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Abstract

In this work, we present an uncertainty-based method
for sensor fusion with camera and radar data. The
outputs of two neural networks, one processing camera
and the other one radar data, are combined in an un-
certainty aware manner. To this end, we gather the
outputs and corresponding meta information for both
networks. For each predicted object, the gathered infor-
mation is post-processed by a gradient boosting method
to produce a joint prediction of both networks. In our
experiments we combine the YOLOv3 object detection
network with a customized 1D radar segmentation net-
work and evaluate our method on the nuScenes dataset.
In particular we focus on night scenes, where the ca-
pability of object detection networks based on camera
data is potentially handicapped. Our experiments show,
that this approach of uncertainty aware fusion, which
is also of very modular nature, significantly gains per-
formance compared to single sensor baselines and is in
range of specifically tailored deep learning based fusion
approaches.

1 Introduction

One of the biggest challenges for computer vision sys-
tems in automated driving is to recognize the cars en-
vironment appropriately in any given situation. The
data of different sensors has to be interpreted correctly
while operating with limited amount of computing re-
sources. Besides dense traffic, different weather condi-
tions like sun, heavy rain, fog and snow are challenging
for state-of-the-art computer vision systems. Previous
studies show that the use of more than one sensor, the
so called sensor fusion, leads to an improvement in ob-
ject detection accuracy, e.g. when combining camera
and lidar sensors [1–5]. Up to now, datasets contain-
ing real street scenes using radar data and another sen-
sor are rather the exception, although synthetic data
with different sensors, such as camera and radar sen-
sors, can be generated using simulators like CARLA [6]
or LSGVL [7]. With the publication of the nuScenes
dataset [8], the scientific community obtained access to

real street scenes recorded with different sensors includ-
ing radar. In total there are 5 radar sensors distributed
around the car that generate the data. Ever since, the
number of published papers dealing with sensor fusion
combining radar with other sensors with the help of
the nuScenes dataset has increased, see e.g. [9–11]. We
now briefly review these approaches.

The authors of [9] propose a convolutional neural
network (CNN) for object detection named RVNet
which is equipped with two input branches and two
output branches. One input branch processes im-
age data, the other one radar data. Similarly to
YOLOv3 [12], the network utilizes two output branches
to provide bounding box predictions, i.e., one branch
is supposed to detect smaller obstacles, the other one
larger obstacles. The authors conclude that radar fea-
tures are useful for detecting on-road obstacles in a
binary classification framework. On the other hand
the features extracted from radar data seem not to be
useful in a multiclass classification framework due to
the sparsity of the data.

Another deep-learning-based radar and camera sen-
sor fusion for object detection is the CRF-Net (Cam-
eraRadarFusionNet) [10], which automatically learns
at which level the fusion of both sensor data is most
beneficial for object detection. The CRF-Net uses a so-
called BlackIn training strategy and combines a Reti-
naNet (VGG backbone), a custom-designed radar net-
work and a Feature Pyramid Network (FPN) for clas-
sification and regression problems. The main branch is
composed of five VGG-Blocks, every block receives pre-
processed radar and image data for further processing
which is forwarded to the FPN-Blocks. The network
is tested on the nuScenes dataset and a self-build one.
The authors provide evidence that the BackIn training
strategy leverages the detection score of a state-of-the-
art object detection network.

Furthermore, a fusion approach for lidar and radar is
introduced in [11]. This approach is designed for multi-
class object detection of pedestrian, cyclist, car and
noise (empty region of interest) classes. To this end,
lidar and radar data are first processed individually.
The lidar branch detects objects and tracks them over
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time. On the other hand, the radar branch provides
the object classification, where three independent fast
Fourier transforms (FFTs) are applied on the range-
Doppler-angle spectrum. After time synchronisation
the two branches are merged, resulting in regions of
interest. These regions are fed to the CNN, based on
the VGGNet architecture, which computes the classes
probabilities. Since this approach works well for vehicle
and noise classification but has problems with pedes-
trians and cyclist classes the network was improved by
applying a tracking filter on top of the classifier. They
used a Bayes filter which improved the classification
performance for the two challenging classes.

