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Abstract. One goal of financial research is to determine fair prices on the financial market.
As financial models and the data sets on which they are based are becoming ever larger and
thus more complex, financial instruments must be further developed to adapt to the new
complexity, with short runtimes and efficient use of memory space. Here we show the effects
of combining known strategies and incorporating new ideas to further improve numerical
techniques in computational finance.
In this paper we combine an ADI (alternating direction implicit) scheme for the temporal
discretization with a sparse grid approach and the combination technique. The later approach
considerably reduces the number of ’spatial’ grid points. The presented standard financial
problem for the valuation of American options using the Heston model is chosen to illustrate
the advantages of our approach, since it can easily be adapted to other more complex models.
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1 Introduction
A fair price of a financial derivative is arbitrage-free, which means that the price does not
guarantee a profit. A financial derivative is a contract between parties whose value at the
maturity date T is determined by the underlying assets at the time T or before the time T .
Options are a special type of financial derivative.
A plain vanilla option is a contract that gives the holder the right (but not the obligation) to
exercise a particular transaction at time T or until time T at a fixed price K (strike). We
distinguish between call and put options. A call option holder has the right to buy from the
writer, and if a put option is held, the holder has the right to sell it to the writer. The time of
exercise defines the type of option: if the holder has the right to exercise the option only on
a certain predefined expiration date T , a European option is used, whereas if the holder can
exercise at any time before and at maturity T , an American option is considered. In addition to
European and American plain vanilla put and call options, there are other types of options that
take into account different trading strategies [8].
In our paper we focus on American options. The holder of a call option exercises the option
if K < S, since he can buy the predefined amount at the price K ∈ R+ instead of the market
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2 A. Clevenhaus, M. Ehrhardt and M. Günther

(a) Payoff function for a Call option (b) payoff function for a Put option

Figure 1: Payoff function for S ∈ [0, 250] with K = 100, where the dashed line markes the strike.

price for the underlying S ∈ R+. The exercise region of a call option is defined as the range in
which a profit is gained, this is the region where K − S > 0. If K − S ≤ 0 the option will not be
exercised, because exercising it would result in a loss. Similarly, a put option will be exercised in
the S < K region. These results are summarized in the payoff-function φ(S):

φ(S) =

{
max(S −K, 0) = (S −K, 0)+, for S ≥ 0 (Call),
max(K − S, 0) = (K − S, 0)+, for S ≥ 0 (Put).

(1.1)

with the abbreviation (·)+ = max(·, 0). The dynamics of the price of the underlyings can be
described via a stochastic differential equation (SDE) which corresponds to a partial differential
equation (PDE). In 1973 Black and Scholes developed the Black-Scholes model [1], where the
dynamic is described by

dSt
St

= r dt+ σ dWS
t , (1.2)

where r is the constant interest rate, σ is the constant variance and dWS
t denotes a Brownian

motion. Starting from this SDE, the (backward-in-time) Black-Scholes PDE

∂V

∂t
+

1
2νS

2∂
2V

∂S2 + rS
∂V

∂S
− rV = 0, S > 0, 0 < t ≤ T (1.3)

was derived. Note, that the Black-Scholes PDE can be transformed into a heat equation and
therefore can easily be solved analytically. Black and Scholes developed the model under some
strict (theoretical) assumption, e.g. a complete market, constant interest rate. Due to those
strict assumptions, until now several extension have been developed to gain more flexibility and
comparability to real market situations. Some extensions consider nonlinear functions, e.g. for σ
resulting in nonlinear Black-Scholes models [6], other extensions include an additional SDE, e.g.
a stochastic volatility or a stochastic interest rate [11,27]. In the sequel we discuss the Heston
model [13] that extended the Black Scholes model by adding a Cox-Ingersoll-Ross (CIR) process
for modelling the stochastic volatility.
This paper is structured as follows. Section 2 introduces the concept of American options and
the Heston model. In Section 3 the spatial approximation by sparse grids and the combination
technique is motivated and described. For the temporal discretization the well-known ADI
methods are considered in Section 4. In Section 5 the results are presented and discussed. The
paper finishes with a conclusion and an outlook on future research aspects.
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An ADI Sparse Grid Method for American Options under the Heston model 3

