι ∈ I,
and dc satisfies the covering property of Talagrand’s Lemma 4.3.

iii) The centered Gaussian fields (Gkι(x))x∈D, ι ∈ I, and (Gk(x))x∈D all have
almost surely continuous paths.

Then, with σ̄2
ι := σ2 supx∈D ‖kι(x, ·)‖L2(Rd) and σ̄2 := σ2 supx∈D ‖k(x, ·)‖L2(Rd), there

are constants A > σ̄2,K > 0, v, γ > 0, ε0 ∈ (0, σ̄) such that

∀ ι ∈ I, g > σ̄ι(1 +
√
v)/ε0 : P

(
sup
x∈D
|Gkι(x)| ≥ g

)
≤
(
KAg√
vσ̄2

ι

)v
exp(− g2

2σ̄2
ι

)(5.5)

≤ γ
(
KAg√
vσ̄2

)v
exp(− g2

2σ̄2
).

Proof. We abbreviate Gι(x) := Gkι(x), ι ∈ I, x ∈ D. Since k is a smoothing
function, it follows that σ̄2 <∞ and due to hypothesis i) we have for all ι ∈ I

σ̄2
ι := sup

x∈D
E
[
[Gι(x)]

2
]

= sup
x∈D

σ2‖kι(x, ·)‖L2(Rd) ≤ sup
x∈D

σ2‖k(x, ·)‖L2(Rd)

= sup
x∈D

E
[
[Gk(x)]

2
]

= σ̄2

Hypothesis ii) implies that the dc-ball centered at x ∈ Rd with dc-radius ε > 0 is
contained in the dι-ball centered at x with dι-radius ε, so that in the notation of
Talagrand’s Lemma N(D, dι, ε) ≤ N(D, dc, ε). Again by hypothesis ii) there are thus
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A > σ̄2, v > 0, ε0 ∈ (0, σ̄) such that

∀ ι ∈ I, ε ∈ (0, ε0) : N(D, dι, ε) ≤
(
A

ε

)v
.

Since all Gaussians fields considered have almost surely continuous paths, applying
Talagrand’s Lemma once more, there is K > 0 such that for all ι ∈ I and g >
σ̄2(1 +

√
v)/ε0

P

(
sup
x∈D
|Gι(x)| ≥ g

)
≤
(
KAg√
vσ̄2

ι

)v
exp(− g2

2σ̄2
ι

)

≤
(
KAg√
vσ̄2

)v
exp(− g2

2σ̄2
)

(
σ̄2

σ̄2
ι

)v
exp

(
−σ̄2 (1 +

√
v)2

2ε0
(
σ̄2

σ̄2
ι

− 1)

)
.

Since f : [1,∞)→ R, f(x) := xv exp(−σ̄2 (1+
√
v)2

2ε0
(x− 1)) is bounded above, the claim

follows from the previous inequality with γ := supx≥1 f(x).

Following the two-step approach outlined above, we begin with a uniform estimate
of the Laplace transform of the extreme values of ZN,t under suitable assumptions
on the smoothing kernel k. To this end, we define for bivariate kernel functions
k = k(x, y)

k̃(y) := sup
x∈D
|k(x, y)|, y ∈ Rd.

Definition 5.5. We say that a smoothing function k : Rd × Rd → R has an
orthogonal approximation sequence k = kN +rN , N ∈ N, if kN and rN are smoothing
functions with

(i)
∫
Rd kN (x1, y)rN (x2, y) dy = 0 for x1, x2 ∈ Rd;

(ii) max{‖r̃N‖L1(Rd), κr,N} → 0 as N → ∞ where κr,N = supx∈D,y∈Rd |rN (x, y)|
and r̃N is defined as above.

Lemma 5.6. Let the Lévy field Z satisfy Assumption 4.5. Moreover, let k : Rd ×
Rd → R be a smoothing function such that k̃ ∈ L1(Rd) ∩ L∞(Rd) and such that
the canonical distance dc of (Gk(x))x∈D satisfies the covering property of Talagrand’s
Lemma 4.3, where G is the centered Gaussian part of Z, i.e. the |||·|||-continuous
Lévy field with characteristic triplet (0, σ2, 0). Furthermore, let k = kN + rN , N ∈
N, be an orthogonal approximation sequence for which the centered Gaussian fields
(GkN (x))x∈D and (GrN (x))x∈D, N ∈ N, all have a.s. continuous paths and for which
k̃N ∈ L1(Rd) ∩ L∞(Rd), N ∈ N. Additionally, let % > 1, ρ > 0, and n ∈ (0, β

4%κρ ),

where κ := ‖k̃‖L∞(Rd).
Then, there is M ∈ N such that

sup
N≥M,t∈[0,1]

E
[
e4%ρn supx∈D |ZN,t(x)|

]
<∞.

In case kN (x, ·) and rN (x, ·), x ∈ Rd, have disjoint supports for every N ∈ N one can
choose M = 1.

Proof. We define b′ :=
∫
{0<s≤1} sν(ds) and denote by P the Lévy field associated

with the characteristic triplet (b′, 0, ν). Then, P is |||·|||-continuous and for an arbitrary
smoothing function l : Rd × Rd → R the smoothed field Zl satisfies

Zl(x) = (b− b′)
∫

Rd
l(x, y)dy +Gl(x) + Pl(x), x ∈ Rd.
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With GN,t(x) := GkN+trN (x), PN,t(x) := PkN+trN (x), N ∈ N, t ∈ [0, 1] it follows for

arbitrary B > 2|b− b′| ‖k̃‖L1(Rd) and each N ∈ N, t ∈ [0, 1] and every λ ∈ (0, 1):

(5.6)

E
[
e4%ρn supx∈D |ZN,t(x)|

]
≤
∞∑

j=0

e4%ρn(j+1)BP

(
sup
x∈D
|ZN,t(x)| ≥ jB

)

≤ e4%ρnB +

∞∑

j=1

e4%ρn(j+1)BP

(
sup
x∈D
|GN,t(x)|+ sup

x∈D
|PN,t(x)| ≥ (j − 1

2
)B

)

≤ e4%ρnB


1 +

∞∑

j=1

e4%ρnjB

[
P(sup

x∈D
|GN,t(x)| ≥ (j − 1

2
)λB)

+P(sup
x∈D
|PN,t(x)| ≥ (j − 1

2
)(1− λ)B)

])
.

We next verify the hypothesis of Proposition 5.4 for the family of smoothing
functions kN + t rN , N ∈ N, t ∈ [0, 1] and the smoothing function k. Using property
(i) of an orthogonal approximation sequence, we set

σ̄2
N,t := sup

x∈D
E
[
GN,t(x)2

]
= sup
x∈D

σ2

(∫

Rd
|kN (x, y)|2 dy + t2

∫

Rd
|rN (x, y)|2 dy

)

≤ sup
x∈D

σ2

(∫

Rd
|kN (x, y)|2 dy +

∫

Rd
|rN (x, y)|2 dy

)
= sup
x∈D

E
[
Gk(x)2

]
=: σ̄2,

which implies hypothesis (i) of Proposition 5.4.
Likewise, denoting the canonical distances of the centered Gaussian random fields

(Gk(x))x∈D and (GN,t(x))x∈D by dc and dN,t, respectively, we have for arbitrary N ∈
N, t ∈ [0, 1] and each x1, x2 ∈ Rd, using property (i) of an orthogonal approximation
sequence,

dN,t(x1, x2) =
(
E
[
(GN,t(x1)−GN,t(x2))2

])1/2

= σ

(∫

Rd
(kN,t(x1, y)− kN,t(x2, y))

2
dy

)1/2

= σ

(∫

Rd
(kN (x1, y)− kN (x2, y))

2
dy + t2

∫

Rd
(rN (x1, y)− rN (x2, y))

2
dy

)1/2

≤ σ
(∫

Rd
(kN (x1, y)− kN (x2, y))

2
dy +

∫

Rd
(rN (x1, y)− rN (x2, y))

2
dy

)1/2

= σ

(∫

Rd
(k(x1, y)− k(x2, y))

2
dy

)1/2

= dc(x1, x2),

implying hypothesis (ii) of Proposition 5.4. Since, by assumption on kN and rN ,
hypothesis (iii) of Proposition 5.4 is satisfied as well, it follows from Proposition 5.4
that there are constants A > σ̄2,K > 0, v, γ > 0, ε0 ∈ (0, σ̄) such that for all N ∈
N, t ∈ [0, 1], λ ∈ (0, 1)

(5.7) P

(
sup
x∈D
|Gkι(x)| ≥ (j − 1

2
)λB

)
≤ γ

(
KA(j − 1

2 )λB√
vσ̄2

)v
exp(− ((j − 1

2 )λB)2

2σ̄2
),

whenever j > 1
2 + σ̄(1+

√
v)

λBε0
.
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Next, because of

∀N ∈ N, t ∈ [0, 1] : ‖k̃N,t‖L1(Rd) ≤ ‖k̃‖L1(Rd) + ‖r̃N‖L1(Rd)

and property (ii) of an orthogonal approximation sequence

κ1 := sup
N∈N,t∈[0,1]

‖k̃N,t‖L1(Rd) <∞.

Moreover, since for all N ∈ N, t ∈ [0, 1]

(5.8) κN,t = sup
x∈D
‖kN (x, ·) + trN (x, ·)‖L∞(Rd) ≤ κ+ (1− t)κr,N ≤ κ+ κr,N

it follows from property (ii) of an orthogonal approximation sequence that for every
ε > 0 there is Mε ∈ N such that

∀N ∈ N, N ≥Mε, t ∈ [0, 1] : κN,t ≤ κ+ ε.

Moreover, in case kN (x, ·) and rN (x, ·) have disjoint supports for every N ∈ N, x ∈ Rd,
it follows that in (5.8) we even have κN,t ≤ κ.

Now, applying for fixed ε > 0 Proposition 4.6 to the family of smoothing functions
(kN + trN )N≥Mε,t∈[0,1] (respectively to (kN + trN )N∈N,t∈[0,1]) gives

(5.9) P

(
sup
x∈D
|PN,t(x)| ≥ (j − 1

2
)(1− λ)B

)
≤ Ce− β

κ+ε (j− 1
2 )(1−λ)B

for all j ∈ N, λ ∈ (0, 1), whenever N ≥Mε (resp. N ∈ N), t ∈ [0, 1] and where

C := exp

(
βκ1

κ

(
eβ
∫

{0<s≤1}
|s|ν+(ds) +

∫

{s>1}
eβsν+(ds)

))
.