In summary, the works presented [9,10] aim at simul-
taneously fusing and interpreting image and radar data
within a CNN. In [11], lidar and radar data are first
fused and afterwards a CNN processes the fused input.
While these approaches are beneficial with respect to
maximizing performance, they require additional fall-
back solutions in case that a sensor drops out. Also in
contrast to other sensor fusion solutions, our approach
preserves the option to use both networks redundantly.
In this way, indications of only one of the networks can
be used for scenario constructions that are alternative
to the main scenario provided by the fusion approach.

It also seems inevitable that sensor fusion approaches
require additional uncertainty measures to verify the
quality of the developed methods and networks. A
tool for semantic segmentation called MetaSeg that es-
timates prediction quality on segment level was intro-
duced in [13] and extended in [14–16]. It learns to pre-
dict whether predicted components intersects with the
ground truth or not, which can be viewed as meta clas-
sifying between two classes (IoU = 0 and IoU > 0).
To this end, metrics are derived from the CNN’s out-
put and pass them on to another meta-classifier. This
work of false positive detection was extended in [17]
where the number of overlooked objects was reduced
by only paying with a few additional false positives.
The overproduction of false positives is suppressed by
MetaSeg. Following these approaches for uncertainty
quantification, we use metrics from the output of two
CNNs. We pass them trough to a gradient boosting
classifier, which reduces the number of false positive
predictions. In addition, by reducing the score thresh-
old for object detection, we are able to improve over the
performance of the respective single sensor networks.

In our tests, we utilize a YOLOv3 [12] as a state-of-
the-art object detection network to process the cam-
era data and complement this with a custom-designed
CNN that performs a 1D binary segmentation which is
supposed to detect obstacles. Further downstream of
our computer vision pipeline we introduce a very gen-
eral uncertainty-based fusion algorithm. Based on the
predictions of both CNNs and their uncertainties as
well as other geometrical meta-information, the fusion
algorithm learns to provide a prediction by means of a
structured dataset. In our experiments we demonstrate

for the case of street scenes recorded at night, that
this approach significantly leverages the object detec-
tion accuracy. Furthermore, both networks only show
moderate correlation which further supports our safety
argument.

Outline The remainder of this work is organized as
follows. In section 2 we briefly describe the charac-
teristics of different sensors used for perception in au-
tomated driving. In section 3 we introduce our 1D-
segmentation network for the detection of vehicles by
radar data. We describe the preprocessing, the net-
work architecture and the loss function we used for
our method. This is followed by section 4, where the
sensor fusion approach is presented and in section 5
our choice of metrics are introduced. In section 6 we
discuss the numerical results. Finally, we present the
conclusion and outlook in section 7.

Specifications Camera Radar Lidar

Distance
Range ++ +++ +++
Resolution ++ +++ ++

Angle
Range +++ ++ +++
Resolution +++ + ++

Classification
Velocity Resolution + +++ ++
Object Categorization +++ + ++

Environment
Night Time + +++ +++
Rainy/Cloudy Weather + +++ ++

+ = Good, ++ = Better, +++ = Best

Table 1: Overview of the advantages and disadvantages
of the most common sensors for autonomous driving
[18].

2 Sensor Characteristics

Today’s vehicles are equipped with sensors for record-
ing driving dynamics, which register movements of the
vehicle in three axes, as well as sensors for detecting
the environment. The latter try to map the vehicle en-
vironment as accurately as possible to promote auto-
mated driving. This section briefly describes the char-
acteristics of the three most used sensors for the per-
ception of the environment for automated driving, i.e.,
camera, radar and lidar, including their advantages and
disadvantages.

Camera sensors take two-dimensional images of light
by electrical means. They are accurate in measuring
edges, contour, texture and coloring. Furthermore they
are easily integrated into the design of a modern vehi-
cle. However, 3D localization from images is challeng-
ing and weather-related visual impairment can lead to
higher uncertainties in object detections [19].

