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The so-called maximum entropy snapshot sampling method is employed for reducing two nonlinear circuit models. The maximum
entropy snapshot sampling directly reduces the number of snapshots by recursively identifying and selecting the snapshots that
strictly increase an estimate of the correlation entropy of the considered systems. Reduced bases are then obtained with the
orthogonal-triangular decomposition. In the first case study, the resulting overdetermined systems are solved in the least squares
sense. In the second case study, the basis is incorporated in a reduced order multirate scheme, whilst the reduction parameter is
estimated through an optimality requirement. Numerical experiments verify the performance of the advocated approach, in terms of
computational costs and accuracy, relative to an established reduction framework that is based on the singular value decomposition.

Index Terms—Circuit models, entropy, nonlinear model reduction, QR decomposition.

I. INTRODUCTION

In manufacturing integrated circuits, a range of design ex-
plorations that ensure sound functionality of these components
need to be performed. To this end, mathematical models of
such circuits are simulated numerically. In a discrete setting,
the required simulation times may become prohibitively large,
in particular, for large-scale problems. Model reduction strate-
gies arose as a remedy to recover computational feasibility
for such problems, in particular, when repetitive computations
are required. Here, we apply the maximum entropy snapshot
sampling (MESS) method [5] to nonlinear circuit problems,
as means to reduced basis model reduction. In this paper,
two case studies are presented. In the first case study the
commonly employed proper orthogonal decomposition (POD)
basis is substituted for a MESS obtained basis in a standard
Galerkin projection setting for differential algebraic systems.
The comparison against the POD demonstrates the overall
performance of the advocated MESS framework. In the second
case study, the MESS model order reduction framework is
incorporated into a reduced order multirate (ROMR) scheme
[1], which is applied to a coupled nonlinear thermal-electric
circuit. Furthermore, in the second test case, the MESS method
is combined with a maximum likelihood estimation of the
parameter that controls the degree of reduction.

II. METHOD DESCRIPTION

A. Maximum Entropy Snapshot Sampling

Let X = (x1, x2, . . . , xn) be a finite sequence of numer-
ically obtained states xj ∈ Rm at time instances tj ∈ R,
with j ∈ {1, 2, . . . , n}, of a diode chain model. Provided

Corresponding author: M.W.F.M. Bannenberg (email: bannenberg@uni-
wuppertal.de).

the probability distribution p of these states, the second-order
Rényi entropy of the sample X is

H(2)
p (X) = − log

n∑
j=1

p2j = − logEp(p), (1)

where pj ≡ p(xj) and Ep(p) is the expected value of the
probability distribution p with respect to p itself. According
to the law of large numbers, in the limit n→∞, the average
of p1, p2, . . ., pn almost surely converges to their expected
value, that is,

1

n

n∑
j=1

pj → Ep(p) as n→∞, (2)

while each pj can be approximated by the sample’s relative
frequency of occurrence. By considering a norm ‖ ∗ ‖ on Rm,
the notion of occurrence can be translated into a proximity
condition. In particular, for each xj ∈ Rm define the open
ball that is centred at xj and whose radius is ε > 0,

Bε(xj) = {y ∈ Rm | ‖xj − y‖ < ε}, (3)

and introduce the characteristic function with values

χi(xj) =

{
1, if xj ∈ Bε(xi),
0, if xj /∈ Bε(xi).

(4)

Under the aforementioned considerations, the entropy of X
can be estimated by

Ĥ(2)
p (X) = − log

1

n2

n∑
i=1

n∑
j=1

χi(xj). (5)

Provided that the limit of the evolution of Ĥ(2)
p exists and

measures the sensitivity of the evolution of the system itself
[3, §6.6], a reduced sequence Xr = (xj1 , xj2 , . . . , xjr ),
with r ≤ n, is sampled from X , by requiring that the
entropy of Xr is a strictly increasing function of the index
k ∈ {1, 2, . . . , r} [6]. A reduced basis is then generated from
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Xr with any orthonormalization process. It has been shown
[5] that, depending on the recurrence properties of a system,
any such basis guarantees that the Euclidean reconstruction
error of each snapshot is bounded from above by ε, while a
similar bound holds true for future snapshots, up to a specific
time-horizon.