Finally, since n ∈ (0, β
4%κρ ) there are λ0 ∈ (0, 1) and ε > 0 such that n < β(1−λ0)/(κ+

ε)4%ρ. Then, with B > 2|b − b′|‖k̃‖L1(Rd) so large that 2σ̄(1 +
√
v)/ε0Bλ0 < 1/2 it

follows from (5.6), (5.7), and (5.9) that for all N ≥Mε (resp. N ∈ N), t ∈ [0, 1]

E
[
e4%ρn supx∈D |ZN,t(x)|

]
≤ e4%ρnB


1 +

∞∑

j=1

e4%ρnjB
[
Ce−

β
κ+ε (j− 1

2 )(1−λ0)B

+γ

(
KA(j − 1

2 )λ0B√
vσ̄2

)v
exp(− ((j − 1

2 )λ0B)2

2σ̄2
)

])
.

Because, by the same arguments as the ones employed in the proof of Theorem 4.7,
the series converges since 4%ρn− β(1− λ0)/(κ+ ε), the claim follows.

Lemma 5.7. Let Z, k, kN , and rN , N ∈ N be as in Lemma 5.6. Moreover, let
%′ > 1 and n ≥ 1/%′. Then, for every δ ∈ (0, 1) there is a constant C > 0 depending
only on δ, Z, k, and n%′ such that

∀N ∈ N : ‖ sup
x∈D
|RN (x)|%′‖Ln(Ω,A,P) ≤ C

(
max{αN , α1−δ

N }
)%′

where αN := max{‖r̃N‖L1(Rd), κr,N}. In particular, lim
N→∞

E
[
supx∈D |RN (x)|nρ′

]
= 0.
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Proof. With the same notation as in the proof of Lemma 5.6 we have

RN (x) = (b− b′)
∫

Rd
rN (x, y) dy +GrN (x) + PrN (x),

so that by Jensen’s inequality

E

[
sup
x∈D
|RN (x)|n%′

]
≤3n%

′−1

(
|b− b′|n%′‖r̃N‖n%

′

L1(Rd)
+ E

[
sup
x∈D
|GrN (x)|n%′

]
(5.10)

+ E

[
sup
x∈D
|PrN (x)|n%′

])
.

In order to estimate the Gaussian part, we precede as in the proof of Lemma 5.6.
From property (i) of an orthogonal approximation sequence we conclude

∀N ∈ N, x ∈ D : ‖rN (x, ·)‖L2(Rd) ≤ ‖k(x, ·)‖L2(Rd) and dN ≤ dc,

where dN and dc denote the canonical distances associated with (GrN (x))x∈D and
(Gk(x))x∈D, respectively. Therefore, by Proposition 5.4, or better the first inequality
in (5.5), there are constants

A > σ̄2 := σ2 sup
x∈D
‖k(x, ·)‖2L2(Rd) ≥ σ2 sup

x∈D
‖rN (x, ·)‖2L2(Rd) =: σ̄2

r,N ,

K, v > 0, ε0 ∈ (0, σ̄) such that for every N ∈ N, g > σ̄r,N (1 +
√
v)/ε0

P

(
sup
x∈D
|GrN (x)| ≥ g

)
≤
(

KAg√
vσ̄2

r,N

)v
exp(− g2

2σ̄2
r,N

).

For j ∈ N with j > σ̄δ(1 +
√
v)/ε0 it holds jσ̄1−δ

r,N > σr,N (1 +
√
v)/ε0 so that with

M := max{dσ̄δ(1 +
√
v)/ε0e, dσ̄δ

√
v 1+δ

δ e}

E

[
sup
x∈D
|GrN (x)|n%′

]
≤
∞∑

j=0

(
(j + 1)σ̄1−δ

r,N

)n%′
P

(
sup
x∈D
|GrN (x)| ≥ jσ̄1−δ

r,N

)

≤
M∑

j=0

(
(j + 1)σ̄1−δ

r,N

)n%′

+
∞∑

j=M+1

(
(j + 1)σ̄1−δ

r,N

)n%′
(

KAj√
vσ̄1+δ

r,N

)v
exp(− j2

2σ̄2δ
r,N

)

≤σ̄(1−δ)n%′
r,N




M∑

j=0

(j + 1)n%
′

+2n%
′
(
KA√
v

)v ∞∑

j=M+1

jn%
′

(
j

σ̄1+δ
r,N

)v
exp

(
− j2

2σ̄r,N

2δ
)


≤σ̄(1−δ)n%′
r,N




M∑

j=0

(j + 1)n%
′
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+2n%
′
(
KA√
v

)v ∞∑

j=M+1

jn%
′
(

j

σ̄1+δ

)v
exp

(
− j2

2σ̄2δ

)


where in the last step we have used that for every j > dσ̄δ
√
v 1+δ

δ e the functions

fj : [0,∞) → R, fj(x) := (jx−(1+δ))v exp(−j2/2x2δ) are strictly increasing on [0, σ̄]
and that σ̄r,N ∈ [0, σ̄] for all N ∈ N. Therefore, since the above series converges,
denoting by C1 the expression in brackets on the right hand side of the above inequality
and taking into account that

∀N ∈ N : σ̄2
r,N = σ2 sup

x∈D

∫

Rd
|rN (x, y)|2 dy ≤ σ2κr,N‖r̃N‖L1(Rd) ≤ σ2α2

N ,

we derive

(5.11) ∀N ∈ N : E

[
sup
x∈D
|GrN (x)|n%′

]
≤ σ1−δC1α

(1−δ)n%′
N .

We next consider the Poisson part in (5.10). By Hölder’s inequality, PrN (x) ≤
|P ||rN |(x) ≤ |P |(r̃N ), cf. (3.6), Proposition 3.7, and ‖r̃N‖kL1(Rd)κ

l−k
r,N ≤ αlN for every

0 ≤ k ≤ l, we have for all N ∈ N

E

[
sup
x∈D
|PrN (x)|n%′

]
≤
(
E

[
sup
x∈D
|PrN (x)|dn%′e

]) n%′
dn%′e

≤
(
E
[
|P |(r̃N (x)|dn%′e

]) n%′
dn%′e

=




∑

I∈P(dn%′e)
I={I1,...,Ik}

k∏

`=1

c+|I`|

∫

Rd
r̃
|I`|
N dx




n%′
dn%′e

≤




∑

I∈P(dn%′e)
I={I1,...,Ik}

k∏

`=1

c+|I`|‖r̃N‖L1(Rd)κ
|Il|−1
r,N




n%′
dn%′e

(5.12)

=




∑

I∈P(dn%′e)
I={I1,...,Ik}

k∏

`=1

c+|I`| ‖r̃N‖
k
L1(Rd)κ

dn%′e−k
r,N




n%′
dn%′e

≤




∑

I∈P(dn%′e)
I={I1,...,Ik}

k∏

`=1

c+|I`|




n%′
dn%′e

αn%
′

N ,

where P(dn%′e) denotes the collection of all partitions on {1, . . . , dn%′e} into non-
intersecting, none-empty sets I1, . . . , Ik, 1 ≤ k ≤ dn%′e, and c+|Il| are suitable non-

negative numbers, compare Proposition 3.7. Note that the constants c+|I`| are taken

w.r.t. the modified Lévy measure ν+ associated with |P | instead of ν associated with
P .

Therefore, setting C2 to be the factor in front of αn%
′

N in the previous inequality,
we have

(5.13) ∀N ∈ N : E

[
sup
x∈D
|PrN (x)|n%′

]
≤ C2α

n%′

N .
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Combining (5.10), (5.11), and (5.12) we finally obtain

∀N ∈ N : E

[
sup
x∈D
|RN (x)|n%′

]
≤ 3n%

′−1(|b− b′|+ σδC1 + C2)
(
max{αN , α1−δ

N }
)n%′

which proves the claim.

Combining Lemmas 5.3, 5.6 and 5.7 we now obtain the following convergence
result:

Theorem 5.8. Let Z be a Lévy field satisfying Assumption 4.5. Moreover, let
k : Rd × Rd → R be a smoothing function such that k̃ ∈ L1(Rd) ∩ L∞(Rd) and
such that the canonical distance dc of (Gk(x))x∈D satisfies the covering property of
Talagrand’s Lemma 4.3, where G is the centered Gaussian part of Z. Furthermore, let
k = kN + rN , N ∈ N, be an orthogonal approximation sequence for which the centered
Gaussian fields (GkN (x))x∈D and (GrN (x))x∈D, N ∈ N, all have a.s. continuous paths
and for which k̃N ∈ L1(Rd) ∩ L∞(Rd), N ∈ N.

Let u and uN , N ∈ N, be the solution of (4.1) with random conductivity T ◦ Zk
and T ◦ ZkN , respectively, where T satisfies Assumption 5.2. Assume that with κ :=
‖k̃‖L∞(Rd) we have β > 4κρ. Then for all n ∈ [1, β

4κρ ), % ∈ (1, β
4κρn ), and δ ∈ (0, 1)

there is a constant C ′ > 0 and M ∈ N such that for all N ≥M we have

‖u− uN‖Ln((Ω,A,P);H1(D)) ≤ C ′max{αN , α1−δ
N },

where αN = max{‖r̃N‖L1(Rd), κr,N}. In case kN (x, ·) and rN (x, ·), N ∈ N, have

disjoint supports for every x ∈ Rd, one can choose M = 1.
In particular, (uN )N∈N converges to u in Ln((Ω,A,P);H1(D)). The constant C ′

depends only on B, Z, k, n%
%−1 , ‖f‖L2(D), ‖gD‖H 1

2 (∂D)
, ‖gN‖

H−
1
2 (∂N )

, and C, the

constant from Lemma 5.1.

5.3. Series Expansion of Lévy Coefficients. We provide a two-step proce-
dure for approximating smoothed Lévy random fields and the associated solutions of
(4.1), resulting in a finite-dimensional approximation of Zk as a natural generalization
of the Karhunen–Loève expansion for Lévy fields. In particular, we shall employ two
specific orthogonal approximation sequences, one by restricting to sets in a compact
exhaustion of Rd and the other by truncated Mercer expansion.

In the first step we restrict the second argument of the kernel k(x, y) to a set ΛN
from a compact exhaustion (ΛN )N∈N of Rd, i.e., (ΛN )N∈N is a sequence of compact
subsets of Rd with ΛN ⊂ int(ΛN+1), N ∈ N, and ∪NΛN = Rd. This is necessary as
only x is restricted to D, whereas y transports the effect of noise source terms from
locations y 6∈ D into D.