Radar sensors use radio waves to determine the
range, angle and relative velocity of objects. Long-
range radar sensors have a high range capability up
to 200 − 250m [9, 20, 21] and are cheaper than Lidar
sensors [22]. Compared to cameras, radar sensors are
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Figure 1: Preprocessing and prediction of the radar network. On the left we see the radar points projected to
the front view camera image. The center image is divided into a certain number of slices Ns from which we
generate the input matrix for the training of the CNN. The right hand image corresponds to the output of the
radar network.

less affected by environmental conditions and pollu-
tion [21–23]. On the other hand, radar data is sparse
and does not delineate the shape of the obstacles [9,23].

Lidar sensors use a light beam, emitted from a laser,
to determine the distances and shapes of objects. Li-
dar sensors are highly accurate in 3D localization and
surface measurements as well as a long-range view up
to 300m [24]. They are expensive to buy and bad
weather conditions like rain, fog or dust reduce the
performance [21,22].

Each sensor has its advantages and disadvantages
(summarized in table 1), so that a sensor fusion with
at least two sensors makes sense in order to provide a
better safety standard.

3 Object Detection via Radar

In this section we introduce the 1D segmentation net-
work that we equip for detecting vehicles. First we ex-
plain the pre-processing method, then we describe the
network architecture, the loss function and the network
output.

3.1 Preprocessing

In a global 3D coordinate system, the radar data is
situated in a 2D horizontal plane. Hence, before train-
ing a neural network, we pre-process the radar data for
two reasons. First of all, in order to simplify the fusion
after processing each sensor with a neural network sep-
arately, we project the given radar data into the same
2D perspective as given by the front view camera. Sec-
ondly, one can observe that after this projection, the
remaining section of the radar sensor modality is close
to 1D. Figure 1 depicts radar points projected into the
front view camera image. Darker colors indicate closer
objects and brighter colors indicate more distant ob-
jects. Consequently, we build and train a neural net-
work to perform a 1D segmentation.

To be more specific, we pre-process the ground truth
for training the radar network as illustrated in figure 2.
That is, we divide the given front view image into a

Figure 2: Ground truth vector for radar data. Every
slice that overlaps with a bounding box in the front
view camera image obtains the value 1, otherwise 0.

chosen number Ns of slices and generate an occupancy
array of length Ns. The ith entry of this array is equal
to 1 if there is a ground truth object intersecting with
the ith slice of the image and 0 else. This ground truth
construction defines the desired prediction for the radar
network.

The radar data is pre-processed similarly to the
ground truth as we aim at providing the neural network
with an input tensor of size Ns × Nt × Nf where Nt

denotes the number of considered time steps and Nf

denotes the number of features. By assigning radar
points to image slices we can drop the x-coordinate
(which is implied by the array index up to an quanti-
zation error). For each slice i = 1, . . . , Ns which con-
tains at least one radar point we store the following Nf

features in the input matrix: y-coordinates (indicating
the distance of the reflection point), the height coor-
dinate with respect to the front view image that the
radar point obtains by projection into the image plane
as well as the relative lateral and the longitudinal ve-
locity.

3.2 Network Architecture

The network architecture for the radar network is
based on a FCN-8-network [25] and is depicted in fig-
ure 3. The hidden layers consist of three convolution
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Figure 3: CNN architecture of our custom FCN-8 inspired radar network.

blocks, three deconvolution blocks followed by a con-
catenate layer, a fourth convolution block, a flatten
layer and one fully-connected block. Finally, the net-
work contains a sigmoid layer from which we get in
[0, 1]. Each convolution and deconvolution block in-
cludes a (de-)convolution layer, a batch normalization
and a leaky ReLU as activation function, respectively.
The convolution blocks capture context information
while losing spatial information whereas the deconvolu-
tion blocks restore these spatial information. Using by-
passes, context information can be linked with spatial
information. Furthermore, each fully connected block
consists of a dense layer followed by a leaky ReLU ac-
tivation function (excecpt for the final layer where we
use a sigmoid activation function).

