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Abstract

We study deep learning-based schemes for solving high dimensional nonlinear backward stochas-
tic differential equations (BSDEs). First we show how to improve the performances of the pro-
posed scheme in [W. E and J. Han and A. Jentzen, Commun. Math. Stat., 5 (2017), pp.349-380]
regarding computational time by using a single neural network architecture instead of the stacked
deep neural networks. Furthermore, those schemes can be stuck in poor local minima or diverges,
especially for a complex solution structure and longer terminal time. To solve this problem, we
investigate to reformulate the problem by including local losses and exploit the Long Short
Term Memory (LSTM) networks which are a type of recurrent neural networks (RNN). Finally,
in order to study numerical convergence and thus illustrate the improved performances with the
proposed methods, we provide numerical results for several 100-dimensional nonlinear BSDEs
including nonlinear pricing problems in finance.

Keywords high dimension, backward stochastic differential equations, deep learning, deep
neural network, recurrent neural network, nonlinear option pricing

1 Introduction

In this work we consider the high dimensional forward backward stochastic differential equation
(FBSDE) of the form

dXt = µ (t,Xt) dt+ σ (t,Xt) dWt, X0 = x0,
−dYt = f (t,Xt, Yt, Zt) dt− Zt dWt,
YT = ξ = g (XT ) ,

(1)

where Xt, µ ∈ Rn, σ is a n×d matrix, Wt =
(
W 1
t , · · · ,W d

t

)>
is a d-dimensional Brownian motion,

f (t,Xt, Yt, Zt) : [0, T ] × Rn × Rm × Rm×d → Rm is the driver function and ξ is the terminal
condition which depends on the final value of the forward stochastic differential equation (SDE),
Xt. For µ = 0 and σ = 1, namely Xt = Wt, one obtains a backward stochastic differential equation
(BSDE) of the form {

−dYt = f (t, Yt, Zt) dt− Zt dWt,
YT = ξ = g (WT ) ,

where Yt ∈ Rm and f (t, Yt, Zt) : [0, T ] × Rm × Rm×d → Rm. In the sequel of this work, we
investigate to solve (1) in the high dimensional case using the deep learning-based methods. The
existence and uniqueness of the solution of (1) are proven in [Pardoux and Peng, 1990].
Developing efficient numerical algorithms for high dimensional nonlinear BSDEs has always been
a big challenging task, e.g., as the dimensionality grows, the complexity of the algorithms grows
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exponentially. Solving high dimensional nonlinear BSDEs has a lot of practical importance in
the field of physic and finance. For example, El Karoui et al. showed that the solution of a linear
BSDE is in fact the pricing and hedging strategy of an option derivative in [Karoui et al., 1997]
which is the first claim of the application of BSDEs in finance. Due to the fact that many
market models can be more conveniently described by the BSDEs, such as local volatility mod-
els [Labart and Lelong, 2011], stochastic volatility models [Fahim et al., 2011], jump-diffusion
models [Eyraud-Loisel, 2005], defaultable options [Ankirchner et al., 2010] etc., efficient and ac-
curate numerical schemes for solving high dimensional nonlinear BSDEs become thus desired.
In the recent years, many numerical methods have been proposed for solv-
ing BSDEs, e.g., [Bouchard and Touzi, 2004, Zhang, 2004, Gobet et al., 2005,
Lemor et al., 2006, Zhao et al., 2006, Bender and Zhang, 2008, Ma et al., 2008,
Zhao et al., 2010, Gobet and Labart, 2010, Crisan and Manolarakis, , Zhao et al., 2014,
Ruijter and Oosterlee, 2015, Ruijter and Oosterlee, 2016, Fu et al., 2017], which are not suit-
able for high-dimensional problems. Therefore, some articles appeared which try to apply those
methods for higher dimensional problem by using sparse-grids or parallel computations on
graphics processing unit (GPU). For example, Zhang et al. proposed a sparse-grid method for
solving BSDEs with the satisfactory results up to 8 dimensions, see [Zhang, 2013]. A novel
algorithm is designed based on stratied least-squares Monte-Carlo in [Gobet et al., 2016] which
shows the results up to 19 dimensions with GPU computing. In [Kapllani and Teng, 2019],
the authors parallelized the multi-step scheme proposed in [Teng et al., 2020] on GPU
and presented results in very low computation cost. As we can see that only the moderate
dimensional BSDEs can be solved with the aid of sparse-grids or GPU parallel computing.
Recently, three new schemes have been proposed which can solve numerically 100-dimensional
BSDEs for reasonable, even satisfactory computational time: the deep-learning based algorithm
in [E et al., 2017] (we refer as SDNN-approach in the rest of the paper, where SDNN stands
for Stacked Deep Neural Networks) in which the gradient of the solution is approximated by
fully-connected neural networks; the multilevel Monte Carlo method based on Picard iteration
[E et al., 2019]; the regression tree-based method in [Teng, 2019] where the resulting conditional
expectations (from the backward discretization) is represented by the trees. It has been pointed
out in [Huré et al., 2020] that the deep learning based algorithms proposed in [E et al., 2017]
may be stuck in poor local minima or diverge during the global optimization, and they in-
vestigated to solve this problem by defining a local loss function, which is optimized at each
time step, namely local optimization. In this way the poor local minima or divergence can be
overcomed, however, it is not the best choice for very high dimensional problems due to the
increased computational expense, the satisfactory results are shown only up to 50 dimensions
in [Huré et al., 2020]. Furthermore, in our investigation we find that the approximations of Z
[E et al., 2017] are not really stable. The reason can be that different deep networks are taken
at each time layers.
In this work, we propose novel ways to solve both the problems mentioned above, respectively.
More precisely, instead of stacked neural networks we employ one deep neural network for a
better numerical convergence and substantial reduction of computational time. In the sequel,
we refer this scheme as DNN-approach. For the poor local minima or divergence problem our
suggestion is to exploit the Long Short Term Memory (LSTM) networks which are a type of
Recurrent Neural Networks (RNN). The Y process is approximated at each time step only
with one LSTM network, and the gradient of the solution Z is computed with the automatic
differentiation (nonlinear Feynman-Kac formular). In order to achieve good approximation by
using only one network at all the time layers we need to use a novel loss function. This scheme
will be referred as LSTM-approach in the rest of this paper.
The outline of the paper is organized as follows. In the next Section, we introduce some prelim-
inaries including neural networks. Section 3 is devoted to the forward time discretization of the
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FBSDE. The DNN- and LSTM-approach are presented in Section 4 and Section 5, respectively.
In Section 6, we illustrate our findings with several numerical tests. Finally, Section 7 concludes
this work.