For a |||·|||-continuous Lévy field Z it follows immediately that ZN (f) := Z(1ΛN f),
N ∈ N, again defines a |||·|||-continuous generalized random field, which, however, is no
longer stationary. For a Matérn kernel kα,m,m > 0, α > d+max{0, 3d−12

8 } it therefore
follows from Theorem 2.11 that for the smoothing function k(x, y) = kα,m(x− y) the
smoothed fields (ZNk (x))x∈D, N ∈ N, have a.s. continuous paths. Moreover, it was
shown in the proof of Theorem 4.7 that the canonical distance dc associated with the
Gaussian field (Gk(x))x∈D (where G denotes, as usual, the centered Gaussian part of
Z) satisfies the covering property of Talagrand’s Lemma 4.3 and, by Lemma 4.4 (ii),
there holds k̃ ∈ L1(Rd)∩L∞(Rd) with lim|y|→∞ k̃(y) = 0. Therefore, the assumptions
of Theorem 5.8 are automatically satisfied for Matérn kernels as smoothing functions.
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Corollary 5.9. Let Z, T and u be given as in Theorem 5.8. Furthermore, let
kα,m be a Matérn kernel with α > d. For a compact exhaustion (ΛN )N∈N of Rd with
D ⊂ Λ1, we set kN (x, y) := kα,m(x, y)1ΛN (y) and denote by uN the solution of (4.1)
with random conductivity T ◦ ZkN .

Then for all n ∈ [1, β
4κρ ), % ∈ (1, β

4κρn ), and 0 < m′ < m, there is a constant
C > 0 such that for all N ∈ N we have

(5.14) ‖u− uN‖Ln((Ω,A,P);H1(D)) ≤ Ce−m
′de(D,Λ

c
N )

where de(D,Λ
c
N ) denotes the Euclidean distance between D and ΛcN .

Proof. We first verify that k = kN + rN is an orthogonal approximation sequence
in the sense of Definition 5.5. Condition (i) obviously holds as the y-domains of kN and
rN are disjoint. To verify condition (ii), we use the decay rate kα,m(x, y) ≤ Ce−m|x−y|
for |x− y| → ∞ from Lemma 4.4 (ii). This implies for 0 < m′ < m

‖r̃N‖L1(Rd) ≤ C
∫

ΛcN

sup
x∈D

e−m|x−y| dy = Ce−mdc(D,Λ
c
N )

∫

ΛcN

sup
x∈D

e−(m−m′)|x−y| dy

where the last integral is finite as m′ < m, and can be estimated by a constant as the
integration area gets smaller for N →∞. We next have

κr,N = ‖r̃N‖L∞(Rd) = sup
x∈D,y∈ΛcN

Ce−m|x−y| = Ce−mde(D,Λ
c
N )

and thus

αN = max{‖r̃N‖L1(Rd), κr,N} ≤ Ce−m
′de(D,Λ

c
N ).

We now can apply Theorem 5.8 and obtain

‖u− uN‖Ln((Ω,A,P);H1(D)) ≤ C ′max{αN , α1−δ
N } ≤ C ′Ce−m′de(D,ΛcN ),

where we merged m′ and δ, as for m′ ∈ (0,m) and δ ∈ (0, 1) we again have (1−δ)m′ ∈
(0,m). Redefining the constant C implies (5.14).

Remark 5.10.

(i) At first sight, the discontinuous cut-off 1ΛN (y) appears to contradict the
assumptions needed for the continuity of the paths of ZkN (x), which is part of
the prerequisites of Theorem 5.8. Nevertheless, we may still obtain continuous
realizations of ZkN (x) from Theorem 2.11 as it is equivalent to apply the
noise Z to kN (x, ·) or to apply the noise 1ΛNZ to k(x, ·). As ϕN (f) =

e
∫
ΛN

ψ(f) dx
(and likewise for RN (y) with ΛN replaced by Λc), we see that this

functional still is |||·|||-continuous and therefore the results of Theorem 2.11
are compatible with the cut-off ΛN .

(ii) Likewise, the Hölder continuity of the covariance function k2α,m of the Gaus-
sian part (see (4.9)) is immediately passed on to the truncated fields GkN (x),
ZkN,t(x) and RN (x), as by Definition 5.5 (i) the canonical distance of all these
fields is dominated by that of Gk(x).

As we are now able to restrict both x and y to a (sufficiently large) bounded
domain Λ at the cost of a small and controllable error, we can now apply Mercer
expansion of the smoothing kernel on Λ and recall the following well-known result:
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Theorem 5.11 (Mercer’s Theorem, cf. [41, Theorem 1.80]). Let Λ be a compact
subset of Rd and k : Λ× Λ→ R be a continuous, positive definite kernel. Associated
with k is a compact linear operator K : L2(Λ)→ L2(Λ) defined by

[Kφ](x) =

∫

Λ

k(x, y)φ(y) dy.

Then there exist an orthonormal basis {ei}i∈N of L2(Λ) consisting of eigenfunctions
of K such that the associated sequence of eigenvalues {λi}i∈N is non-negative with
zero as its only possible point of accumulation. The eigenfunctions corresponding to
positive eigenvalues are continuous on Λ and k has the representation

k(x, y) =
∞∑

i=1

λiei(x)ei(y), x, y ∈ Λ,

where the convergence is absolute and uniform.

Remark 5.12.
(i) In what follows we will obtain a finite-dimensional approximation of the

smoothed random field by expanding the smoothing kernel k rather than its
covariance function k∨ ∗ k, as in a Karhunen-Loève (KL) expansion. The
difference to the standard KL-expansion lies in the fact that the covari-
ance function of the truncated noise is

∫
Λ
k(x − z)k(y − z) dz in contrast

to
∫
Rd k(x − z)k(y − z) dz expanded in the standard KL-expansion, where

x, y ∈ Λ. It is easily seen that the eigenvalues obtained for the expansion
of the first covariance function are λ2

i and the eigenfunctions ei(x) remain
the same, as this operator is the square to the integral operator defined by
k(x− y) on L2(Λ,dy) .

(ii) Of course also an expansion of the paths of Zk(x) in eigenfunctions of the
second covariance operator is possible in principle. However this requires an
expansion of the smoothing kernel k(x−y) in x ∈ Λ (or D) and prove unifor-
mity and decay properties of this expansion in y ∈ Rd. This approach seems
more involved than the cut-off method used here, as the spectral properties
of the integral operator induced by k(x−y) can not be used. Also, the cut-off
method seems efficient as for Matèrn kernels it does not lead to a worsening
of rates of convergence in Theorem 5.15 below.

(iii) The assumptions of the above theorem clearly hold for k(x, y) = kα,m(x− y)
for 2α > d when resticted to Λ in both arguments x, y, cf. Lemma 4.4. Note
that by Definition 2.9 the Fourier transform of kα,m(x) is positive, which
implies the positive definiteness of the kernel kα,m(x− y).

(iv) Note that the eigenfunctions ei(x) and the eigenvalues λi depend on Λ. For
Λ = ΛN we use the notation λN,i and eN,i(x).

Corollary 5.13. Under the assumptions given in Theorem 5.8, let in addition
k be a positive definite kernel. Then for fixed N ∈ N the decomposition

kN (x, y) = k(x, y)1ΛN (y) = kN,N ′(x, y) + rN,N ′(x, y), x, y ∈ ΛN ,

with kN,N ′(x, y) =
∑N ′

i=1 λN,ieN,i(x)eN,i(y) the truncated Mercer expansion (Theo-
rem 5.11) with remainder rN,N ′ represents an orthogonal approximation sequence in
the sense of Definition 5.5 w.r.t. the approximation parameter N ′ ∈ N. Then for
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the solution uN of (4.1) with smoothing kernel truncated in the y variable (cf. Corol-
lary 5.9) and the solution uN,N ′ associated with ZkN,N′ , we have

(5.15) ‖uN − uN,N ′‖Ln((Ω,A,P);H1(D)) ≤ Ĉ|ΛN |κr,N,N ′ → 0 as N ′ →∞,

where κr,N,N ′ = supx∈D,y∈ΛN |
∑∞
i=N ′+1 λN,ieN,i(x)eN,i(y)| and |ΛN | > 1.

Proof. Mercer’s theorem provides

0 ≤ κr,N,N ′ ≤ sup
x∈ΛN ,y∈ΛN

∣∣∣∣∣
∞∑

i=N ′+1

λN,i eN,i(x) eN,i(y)

∣∣∣∣∣→ 0 as N ′ →∞.

Furthermore, as ΛN is bounded, ‖r̃N,N ′‖L1(ΛN ) ≤ |ΛN |κr,N,N ′ . Now the assertion
follows from Theorem 5.8.

We want to state a convergence rate for Matérn kernels. For this we first establish
an auxiliary result.

Lemma 5.14. Let k = kα,m be a Matérn smoothing function with α > d. Further,
let (ΛN )N∈N denote a compact exhaustion of Rd with D ⊂ Λ1 and diam(Λ1) ≥ 1.
Then for every ε ∈ (0, αd − 1

2 ) there exists a constant C > 0 such that for each N ∈ N
the uniform bound κr,N,N ′ on the remainder of the Mercer series of the restriction kN
of k to ΛN × ΛN satisfies

(5.16) κr,N,N ′ ≤ Cdiam(ΛN )4(α− d2−ε)N ′
−2αd+2+2ε ∀N ′ ∈ N,

where κr,N,N ′ = supx∈D,y∈ΛN |
∑∞
i=N ′+1 λN,ieN,i(x)eN,i(y)|.

Proof. Applying (C.8) for a given ε ∈ (0, αd − 1
2 ) provides the existence of a

constant C > 0 such that for all N,N ′ ∈ N, there holds

κr,N,N ′ ≤
∞∑

i=N ′+1

sup
x∈D,y∈ΛN

|λN,ieN,i(x)eN,i(y)| ≤
∞∑

i=N ′+1

‖
√
λN,ieN,i‖2L∞(ΛN )

≤ C2diam(ΛN )4(α− d2−ε)
∞∑

i=N ′+1

i−2αd+1+2ε

≤ C2diam(ΛN )4(α− d2−ε)
∫ ∞

N ′
x−2αd+1+2ε dx

≤ C2(2α/d− 2− 2ε)−1diam(ΛN )4(α− d2−ε)N ′
−2αd+2+2ε

.

Note that the series converges since −2αd + 1 + 2ε < −1. Redefining C yields the
assertion.

We now combine Corollaries 5.9 and 5.13 to obtain our second main result:

Theorem 5.15. Let the assumption of Theorem 5.8 hold and let kα,m be a Matérn

kernel with α > d. Let δ := diam(D) and fix x0 ∈ D with D ⊆ x0 +
[
− δ2 , δ2

]d
. For

fixed 0 < m̃ < m let

δN :=
δ + 1

2
+

2

m̃

(α
d
− 1
)

logN and ΛN := x0 + [−δN , δN ]
d
, N ∈ N.

