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Abstract. We present a novel region based active learning method
for semantic image segmentation, called MetaBox+. For acquisition,
we train a meta regression model to estimate the segment-wise Inter-
section over Union (IoU ) of each predicted segment of unlabeled im-
ages. This can be understood as an estimation of segment-wise pre-
diction quality. Queried regions are supposed to minimize to compet-
ing targets, i.e., low predicted IoU values / segmentation quality and
low estimated annotation costs. For estimating the latter we propose a
simple but practical method for annotation cost estimation. We com-
pare our method to entropy based methods, where we consider the
entropy as uncertainty of the prediction. The comparison and anal-
ysis of the results provide insights into annotation costs as well as
robustness and variance of the methods. Numerical experiments con-
ducted with two different networks on the Cityscapes dataset clearly
demonstrate a reduction of annotation effort compared to random
acquisition. Noteworthily, we achieve 95% of the mean Intersection
over Union (mIoU ), using MetaBox+ compared to when training
with the full dataset, with only 10.47% / 32.01% annotation effort
for the two networks, respectively.
Key words: active learning • semantic segmentation • cost effective
• priority maps via meta regression • cost estimation

1 Introduction
In recent years, semantic segmentation, the pixel-wise classification
of the semantic content of images, has become a standard method
to solve problems in image and scene understanding [27, 40, 4, 37].
Examples of applications are autonomous driving and environment
understanding [40, 4, 37], biomedical analyses [27] and further com-
puter visions tasks. Deep convolutional neural networks (CNN) are
commonly used in semantic segmentation. In order to maximize the
accuracy of a CNN, a large amount of annotated and varying data
is required, since with an increasing number of samples the accu-
racy increases only logarithmically [35]. For instance in the field
of autonomous driving, fully and precisely annotated street scenes
require an enormous (and tiring) annotation effort. Also biomedi-
cal applications, in general domains that require expert knowledge
for annotation, suffer from high annotation costs. Hence, from multi-
ple perspectives (annotation) cost reduction while maintaining model
performance is highly desirable.

One possible approach is active learning (AL), which basically
consists of alternatingly annotating data and training a model with

the currently available annotations. The key component in this algo-
rithm that can substantially leverage the learning process is the so
called query or acquisition strategy. The ultimate goal is to label the
data that leverages the model performance most while paying with as
small labeling costs as possible. For an introduction to AL methods,
see e.g. [32].
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Figure 1. Illustration of the region based AL method. The red parts high-
light the novel meta regression based ingredients: as query priority maps we
use MetaSeg and the estimated number of clicks. Training of MetaSeg re-
quires an additional small sample of data (fixed for the whole course of AL),
indicated byM⊂ P (in red color).

First AL approaches (before the deep learning (DL) era) for
semantic segmentation, for instance based on conditional random
fields, go back to [36, 18, 23, 16]. At the heart of an AL method
is the so-called query strategy that decides which data to present to
the annotator / oracle next. In general, uncertainty sampling is one
of the most common query strategies [10, 38, 1, 13, 29], besides that
there also exist approaches on expected model change [36] and rein-
forcement learning based AL [2].

In recent years, approaches to deep AL for semantic segmentation
have been introduced, primarily for two applications, i.e., biomed-
ical image segmentation and semantic street scene segmentation,
cf. [39, 12, 25, 22, 34, 17, 2, 21]. The approaches in [39, 12, 25, 22]
are specifically designed for medical and biomedical applications,
mostly focusing on foreground-background segmentation. Due to the
underlying nature of the data, these approaches refer to annotation
costs in terms of the number of labeled images. The methods pre-
sented in [34, 17, 2, 21] use region based proposals. All of them eval-
uate the model accuracy in terms of mean Intersection over Union
(mIoU ). The method in [34] is designed for multi-view semantic
segmentation datasets, in which objects are observed from multiple
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Figure 2. Segmentation results with our novel method MetaBox+ for two CNN models. With an annotation effort of only 10.47% for the Deeplab model
(top) and 32.01% for the FCN8 model (bottom), we achieve 95% full set mIoU . Additionally, the segmentation results are shown when training the networks
with the full dataset (Full set) and with a random selection strategy (RandomBox) producing the same annotation effort as MetaBox+. Annotation effort is stated
in terms of a click based metric (costA, Equation (10)).