2 American Put Options under the Heston model

American put options are more expensive than European options because American options
give the holder the right to exercise the option even before the expiration date T . The payoff
function φ(S) for the price of the underlying S > 0 with respect to the predefined strike K ∈ R+

at the exercise date is given by (1.1).
For the pricing of an American put option P we look for the solution P and the associated free
boundary Sf , i.e. the tuple

(
P (S, t),Sf (t)

)
such that

P (S, t) = φ(S) for S ≤ Sf (t),
P (S, t) > φ(S) for S > Sf (t),

(2.1)

where S denotes the price of an asset at time t with 0 ≤ t ≤ T .
In the following, we consider the two-dimensional Heston model to describe the dynamics of the
price S. The system of SDEs under a risk neutral measure for the Heston model is{

dSt = rSt dt+
√
νtSt dW

S
t , S0 > 0,

dνt = κν(µν − νt) dt+ σν
√
νt dW

ν
t , ν0 > 0, (2.2)

where ν > 0 is the square of the volatility of the underlying, κν is the mean-reversion rate and µν
is the long-term mean of the volatility ν and σν is the volatility-of-variance. The SDE processes
are driven by the Brownian motions WS

t and W ν
t which are correlated by a constant parameter

ρ ∈ [−1, 1]. If the Feller condition 2κνµν > σν is fulfilled, ν > 0 applies. In order to derive a
PDE from the SDE system (2.2) under a risk neutral measure, Itô’s Lemma or Kolmogorov’s
backward equation is used. The resulting differential operator for the fair price of an American
put option P (S, ν, τ ) is given by

LH [P ] =
1
2νS

2∂
2P

∂S2 + ρSνσνSν
∂2P

∂S∂ν
+

1
2σ

2
νν
∂2P

∂ν2 + rS
∂P

∂S
+ κν(ν − µν)

∂P

∂ν
− rP . (2.3)

The terminal condition at the expiry date t = T reads

P (S,T ) = φ(S), S > Sf (T ), (2.4)

and the ‘spatial’ boundary conditions at S = Sf (t), S →∞ are given by

P
(
Sf (t), t

)
= φ(Sf (t)),

∂P

∂S

(
Sf (t), t

)
= −1, 0 ≤ t ≤ T , (2.5)

lim
S→∞

P (S, t) = 0, 0 ≤ t ≤ T . (2.6)

In order to solve a forward-in-time PDE, we utilize the time reversal τ = T − t and the differential
operator has to fulfill the inequality

∂P

∂τ
−LH [P ] ≤ 0. (2.7)

For S > Sf (τ ) the price of an American put option fulfills the equation

LH [P ] = 0, S > Sf (τ ), 0 ≤ τ ≤ T . (2.8)
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4 A. Clevenhaus, M. Ehrhardt and M. Günther

We recast the American option problem into a linear complementary problem (LCP)
(
P − φ(S)

)
· (LH [P ]− rP ) = 0,

−(LH [P ]− rP ) ≥ 0,
P − φ(S) ≥ 0.

(2.9)

and apply an operator splitting [17]. The reformulation of the LCP with an auxiliary variable λ
is given by {

(LH [P ]− rP ) = λ,
λ ≥ 0, P − φ(S) ≥ 0, (P − φ(S)λ = 0,

(2.10)

for (S, ν, τ ) ∈ Ω× [0,T ] with the initial and boundary conditions [18]. The advantage of the
LCP formulation of American Option problems is that an explicit computation for the free
boundary value Sf (τ ) is avoided.