Moreover, we denote the solution resulting from the truncated Mercer expansion in
Corollary 5.13 for the above ΛN by uN,N and the solution given in Lemma 4.1 a) by
u.
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For every υ ∈ (0, 2α/d− 2) there is a constant C > 0 such that

∀N ∈ N : ‖u− uN,N‖Ln((Ω,A,P);H1(D)) ≤ CN−υ.
Proof. Let υ ∈ (0, 2α/d − 2) be given. We fix ε ∈ (0, αd − 1

2 ) such that υ <
2α/d− 2− 2ε. With this ε and m̃ ∈ (0,m) from the hypothesis we define

m′ :=
m̃
(
α
d − 1− ε

)
(
α
d − 1

) ∈ (0,m)

so that
2

m′

(α
d
− 1− ε

)
=

2

m̃

(α
d
− 1
)

resulting in

δN =
δ + 1

2
+

2

m′

(α
d
− 1− ε

)
logN

as well as

de(D,Λ
c
N ) >

2
(
α
d − 1− ε

)

m′
logN,N ∈ N

Since |ΛN | = 2dδdN , diam(Λ1) > 1, and diam(ΛN ) =
√

2d δN , combining Corol-
lary 5.9, Corollary 5.13 and Lemma 5.14, we obtain with suitable constants, denoting
‖ · ‖Ln((Ω,A,P);H1(D)) by just ‖ · ‖,

‖u− uN,N‖ ≤ ‖u− uN‖+ ‖uN − uN,N‖

≤ C ′e−m
′de(D,Λ

c
N ) + Ĉ|ΛN |C (diam(ΛN ))

4(α− d2−ε)N−2(αd−1−ε)

≤ C ′N−2(αd−1−ε) + ĈC 2d
√

2d δ
d+2(α− d2 )−2ε

N N−2(αd−1−ε)

= C ′N−2(αd−1−ε) + ĈC 2d
√

2d δ
2(α−ε)
N N−2(αd−1−ε)

Next, we use for

δN =
δ + 1

2
+

2

m′

(α
d
− 1− ε

)
logN

that for arbitrary ε′ > 0 there is C ′′ > 0, depending only on δ, α, d,m′, ε, and ε′, with

δ
2(α−ε)
N ≤ C ′′N ε′ , N ∈ N. Applying this to ε′ with υ + ε′ < 2

(
α
d − 1− ε

)
we continue

with our inequality from above and obtain

‖u− uN,N‖ ≤ C ′N−2(αd−1−ε) + ĈC 2d
√

2d δ
2(α−ε)
N N−2(αd−1−ε)

≤ C ′N−2(αd−1−ε)+ε′ + ĈCC ′′2d
√

2dN−2(αd−1−ε)+ε′

≤
(
C ′ + ĈCC ′′2d

√
2d
)
N−υ

which proves the assertion.

Remark 5.16.
(i) We can combine Theorem 5.8 and Corollary 5.13 to obtain the convergence of

the approximated solutions for any positive definite kernel function satisfying the
assumptions of Theorem 5.8. For the derivation of a convergence rate, however,
additional knowledge of the remainder rN is needed.

(ii) Note that ZkN,N (x) =
∑N
i=1 λN,ieN,i(x)Z(eN,i) depends only on the finite-

dimensional Levy distribution of (Z(eN,1), . . . , Z(eN,N )). Thus Theorem 5.15
provides an approximation scheme for u obtained from coefficients from an
infinite-dimensional distribution by uN,N obtained from a finite-dimensional dis-
tributions.
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6. Outlook. We have established a comprehensive theory for the existence, in-
tegrability and finite-dimensional approximation of solutions to the random PDEs
(1.1) with conductivity given by transformed Lévy random fields including rates of
convergence.

At this point it seems natural to proceed with a numerical treatment of the
PDEs based on the established stochastic approximation scheme. However, this is
not straightforward as the uncorrelated Lévy random variables (Z(e1), . . . , Z(en)) of
the finite-dimensional approximation will, in general, fail to be independent. Standard
(sparse) tensor quadrature formulae for numerically computing the expected value of
quantities of interest are therefore not applicable without modification. Research
on quadrature rules to numerically integrate high-dimensional Lévy distributions is
needed.

The statistical investigation of the actual distribution of, e.g., hydraulic con-
ductivity in groundwater problems, is necessary to further clarify the relevance of
Lévy models. The option to insert discrete regions of enhanced conductivity via non-
isotropic kernel functions k with random orientation applied to smooth Poisson noise
seems adequate to model crack-like structures in the subsurface. Only minor changes
to the theory presented here would be needed to cover this case as well.

Considering statistical aspects further, the results in Section 5 allow an interest-
ing additional application. Even in the Gaussian case, a proof of the robustness of
uncertainty quantification methods under statistical estimation error of the covariance
or semi-variogram functions is missing. We suggest that our arguments used in the
proof of the approximation can be adapted to show that given a consistent estimation
of the covariance function, the expected value of quantities of interest converges in
the large sample limit.

In this work, we have treated Lévy processes with a Poisson part that permits
infinite activity

∫
{|s|<1} ν(ds) = ∞ while satisfying

∫
{|s|<1} |s|ν(ds) < ∞. This al-

lowed us to shift the compensator term its1{|s|≤1}(s) for small jumps in the Lévy
characteristic to the constant b, cf. Definition 3.1. Lévy measures for which only∫
{|s|<1} |s|2ν(ds) <∞ require a different set of tail estimates to be developed. At the

same time it would be of interest to weaken the integrability conditions for the Lévy
measure and allow for thicker tails for ν(ds) for large s. E.g. the methods presented
here are far from being applicable to α-stable Lévy fields with extremely fat tails.

Another interesting direction of research is to work directly with Lévy random
fields with positive paths making the transformation T (z) unnecessary. E.g. smoothed
Gamma noise with a positive kernel function k(x) is an interesting candidate as gamma
and lognormal distributions are rather similar. If one avoids using the transformation
T (z), the maximum value problem for Zk(x), however, is turned in a minimum value
problem, which requires a rather different set of techniques to prove analogous results
to those given in this paper.

Acknowledgements. H. Gottschalk and M. Reese gratefully acknowledge partial
financial support by the German Federal Ministry of Research and Education (BMBF,
Grant-No.: 05M18PXA).

Appendix A. Proof of Lemma 2.10.
In this appendix a proof of Lemma 2.10 is presented. For α ∈ R and m > 0 we

denote the function

Rd → R, x 7→ 1

(|x|2 +m2)α
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simply by 1
(|x|2+m2)α . Moreover, the Matérn kernel (with parameter α and m) kα,m =

F−1
(

1
(|x|2+m2)α

)
belongs to S ′(Rd).

With the notation introduced in subsection 2.2, our next objective is to determine
for fixed q ∈ N0 those α ∈ R such that

(A.1) ∀ y ∈ Rd : τy

(
k∨α,m

)
∈ Sq(Rd),

where τy denotes translation by y and ∨ reflection at the origin. If (A.1) holds and
ω ∈ S ′q(Rd) then the convolution ω ∗ kα,m

Rd → C, y 7→
〈
ω, τy

(
k∨α,m

)〉

is well-defined. Moreover, if not only (A.1) is satisfied but also

Rd → (Sq(Rd), | · |q), y 7→ τy
(
k∨α,m

)

is continuous, the convolution yields a continuous function as well. In order to in-
vestigate the validity of (A.1) together with the continuous dependence on y, some
technical preparations have to be made. We first observe that

τy

((
F−1

(
1

(|x|2 +m2)α

))∨)
= F−1

(
eixy

(|x|2 +m2)α

)
,

where xy denotes the Euclidean scalar product of x, y ∈ Rd.
Because the Fourier transform commutes with the operator (|x|2−∆), (A.1) will

follow if α ∈ R,m > 0 are such that

(A.2) ∀ y ∈ Rd :
(
|x|2 −∆

)q
[

eixy

(|x|2 +m2)α

]
∈ L2(Rd).

In order to determine those values of α which satisfy the above property, we will apply
part iii) of the next lemma to f = 1

(|x|2+m2)α . Recall that a smooth function is said

to be of moderate growth if each of its partial derivatives is polynomially bounded.

Lemma A.1.
i) For every smooth function Q on R which is of moderate growth and every
y ∈ Rd it holds that for all f ∈ S ′(Rd)
(
|x|2 −∆

)
[Q(xy)f ] = Q(xy)

(
|x|2 −∆

)
f − |y|2Q′′(xy)f − 2Q′(xy)〈y,∇〉f,

where 〈y,∇〉 =
∑d
j=1 yj∂j denotes the derivative in direction y.

ii) For every r ∈ N, y ∈ Rd, and each f ∈ S ′(Rd) we have

(
|x|2 −∆

)
〈y,∇〉rf =





if r = 1 : 〈y,∇〉
(
|x|2 −∆

)
f − 2xy f,

if r ≥ 2 : 〈y,∇〉r
(
|x|2 −∆

)
f

−r(r − 1)|y|2〈y,∇〉r−2f

−2r xy〈y,∇〉r−1f.

iii) For every p ∈ N there are kl ∈ N, rn,l ∈ N0 and polynomials of a single
variable Pn,l, Qn,l, where l ∈ {0, . . . ,max{0, p − 2}}, n ∈ {1, . . . , kl}, such
that for all f ∈ S ′(Rd) and y ∈ Rd

(
|x|2 −∆

)p
(eixyf) = eixy

((
|x|2 −∆

)p
f − 2ip〈y,∇〉

(
|x|2 −∆

)p−1
f
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+ p|y|2
(
|x|2 −∆

)p−1
f

+

p−2∑

l=0

kl∑

n=1

Pn,l(|y|2)Qn,l(xy)〈y,∇〉rn,l
(
|x|2 −∆

)l
f

)

and such that degQn,l ≤ p− 1, rn,l ≤ p as well as

degPn,l + degQn,l + rn,l + l ≤ p+ 1

for all l ∈ {0, . . . ,max{0, p− 2}}, n ∈ {1, . . . , kl}.
Proof. A direct calculation shows that i) holds.
ii) Since the constant coefficient differential operators 〈y,∇〉 and ∆ commute,

〈y,∇〉
(
|x|2f −∆f

)
= 2xy f + |x|2〈y,∇〉f −∆〈y,∇〉f,

which gives the claim for r = 1. Using the just proved equality twice, it is straightfor-
ward to show that the asserted equation is true for r = 2. Assuming that the equation
holds for r ≥ 2 a straightforward calculation gives

(
|x|2 −∆

)
〈y,∇〉r+1f =〈y,∇〉r+1

(
|x|2 −∆

)
f − 2r(r + 1)|y|2〈y,∇〉r−1f

− 2(r + 1)xy〈y,∇〉rf

proving ii).
iii) We prove the claim by induction on p. For p = 1, part i) yields

(|x|2 −∆)(eixyf) = eixy
((
|x|2 −∆

)
f − 2i〈y,∇〉f + |y|2f

)
.