viewpoints. The authors introduce two new uncertainty based met-
rics and aggregate them on superpixel (SP) level (SPs can be viewed
as visually uniform clusters of pixels). They measure the costs by
the number of labeled pixels. Furthermore they have shown that la-
beling on SP level can reduce the annotation time by 25%. In [17]
a new uncertainty metric on SP level is defined, which includes the
information of the Shannon Entropy [33], combined with informa-
tion about the contours in the original image and a class-similarity
metric to put emphasis on rare classes. In [17], the number of pixels
labeled define the costs. The authors of [2] utilize the same cost met-
ric. The latter work uses reinforcement learning to find the most in-
formative regions, which are given in quadratic format of fixed size.
This procedure aims at finding regions containing instances of rare
classes. The method in [21] queries quadratic regions of fixed-size
from images as well. They use a combination of uncertainty measure
(Vote [7] and Shannon Entropy) and a clicks-per-polygon based cost
estimation, which is regressed by a second DL model. The meth-
ods in [21, 2, 17] are focusing on multi-class semantic segmentation
datasets like Cityscapes [6].

In this work, we introduce a query strategy, which is based on
an estimation of the segmentation quality. We use a meta regression
model, as introduced in [28] and extended in [30, 20, 3], to predict
the segment-wise IoU and then aggregate this information over the
quadratic candidate regions of images. Furthermore, we introduce a
simple and practical method to estimate the annotation costs in terms
of clicks. Through the combination of both, we target informative
regions with low annotation costs. A sketch of our method is given in
Figure 1. Based on the number of clicks required for annotation, we
introduce a new cost metric. For numerical experiments we used the
Cityscapes dataset [6] with two models, namely the FCN8 [19] and
the Deeplabv3+ Xcpetion65 [4] (following in short only Deeplab).

2 Related Work

In this section, we compare our work to the works closest to ours.
Therefore, we focus on the region based approaches [34, 17, 2, 21].
All of them evaluate the model accuracy in terms of mIoU . The
approaches in [17, 34] use handcrafted uncertainty metrics aggre-
gated on SP level and also query regions in form of SP. While [34]
is specifically designed for multi-views datasets, our approach fo-
cuses on single-view multi-class segmentation of street scenes. For

the query strategy presented in [17], the authors do not only use un-
certainty metrics, but also information about the contours of the im-
ages as well as class similarities of the SP to identify rare classes.
We also use different types of information to generate our proposals.
The AL method in [2] is based on deep reinforcement learning and
queries quadratic fixed size regions. We query the same region format
but instead of reinforcement learning, we only use the segmentation
network’s output in our query strategy. Compared to the approaches
above [17, 34, 2] we do not focus on finding a minimal dataset to
achieve a satisfying model accuracy. We consider the costs in terms
of required clicks for annotating a region and aim to reduce the hu-
man annotation effort (therefore we refer to those clicks as costs). To
this extent, we take an estimation of the labeling effort during acqui-
sition into account. In addition, we estimate the segmentation quality
to identify regions of interest.

As in [21], our candidate regions for acquisition are square-shaped
and of fixed size, and we also use a cost metric based on the number
of clicks required to draw a polygon overlay for an object. Hence,
[21] is in spirit closest to our work. However, instead of using an
uncertainty measure to identify high informational regions, we use
information about the estimated segmentation quality in terms of the
segment-wise Intersection over Union (IoU ) (see [28, 15]). Entropy
is a common measure to quantify uncertainty. However, in semantic
segmentation we observe increased uncertainty on segment bound-
aries, while uncertainty in the interior is often low. This is in line
with the observation that, neural network in general provide over-
confident predictions [11, 14]. We solve this problem by evaluating
the segmentation quality of whole predicted segments.

Furthermore, also our cost estimation method differs substantially
from the one presented in [21]. While the authors of [21] use another
CNN to regress on the number of clicks per candidate region, we
infer an estimate of the number of required clicks directly from the
prediction on the segmentation network and show in our results, that
our measure is indeed strongly correlated with the true number of
clicks per candidate region.

3 Region based Active Learning
In this section we first describe a region based AL method, which
queries fixed-size and quadratic image regions. Afterwards, we de-
scribe our new AL method. This method is subdivided into a 2-
step process: first, we predict the segmentation quality by using the
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segment-wise meta regression method proposed in [28]. Second, we
incorporate a cost estimation of the click number required to label a
region, we term this add on.

3.1 Method Description
For the AL method we assume a CNN as semantic segmentation
model with pixel-wise softmax probabilities as output. The corre-
sponding segmentation mask, also called segmentation, is the pixel-
wise application of the argmax function to the softmax probabili-
ties. The dataset is given as data pool P . The set of all labeled data
is denoted by L and set of unlabeled data by U . At the beginning we
have no labeled data, i.e., L = ∅, and we wish to provide labels over
a given number of classes c ∈ N, c ≥ 2 for all images.