3 Sparse Grids

In the field of computational finance, we are looking for new ways to reduce memory space and
runtime as models become more complex, and we strive for higher stability and accuracy as
run-time and memory space increase with the amount and size of the dimension of the models.
To reduce the computational effort, splitting methods, e.g. ADI schemes, have been considered.
However, these are also limited by memory space, since the increase in computational effort
depends on the number of grid points, e.g. a d-dimensional full-tensor based grid contains O(Nd)
nodes. Therefore, in the literature [2, 4, 7, 21] other grid structures such as multigrid methods
and sparse grids have been introduced.
In the following, we focus on the sparse grid approach using the combination technique to
reduce the effects of increasing the dimension. Sparse grids were developed by Smolyak [24] for
numerical integration purposes. Later the approach was extended in [2,22,23,28] and in 2015
Hendricks et al. [12] introduced the approach for financial applications.

3.1 The Spatial Grid

We consider a 2-dimensional domain Ω2 in a continuous setting, where x ∈ Ω2. With the help
of the multi-indices l = (l1, l2) ∈ N2

0, j = (j1, j2) ∈ N2
0, N = (N1,N2) = (2l1 , 2l2), we can define

a tensor based grid Ωl with grid nodes

xl,j = (yl1,j1 , zl2,j2) for j1 = 0, 1, . . . ,N1 and j2 = 0, . . . ,N2, (3.1)

where the value xli,ji denotes the position in the i-th coordinate of the ji-th node. For a fixed l on
Ω2 = [0, 1]2, we set x = (y, z) and obtain a uniform grid with mesh width h = (2−l1 , 2−l2). To
reconstruct a nonuniform grid for the spatial variables S and ν, we consider a smooth transform
function. The transformation is only shown for S, since the transformation for ν is similar. We
introduce the transformation function

y = ψ(S) (3.2)
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An ADI Sparse Grid Method for American Options under the Heston model 5

Figure 2: Different transformations for S ∈ [K · exp (−2),K · exp (2)] with 17 discrete points, with
K = 10. The first distribution is a uniform discretization on S, the second shows S = K exp(x) with
xmin = −2 and xmax = 2. The third and fourth distribution show the transformation with equations (3.2)
and α = 0.25, where in the third S0 = K is chosen and in the last S0 = S̃ = 8.

on the arbitrary interval [ymin, ymax] = [0, 1] with Smin,Smax ∈ R and Smin < S0 < Smax

ψ−1(y) = S0 + α · sinh(y · (c2 − c1) + c1), (3.3)

c1 = sinh−1
(
Smin − S0

α

)
, (3.4)

c2 = sinh−1
(
Smax − S0

α

)
. (3.5)

Small α values lead to highly non-uniform grids, while large values of α lead to a uniform
distribution of grid points [19,25]. For the transformation for the asset S a common choice is
Smin = 0, Smax = 3K and S0 = K. For accuracy purpose, we choose S0 = S̃, where S̃ is the
spot asset price for the American put option. Since the initial condition processes a discontinuous
derivative at K, this choice avoids numerical difficulties with nonsmooth data. The operator for
the transformed Heston PDE reads

L[P ] = 1
2νS

2a2
S

∂2P

∂y2 +
(
rSaS +

1
2νS

2bS
)∂P
∂y

+ ρaSaνσSν
∂2P

∂y∂z

+
1
2σ

2νa2
ν

∂2P

∂z2 +
(
κ(ν − µ)aν +

1
2σ

2νbν
)∂P
∂z

,
(3.6)

where aS = ∂ψ(S)
∂S , bS = ∂2ψ(S)

∂S2 and aν and bν analogously. Usually in finance the transformation
x = ln (S/K) is used. A comparison of the grid transformations is shown in Figure 2.

3.2 The Sparse Grid Combination Technique

To introduce the sparse grid combination technique, we follow the approach of Reisinger [22].
Due to the grid transformation we obtain the grid domain Ω2 = [0, 1]2. The solution Pl is
defined on Ωl with l = (l1, l2) ∈ N2

0 with the mesh width h = (h1,h2) = (2−l1 , 2−l2). To use
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6 A. Clevenhaus, M. Ehrhardt and M. Günther

the combination technique, we consider the error splitting

P − Pl = h2
1w1(h1) + h2

2w2(h2) + h2
1h

2
2w1,2(h1,h2), (3.7)

where w1 only depends on h1, w2 only on h2 and h1 and h2 are independent from each other.
Each of w1, w2, w1,2 is bounded. The next step is to define a hierarchical surplus