Assuming that the claim holds for p ∈ N we obtain by the induction hypothesis and
the case p = 1 that

(
|x|2 −∆

)p+1
(eixyf)

=eixy
((
|x|2 −∆

)p+1
f − 2ip

(
|x|2 −∆

)
〈y,∇〉

(
|x|2 −∆

)p−1
f + p|y|2

(
|x|2 −∆

)p
f

+

p−2∑

l=0

kl∑

n=1

(
|x|2 −∆

) [
Pn,l(|y|2)Qn,l(xy)〈y,∇〉rn,l

(
|x|2 −∆

)l
f
]

− 2i〈y,∇〉
(
|x|2 −∆

)p
f − 4p〈y,∇〉2

(
|x|2 −∆

)p−1
f

− 2ip|y|2〈y,∇〉
(
|x|2 −∆

)p−1
f

(A.3)

−
p−2∑

l=0

kl∑

n=1

2i〈y,∇〉
[
Pn,l(|y|2)Qn,l(xy)〈y,∇〉rn,l

(
|x|2 −∆

)l
f
]

+ |y|2
(
|x|2 −∆

)p
f − 2ip|y|2

(
|x|2 −∆

)p−1
f + p(|y|2)2

(
|x|2 −∆

)p−1
f

+

p−2∑

l=0

kl∑

n=1

|y|2Pn,l(|y|2)Qn,l(xy)〈y,∇〉rn,l
(
|x|2 −∆

)l
f

])
.

For the second double sum on the right hand side of the above equality (A.3) we
calculate

p−2∑

l=0

kl∑

n=1

2i〈y,∇〉
[
Pn,l(|y|2)Qn,l(xy)〈y,∇〉rn,l

(
|x|2 −∆

)l
f
]
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=

p−2∑

l=0

kl∑

n=1

2iPn,l(|y|2)Q′n,l(xy)|y|2〈y,∇〉rn,l
(
|x|2 −∆

)l
f(A.4)

+

p−2∑

l=0

kl∑

n=1

2iPn,l(|y|2)Qn,l(xy)〈y,∇〉rn,l+1
(
|x|2 −∆

)l
f,

while an application of parts i) and ii) to the summands of the first double sum on
the right hand side of equality (A.3) combined with ∆xQn,l(xy) = Q′′n,l(xy)|y|2 and
∇xQn,l(xy) = Q′n,l(xy)y gives

(
|x|2 −∆

) [
Pn,l(|y|2)Qn,l(xy)〈y,∇〉rn,l

(
|x|2 −∆

)l
f
]

(A.5)

=





if rn,l = 0 : Pn,l(|y|2)Qn,l(xy)
(
|x|2 −∆

)l+1
f

−Pn,l(|y|2)|y|2Q′′n,l(xy)
(
|x|2 −∆

)l
f

−2Pn,l(|y|2)Q′n,l(xy)〈y,∇〉
(
|x|2 −∆

)l
f

if rn,l = 1 : Pn,l(|y|2)Qn,l(xy)〈y,∇〉
(
|x|2 −∆

)l+1
f

−Pn,l(|y|2)|y|2Q′′n,l(xy)〈y,∇〉
(
|x|2 −∆

)l
f

−2Pn,l(|y|2)Q′n,l(xy)〈y,∇〉2
(
|x|2 −∆

)l
f

−2Pn,l(|y|2)Qn,l(xy)xy
(
|x|2 −∆

)l
f

if rn,l ≥ 2 : Pn,l(|y|2)Qn,l(xy)〈y,∇〉rn,l
(
|x|2 −∆

)l+1
f

−Pn,l(|y|2)|y|2Q′′n,l(xy)〈y,∇〉rn,l
(
|x|2 −∆

)l
f

−2Pn,l(|y|2)Q′n,l(xy)〈y,∇〉rn,l+1
(
|x|2 −∆

)l
f

−2rn,lPn,l(|y|2)Qn,l(xy)xy〈y,∇〉rn,l−1
(
|x|2 −∆

)l
f

−rn,l(rn,l − 1)Pn,l(|y|2)|y|2Qn,l(xy)〈y,∇〉rn,l−2
(
|x|2 −∆

)l
f.

By this equality, it holds for the first double sum on the right hand side of (A.3)

p−2∑

l=0

kl∑

n=1

(
|x|2 −∆

) [
Pn,l(|y|2)Qn,l(xy)〈y,∇〉rn,l

(
|x|2 −∆

)l
f
]

=

p−2∑

l=0

kl∑

n=1

Pn,l(|y|2)Qn,l(xy)〈y,∇〉rn,l
(
|x|2 −∆

)l+1
f

−
p−2∑

l=0

kl∑

n=1

Pn,l(|y|2)|y|2Q′′n,l(xy)〈y,∇〉rn,l
(
|x|2 −∆

)l
f

−
p−2∑

l=0

kl∑

n=1

Pn,l(|y|2)2Q′n,l(xy)〈y,∇〉rn,l+1
(
|x|2 −∆

)l
f(A.6)

−
p−2∑

l=0

kl∑

n=1;rn,l≥1

2rn,lPn,l(|y|2)Qn,l(xy)xy〈y,∇〉rn,l−1
(
|x|2 −∆

)l
f

−
p−2∑

l=0

kl∑

n=1;rn,l≥2

rn,l(rn,l − 1)Pn,l(|y|2)|y|2Qn,l(xy)〈y,∇〉rn,l−2
(
|x|2 −∆

)l
f.
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Inserting (A.6) and (A.4) into the first double sum and second double sum of the
right hand side in (A.3), respectively, applying part ii) to the second summand, and
rearranging the terms we derive
(
|x|2 −∆

)p+1
(eixyf)

=eixy
((
|x|2 −∆

)p+1
f − 2i(p+ 1)〈y,∇〉

(
|x|2 −∆

)p
f + (p+ 1)|y|2

(
|x|2 −∆

)p
f

+

p−2∑

l=0

kl∑

n=1

Pn,l(|y|2)Qn,l(xy)〈y,∇〉rn,l
(
|x|2 −∆

)l+1
f

+

p−2∑

l=0

kl∑

n=1

Pn,l(|y|2)|y|2
(
Qn,l(xy)− 2iQ′n,l(xy)−Q′′n,l(xy)

)
·

· 〈y,∇〉rn,l
(
|x|2 −∆

)l
f

+

p−2∑

l=0

kl∑

n=1

Pn,l(|y|2)
(
2iQn,l(xy)− 2Q′n,l(xy)

)
〈y,∇〉rn,l+1

(
|x|2 −∆

)l
f

−
p−2∑

l=0

kl∑

n=1;rn,l≥1

2rn,lPn,l(|y|2)Qn,l(xy)xy〈y,∇〉rn,l−1
(
|x|2 −∆

)l
f

−
p−2∑

l=0

kl∑

n=1;rn,l≥2

rn,l(rn,l − 1)Pn,l(|y|2)|y|2Qn,l(xy)〈y,∇〉rn,l−2
(
|x|2 −∆

)l
f

+ 4ipxy
(
|x|2 −∆

)p−1
f − 4p〈y,∇〉2

(
|x|2 −∆

)p−1
f − 2ip|y|2〈y,∇〉

(
|x|2 −∆

)p−1
f

− 2ip|y|2
(
|x|2 −∆

)p−1
f + p (|y|2)2

(
|x|2 −∆

)p−1
f
)
.

Thus,
(
|x|2−∆

)p+1
(eixyf) is of the asserted form. Moreover, since the powers of the

directional derivative 〈y,∇〉 are at most max{2, rn,l+1}, by the induction hypothesis,
they are bounded by p + 1. Furthermore, the polynomials of one variable t which
are applied to the scalar product xy are either Qn,l, Qn,l − 2iQ′n,l − Q′′n,l, 2iQn,l −
2Q′n,l, t 7→ Qn,l(t)t, or t 7→ t, which by the induction hypothesis implies that their
respective degree is bounded above by p. Finally, using again the induction hypothesis,
it follows that in each summand of the above expression the sum of the degrees of the
polynomials in |y|2, xy, the power of 〈y,∇〉, and the power of

(
|x|2 −∆

)
is bounded

above by p+ 1 which proves the assertion for p+ 1 and gives iii).

Our objective is to apply part iii) of the previous lemma to f(x) = 1
(|x|2+m2)α in

order to derive for which α ∈ R,m > 0

∀ y ∈ Rd :
(
|x|2 −∆

)q
[

eixy

(|x|2 +m2)α

]
∈ L2(Rd)

holds. For this we still need one more technical result.

Proposition A.2. Let α ∈ R and m > 0.
i) Let A be a polynomial of a single variable and y ∈ Rd. Denoting for r ∈ N

the integer part of r
2 by

⌊
r
2

⌋
there are polynomials A0, . . . Ab r2c of a single

variable such that degAj = degA+ j and

〈y,∇〉r
[

A(|x|2)

(|x|2 +m2)α

]
=

∑b r2c
j=0 Aj(|x|2)(xy)r−2j |y|2j

(|x|2 +m2)α+r
.
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ii) For every p ∈ N0 there is a polynomial of a single variable Q with degQp = 3p
such that

(
|x|2 −∆

)p 1

(|x|2 +m2)α
=

Qp(|x|2)

(|x|2 +m2)α+2p
.

Proof. The assertion in i) is clearly true for y = 0. For y 6= 0, multiplying both
sides of the asserted equality by |y|−r we see that we can assume without loss of
generality that |y| = 1. For |y| = 1 we prove i) by induction on r. For r = 1 a
straightforward calculation shows that

〈y,∇〉
[

A(|x|2)

(|x|2 +m2)α

]
=

2
(
A′(|x|2)(|x|2 +m2)− αA(|x|2)

)
xy

(|x|2 +m2)α+1
.

Since no polynomial is a solution to the ordinary differential equation u′(t)(t+m2)−
cu(t) = 0, c ∈ R, the degree of the polynomial

R 3 t 7→ A′(t)(t+m2)− αA(t)

equals degA which proves the claim for r = 1.
Assume the claim to be true for r ∈ N. Taking into account that r is odd precisely

when r−2
⌊
r
2

⌋
= 1, or when

⌊
r
2

⌋
+1 =

⌊
r+1

2

⌋
, and using |y| = 1 as well as the induction

hypothesis, it follows

〈y,∇〉r+1

[
A(|x|2)

(|x|2 +m2)α

]
= 〈y,∇〉



∑b r2c
j=0 Aj(|x|2)(xy)r−2j

(|x|2 +m2)α+r




=
(2A′0(|x|2)(|x|2 +m2)− 2(α+ r)A0(|x|2))(xy)r+1

(|x|2 +m2)α+r+1

+

∑b r2c
j=1 (2A′j(|x|2) + (r + 2(j − 1))Aj−1(|x|2))(|x|2 +m2)(xy)r+1−2j

(|x|2 +m2)α+r+1

−
∑b r2c
j=1 2(α+ r)Aj(|x|2)(xy)r+1−2j

(|x|2 +m2)α+r+1

+





if r is odd :
Ab r2c(|x|

2)(|x|2+m2)(|x|2+m2)α+r+1(xy)
r+1−2b r+1

2 c
(|x|2+m2)α+r+1

if r is even : 0.