3.3 Loss function

Let D = {(r(i), t(i)) : i = 1, . . . , n} denote a dataset
of tuples containing radar data r(i) ∈ RNs×Nt×Nf and
ground truth t(i) ∈ {0, 1}Ns . The radar network g
provides an array of estimated probabilities indicating
whether a given slice s is occupied or not. We de-
note y(i) = g(r(i)). For training the neural network
we use the binary cross-entropy for each array entry
s = 1, . . . , Ns, i.e., for a single data sample (r(i), t(i))
we have

`(t(i)s , y(i)s ) = −αt(i)s log(y(i)s )−(1−t(i)s ) log(1−y(i)s ) (1)

where α is a tunable parameter. We introduced this
parameter in order to account for the imbalance of ze-
ros and ones in the ground truth. When training with
stochastic batch gradient descent, the loss function is
summed over all s = 1, . . . , Ns and then the mean is
computed over all indices i in the batch.

3.4 Output

The predictions of the radar network result in a vector
consisting of values in [0, 1] that estimate the probabil-
ity of occupancy. Neighboring slices whose predicted
probabilities are above a certain threshold Tg are recog-
nized as one coherent object, also called slice bundle.
Figure 4 shows for example an image with four slice
bundles. The more a slice bundle fills in a bounding
box, the higher the 1D-IoU gets.

Figure 4: Image of a radar detection example with four
predicted slice bundles

4 Object Detection via Sensor
Fusion

After describing the object detection method using
radar sensor data in the previous section, this sec-
tion deals with the image detection method and the
fusion of both methods. Various object detection net-
works have been developed in recent years, whereby the
YOLOv3 network has become a very good choice when
fast and accurate real-time detection is desired [12,26].
It has been observed that YOLOv3 works very well
under good weather and visibility conditions but has
problems with object recognition in bad visibility like
hazy weather [27,28] or darkness, like Xiao et al. have
investigated for object detection with RFB-Net [29].
In our experiments, we focus on object detection by
camera and radar at night. To this end, we first use
each method separately in order to connect both out-
puts with gradient boosting [30], see figure 5. Simi-
larly to [13] we derive metrics from each CNN output
and pass them through a gradient boosting classifier
to increase the number of detected vehicles. The data
and metrics used for the classifier are explained in sec-
tion 5. The YOLOv3 threshold Tf for vehicle detection
is set to a low value such that we get a higher num-
ber of bounding box predictions. From the many pre-
dicted bounding boxes, gradient boosting select those
boxes that are likely to contain an object according to
the output of both networks. On the one hand, the
radar sensor should detect vehicles not recognized by
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CNN-Input CNN-Output Prediction by YOLOv3

Prediction by fusion

Figure 5: Illustration of our YOdar method. In the top branch, the YOLOv3 produces many candidate bounding
boxes, but after score thresholding and non maximum suppression, only one of both cars is detected. By lowering
the object detection threshold and fusing the obtained boxes with the radar prediction, both cars are detected
by YOdar as shown in the bottom right panel.

the YOLOv3 network. On the other hand, gradient
boosting should support the decision making process
by additional information in case the YOLOv3 network
is uncertain.

5 Fusion Metrics and Methods

The fusion method that we introduce in this section is
of generic nature. Therefore, we denote by f the an
arbitrary camera network and by g a 1D segmentation
radar network. Given an input scene (x, r), we obtain
two network outputs, one for the image input x, one
for the radar input r. Each prediction obtained by f
consists of a set B = {b1, . . . , bk} containing k boxes
where k depends on x. Each bi is a tuple that contains
an objectness score value zi, a probability f(v|x, bi)
that the box bi contains a vehicle v, a center point
with its x-coordinate cxi ∈ R and y-coordinate cyi ∈ R
as well as width wi ∈ R and height hi ∈ R of the box,
i.e.,

bi = (zi, f(v|x, bi), cxi , cyi , wi, hi) . (2)

For the radar network g we obtain a 1D output of
probabilities, gs(v|r) for each of the slices s = 1, . . . , n,
that this slice s belongs to a vehicle v, recall figure 2.
As depicted in figure 1 we identify slices s and bound-
ing boxes bi. In order to aggregate slices s from the
radar network over bounding boxes bi obtained by the
camera network, let Si denote the set of all slices s that

intersect with the box bi. We denote by

µi =
1

|Si|
∑

s∈Si

gs(v|r) (3)

the average probability of observing a vehicle in the
box bi according to the radar network’s probabilities.
The standard deviation corresponding to equation (3)
is termed σi. As a set of metrics, by which we compute
a fused prediction, we consider

Mi(x, r) = (bi, Ai, µi, σi) (4)

where Ai = wi · hi denotes the size of the box bi. In
summary, we use these nine metricsMi(x) for all scenes
x and boxes bi that are visible with respect to the front
view camera. To perform the fusion of the camera
based network prediction and the radar based network
prediction we proceed in two steps. First we compute
the ground truth which states for each box predicted
by the camera network whether it is a true positive
(TP) or a false positive (FP). Afterwards we train a
model to discriminate by means of Mi whether bi is a
TP or an FP.