δ(Pl) = Pl − Pl−e1 − Pl−e2 − Pl−e1−e2 , e1 = (1, 0), e2 = (0, 1); (3.8)

and by inserting it into the error splitting, we obtain

δ(P − Pl) = h2
1h

2
2w1,2(h1,h2)− 4h2

1h
2
2w1,2(2h1,h2)− 4h2

1h
2
2w1,2(h1, 2h2) (3.9)

+16h2
1h

2
2w1,2(2h1, 2h2) = O(2−2|l|1). (3.10)

Note that the surplus can be interpreted as information gain of the solution Pl and that the
solution on the discrete grid Ωl given by |l|1 with the same number of grid nodes have the
same surplus. The combination technique is motivated by getting the highest information gain
from the sub-solutions with high information gain, with a high surplus. Therefore we define the
combined sparse grid solution as the sum of all surpluses with |l|1 ≤ n for n ∈N0

P sn =
∑
|l|1≤n

δPl =
∑
|l|1=n

Pl −
∑

|l|1=n−1
Pl (3.11)

An upper error bound can be found by incorporating the surpluses of all sub-solutions, with
|l|1 < n

||P sn − P || ≤ O
(
h2 log2(h

−1)
)
. (3.12)

A close look into the sub-solutions within the combined sparse grid solution shows that the
sparse grid combination formula at level n ∈ N is given by

P sn =
∑
|l|1=n

Pl −
∑

|l|1=n−1
Pl. (3.13)

We observe that all sub-solutions with |l|1 < n− 1 cancel out. Figure 3 shows that the sparse
grid solution contains also highly disordered grids. In order to avoid numerical instability due to
sensitivities to it, we set a minimum mesh width in our numerical experiments with li ≥ lmin
for i = 1, 2. To have at least 9 grid points in each dimension, we set lmin = 3. Since numerical
experiments for the Heston model have given evidence that for efficiency reasons, it is sufficient
to use only half of the spatial grid points in the volatility direction than in the asset direction:
N1 = N2/2, cf. [9]. Therefore we introduce an additional condition for l, which results in a
reduced grid resolution in volatility direction.Due to the special setting for the grid points where
the number of grid points is given by (N1,N2) = (2l1 , 2l2), we can easily adapt the restriction
for number of grid points for the volatility, by setting l1 > l2.

3.3 The Finite Difference Method

For the approximation of the spatial derivatives we use second order finite differences. We
introduce y ∈ [0, 1] and z ∈ [0, 1] and consider a uniform grid for y and z, due to the choice of α
we obtain a highly non-uniform lattice of S and ν with grid points concentrated around S0 and
ν0, see Figure 2. Since we use sparse grids, we solve the Heston PDE on several different grids
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An ADI Sparse Grid Method for American Options under the Heston model 7

1

Figure 3: Subgrids and corresponding sparse grids for |l|1 = 0, 1, 2, 3, 4. The separating line starting
between the second and thrid row includes all grids with lmin = 2 and the other seperating line starting
before the last row includes all sub-grids with lmin = 3.

by using the same spatial approximations for the derivatives, namely central difference quotients
of order two in each direction. In addition, we consider the forward and backward difference
quotients of second order at the boundaries. Note that the mixed derivative at the boundaries
for z = 0 is zero, as is the diffusion term, so it is treated trivially. An improvement in accuracy
can be achieved by using higher order stencils within the finite difference methods (FDMs) or by
considering spectral methods. In [10] it is shown that higher order stencils have a higher gain
than the spectral methods. Furthermore, switching between different stencils in the FDM is
easier to adjust than using a new method, e.g. spectral methods.
The spatial discretization leads to an approximation of the option value P (y, z, τ ) at the spatial
grid points (y, z) ∈ [0, 1] for an LCP, analogously to (2.10), for the transformed operator L.
For 0 < τ < T , the solution vector P (τ ) of the semi-discrete partial differential complementary
problem (PDCP)

∂P

∂τ
= FP (τ ) + λ(τ ), P (τ ) ≥ φ

(
ψ−1(y)

)
,
(
P (τ )− φ

(
ψ−1(y)

))>(∂P
∂τ
− FP (τ )

)
= 0,
(3.14)

gives an approximations for P (x, y, τ ). The inequalities are component wise and F is a given
real matrix, where φ(S) is the initial condition.