Using the induction hypothesis once more we see that the degree of the polynomial

Ã0 : R 3 t 7→ 2A′0(t)(t+m2)− 2(α+ r)A0(t)

is equal to degA0 = degA while for 1 ≤ j ≤
⌊
r
2

⌋
the degree of the polynomials

Ãj : R 3 t 7→ (2A′j(t) + (r + 2(j − 1))Aj−1(t))(t+m2)− 2(α+ r)Aj(t)

satisfies deg(Ãj) = degAj = degA+j. Finally, for odd r the degree of the polynomial

Ãb r+1
2 c : R 3 t 7→ Ab r2c(t)(t+m2)

is equal to degAb r2c + 1 = degA+
⌊
r
2

⌋
+ 1 by the induction hypothesis. Because by

the above we have

〈y,∇〉r+1
[ A(|x|2)

(|x|2 +m2)α

]
=

∑b r+1
2 c

j=0 Ãj(|x|2)(xy)r+1−2j

(|x|2 +m2)α+r+1
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it follows that the claim also holds for r + 1 which proves i).
In order to prove ii), we switch to polar coordinates (writing r2 = |x|2 as usual),

so we actually claim that for every p ∈ N0 there is a polynomial Qp in one variable
with real coefficients and of degree 3p such that

(A.7)
(
r2 − 1

rd−1

∂

∂r

(
rd−1 ∂

∂r

))p 1

(r2 +m2)α
=

Qp(r
2)

(r2 +m2)α+2p
.

Indeed, for p = 0 the claim is obviously true. Assuming the claim to be true for
p ∈ N0 a tedious but straightforward calculation yields

(
r2 − 1

rd−1

∂

∂r

(
rd−1 ∂

∂r

))p+1 1

(r2 +m2)α
=

Qp+1(r2)

(r2 +m2)α+2(p+1)
,

where

Qp+1(t) := t(t+m2)2Qp(t)− d(t+m2)
(
Q′p(t)2(t+m2)− (2α+ 4p)Qp(t)

)

− 4t(t+m2)
(
Q′′p(t)(t+m2) + (1− α− 2p)Q′p(t)

)

+ (2α+ 4p+ 2)t
(
Q′p(t)2(t+m2)− (2α+ 4p)Qp(t)

)

is a polynomial with real coefficients of degree deg Qp + 3 = 3(p + 1), which proves
ii).

We subsume the results so far obtained in the next proposition which is an im-
mediate consequence of Proposition A.2 ii) applied to each summand obtained by
applying Lemma A.1 iii) to f(x) = 1

(|x|2+m2)α .

Proposition A.3. Let q ∈ N0 be fixed. Moreover, let α ∈ R and m > 0. Then,
there are kl ∈ N, 0 ≤ rn,l ≤ q, 0 ≤ l ≤ max{0, q − 2}, 1 ≤ n ≤ kl and polynomials

of a single variable Pn,l, Qn,l with degQn,l ≤ q − 1, Q̃q with deg Q̃q = 3q, Q̃q−1

with deg Q̃q−1 = 3(q − 1), Q̃q−1,1 with deg Q̃q−1,1 = 3(q − 1), and Q̃l,j,rn,l with

deg Q̃l,j,rn,l = 3l + j, where 0 ≤ l ≤ max{0, q − 2}, 1 ≤ n ≤ kl, 0 ≤ j ≤
⌊ rn,l

2

⌋
such

that for all y ∈ Rd

(
|x|2 −∆

)q
(

eixy

(|x|2 +m2)α

)
= eixy

(
Q̃q(|x|2)

(|x|2 +m2)α+2q

− 2iq
Q̃q−1,1(|x|2)xy

(|x|2 +m2)α+2(q−1)+1
+ q|y|2 Q̃q−1(|x|2)

(|x|2 +m2)α+2(q−1)
(A.8)

+

q−2∑

l=0

kl∑

n=1

b rn,l2 c∑

j=0

Pn,l(|y|2)|y|2jQn,l(xy)Q̃l,j,rn,l(|x|2)(xy)rn,l−2j

(|x|2 +m2)α+2l+rn,l


 .

Now we have everything at our disposal to prove Lemma 2.10.

Proof of Lemma 2.10. Before we prove the implications asserted in Lemma 2.10,
we consider when for fixed y ∈ Rd each of the summands in (A.8) belongs to L2(Rd).
Because for fixed y ∈ Rd each summand is a continuous function of x ∈ Rd, we can
assume without loss of generality that |x| ≥ 1 in the following considerations.

While for fixed y ∈ Rd the first summand in (A.8) belongs to L2(Rd) whenever
α > d

4 +q the second and third summand in (A.8) are in L2(Rd) for α > d
4 +q− 3

2 and
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α > d
4 + q − 1, respectively. Finally, an application of the Cauchy-Schwarz inequality

shows that each term appearing in the triple sum in (A.8) belongs to L2(Rd) for fixed
y ∈ Rd if α > d

4 + 3
2 (q − 1).

Hence, a sufficient condition on α > 0 (and m ∈ R) for

∀ y ∈ Rd : Rd → C, x 7→
(
|x|2 −∆

)q
(

eixy

(|x|2 +m2)α

)
∈ L2(Rd)

to hold is α > max{d4 + q, d4 + 3
2 (q− 1)} = d

4 + q+ max{0, q−3
2 }, so that i) implies iii).

Moreover, if i) holds, employing (A.8) for y0 ∈ Rd and y ∈ Rd from a fixed compact
neighborhood of y0 it follows

∥∥∥∥(|x|2 −∆)q
(

eixy0

(|x|2 +m2)α

)
− (|x|2 −∆)q

(
eixy

(|x|2 +m2)α

)∥∥∥∥
2

L2

=

∫

Rd

∣∣∣∣∣(e
ixy0 − eixy)

Q̃q(|x|2)

(|x|2 +m2)α+2q

− 2iq(eixy0xy0 − eixyxy)
Q̃q−1,1(|x|2)

(|x|2 +m2)α+2(q−1)+1

+ q(eixy0 |y0|2 − eixy|y|2)
Q̃q−1(|x|2)

(|x|2 +m2)α+2(q−1)

+

q−2∑

l=0

kl∑

n=1

b rn,l2 c∑

j=0

(eixy0Pn,l(|y0|2)|y0|2jQn,l(xy0)(xy0)rn,l−2j

−eixyPn,l(|y|2)|y|2jQn,l(xy)(xy)rn,l−2j)
Q̃l,j,rn,l(|x|2)

(|x|2 +m2)α+2l+rn,l

∣∣∣∣∣

2

dx.

Since y belongs to a fixed compact neighborhood of y0 the above integrands have an
integrable majorant independent of y so that Lebesgue’s Dominanted Convergence
Theorem implies the continuity of

Rd → L2(Rd), y 7→ (|x|2 −∆)q
( eixy

(|x|2 +m2)α
)

in y0. Since y0 was chosen arbitrarily we conclude continuity of

Rd → (Sq(Rd), | · |q), y 7→
eixy

(|x|2 +m2)α
.

Since the Hermite functions hα are eigenfunctions of the Fourier transform and the
corresponding eigenvalues are unimodular, it follows that the Fourier transform is a
contractive linear self mapping on Sq(Rd) implying with the above the continuity of

Rd 7→ (Sq(Rd), | · |q), y 7→ F

(
eixy

(|x|2 +m2)α

)
= τy

((
F

(
1

(|x|2 +m2)α

))∨)

Hence, i) implies ii). Moreover, obviously, iii) follows from ii).
Next, we assume that iii) is valid. By the arguments elaborated at the beginning

of Appendix A (see (A.2)) we assume that

h : Rd → C, x 7→
(
|x|2 −∆

)q
(

eixy

(|x|2 +m2)α

)
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belongs to L2(Rd) for every y ∈ Rd. For the particular case y = 0, by Proposition
A.2 ii), the above h becomes

h(x) =
Qq(|x|2)

(|x|2 +m2)α+2q

with a suitable polynomial Qq on R of degree 3q. Thus, there are C > 0 and R > m2

with |Qq(|x|2)| ≥ C|x|6q, |x| ≥ R, so that

∞ >

∫

Rd

|Qq(|x|2)|2
(|x|2 +m2)2α+4q

dx ≥ Cσ(Sd−1)

4α+2q

∫ ∞

R

r4q+d−1−4α dr

where σ(Sd−1) denotes the surface of the unit sphere of Rd. Thus, 4q+d−1−4α < −1,
which shows that iii) implies iv). The proof of Lemma 2.10 is complete. �

Appendix B. Proof of Proposition 3.7 and some of its consequences.
We first prove Proposition 3.7. In order to do so, for fj ∈ S , we consider the joint
characteristic function of the random vector Zn := (Z(f1), . . . , Z(fn))T , which by
linearity of Z is given by

ϕZn(t1, . . . , tn) = E
[
ei

∑n
j=1 tjZ(fj)

]
= E

[
eiZ(

∑n
j=1 tjfj)

]
= ϕZ




n∑

j=1

tjfj




= exp



∫

Rd


ψ ◦




n∑

j=1

tjfj




 (x) dx


 ,

where

ψ(t) = ibt− σ2t2

2
+

∫

R\{0}
eits − 1− its1{|s|≤1}(s)ν(ds).

Since the mixed moments E
[∏n

j=1 Z(fj)
]

are related to the joint characteristic func-

tion ϕZn via

E




n∏

j=1

Z(fj)


 =

1

in
∂n

∂t1 . . . ∂tn
ϕZn(t)

∣∣∣∣
t=0

,

the former can be calculated by an application of Faà di Bruno’s formula to f(x) = ex

and

g(t) = g(t1, . . . , tn) =

∫

Rd


ψ ◦




n∑

j=1

tjfj




 (x) dx :

Theorem B.1 (Faà di Bruno). Let g : Rn → C have partial derivatives up to
order n and f : C → C be n times differentiable in an open neighborhood of g(Rn).
Then there holds

∂n

∂t1 . . . ∂tn
f ◦ g =

n∑

j=1

f (j) ◦ g
∑

I∈P
(n)
j

I={I1,...,Ij}

j∏

l=1

∂Ilg,
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where P
(n)
k is the colletion of partitions of {1, . . . , n} into exactly k disjoint subsets,

∂A =
[∏

j∈A
∂
∂tj

]
and f (k)(x) =

(
dk

dxk
f
)

(x).