To estimate the parameter ε, which determines the degree
of reduction within the MESS framework, the following op-
timisation approach is employed [7]. The quantity within the
logarithm in the entropy estimate (5) is often referred to as
the sample’s correlation sum and can be written as

Cε =
1

n2
‖Rε‖2F, (6)

with Rε ∈ {0, 1}n×n being the matrix whose entries are unity,
when ‖xi − xj‖ < ε, and ‖ ∗ ‖2F being the Frobenius norm.
In terms of probability theory, Cε is a cumulative distribution
function, and hence, its derivative dCε/dε is the associated
probability density function. A commonly justified hypothesis
is that the correlation sum scales as εD [8, Chapter 1], where
D ≥ 0 is the so-called correlation dimension of the manifold
that is formed in Rm by the terms of X . Under this power law
assumption, the maximum likelihood estimate [9, Chapter 8]
of the correlation dimension is estimated as follows. We find
a sample {εi}, with εi ∈ [0, 1] for all i ∈ {1, 2, . . . , q}, of a
random variable E that is sampled according to Cε. Then, the
probability of finding a sample in (εi, εi + dεi) in a trial is

q∏
i=1

DεD−1dεi. (7)

To calculate the ε value for which this expression is maxi-
mized, we take the logarithm

q · lnD + (D − 1)

q∑
i=1

ln εi, (8)

and note that the maximum is attained when

q

D
+

q∑
i=1

ln εi = 0. (9)

This results in the most likely value D∗ = −1/〈lnE〉, and ε
can be estimated by

ε∗ = argmin(|D∗ − lnCε/ ln ε|). (10)

Hence, MESS becomes a parameter-free method.

B. Reduced Order Multirate

When using an ROMR scheme, a semi-explicit DAE is
decomposed into fast and slow components, with subscripts
F and S, respectively; for instance,

ẋF = fF(xF, zF, xS), xF(0) = xF,0, (11)
ẋS = fS(xF, zF, xS), xS(0) = xS,0, (12)

0 = gF(xF, zF, xS), zF(0) = zF,0, (13)

with fF, fS, and gF being known functions, and zero indexed
quantities indicating known Cauchy data. Here, the fast and

slow varying differential variables are xF ∈ RnF and xS ∈
RnS , while the algebraic variables zF ∈ RnA is assumed to
be fast, since the dynamics of the DAE is considered to be
fast in the time interval of interest. The described type of
coupling enables the consideration of electrical circuits with a
differential index up to unity, coupled to slower ODE systems.

To reduce the computational effort, a reduced basis that is
to be used in a Galerkin projection framework is constructed.
This reduction approach is then complemented with the gappy
POD method [11]. By utilising a direct projection, the reduced
system is guaranteed to be again of unity index. To perform
the reduction, let V ∈ RnS×r be a non-square matrix whose
columns constitute a reduced basis for the range of the slow
varying states, with nS � r. The full state xS of the slow
subsystem is then approximated by xS ∼= V xS,r using the
reduced basis. Then, the reduced model becomes

ẋF = fF(xF, zF, V xS,r), xF(0) = xF,0, (14)
ẋS,r = fS,r(xF, zF, xS,r), xS,r(0) = xS,r,0, (15)

0 = gF(xF, zF, V xS,r), zF(0) = zF,0, (16)

with fS,r(xF, zF, xS,r) = V >fS(xF, zF, V xS,r), while the full
state is needed for the coupling, and hence, again the gappy
approach combined with a MESS basis is used.

The overall index one system (14)–(16) can be integrated
with the L-stable implicit Euler scheme, which automatically
assures that the algebraic constraints are not violated for all
t > 0. To exploit the fast/slow decomposition, a multirate
integration scheme has been proposed [1], which is a reduced
order extension of a standard multirate scheme for DAEs
[4]. The integration of the coupled system (14)–(16) for one
macro-step tk 7→ tk+1 = tk +H can be written as

xF,k+(`+1)/m = xF,k+`/m + hfF(xF,k+(`+1)/m,

zF,k+(`+1)/m, x̄S,r,k+(`+1)/m), (17)
xS,r,k+1 = xS,r,k +HfS,r(x̄F,k+1,

z̄F,k+1, xS,r,k+1), (18)
0 = gF(xF,k+(`+1)/m,

zF,k+(`+1)/m, x̄S,r,k+(`+1)/m), (19)

where ` ∈ {0, 1, . . . ,m − 1}, h = H/m is the micro-step
size, and the coupling variables are denoted by x̄F, z̄F, and
x̄S. Here, the coupling strategy is chosen to be the coupled-
slowest-first, as this consistent for DAEs of unity order [1].
First the system

x∗F,k+1 = xF,k +HfF(x∗F,k+1, z
∗
F,k+1, xS,k+1), (20)

xS,r,k+1 = xS,r,k +HfS,r(x
∗
F,k+1, z

∗
F,k+1, xS,k+1), (21)