4 Alternating Direction Implicit Methods

For the temporal discretization, we set ∆τ = T/Nt with Nt ≥ 1 and obtain τk = k · ∆τ for
k = 0, . . . ,Nt. Let uk be the discrete solution for the transformed solution P (y, z, τk) at time
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8 A. Clevenhaus, M. Ehrhardt and M. Günther

step k and g the discrete payoff values. Once a time discretization is applied to the PDCP (3.14),
we obtain a fully discretized LCP of the form{

uk+1 = Fuk + ∆τλk+1, (4.1)
λk+1 ≥ 0,uk+1 ≥ g, (λk+1)>(uk+1 − g), (4.2)

where F ∈ R(N1+1)(N+1)×(N1+1)(N+1) are discretization matrices and λ ∈ R(N1+1)(N+1) is the
auxiliary term and uk approximates P (y, z, τk) [17, 18, 20]. In the first fractional step (4.1)
a system of linear equations is solved. The system of equations depends on the chosen time
discretization method, which is in our case the alternating direction implicit (ADI) method.
These ADI methods are often used in financial applications, cf. [9,10,19,20], to split the operator
of the multidimensional PDE into separate operators corresponding to the directions. Let I
denote the identity matrix and Ay be the approximation for the first derivative to y, analogously
we introduce Ayy,Az, Azz and Ayz. We define

F0(τ ,u) = ρaSaνσSνAyzu(τ ), (4.3)

F1(τ ,u) =
(1

2νS
2a2
SAy +

(
rSaS +

1
2νS

2bS
)
Ayy −

1
2rI

)
u(τ ), (4.4)

F2(τ ,u) =
(1

2σ
2νa2

νAz +
(
κ(ν − µ)aν +

1
2σ

2νbν
)
Azz −

1
2rI

)
u(τ ), (4.5)

F(τ ,u) =
2∑
i=0
Fi(τ ,u). (4.6)

The matrices F have a small bandwidth up to permutations. The four well-known ADI schemes
are the Douglas (DO) scheme [5], the Craig-Sneyd (CS) scheme [3], the modified Craig-Sneyd
(mCS) scheme [3] as well as the Hundsdorfer-Verwer (HV) scheme [16], presented below. Further
let θ > 0 be a given real parameter depending on the stability constraints of the method, we
choose θ = 0.5 for DO and CS, θ = 1

3 for mCS and θ = 1
2 +

1
6
√

3, cf. [14,15,19]. As an American
option problem includes an inequality, we further have to add the additional auxiliary term λ to
the classical ADI approach in each time step, cf. [9, 17]. Exemplary, the term written in a box
will be added to the Douglas-Scheme. The Douglas scheme with λ is given by

Y0 = uk + ∆τF(τk,uk) +∆τ λ̃k+1 ,
Yi = Yi−1 + θ∆τ (Fi(τk+1,Yi)−Fi(τk,uk)), for i = 1, . . . , d,
ũk+1 = Yd.

(4.7)

The second fractional step (4.2) updates the λk and uk such that they satisfy the constraints in
each time step [9, 18]. The update step can easily solved component wise by

uk+1 = max(ũk+1 − ∆τλk,u0), λk+1 = max(0,λk + (u0 − ũk+1)/∆τ ). (4.8)

Since we have an initial condition, we set λ0 as the zero vector. The vector λ̃k+1 is an
approximation of λk+1, which is can be estimated by

λ̃k+1 = λk (4.9)
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An ADI Sparse Grid Method for American Options under the Heston model 9