More precisely, for the sake of computing ground
truth, we define TP and FP in the given context as
follows: For a predicted box bi and a ground truth
box a, which has the biggest intersection |a ∩ bi| of all
ground truth boxes of the same class, the intersection
over union is defined as follows:

IoU (bi) = max
a

|a ∩ bi|
|a ∪ bi|

. (5)
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Oftentimes we omit the argument bi if it is clear from
the context. Given a chosen threshold T ∈ [0, 1) we
define that bi is a TP if IoU (bi) > T and an FP if
IoU (bi) ≤ T . For the sake of completeness, we define
that a false negative is a ground truth box a that fulfills

maxbi
|a∩bi|
|a∪bi| ≤ T . Note that in the latter definition, the

ground truth element is fixed while the left hand side of
this expression is maximized over all predicted boxes.

After computing the ground truths, i.e., whether a
box bi predicted by the camera network yields a TP
or an FP, we train a model. The gathered metrics Mi

yield a structured dataset where the columns are given
by the different metrics and the rows are given by all
predicted boxes bi for each input scene x. By means of
this dataset and the corresponding TP/FP annotation,
we train a classifier to predict whether a box predicted
by the camera network is a TP or an FP.

The IoU can be calculated in different dimensions
D = 1, 2. In this work the 1D-IoU is used for the
radar network. As soon as a low threshold Tg has been
reached, a predicted object is considered as TP, other-
wise as FP. The 2D-IoU is used for the YOLOv3 net-
work, analogously we speek of TP and FP according
to a threshold Tf . An illustration is given in figure 6.

The mean average precision (mAP ) is a popular
metric used to measure the performance of models.
The mAP is calculated by taking the average preci-
sion (area under precision as a function of recall, a.k.a.
precision recall curve) over one class.

Figure 6: IoU calculation for 1- and 2-D bounding
boxes

6 Numerical Experiments

As explained in detail in the previous section, we use
a custom FCN-8-like network for processing the radar
data from the nuScenes dataset [8]. It contains ur-
ban driving situations in Boston and Singapore. The
dataset has a high variability of scenes, i.e., different
locations, weather conditions, daytime, recorded with
left- or right-hand traffic. In total, the dataset contains
1, 000 scenes, each of 20 seconds duration and each
frame is fully annotated with 3D bounding boxes. The
vehicle used, a Renault Zoe, was set up with 6 cameras
at 12Hz capture frequency, 5 long-range radar sensors
(FMCW) with 13Hz capture frequency, 1 spinning li-
dar with 20Hz capture frequency, 1 global positioning
system module (GPS) and 1 inertial measurement unit

(IMU). Each scene is divided into several time frames
for which each sensor provides a suitable signal.

splitting
number of images/frames night images/frames [%]
YOLOv3 Radar YOLOv3 Radar

train 10,000 29,853 7.08 9.04
val 3,289 3,289 8.57 8.57
test 1,006 1,006 100 100

Table 2: Data used for training, validation and testing.

For our experiments, the YOLOv3 network was pre-
trained with day images from the COCO dataset [31]
and afterwards with 249 randomly selected scenes from
the nuScenes dataset containing 10, 000 images with
different weather conditions and times of day. Fur-
thermore we have trained a CNN with radar data from
the nuScenes dataset to detect vehicles. 743 of the
scenes (29, 853 frames) were used as training data, 82
scenes (3, 289 frames) as validation data and 25 scenes
(1, 006 frames) as test data, see table 2. For the test
set, we consider exclusively all frames recorded at night
that are not part of the training data in order to cre-
ate a perception-wise challenging test situation. For
the training and validation sets we used a natural split
of day and night scenes pre-defined by the frequencies
in the nuScenes dataset. Due to the resolution of the
radar data, we focus on the category vehicle in our eval-
uation. This includes the semantic categories car, bus,
truck, bicycle, motorcycle and construction vehicle.