A generic AL method can be summarized as follows: Initially, a
small set of data from U is labeled and added to L. Then, two steps
are executed alternatingly in a loop. Firstly, the model (the CNN) is
trained on L. Thereafter, a chosen amount of unlabeled data from U
is queried according to a query strategy, labeled and added to L.

In region based AL, we add newly labeled regions to L instead of
whole images. An image x remains in U as long as it is not entirely
labeled. In order to avoid multiple queries of the same region, a re-
gion that is contained in both U and L is tagged with a query priority
equal to zero. In the remainder of this section, we describe the query
function in detail and introduce an appropriate concept of priority in
the given context.

Region based Queries. The query strategy is a key ingredient
of an AL method. In general, most query function designs strive for
maximally leveraging training progress (i.e., achieving high valida-
tion accuracy after short time) at reduced labeling costs. In the field
of semantic segmentation, it seems unnecessary to label whole im-
ages. Thus, we aim at querying regions of images which leads to a
region-wise concept of query priority.

In what follows, we only compute measures of priority by means
of the softmax output of the neural network. To this end, let

f : [0, 1]w×h×3 → [0, 1]w×h×c (1)

be a function given by a segmentation network providing softmax
probabilities for a given input image, where w denotes the image
width, h the height and c the number of classes.

A priority map can be viewed as another function

g : [0, 1]w×h×c → [0, 1]w×h (2)

that outputs one priority score per image pixel. The output of g can
be viewed as a heatmap that indicates priority. A higher score of
priority should presumably correlate with the attractiveness of the
corresponding ground truth. A typical example for g is the pixel-wise
entropy H which for a chosen pixel (i, j) is given by

H(yi,j,·) = −
c∑

k=1

yi,j,c log(yi,j,c) (3)

where yi,j,c = f(x)i,j,c ∈ [0, 1] for a given input x ∈ [0, 1]w×h×3.
The priority maps that we use in our method are introduced in the
subsequent section. Note that, if an image pixel has already been
labeled, we overwrite the corresponding pixel value of the priority
map by zero.

Our AL method queries regions that are square-shaped (boxes) and
of fixed width b ∈ N. A box-wise overall priority score is obtained

via aggregation. To this end, we simply choose to sum up the scores.
That is, given a box B ⊂ [0, 1]w×h, the aggregated score is given by

gagg(y,B) =
∑

(i,j)∈B
gi,j(y) . (4)

Given the set B of all possible boxes of width b in [0, 1]w×h, we
can define an aggregated priority map

gB(y) = {gagg(y,B) : B ∈ B} (5)

which can be viewed as another heatmap resulting from a convo-
lution operation with a constant filter. Given t aggregated priority
scores, for the sake of brevity named h(1)(y,B), . . . , h(t)(y,B), we
define a joint priority score by

h(y,B) =

t∏

s=1

h(s)(y,B) . (6)

Analogously to Equation (5) we introduce a joint priority map hB(y).
However, in what follows we do not distinguish between joint pri-
ority maps and singleton (aggregated) priority maps as this follows
from the context. Furthermore, we only refer to priority maps while
performing calculations on priority score level.

Algorithm. In summary, our AL method proceeds as follows. Ini-
tially, a randomly chosen set ofminit entire images from U is labeled
and then moved to L. Afterwards, the AL method proceeds as pre-
viously described in the introduction of this section. Defining the set
of all candidate boxes as

C = {(y,B) : y = f(x), x ∈ U , B ∈ B}, (7)

we query in each iteration a chosen number mq of non-overlapping
boxes Q = {(yij , Bj) : j = 1, . . .mq} ⊂ C, with the highest
scores h(y,B), i.e.,

(y,B) ∈ Q, (y′, B′) /∈ Q (8)

=⇒ h(y,B) ≥ h(y,B′) or (B ∩B′ 6= ∅ and y = y′) .

A sketch of the whole AL loop is depicted by Figure 1.

3.2 Joint priority maps based on meta regression
and click estimation

It remains to specify the priority maps h(i)(y,B) defined in the pre-
vious section. In our method, we have t = 2 priority maps. As an
estimate of prediction quality, we use MetaSeg [28] which provides
a quality estimate in [0, 1] for each segment predicted by f . This
aims at querying ground truth for image regions that presumably
have been predicted badly. Mapping predicted qualities back to each
pixel of a given segment and thereafter aggregating the values over
boxes, we obtain our first priority map h(1).

On the other hand, we wish to label regions that are easy (or cheap)
to label. Therefore, we estimate the number of clicks required to an-
notate a boxB. From this, we define another priority map h(2) which
contains high values for regions with low estimated numbers of clicks
and vice versa (details follow in the upcoming paragraphs). We query
boxes according to the product of priorities, i.e.,

h(y,B) = h(1)(y,B) · h(2)(y,B) (9)

as being done in [21], but with both h(1) and h(2) being different.
In what follows, we describe the priority maps g(1)(y) and g(2)(y)
more precisely, where the aggregated priority maps h(1)(y,B) and
h(2)(y,B) are constructed as in Section 3.1.