ν̃ = 0.0625
S̃ 8 9 10 11 12
Ref 2.0000 1.1081 0.5204 0.2143 0.0827

without Limitation
DO 2.0011 1.1095 0.5203 0.2131 0.0821
CS 2.0011 1.1095 0.5202 0.2131 0.0820
mCS 2.0011 1.1093 0.5199 0.2129 0.0821
HV 2.0012 1.1101 0.5215 0.2136 0.0818

with Limitation
DO 2.0006 1.1085 0.5176 0.2132 0.0821
CS 2.0006 1.1085 0.5176 0.2131 0.0820
mCS 2.0005 1.1083 0.5172 0.2130 0.0821
HV 2.0005 1.1091 0.5188 0.2136 0.0816

ν̃ = 0.25
S̃ 8 9 10 11 12
Ref 2.0788 1.3339 0.7962 0.4486 0.2433

without Limitation
DO 2.0787 1.3339 0.7962 0.4481 0.2430
CS 2.0787 1.3338 0.7961 0.4481 0.2430
mCS 2.0785 1.3334 0.7956 0.4476 0.2427
HV 2.0792 1.3346 0.7928 0.4371 0.2415

with Limitation
DO 2.0786 1.3336 0.7961 0.4483 0.2431
CS 2.0786 1.3336 0.7961 0.4483 0.2430
mCS 2.0783 1.3331 0.7955 0.4479 0.2428
HV 2.0791 1.3343 0.7935 0.4368 0.2270

Table 1: Solution values for the different spot asset prices and spot volatility’s for the parameter set (5.1)

or by linear extrapolation to a non-uniform grid

λ̃k+1 = λk +
∆τk+1

∆τk
(λk − λk−1). (4.10)

To reduce memory space and run-time, we use a more intelligent implementation with the same
stability and accuracy as the naive implementation [26].

5 Results

In this section we numerically investigate the behaviour of the schemes in connection with our
extensions. First, we focus on the analysis of the limitation for the number of grid points in the
sparse grids. Therefore we consider the parameter set

T = 0.25, K = 10, κ = 5, µ = 0.16, σν = 0.9, ρ = 0.1, r = 0.1. (5.1)

For the sparse grid structure for y and z, we set |l|1 = 9, lmin = 3. For the grid transformation
to S and ν, we choose Smin = 0, S0 = S̃ and Smax = 3K as well as νmin = 0, ν0 = ν̃ and
νmax = 3; further αS = αν = 2. For the different ADI methods, Nt = 100 and θ are selected as
in Section 4. This parameter set fulfils the Feller condition and is widely used in the literature,
cf. [4,9,18,21]. Since Haentjens and in’t Hout [9] also solved this example set with ADI methods,
but on a full grid structure, we compare our results with their solution. The accuracy of the
model is shown in Table 1. Our solution of this test set was calculated without smoothing the
initial data, since we use the spot price for the grid transformation. As expected, the results
obtained from the limited sparse grid setting are in the same accuracy range as the common set,
the main advantage of the limitation is the shortening of the run-time. For the comparison of
the run-time between the full sparse grid and the reduced sparse grid, we compute a reference
solution with the Crank-Nicolson scheme and initial data smoothing. Further we discretise to
a grid with (129, 33) grid points and 10, 000 time steps with a second-order stencil. Figure 4
shows the effect of the reduction of the grid resolution in the volatility direction on the run-time
for sparse grid settings for the test set (5.1) in comparison with the accuracy. Note that the
intelligent implementation of the ADI schemes [26] already reduces the run-time once.
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Figure 4: Run-time comparison between the sparse grid solution with and without limitation for the
parameter set (5.1). The run time of mCS is shown, where the line with the star represents the run-time
of the sparse grid solution without any limitation and the dashed line with the circles corresponds to the
run-time for the sparse grid with reduced grid resolution.

6 Conclusion
In this paper we have shown that the numerical results of the grid transformation on the spot
price with the reduced resolution in the direction of volatility are satisfactory even without
smoothing. As in this setting, the best improvement was achieved in using the spot price as
the accumulation point of the transformation (instead of the strike price) Furthermore, we
have achieved a runtime improvement due to the reduced grid resolution in the direction of
volatility, even though we have already worked on a sparse grid structure and runtime-optimized
implementations. In summary, the paper shows different ways to further improve known methods
in order to adapt the time requirements.
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