Taking into account that g(0) = 0 it thus only remains to calculate the partial
derivatives of

g(t) =

∫

Rd
ibk(x)− σ2k(x)2

2
+

∫

R\{0}
eik(x)s − 1− ik(x)s1{|s|≤1}(s) ν(ds) dx,

where we used the abbreviation k :=
∑n
j=1 tjfj . It follows from the general assump-

tion on ν, i.e.
∫
R\{0}min{1, s2}ν(ds) < ∞, that the majorant 2 min{|s|, 1}|k(x)| of

the inner intergrand is integrable. Thus, a standard consequence of Lebesgue’s dom-
inated convergence theorem together with an application of Fubini’s theorem yields
for 1 ≤ m ≤ n

1

i

∂

∂tm
g(0) =

∫

Rd
bfm(x)+

∫

|s|>1

fm(x)sν(ds) dx =

(
b+

∫

|s|>1

sν(ds)

)∫

Rd
fm(x) dx.

Likewise, the general assumption
∫
R\{0}min{1, s2}ν(ds) <∞ yields for 1 ≤ m1,m2 ≤

n

1

i2
∂2

∂tm1
∂tm2

g(0) =

(
σ2 +

∫

R\{0}
s2ν(ds)

)∫

Rd
fm1

(x)fm2
(x) dx.

Inductively, since by hypothesis
∫
R\{0} s

lν(ds) <∞ for l ≥ 3, we derive

1

il
∂l

∂tm1 . . . ∂tml
g(0) =

∫

R\{0}
slν(ds)

∫

Rd

l∏

j=1

fmj (x) dx

Defining b1 =
∫
|s|>1

sν(ds) and bn =
∫
R\{0} s

nν(ds) for n ≥ 2, as well as

cn =





b+ b1 : n = 1,

σ2 + b2 : n = 2,

bn : n ≥ 3,

we finally obtain

E




n∏

j=1

Z(fj)


 =

1

in

n∑

j=1

∑

I∈P
(n)
j

I={I1,...,Ij}

j∏

l=1

∂Ilg(0) =
∑

I∈P(n)

I={I1,...,Ij}

j∏

l=1

c|Il|

∫

Rd

∏

m∈Il
fm dx.

Note that the total order of differentiation per summand equals n, thus the factor 1
in

can be split up among all factors as above. This completes the proof of Proposition
3.7. �

As an application of Proposition 3.7 we calculate the covariance of Z(f1) and
Z(f2) for a Lévy noise field Z on (Ω,A,P). First of all, we note that the above proof
shows Z(f) ∈ L2(Ω,A,P), f ∈ S . Since Z is |||·|||-continuous and S is |||·|||-dense
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in L1 ∩ L2(Rd) we conclude Z(f) ∈ L2(Ω,A,P) for f ∈ L1 ∩ L2(Rd). Thus, the
covariance of Z(f1) and Z(f2) is well-defined and with c1 and c2 as above we have

E [Z(f1)] = c1

∫

Rd
f1(y) dy,

E [Z(f1)Z(f2)] = c2

∫

Rd
f1(y)f2(y) dy + c21

∫

Rd
f1(y) dy

∫

Rd
f2(y) dy

as well as

Cov(Z(f1), Z(f2)) = E [(Z(f1)Z(f2)]− E [Z(f1)]E [Z(f2)])

= c2

∫

Rd
f1(y)f2(y) dy + c21

∫

Rd
f1(y) dy

∫

Rd
f2(y) dy − c21

∫

Rd
f1(y) dy

∫

Rd
f2(y) dy

=

(
σ2 +

∫

R\{0}
s2 ν(ds)

)∫

Rd
f1(y)f2(y) dy.

The special case of f1 = kx1
= k(x1 − ·), f2 = kx2

= k(x2 − ·), k ∈ L1(Rd) ∩
L2(Rd), x1, x2 ∈ Rd gives the two-point covariance function of the smoothed Lévy
noise field Zk

C(x1, x2) := Cov(Zk(x1), Zk(x2)) = Cov(Z(kx1
), Z(kx2

))

=

(
σ2 +

∫

R\{0}
s2 ν(ds)

)∫

Rd
k(x1 − y)k(x2 − y) dy.

In case of Matérn kernels kα,m, we have

∫

Rd
kα,m(x1 − y)kα,m(x2 − y) dy = (k∨ ∗ k)(x1 − x2) = k2α,m(x1 − x2).

Comparing the covariance function of a smoothed Lévy field to the covariance of a
smoothed pure Gaussian random field, i.e. ν = 0, we have

CLévy =
σ2 +

∫
R\{0} s

2 ν(ds)

σ2
CGauss.

In particular, the eigenfunctions of the integral operators associated to CLévy and
CGauss coincide while the corresponding eigenvalues are multiples of one another.

Appendix C. Bounds for Eigenvalues and Eigenfunctions of Matérn
Integral Operators. The purpose of this appendix is to establish bounds on the
eigenvalues and eigenfunctions of the compact operator K : L2(Λ)→ L2(Λ), Λ ⊂ Rd
compact with Λ = int(Λ), where

[Kf ](x) =

∫

Λ

kα,m(x− y)f(y) dy, f ∈ L2(Λ), x ∈ Rd,

and where kα,m is the Matérn kernel with parameters α > d
2 , m > 0. Our approach

is very much inspired by [11]. However, beside giving explicitly the dependence of
the constants on the domain Λ we simplify some of the arguments for our particular
setting.

Since kα,m is real-valued and has a positive Fourier transform, K is a positive,
self-adjoint operator. We denote by (eΛ,j)j∈N =: (ej)j∈N and (λΛ,j)j∈N =: (λj)j∈N the
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orthonormal basis of L2(Λ) consisting of eigenfunctions of K and the corresponding
sequence of eigenvalues. Since K is positive, λj ≥ 0, j ∈ N. As usual we assume that
the eigenvalue sequence is decreasing.

Extending every f ∈ L2(Λ) by zero to Rd and denoting this extension of f to Rd
again by f , we interpret L2(Λ) as a closed subspace of L2(Rd). Since Λ is compact
we likewise have L2(Λ) ⊂ L1(Rd), thus

kα,m ∗ f ∈ L1(Rd) ∀f ∈ L2(Λ)

and Kf = (kα,m ∗ f)|Λ. Clearly, K is the compression to L2(Λ) of the convolution
operator on L2(Rd) with convolutor kα,m.

Recall that for s ∈ R we have the Sobolev space

Hs(Rd) = {u ∈ S ′(Rd); (1 + |ξ|2)
s
2 û ∈ L2(Rd)}

with norm

‖u‖2Hs(Rd) = (2π)−d‖(1 + |ξ|2)
s
2 û‖L2(Rd).

Moreover, for G ⊂ Rd open, we have

Hs(G) = {u ∈ D ′(G);∃U ∈ Hs(Rd) : U |G = u}

with norm

‖u‖Hs(Rd) = min
U∈Hs(Rd),U |G=u

‖U‖Hs(Rd).

It follows immediately that kα,m ∗ f ∈ Hα(Rd), f ∈ L2(Rd), and since α > d
2 we have

̂kα,m ∗ f ∈ L1(Rd), f ∈ L2(Rd). Because

∀j ∈ N : λjej = (kα,m ∗ ej)1Λ

it follows λj 6= 0 for j ∈ N as well as ej ∈ Hα(int(Λ)) ∩ C(Λ).
Let d

2 < s < α. By the Fourier inversion formula and the fact that due to

s > d
2 the Fourier transform of every Hs(Rd) function belongs to L1(Rd) (see e.g. [35,

Corollary 7.9.4]) for every U ∈ Hs(Rd) with U |int(Λ) = ej

‖ej‖L∞(Λ) ≤ (2π)−d‖Û‖L1(Rd) ≤ ‖(1 + |ξ|2)−s‖L1(Rd)‖U‖Hs(Rd)

so that with cs := ‖(1 + |ξ|2)−s‖L1(Rd) we have

∀j ∈ N : ‖ej‖L∞(Λ) ≤ cs‖ej‖Hs(int(Λ)).

Applying an interpolation inequality (see e.g. [44, Theorem 3.8 and Lemma 3.1]) gives

∀j ∈ N : ‖ej‖L∞(Λ) ≤ csα
(

sin( sπα )

πs(α− s)

) 1
2

‖ej‖1−
s
α

L2(Λ)‖ej‖
s
α

Hα(int(Λ))

= csα

(
sin( sπα )

πs(α− s)

) 1
2

‖ej‖
s
α

Hα(int(Λ)).

(C.1)



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

O. ERNST, H. GOTTSCHALK, T. KALMES, T. KOWALEWITZ AND M. REESE 53

From the definition of ‖ · ‖Hα(int(Λ)) and Plancherel’s Theorem we conclude

λ2
j‖ej‖2Hα(int(Λ)) ≤ ‖kα,m ∗ ej‖2Hα(Rd) = (2π)−2d

∫

Rd
(1 + |ξ|2)α(m2 + |ξ|2)−2α|êj |2 dξ

≤ max{1,m−2α}(2π)−2d

∫

Rd
̂kα,m ∗ ej êj dx

= max{1,m−2α}(2π)−2d(Kej , ej)L2(Λ) = max{1,m−2α}(2π)−2dλj .

Combining the previous inequality with (C.1) we obtain for every s ∈ (d2 , α):

(C.2) ∀j ∈ N :
√
λj‖ej‖L∞(Λ) ≤ csα

(
sin( sπα )

πs(α− s)

) 1
2

max{1,m−s}(2π)−
ds
α λ

1
2− s

2α
j .

Next we derive estimates for the eigenvalue sequence (λj)j∈N. Let δ ≥ diam(Λ).
Without loss of generality we assume that Λ ⊆ [− δ2 , δ2 ]d. Thus our integral operator
K is determined by kα,m|[−δ,δ]d . For arbitrary γ > δ we can interpret L2(Λ) as a

subspace of L2([−γ, γ]d) by extending functions by zero. Again we do not distinguish
notationally functions from L2(Λ) and their extensions.

If k is any continuous, real-valued and even extension of kα,m|[−δ,δ]d to [−γ, γ]d

— note that kα,m is a radial function, so in particular even — it follows that

K̃ : L2([−γ, γ]d)→ L2([−γ, γ]d), (K̃f)(x) :=

∫

[−γ,γ]d
k(x− y)f(y) dy

is a self-adjoint, compact operator which satisfies Kf = K̃f |Λ, f ∈ L2(Λ). Since K̃
is self-adjoint and compact, there exists an orthonormal basis (fj)j∈N of L2([−γ, γ]d)

consisting of eigenfunctions of K̃ and a real sequence of corresponding eigenvalues
(λ̃j)j∈N which without loss of generality have decreasing moduli.