3
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Priority via MetaSeg. As priority map g(1)(y) we use MetaSeg
[28] which estimates the segmentation quality by means of predicting
the IoU of each predicted segment with the ground truth.

MetaSeg uses regression models with different types of hand-
crafted input metrics. These include pixel-wise dispersion measures
like (Shannon) entropy and the difference between the two largest
softmax probabilities. These pixel-wise dispersions are aggregated
on segment level by computing the mean over each segment. Here, a
segment is a connected component of a predicted segmentation mask
of a given class.

In addition, for each predicted segment we consider shape-related
quantities, i.e., the segment size, the fractality and the surface center
of mass coordinates. Furthermore, averaged class probabilities for
each predicted segment are presented to the regression model.

Training the regression model of MetaSeg requires segmentation
ground truth to compute the IoU for each predicted segment and the
corresponding ground truth. Since the prediction changes in every it-
eration of the AL method, we train the regression model for MetaSeg
once in every AL iteration. In order to have ground truth available for
training the regression model, we randomly select and label a fur-
ther initial datasetM of nmeta samples, which will be fixed for the
whole AL process. To predict the quality of network predictions via
MetaSeg, we perform the following steps after updating the semantic
segmentation model:

1. Infer the current CNN’s predictions for all images inM,
2. Compute the metrics for each predicted segment (from step 1.),
3. Train MetaSeg to predict the IoU by means of the metrics from

step 2.
4. Infer the current CNN’s predictions for the unlabeled data U ,
5. Compute the metrics for each predicted segment that belongs to U

(as in step 2.),
6. Apply MetaSeg in inference mode to each predicted segment

from U (from step 4.) and its metrics (from step 5.) to predict
the IoU .

For each unlabeled (i.e., not entirely labeled) image, MetaSeg pro-
vides a segmentation quality heatmap q(y) by registering the pre-
dicted IoU values of the predicted segments for each of their cor-
responding pixels. An example of the segmentation quality heatmap
is given in Figure 3. The corresponding priority map as defined in
Equation (2), is obtained via g(1)(y) = 1 − q(y). Hence, regions
of g(1)(y) containing relatively high values are considered as being
attractive for acquisition. More details on MetaSeg can be found in
[28].

Priority via Estimated Number of Clicks. As an additional pri-
ority map g(2)(y) we choose an estimate of annotation costs. Multi-
class semantic segmentation datasets are generally labeled with a
polygon based annotation tool, i.e., the objects are described by a fi-
nite number of vertices connected by edges such that the latter form
a closed loop. [6, 24]. If the ground truth is given only pixel-wise,
an estimate of the number of required clicks can be approximated by
applying the Ramer-Douglas-Peucker (RDP) algorithm [26, 9] to the
segmentation contours.

To estimate the true number of clicks required for annotation in
the AL process, we correlate this number with how many clicks it
approximately requires to annotate the predicted segmentation (pro-
vided by the current CNN) using the RDP algorithm. The approxi-
mation accuracy of the RDP algorithm is controlled by a parameter
ε. We define a cost map κ(y) via κi,j(y) = 1 if there is a polygon

Figure 3. Prediction of the IoU values. The figure consists of ground truth
(bottom left), predicted segments (bottom right), true IoU for the predicted
segments (top left) and predicted IoU for the predicted segments (top right).
In the top row, green color corresponds to high IoU values and red color to
low ones, for the white regions there is no ground truth available.

vertex in pixel (i, j) and κi,j(y) = 0 else. Since we are prioritis-
ing regions with low estimated costs, the priority map is given by
g(2)(y) = 1−κ(y). Following the construction in Section 3.1 yields
the aggregated priority map h(2)(y,B) . A visual example of the cost
estimation is given in Figure 5 (left panel).

In our tests with the RDP algorithm applied to ground truth seg-
mentations, we observed that on average the estimated number of
click is fairly close to the true number of clicks provided by the
Cityscapes dataset. Therefore, if we assume that over the course of
AL iterations, the model performance increases, approaching a level
of segmentation quality that is close to ground truth, then the de-
scribed cost estimation on average will approach the click numbers
in the ground truth.

In the following, we distinguish between the following methods:
MetaBox uses only the priority via MetaSeg and MetaBox+ uses both
the joint priority of MetaSeg and the estimated number of clicks. An
overview of the different steps of our AL method is given by Figure 1
and an exemplary visualization of the different stages of MetaBox+
is shown in Figure 4. Note that there are different conventions for
counting clicks which we discuss in Section 4.1.