6.1 Training

As input, the radar network obtains a tensor with the
dimensions 160 × 3 × 4 that contains for each of the
160 considered slices the current frame (i.e., the cur-
rent time step) and two previous frames. Each frame
contains four features, i.e., x-, and y-coordinates, lat-
eral and longitudinal velocity. From the radar data we
removed all ground truth bounding boxes that do not
contain any radar points with valid velocity vectors.

The radar network is implemented Keras [32] with
TensorFlow [33] backend. Training on one NVIDIA
Quattro GPU P6000 takes 229 seconds training time.
The network structure is shown in figure 3 and the
training parameters are shown in table 3. We have
trained the neural network three times with three dif-
ferent learning rates i.e., the first 20 epochs with a
learning rate of 10−3, 10 epochs with 104 and 10 epochs
with 105. The networks output vector has the same di-
mension (160× 1) like the ground truth vector, where
each entry contains a probability value, whether there
is a vehicle in the respective area or not. If the proba-
bility value of a single slice is equal or higher than the
threshold Tg = 0.5, then the network predicts a vehi-
cle. The higher the probability value, the brighter the
slice is displayed in figure 1.

The YOLOv3 network was trained with 10,000 im-
ages consisting of different scenes. Therefore we con-
verted the 3D bounding boxes in the nuScenes dataset
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Figure 7: Vehicles recognized at night with consideration of the respective distance from the ego car. An object
is considered as detected when it has an IoU ≥ 0.5 with the ground truth. These are average values from three
test runs.

Parameter Radar YOLOv3
Batchsize 128 6

Learning rate 10−3 10−4 10−5 10−4 - 10−6

Epochs 20 10 10 100
Weight decay 3 · 10−4 variable
Loss function modified binary-crossentropy binary-crossentropy

Optimizer Adam Adam

Table 3: Training Parameters.

into 2D bounding ones. To this end, we chose the
smallest 2D bounding box that contains the front and
rear surfaces of the 3D bounding box in the given ego
car view. YOLOv3 is implemented in the Python-
Framework Tensor-Flow [33]. Training with the same
GPU as used for the ustom radar network takes 50,32
hours training time. The training parameters are
stated in table 3.

6.2 Evaluation

All results in this section are averaged over 3 exper-
iments to obtain a better statistical validity. Fig-
ure 7 shows absolute numbers of recognized objects
(IoU ≥ 0.5 with the ground truth) at night for each of
the networks (Radar and YOLOv3) standalone as well
as for our uncertainty-based fusion approach (YOdar).
The numbers are broken down corresponding to dis-
tance intervals along the horizontal axis. The lavender
bar (in the background) displays the numbers of vehi-
cles in the ground truth for the given distance inter-
val. The blue bar states the numbers of objects recog-
nized by the radar network. The performance of the
radar network is low, only a small percentage of objects
are found. After 20 meters, the performance decreases
with growing distance. The poor recognition of ob-
jects from radar can be explained by the small number
of points provided for each frame. In addition, rela-
tive velocities are used for training, which means that
mainly moving objects can be recognized and station-
ary or parked vehicles remain undetected. The orange
bar shows a significant increase of objects recognized by
the YOLOv3 network compared to the radar network.
Although mainly closer objects are recognized, there

remain difficulties in object recognition with more dis-
tant objects. The green bar shows the objects recog-
nized by YOdar. Compared to the YOLOv3 network,
more vehicles are recognized for each of the given dis-
tances. In total, compared to the YOLOv3 network,
the sensor fusion approach recognizes 313 vehicles more
(which amounts to an increase of 9.18 percent points).