Clearly, for every j ∈ N the operators

Bj : L2(Λ)→ L2(Λ), f 7→
j∑

l=1

λl(f, el)el,

Cj : L2(Λ)→ L2(Λ), f 7→
j∑

l=1

λ̃l(f, fl|Λ)fl|Λ

and

C̃j : L2([−γ, γ]d)→ L2([−γ, γ]d), f 7→
j∑

l=1

λ̃l(f, fl)fl

are continuous linear operators with at most j-dimensional range, where (·, ·) denotes
the inner product in L2(Λ) and L2([−γ, γ]d), respectively.

Then C̃jf |Λ = Cjf for f ∈ L2(Λ), j ∈ N0, and denoting temporarily the norms
of L2(Λ) and L2([−γ, γ]d) and the corresponding operator norms by ‖ · ‖Λ and ‖ · ‖γ ,
respectively, we have

∀f ∈ L2(Λ) : ‖Kf − Cjf‖Λ = ‖(K̃f − C̃jf)|Λ‖Λ ≤ ‖K̃f − C̃jf‖γ
so that

(C.3) ∀j ∈ N : ‖K − Cj‖Λ ≤ ‖K̃ − C̃j‖γ .
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Since K is a positive self-adjoint compact operator and K̃ is a self-adjoint compact
operator, by a well known result (see e.g. [45, Lemma 16.5 and its proof]) we obtain
with (C.3):

(C.4) ∀j ∈ N : λj = ‖K −Bj−1‖Λ ≤ ‖K − Cj−1‖Λ ≤ ‖K̃ − C̃j−1‖γ = |λ̃j |.

Up to now we did not specify the extension k of kα,m|[−δ,δ]d . For this we fix

χ > max{1, 1
δ } and a real valued, even φ1,χ ∈ D(Rd) with φ1,χ|[− 1

χ ,
1
χ ]d = 1 and

suppφ1,χ ⊆ [−1, 1]d. For γ ≥ χδ we define φγ,χ(x) := φ1,χ( 1
γx) so that φγ,χ|[−δ,δ]d = 1

and suppφγ,χ ⊆ [−γ, γ]d. In order to simplify the notation we write φ1 and φγ instead
of φ1,χ and φγ,χ, respectively.

Then kγ := kα,mφγ is an even extension of kα,m|[−δ,δ]d with supp kγ ⊆ [−γ, γ]d,
γ ≥ χδ. We define the γ-periodic extension kp of kγ by

∀x ∈ Rd : kp(x) :=
∑

n∈Zd
kγ(x+ 2γn).

Then for the integral operator K̃ corresponding to kγ we have

∀x ∈ Rd, n ∈ Zd : [K̃e−i
π
γ n·y](x) =

∫

[−γ,γ]d
kγ(x− y)e−i

π
γ n·y dy

=

∫

[−γ,γ]d
kp(x− y)e−i

π
γ n·y dy =

∫

[−γ,γ]d
kp(z)e

−iπγ n·z dz e−i
π
γ n·x.

Since {e−iπγ n·x, n ∈ Zd} is an orthogonal basis of L2([−γ, γ]d) it follows that the
Fourier coefficients cn(kp) of kp

∀n ∈ Zd : cn(kp) :=

∫

[−γ,γ]d
kp(z)e

−iπγ n·z dz =

∫

[−γ,γ]d
kγ(z)e−i

π
γ n·z dz

(which are real since kγ is even) are the eigenvalues of K̃, i.e., a suitable enumeration

of (cn(kp))n∈Zd yields the eigenvalue sequence (λ̃j)j∈N.
Because supp kγ ⊆ [−γ, γ]d we have

∀n ∈ Zd : |cn(kp)| =
∣∣∣∣∣

∫

[−γ,γ]d
kγ(z)e−i

π
γ n·z dz

∣∣∣∣∣ =

∣∣∣∣
∫

Rd
kγ(z)e−i

π
γ n·z dz

∣∣∣∣

=

∣∣∣∣ ̂kα,m · φγ(−π
γ
n)

∣∣∣∣ =

∣∣∣∣k̂α,m ∗ φ̂γ(−π
γ
n)

∣∣∣∣ .
(C.5)

Moreover, for ξ ∈ Rd it holds

∣∣∣k̂α,m ∗ φ̂γ(ξ)
∣∣∣ ≤

∣∣∣∣∣

∫

|η|≤ |ξ|2
k̂α,m(η)φ̂γ(ξ − η) dη

∣∣∣∣∣+

∣∣∣∣∣

∫

|η|≥ |ξ|2
k̂α,m(η)φ̂γ(ξ − η) dη

∣∣∣∣∣

≤ max
|ζ|≥ |ξ|2

∣∣∣φ̂γ(ζ)
∣∣∣ ‖k̂α,m‖L1(Rd) + max

|ζ|≥ |ξ|2

∣∣∣k̂α,m(ζ)
∣∣∣ ‖φ̂γ‖L1(Rd).

(C.6)

Because φ̂γ(ξ) = γdφ̂1 (γξ) it follows

(C.7) ‖φ̂γ‖L1(Rd) = ‖φ̂1‖L1(Rd).
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Moreover, due to γ ≥ χδ ≥ 1 and α > d
2 we have

|φ̂γ(ξ)| = γd
(

1 + |γξ|2
)−dαe (

1 + |γξ|2
)dαe ∣∣∣φ̂1 (γξ)

∣∣∣

= γd
(

1 + |γξ|2
)−dαe ∣∣∣ ̂(1−∆)dαeφ1 (γξ)

∣∣∣

≤ γ2α
(

1 + |ξ|2
)−α ∥∥∥(1−∆)dαeφ1

∥∥∥
L1(Rd)

.

Inserting this and (C.7) into (C.6) gives for ξ ∈ Rd:

|k̂α,m ∗ φ̂γ(ξ)| ≤γ2α

(
1 +
|ξ|2
4

)−α ∥∥∥(1−∆)dαeφ1

∥∥∥
L1(Rd)

‖k̂α,m‖L1(Rd)

+

(
m2 +

|ξ|2
4

)−α
‖φ̂1‖L1(Rd)

≤γ2α max{1,m−2α}
(

1 +
|ξ|2
4

)−α [∥∥∥(1−∆)dαeφ1

∥∥∥
L1(Rd)

·‖k̂α,m‖L1(Rd) + ‖φ̂1‖L1(Rd)

]
.

Thus, with (C.5) we get for every n ∈ Zd

|cn(kp)| ≤max{1,m−2α}
[
‖(1−∆)dαeφ1‖L1(Rd)‖k̂α,m‖L1(Rd) + ‖φ̂1‖L1(Rd)

]
·

· γ2α max

{
1,

2γ

π

}2α (
1 + |n|2

)−α

For γ ≥ χδ we conclude for every n ∈ Zd and 0 < η ≤ |cn(kp)| that

|n| < max{1,m−1}
[
‖(1−∆)dαeφ1‖L1(Rd)‖k̂α,m‖L1(Rd) + ‖φ̂1‖L1(Rd)

] 1
2α ·

·max

{
1,

2γ

π

}
γη−

1
2α .

Hence, for γ ≥ χδ and η > 0 we obtain

#{n ∈ Zd; |cn(kp)| ≥ η} ≤ 2d max{1,m−d}·

·
[
‖(1−∆)dαeφ1‖L1(Rd)‖k̂α,m‖L1(Rd) + ‖φ̂1‖L1(Rd)

] d
2α

(
max

{
1,

2γ

π

})d
γdη−

d
2α

For the eigenvalue sequence (λ̃j)j∈N of the operator K̃ associated with kγ , γ ≥ χδ, it
thus follows for all j ∈ N

|λ̃j | ≤ 4α max{1,m−2α}
[
‖(1−∆)dαeφ1‖L1(Rd)‖k̂α,m‖L1(Rd) + ‖φ̂1‖L1(Rd)

]
·

·
(

max

{
1,

2γ

π

})2α

γ2αj−
2α
d .

Hence, taking (C.4) and (C.2) into account we finally obtain for every s ∈ (d2 , α),
γ ≥ χδ and each j ∈ N

√
λj‖ej‖L∞(Λ) ≤ csα

(
sin( sπα )

πs(α− s)

) 1
2

max{1,m−s}(2π)−
ds
α 2α−s max{1,m−(α−s)}·
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·
[
‖(1−∆)dαeφ1‖L1(Rd)‖k̂α,m‖L1(Rd) + ‖φ̂1‖L1(Rd)

]α−s
2α

γ2(α−s)j−
α
d+ s

d .

It follows that for every δ > 0 and each ε ∈ (0, αd − 1
2 ) (with s = d

2 + ε in the previous
inequality) for every χ > max

{
1, 1

δ

}
there is a constant C > 0, depending only on

α,m, ε, and χ, such that for every compact subset Λ ⊆ Rd with int(Λ) = Λ and
diam(Λ) ≤ δ and every γ ≥ χδ, there holds

(C.8)
√
λΛ,j‖eΛ,j‖L∞(Λ) ≤ Cγ2(α− d2−ε)j−

α
d+ 1

2 +ε, j ∈ N.
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[23] M.K. Deb, I.M. Babuška, and J.T. Oden. Solution of stochastic partial differential equations
using Galerkin finite element techniques. Computer Methods in Applied Mechanics and
Engineering, 190:6359–6372, 2001.

[24] O.G. Ernst, B. Sprungk, and L. Tamellini. Convergence of sparse collocation for functions of
countably many Gaussian random variables (with application to elliptic PDEs). SIAM
Journal on Numerical Analysis, 56(2):877–905, 2018.

[25] P. Frauenfelder, C. Schwab, and R.A. Todor. Finite elements for elliptic problems with stochas-
tic coefficients. Computer Methods in Applied Mechanics and Engineering, 194:205–228,
2005.

[26] J. Galvis and M. Sarkis. Approximating infinity-dimensional stochastic Darcy’s equations
without uniform ellipticity. SIAM Journal on Numerical Analysis, 47(5):3624–3651, 2009.

[27] J. Galvis and M. Sarkis. Regularity results for the ordinary product stochastic pressure equa-
tion. SIAM J. Math. Anal., 44(4):2637–2665, 2012.

[28] I.M. Gelfand and N.Ya. Vilenkin. Generalized Functions, IV. Some Applications of Harmonic
Analysis. Academic Press, 1964.
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[36] K. Itô. Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces. SIAM,

1984.
[37] O. Kallenberg. Foundations of Modern Probability. Probability and its Applications (New

York). Springer-Verlag, New York, second edition, 2002.
[38] H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge University

Press, 1990.
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