Further priority maps and baseline methods. For the sake of
comparison, we also define a priority map based on the pixel-wise
entropy as in Equation (3). Analogously to MetaBox and MetaBox+,
we introduce EntropyBox and EntropyBox+: EntropyBox uses only
the priority via entropy and EntropyBox+ uses the joint priority of
the entropy and the estimated number of clicks. The method Entropy-
Box+ is similar to the method introduced in [21]. The corresponding
authors also use a combination of the entropy and a cost estimation,
but the cost estimation is computed by a second DL model. Further-
more, as a naive baseline we consider a random query function that
performs queries by means of random priority maps. We term this
method RandomBox.

4 Experiments

Before presenting results of our experiments , we introduce metrics
to measure the annotation effort. To this end, we discuss different
types of clicks required for labeling and how they can be taken into
account for defining annotation costs. Afterwards we specify the ex-
periments settings and the implementation details. Thereafter, we
present numerical experiments where we compare different query
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(1) segmentation (2) joined priority map (3) annotation 

(1a) predicted IoU values with MetaSeg (2a) priority via MetaSeg (2b) priority via estimated number of clicks (3a) ground truth

high

low

Figure 4. Visualisation of our AL method MetaBox+ at a specific AL iteration. The top row shows the segmentation (1), the joined priority map (2) and the
acquired annotation (3). The joined priority map (2) is based on the priority via MetaSeg (2a) and the estimated number of clicks (2b). High values represent
prioritized regions for labeling: in (2b) regions with low predicted IoU values are of interest in (2b) regions with low estimated clicks. (1a) shows the predicted
IoU values via MetaSeg.

strategies with respect to performance and robustness. Furthermore
we study the impact of incorporating annotation cost estimations.

4.1 Measuring Annotation Effort
In semantic segmentation, annotation is usually generated with a
polygon based annotation tool. A connected component of a given
class is therefore represented by a polygon, i.e., a closed path of
edges. This path is constructed by a human labeler clicking at the cor-
responding vertices. We term these vertices polygon clicks cp(B) ∈
N0. Since we query quadratic image regions (boxes), we introduce
the following additional types of clicks:

• intersection clicks, ci(B) ∈ N0, occur due to the intersection be-
tween the contours of a segment and the box boundary,

• box clicks, cb(B) ∈ N0, specify the quadratic box itself,
• class clicks, cc(B) ∈ N, specify the class of the annotated seg-

ment.

For an annotated image, the class clicks correspond to the number of
segments. Like the polygon clicks, they can also be considered for
the cost evaluation of fully annotated images.

For the evaluation of a dataset P (with fully labeled images),
cp(P) ∈ N is the total number of polygon clicks and cc(P) ∈ N
the total number of class clicks. Let L0 be the the initially annotated
dataset (with fully labeled images) and Q the set of all queried and
annotated boxes, then we define the cost metrics

costA =
cp(L0) + cc(L0) + cp(Q) + ci(Q) + cc(Q)

cp(P) + cc(P)
(10)

costB =
cp(L0) + cp(Q) + ci(Q) + cb(Q)

cp(P)
(11)

with c](Q) =
∑

Bj∈Q
c](Bj), ] ∈ {p, i, b, c}.

In addition to that,

costP (12)

defines the costs as amount of labeled pixels with respect to the whole
dataset.

The amount of required clicks depends on the annotation tool. The
box clicks cb(B) are not necessarily required: with a suitable tool, the
chosen image regions (boxes) are suggested and the annotation pro-
cess restricted accordingly. Required are the polygon clicks cp(B)
and the intersections clicks ci(B) to define the segment contours as
well as the class clicks cc(B) to define the class of the annotated
segment. Cost metric costA (Equation (10)) is based on this consid-
eration.

Cost metric costB (Equation (11)) is introduced in [21]. Due to a
personal correspondence with the authors we are able to state details
that go beyond the description provided in [21]: Cost metric costB
is mostly in accordance with costA, except for two changes. The
box clicks cb(B) = 4 are taken into account while the class clicks
cc(B) are omitted. Theoretically both metrics can become greater
than 1. Firstly, fully labeled images do not require intersection clicks
ci(B). Secondly, ground truth segments that are labeled by more than
one box produce multiple class clicks cc to specify the class. In the
following, the cost metrics costA, costB , costP are given in percent
(of the costs for labeling the full dataset without considering regions).
An illustration of the click types is shown in Figure 5 (right panel).