So far, we have seen that we recognize more objects
with the YOdar approach than with YOLOv3 or our
radar network separately. However, the increased sen-
sitivity also yields some additional FPs. In order to
compare the number of FPs for YOLOv3 and YOdar,
we adjust the sensitivity of the YOLOv3 network by
lowering the threshold Tf such that the TP level for
YOLOv3 is roughly equal to the TP level of YOdar.
The resulting number of FPs is given in table 4. In-
deed, YOdar generates 575 less FP predictions than
YOLOv3 for a common TP level, on which we let YO-
dar operate in our tests.

Network unchanged output TP level adjustment
TP FP TP FP

YOLOv3 1,154 98 1,478 1,024
YOdar 1,467 449 1,467 449

Table 4: Comparison of the number of false positives
for YOLOv3 and YOdar at a common level of false
positives.

Digging deeper into the discussed results, we now
break down the distance intervals along the distance
radii. Figure 8 states the absolute numbers of objects
broken down by distance (vertical axis) and the pixel
intervals of width 100 of the input image with a total
width of 1600 pixels (horizontal axis). More precisely,
each interval denoted by i on the horizontal axis repre-
sents the pixels (row , column) with column ∈ [i−99, i].
A ground truth object is a member of such an interval,
if the center of the box is contained in the respective in-
terval and has the respective distance from the ego car.
Thus, this can be viewed as a spatial distribution of the
ground truth where the center of the bottom row is the
area closest to the ego car. The majority of the objects
is located in the intervals given by i = 500, . . . , 1,200.
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Figure 9 shows the relative amount of objects recog-
nized by the YOLOv3 network. It shows that mainly
objects closer to the ego car and straight ahead are rec-
ognized, while objects farther away or located on the
very left or very right end of the image remain often
unrecognized. Figure 10 states in absolute numbers
how many additional objects are recognized in each
particular area when using YOdar instead of YOLO.
The increase is clear and also mostly in the relevant
areas close to the ego car and straight ahead. This
is in line with the idea of focusing with the radar on
objects in motion (by consindering objects that carry
velocities). These results show that an uncertainty-
based fusion approach like YOdar is indeed able to
increase the performance significantly. This finding is
also confirmed by the mAP and accuracy values stated
in table 5. While YOLO3v achieves 31.36% mAP , Yo-
dar achieves 39.40% which is also close to state of the
art deep learning based fusion results for the nuScenes
dataset with the natural split of day and night scenes
as reported in [10].

Figure 8: Ground truth heat map displaying the spatial
distribution of the test data, broken down by distance
(vertical axis) and the pixel intervals of width 100 of
the front view input image with a total width of 1600
pixels (horizontal axis). More precisely, each intervals
denoted by i on the horizontal axis represents the pixels
(row , column) with column ∈ [i− 99, i].

Radar YOLOv3 YOdar
Accuracy [%] 14.41 33.90 43.08

mAP [%] 7.93 31.36 39.40

Table 5: Accuracies and mAP scores of all three net-
works.

7 Conclusion and Outlook

In this paper we have introduced the method YO-
dar which detects vehicles with camera and radar sen-
sors. With this uncertainty-based sensor fusion ap-
proach the camera and radar data are first processed
individually. Each branch detects objects, the camera

Figure 9: Relative amount of objects recognized by
the YOLOv3 network evaluated on the test data. The
underlying geometry is the same as in figure 8.

Figure 10: Number of objects recognized by YOdar
minus the number of objects recognized YOLOv3. The
underlying geometry is the same as in figure 8.

branch uses a YOLOv3 network trained with day and
night scenes and the radar branch uses a custom-based
radar network. The outputs of every branch are ag-
gregated and then passed through a post processing
classifier that again learns the same vehicle detection
task. Compared to the YOLOv3 network, the YOdar
fusion method detects at night a significant additional
amount of vehicles in total. While YOLO3v achieves
31.36% mAP , YOdar achieves 39.40% mAP which is
also close to state of the art deep learning based fusion
results for the nuScenes dataset with the natural split
of day and night scenes. In future work, additional
sensors will be added for training and evaluation, since
this approach uses only the front camera and the front
radar sensor. Furthermore, we plan to optimize the
radar network such that more objects can be detected
by YOdar. Moreover, we plan to extend this approach
also the detection of pedestrians as more dense radar
data becomes available.
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