0 = gF(x∗F,k+1, z
∗
F,k+1, xS,r,k+1) (22)

is solved for the macro-step. The step size H is chosen so
that the solution to the slow subsystem remains sufficiently
accurate. Then, the fast solutions x∗F,k+1 and z∗F,k+1 are not ac-
curate enough and can be discarded, as they will be computed
in the last micro-step. In the second stage, the fast solutions
are computed for the micro-steps ` ∈ {0, 1, . . . ,m−1}, using
linear interpolation for the values x̄S,k+(`+1)/m, based on the
available information xS,k and xS,k+1.
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III. NUMERICAL EXPERIMENTS

A. The Diode Chain Model

First we will perform a case study regarding the sole
application of the MESS reduction method to a diode chain.
As an instance of an integrated circuit, consider the diode
chain model that is depicted in Fig. 1 and described by the
differential-algebraic system [10]

Φ1 − Φin(t) = 0,

I(Φi−1,Φi)− I(Φi,Φi+1)− Φi
R
− C dΦi

dt
= 0,

I(Φm−2,Φm−1)− Φm−1
R
− C dΦm−1

dt
= 0,

iE − I(Φ1,Φ2) = 0,

(23)

where i ∈ {2, 3, . . . ,m − 2} with integer m > 3, Φi is the
voltage at the i-th node of the circuit and is measured in V,
while the time is measured in ns. The current-voltage diode
characteristic function I : R× R→ R is defined by

I(x, y) = Is

[
eα·(x−y) − 1

]
, (24)

where IS = 10−14 A is the saturation current and α is the
inverse of the thermal voltage ΦT = 0.0256 V. Additional
model parameters are mentioned in Fig. 1. Further, the exci-
tation voltage is

Φin =


20, if t ≤ 10,

170− 15t, if 10 < t ≤ 11, (in V)

5, if t > 11.

(25)

Φin

Φ1 Φ2

R C

Φ3

R C R C

Φm−2

Fig. 1. The diode chain with R = 104 Ω and C = 10−12 F.

To simulate a transient analysis of the diode chain model
depicted in Fig. 1, system (23) is integrated numerically.
For large m such simulations become prohibitively expensive
in terms of computational time. Here, to recover computa-
tional feasibility, reduced basis model reduction techniques
are exploited. The MESS method is applied to the nonlinear
diode chain model, with m = 40002. The transient analysis
is performed in the interval [0, 70] ns, using an implicit
Euler scheme with time step ∆t = 0.1 ns. Consistent initial
conditions are obtained through a direct current simulation
using very small time steps and using a linear increasing
input voltage from Φin = 0 to Φin = 20. The reduced bases
are generated from the high-fidelity matrix X ∈ Rm×n, with
n = 701, see Fig 2. To benchmark the presented MESS based
reduction, a comparison with the POD method is made. The
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Fig. 2. The output of the transient analysis for all nodes.

number of POD modes is taken to be equal to the number of
MESS-obtained basis vectors. In the Newton iterations, least
squares approximations of the Jacobian matrix are employed.
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Fig. 3. The difference E(t) = ‖ΦHF−Φ‖/‖ΦHF‖ for the parameter value
ε = 0.0325. The subscript HF stands for “high-fidelity”.