4.2 Experiment Settings

For our experiments, we used the Cityscapes [6] dataset. It contains
images of urban street scenes with 19 classes for the task of seman-
tic segmentation. Furthermore, the annotation clicks / polygons are
given. We used the training set with 2,975 samples as data pool P .
For all model and experiment evaluations we used the validation set
containing 500 samples. We used two CNN models: FCN8 [19] (with
width multiplier 0.25 introduced in [31]) and Deeplabv3+ [4] with an
Xception65 [5] backbone, (short: Deeplab). Using all training data,
also referred to as full set, we achieve a mIoU of 60.50% on the
validation dataset with the FCN8 model and a mIoU of 76.11% for
the Deeplab model. We have not resized the images, i.e., we used
the original resolution of height h = 1,024 and width w = 2,048.
In each AL iteration, we train the model from scratch. The train-
ing is stopped, if no improvement in term of validation mIoU is
achieved over 10 consecutive epochs. Details regarding the training
parameters are given in Section 4.3 below. All experiments started
from an initial dataset of 50 samples. For experiments with MetaSeg

5
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Figure 5. (left): Visualization of the estimated annotation clicks obtained
by the RDP algorithm applied to the segmentation contours of a predicted
segment of class “car”. The segment contours are highlighted by red color, the
obtained vertices (estimated clicks) are highlighted green. (right): Example
of possible types of clicks we can take into account for a cost definition. The
white (and gray) pixels depict true annotation clicks obtained from the data
of (here 5 polygon clicks within the box). The red ones represent additional
types of clicks: the ones required for annotating intersection points of segment
contour and box edges (here 2 intersection clicks), the ones for defining the
box itself (4 box clicks, one for each corner) and one click per segment to
specify the class of the segment (here 2 class clicks: for car and street).

based queries (MetaBox, MetaBox+), we took 30 additional samples
to train MetaSeg. In each AL iteration we queried 6,400 boxes with
a width of b = 128, which corresponds to 50 full images in terms of
the number of pixels.

Each experiment was repeated three times. For each method we
present the mean over the mIoU and the mean over the cost metrics
(costA, costB , costP ) of each AL iteration. All CNN trainings were
performed on NVIDIA Quadro P6000 GPUs. In total, we trained the
Deeplab model 180 times, which required approximately 8,000 GPU
hours and the FCN8 model 290 times, which required approximately
3,500 GPU hours. This amounts to 11,500 GPU hours in total. On
top of that, we consumed a few additional GPU hours for the in-
ference as well as a moderate amount of CPU hours for the query
process.

4.3 Implementation Details
To train the CNN models with only parts of the images, we set the
labels of the unlabeled regions to ignore. Both models (FCN8 and
Deeplab) are initialized with pretrained weights of imagenet [8].

FCN8. For training of the FCN8 model [19], with the width mul-
tiplier 0.25 [31], we used the Adam optimizer with learning rate,
alpha, and beta set to 0.0001, 0.99, and 0.999, respectively. We used
a batch size of 1 and did not use any data augmentation.

Deeplab. For the training of the Deeplab model, with the
Xception-backbone [5] we proceeded as in [4]: we set decoder output
stride to 4, train crop size to 769 × 769, atrous rate to 6, 12, 18 and
output stride to 16. To consume less GPU memory resources we used
a batch size of 4: We have not fine-tuned the batch norm parameters.
For the training in the AL iterations, we used as polynomial decay
learning rate policy:

lr (i) = lrbase ∗
(1− s(i)

stot

)p

where lr (i) is the learning rate in step s(i) = i, lrbase = 0.001 the
base learning rate, p = 0.8 the learning power and stot = 150,000
the total number of steps. For training with the full set we used the

same learning rate policy with a base learning rate lrbase = 0.003.
With these settings we achieve a mIoU of 76.11% (mean of 5 runs).
The original model achieves a mIoU of 78.79% (with a batch size
of 8).

MetaSeg. We used the implementation of https://github.
com/mrottmann/MetaSeg with minor modifications in the re-
gression model. Instead of a linear regression model, we used a gra-
dient boosting method with 100 estimators, max depth 4 and learn-
ing rate 0.1. In our tests, a gradient boosting method led to better
results than a linear regression model. For the training of MetaSeg
we used 30 images. We tested MetaSeg for different numbers of pre-
dictions and of differently performing CNN models. With the given
parameters, we achieve results in terms of R2 values similar to those
presented in the original paper [28].

4.4 Evaluation
Comparison of MetaBox, EntropyBox and RandomBox. First

we compare the methods that do not include the cost estimation.
As can be seen in Figure 6, MetaBox outperforms EntropyBox in
terms annotation required to achieving 95% full set mIoU : for the
FCN8 model, MetaBox produces click costs of costA = 38.63%
while EntropyBox produces costs of costA = 44.60%. For analo-
gous experiments with the Deeplab model, MetaBox produces click
costs of costA = 14.48% while EntropyBox produces costs of
costA = 19.61%. Furthermore, for the Deeplab model both meth-
ods perform better compared to RandomBox, which requires costs
of costA = 22.04%. However, for the FCN8 model RandomBox
produces the least click costs of costA = 34.54%. Beyond the
95% (full set mIoU ) frontier, all three methods perform very sim-
ilar on the FCN8 model. For the Deeplab model, RandomBox does
not significantly gain performance while MetaBox and EntropyBox
achieve the full set mIoU requiring approximately the same costs of
costA ≈ 36.56%.
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Figure 6. Results of the AL experiments for MetaBox, EntropyBox and
RandomBox. Costs are given in terms of cost metric costA. The vertical lines
indicate where a corresponding method achieves 95% full set mIoU . Each
method’s curve represents the mean over 3 runs.

Figure 7 shows a visualisation of prioritised regions for annota-
tion. In general, high entropy values are observed on the boundaries
of predicted segments. Therefore EntropyBox queries boxes, which
overlap with the contours of predicted segments. Since MetaBox pri-
oritises regions with low predicted IoU values, queried boxes often
lie in the interior of predicted segments. Furthermore, EntropyBox
produces higher costs in each AL iteration compared to MetaBox and
RandomBox. RandomBox produces relatively small but very consis-
tent costs per AL iteration.
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Figure 7. Comparison of query strategies based on MetaSeg and entropy.
In the MetaSeg priority map (top left), low estimated IoU values are colored
red and high ones green. Accordingly, in the entropy priority map (bottom
left) low confidence is colored red and high confidence is colored green. The
(line-wise) corresponding aggregations are given in the right hand column.
The higher the priority, the darker the color.

Comparison of MetaBox+ and EntropyBox+. Incorporating the
estimated number of clicks improves both methods MetaBox and En-
tropyBox, see Figure 8. For the FCN8 model, EntropyBox+ still pro-
duces more clicks costA = 40.06% compared to RandomBox. On
the other hand, MetaBox+ requires the lowest costs with costA =
32.01%. For the Deeplab model, EntropyBox+ and MetaBox+ pro-
duce almost the same click costs (costA = 10.25% and costA =
10.47%, respectively) for achieving 95% full set mIoU . By taking
the estimated costs into account, the produced costs per AL iteration
are lower for both methods. Although, in comparison with Entropy-
Box and MetaBox, the methods EntropyBox+ and MetaBox+ require
more AL iterations, both methods perform better in terms of required
clicks to achieve 95% full set mIoU .

In general, we observe that the Deeplab model gains performance
quicker than the FCN8 model. This can be attributed to the fact that
the FCN8 framework does not incorporate any data augmentation
while the Deeplab framework uses state-of-the-art data augmentation
and provides a more elaborate network architecture.
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Figure 8. Results of the AL experiments for MetaBox+ and EntropyBox+.
Costs are given in terms of cost metric costA. The vertical lines indicate
where a corresponding method achieves 95% full set mIoU . Each method’s
curve represents the mean over 3 runs.

Robustness and Variance Considering Figure 10, where the ex-
periments for each CNN model are shown in one plot, we observe
that all methods show a clear dependence on the CNN model. In our
experiments with the FCN8 we also observe that results show only
insignificant standard deviation over the different trainings. Hence

we did not include a figure for this finding and rather focus on dis-
cussing the robustness of the methods with respect to the Deeplab
model.

For the Deeplab model, the methods show a significant stan-
dard deviation over trainings, especially the methods MetaBox,
MetaBox+ and RandomBox, see Figure 9. In the first AL iterations,
RandomBox rapidly gains performance at low costs. However, in the
range of 95% full set mIoU it rather fluctuates and only slightly
gains performance. Beyond the 95% full set mIoU frontier, the
methods MetaBox(+) and EntropyBox(+) still improve at a descent
pace. MetaBox+ and EntropyBox+ nearly achieve the full set mIoU
with approximately the same costs.

Furthermore, when investigating the variation of results with re-
spect to two different CNN models, we observe that the discrep-
ancy between the FCN8 and the Deeplab model is roughly 8 per-
cent points smaller for MetaBox+ than for EntropyBox+. This shows
that MetaBox+ tends to be more robust with respect to the choice of
CNN model.
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Figure 9. Results of single AL experiments (consisting of 3 runs each) for
each AL method with the Deeplab model. Costs are given in terms of cost
metric costA. In each plot, the single runs are given as dotted lines, the mean
(over costs and mIoU ) as a solid line. The vertical lines show where each
run achieves 95% full set mIoU .