Here, the estimated ε∗ value is equal to 0.00525. However,
in an attempt to maximally reduce the studied system, ε is
manually selected close to a value that turns out to yield
a numerically unstable reduced model. In Fig. 3, the case
of the MESS reduced system for ε = 0.0325 is depicted.
There, it is shown that the solution to the MESS reduced
system converges to the reference solution. To illustrate that
some caution is needed if ε is selected manually, in Fig. 4, a
slightly higher ε value is chosen, when the resulting reduced
model becomes unstable. In Table I, the computational times
that are required for generating the bases suggest that the
MESS has an advantage in the offline stage. Further, for large-
scale problems, the SVD becomes infeasible due to memory
constraints, whereas this is not the case for MESS, since it
relies on recursive evaluations.
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Fig. 4. The difference E(t) = ‖ΦHF−Φ‖/‖ΦHF‖ for the parameter value
ε = 0.0425.

TABLE I
TIMING MESS VS POD (TIME IN SECONDS).

ε = 0.0325 ε = 0.0425

Basis generation m Basis generation m

High-fidelity 40002 40002
POD 1.5400 s 31 1.3397 s 25
MESS 0.1733 s 31 0.1577 s 25

B. The Thermal-Electric Circuit

As the ROMR case study circuit needs to contain both
coupling and different intrinsic time scales, a thermal-electric
test circuit is used [2]. This circuit consists of an operational
amplifier, two resistors, a diode, and a capacitor. The thermal
resistor R(T ) is modelled by a structure of length d = 0.03m
and variable diameter a(x) = a0/[1 + b(d − x)x], with
x ∈ [0, d], while the material parameters are those of a copper
wire. The local resistance

ρ(T ) = r0(1 + α(T − Tmeas) + β(T − Tmeas)
2) (26)

exhibits quadratic dependence on the temperature. The local
resistance per unit cross-section is thus expressed in Ωm.
Using this expression, the total resistance of the wire is

R(T ) =

∫ d

0

ρ(ξ, T (t, ξ)

a(ξ)
dξ. (27)

Electrical parameters of one-dimensional resistor

Material Cu (copper)
Specific resistance r0 = 1.7 µΩ ·m
Reference temperature Tmeas = 291 K
Length d = 0.03 m
Cross section a0 = 540 m
Profile b = (2/d)2 m2

1st thermal coefficient α = 1/(273 K)
2nd thermal coefficient β = 1/(273 K)2

Thermal parameters of the one-dimensional resistor

Density dw = 8.98 · 103 kg/m3

Heat conductivity λw = 390 W/(mK)
Specific heat cw = 385 J/(kgK)
Transition coefficient γ = 1.0 W/(m2K
Thermal mass M ′w,i = a(xi)dwcw J/K

Cooling surface S′w,i(x) = 2
√
πa(x)

The amplifier is a heat source and the diode has a temper-
ature dependent characteristic idi(udi, Tdi) curve

idi(udi, Tdi) = ÎS(Tdi)
[
e

udi
vT − 1

]
, (28)

ÎS(Tdi) = 10−12
(

Tdi
300K

)3

e
−qEg(300K)

kBTdi
(1− Tdi

300K )
. (29)

Electrical parameters of the zero-dimensional elements

Specific resistance q = 1.602 · 10−19 C
Energy gap Eg(300K) = 1.11 V
Boltzmann constant kB = 1.381 · 10−23 J/K
Thermal voltage vT = kB · Tdi/q V
Operational power vop = 15 V
Amplification A = 20000
Load resistance RL = 0.3 kΩ
Capacitance C = 500 nF

The electric behaviour of the circuit is modelled by modified
nodal analysis based on Kirchhoff’s laws. The thermal model
is nonlinear due to the coupling terms, where the local
self-heating term, Pw, introduces the nonlinear terms. After
discretizing in space, the following thermal-electric system is
obtained.

Electric network

0 = (Av(t)− u3)/R(T ) + idi(u3 − u4, Tdi),
Cu̇4 = idi(u3 − u4, Tdi)− u4/RL,

Coupling interfaces

Pop = |(vop−|v(t)|) · (Av(t)−u3)/R|, Pw = (Av(t)−u3)2/R,

R(T ) =

(
1

2
(ρ(0, T0) +

N−1∑
i=1

ρ(Xi, Ti) +
1

2
ρ(l, TN )

)
· h,

Heat equation

M ′w,ihṪi, = Λ
Ti+1 − 2Ti + Ti−1

h
+ Pw

ρ̃(Xi, Ti)

R
h

− γS′w,ih(Ti − Tenv), (i = 1, ..., N − 1),

(M ′w,0 ·
h

2
+Mop)Ṫ0 = Λ

T1 − T0
h

+ Pw
ρ̃(0, T0)