Comparison of cost metrics. In the evaluation above, we only
consider the cost metric costA. A comparison of cost metrics for
both CNN models is given in Table 1. Note that EntropyBox+* and
MetaBox+* refer to methods that are equipped with the true costs
from the Cityscapes dataset. We elaborate further on this aspect in
next paragraph. Except for RandomBox, the required costs to achieve
95% full set mIoU is up to 3 percent points lower when considering
costB instead of costA. Considering the proportion of labeled pixels
costP makes the costs seem significantly lower. Noteworthily, for the
FCN8 model EntropyBox requires only costs of costP = 10.08%
while RandomBox does require costs of costP = 28.57%, which is
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Figure 10. Summary of the results of the AL experiments with the FCN8 model (top) and the Deeplab model (bottom). The costs are given in cost metric
costA. The vertical lines display where the 95% full set mIoU are achieved. Each method’s curve represents the mean over 3 runs.

CNN Cost RandomBox EntropyBox MetaBox
model metric + +∗ + +∗

FCN8
costA 34.54 44.60 40.06 19 .82 38.63 32.01 26 .61
costB 35.76 40.74 37.55 18 .87 35.58 30.85 25 .74
costP 28.57 10.08 13.45 10 .08 12.77 17.81 16 .13

Deeplab
costA 22.04 19.61 10.25 10 .95 14.48 10.47 16 .21
costB 22.77 17.92 9.85 10 .60 13.56 10.43 15 .85
costP 18.49 5.04 5.04 6 .72 6.05 7.73 11 .09

Table 1. Annotation costs in % (row) produced by each method (column) to achieve 95% full set mIoU . Cost metrics costA (Equation (10)) and costB
(Equation (11)) are based on annotation clicks while cost metric costP (Equation (12)) indicates the amount of labeled pixels. The costs with respect to the cost
metric of the best performing methods are highlighted. The strategies EntropyBox+* and MetaBox+* represent a hypothetical “optimum” by knowing the true
costs. Each value was obtained as the mean over 3 runs.

roughly a factor of 3 higher. Comparing this with costA = 44.60%
it becomes clear, that these 10% of the pixels in the dataset constitute
to almost half of the actually required click work. This comparison
highlights the importance of cost measurement (definition of a cost
metric) and that the annotation of image regions requires different
human annotation effort.

Click estimation. To evaluate our cost estimation (Section 3.2),
we compare it to the provided clicks in the Cityscapes dataset by
considering the latter as a “perfect” cost estimation. That is, we sup-
ply EntropyBox and MetaBox with the true costs and term these
methods EntropyBox+* and MetaBox+*. A comparison of the dif-
ferent click estimations and the true clicks is given in Table 1. For
the FCN8 model, the experiments show that knowing the true costs
in most cases improves the results: EntropyBox+* produces costs
of costA = 19.82%. This is the half of the costs of EntropyBox+.
MetaBox+* produces costs of costA = 26.61, which is 6 percent
points less costs compared to MetaBox+. For the Deeplab model,
using true rather than estimated costs do not lead to better results.
However, in terms of cost metric costA, EntropyBox+* produces 1
percent point more costs then EntropyBox+. MetaBox+* produces
even 6 pp. more costs then MetaBox+. Similarly, we see such an in-
crease also with respect to the other cost metrics costB and costP .

5 Conclusion and Outlook

We have introduced a novel AL method MetaBox+, which is based
on the estimated segmentation quality, combined with a practical cost
estimation. We compared MetaBox(+) to entropy based methods.
Using a combination of entropy and our introduced cost estimation
shows also remarkable results. Our experiments include in-depth
studies for two different CNN models, comparisons of cost metrics,
cost / click estimates, three different query types (Random, Entropy,
MetaSeg) as well as a study on the robustness. The new methods
MetaBox+ proposed by us lead to robust reductions in annotation
cost, resulting in requiring 10-30% annotation costs for achieving
95% full set mIoU . All our tests were conducted using a query func-
tion that minimizes the product of two targets, i.e., minimizing the
annotation effort and minimizing the estimated segmentation qual-
ity for a given query region. We leave the question open, whether a
weighted sum of priorities instead of a product Equation (6) would
lead to additional improvements of our methods. Since each method
produces different annotation costs per AL iteration, it could be of
interest to vary the number of queried boxes (per AL iteration) or
to start each experiment with some RandomBox iterations. Further-
more, it would be interesting to also incorporate pseudo labels, i.e.,
to label regions of high estimated quality with the predictions of the
CNN model. Semi-supervised approaches remain a promising direc-
tion for further improvements and will be investigated in the future.
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