R

h

2

− γ(S′w,0
h

2
+ Sop) · (T0 − Tenv) + Pop,

(M ′w,N ·
h

2
+Mdi)ṪN = Λ

TN−1 − TN
h

+ Pw
ρ̃(XN , TN )

R

h

2

− γ(S′w,N
h

2
+ Sdi) · (TN − Tenv)



Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
5

Extension parameters of the zero-dimensional elements

Amplifier cubic
Material Al (aluminium)
Size eop = 0.5 mm
Heat capacity cAl = 449 J/(kgK)

Density dal = 2.7 · 103kg/m
3

Cooling surface Sop = 6 · e2op mm2

Diode cubic
Material Si (silicon)
Size edi = 0.167 mm
Heat capacity cAl = 700 J/(kgK)

Density dsi = 2.33 · 103kg/m
3

Cooling surface Sdi = 6 · e2di mm2

The computational cost of coupled network simulations are
reduced by applying the ROMR scheme. Here, multirate inte-
gration and the MESS are employed for solving the equations
that govern the thermal-electric circuit that is depicted in Fig.
5. After partitioning the slow and fast varying time-scales,

v(t)

u1 u2

R(T )

u3 u4

C RL

Fig. 5. The circuit used for the numerical experiments.

problem (14)–(16) becomes

ẋF = fF(xF, zF, V xS,r), xF(0) = xF,0,

ẋS,r = fS,r(xF, zF, xS,r), xS,r(0) = xS,r,0, (30)
0 = gF(xF, zF, V xS,r), zF(0) = zF,0.

Here, xF = u4, zF = u3, and xS,r = V >xS, with xS ∈ Rm
being the discretized temperature in the thermal resistor.

Problem (30) is integrated with a ROMR method, and
the parameter ε is computed by (10), see Figure 7. To
verify the performance of (ROMR, MESS, ε∗), a transient
analysis for the output u4 is performed. A reference solution
is obtained with a standard multirate scheme of five fine-
grid steps for a problem with (m,n) = (104, 500). Then,
the ROMR scheme is used, once with (MESS, ε∗) and once
with the proper orthogonal decomposition (POD). In Fig. 7,
both the correlation sum (left) and an accuracy plot (right) for
(MESS, 0.0816) are depicted. The accuracy result for the POD
is indistinguishable from the one depicted in Fig. 7 (right), and
hence, it is omitted. The degrees of freedom are reduced from
104 to 13, while the optimal ε∗ is estimated in 2.9 s and the
MESS base is constructed in 0.16 s, in contrast to a total of
6.33 s that is required by the POD.

Fig. 6. The cummulative distribution (cdf) of R and Cε
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Fig. 7. The relative difference between standard multirate and ROMR with
(MESS, 0.0816).

IV. CONCLUSIONS

The maximum entropy snapshot sampling has been success-
fully used for reducing two nonlinear circuits; in particular,
a diode chain model and a thermal-electric coupled system.
In both cases, the maximum entropy snapshot sampling re-
moved unnecessary data, and hence, it reduced the snapshot
matrix, before calling the QR basis generation routine. As
a result, the triangular-orthogonal decomposition has been
called on a reduced snapshot matrix, and the offline stage
has been significantly scaled down, in terms of CPU time.
Since the maximum entropy snapshot sampling relies on
pairwise distance computations, its performance can be further
improved through CPU/GPU parallelization, while it enables
an accept/reject routine that can be incorporated into the high-
fidelity solver, in order to immediately decide weather or not
a new snapshot needs to be stored. This last feature reduces
storage requirements, while, to our knowledge, the maximum
entropy snapshot sampling is the only black-boxed method
for performing non-homogeneous snapshot sampling, without
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relying on prior knowledge regarding the application at hand.
Through the optimality requirement for selecting the parameter
ε, the maximum entropy snapshot sampling does not require
any user input, and hence, it can be seen as a parameter-
free method, while a single parameter is required in general.
Further research needs to be conducted for selecting an ε
value that guarantees stability and maximally reduced models.
The obtained bases have been used in a gappy framework for
reduced nonlinear function evaluation, while the corresponding
reduced models perform as accurate as the standard reduction
framework that relies on the singular value decomposition.
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