2 Preliminaries

2.1 The Feynman-Kac formula

Let (Ω,F ,P, {Ft}0≤t≤T ) be a complete, filtered probability space. In this space a standard d-
dimensional Brownian motion Wt is defined, such that the filtration {Ft}0≤t≤T is the natural
filtration of Wt. We define | · | as the standard Euclidean norm in the Euclidean space Rm or
Rm×d and L2 = L2

F
(
0, T ;Rd

)
the set of all Ft-adapted and square integrable processes valued

in Rd. A pair of processes (Yt, Zt) : [0, T ]× Ω → Rm × Rm×d is the solution of FBSDE (1) if it
is Ft-adapted, square integrable, and satisfies (1) in the sense of

Yt = ξ +

∫ T

t
f (s,Xs, Ys, Zs) ds−

∫ T

t
Zs dWs, t ∈ [0, T ) ,

where f (t,Xt, Yt, Zt) : [0, T ] × Rn × Rm × Rm×d → Rm is Ft-adapted, the third term on the
right-hand side is an Itô-type integral and ξ = g (XT ) : Rn → Rm. This solution exist uniquely
under Lipschitz conditions [Pardoux and Peng, 1990].
Let us consider that the terminal value YT is of the form g(Xt,x

T ), where Xt,x
T denotes the solution

of forward SDE in (1) starting from x at time t. Then, the solution (Y t,x
t , Zt,xt ) of (1) can be

presented as [Karoui et al., 1997]

Y t,x
t = u (t, x) , Zt,xt = (∇u (t, x))σ (t, x) ∀t ∈ [0, T ) , (2)

where ∇u denotes the derivative of u (t, x) with respect to the spatial variable x and u (t, x) is
the solution of the following semi-linear parabolic PDE:

∂u

∂t
+

n∑
i=1

µi(t, x)
∂u

∂xi
+

1

2

n∑
i,j=1

(σσ>)i,j(t, x)
∂2u

∂xixj
+ f (t, x, u, (∇u)σ) = 0,

with the terminal condition u (T, x) = g(x). This is the Feynman-Kac formula, which plays an
important role to formulate the FBSDE as a learning problem.

2.2 Neural Networks as function approximators

We give a brief introduction to neural networks as function approximators. Multilayer or deep
neural networks are designed to approximate a large class of functions. They rely on the com-
position of simple functions, and appear to provide an efficient way to handle high-dimensional
approximation problems. Here, we consider the feedforward neural networks as basic type of
deep neural networks for the introduction.
Let d0 ∈ N be the input dimension of the problem and d1 ∈ N the output one. Let L ∈ N and
L+ 2 be the global number of layers with kl ∈ N, l = 0, 1, · · · , L+ 1 the number of neurons on
each layer: the first layer is the input layer with k0 = d0, the last layer is the output layer with
kL+1 = d1, and the L layers between are called hidden layers, where we choose for simplicity
the same dimension kl = k ∈ N, l = 1, 2, · · · , L− 1. A feedforward neural network is a function
ψ%d0,d1,L(x; θ) : Rd0 → Rd1 as the composition

x ∈ Rd0 7−→ T0(x) ◦ % ◦ T1 ◦ % ◦ · · · ◦ % ◦ TL ∈ Rd1 . (3)
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Here, θ ∈ Rρ is the number of network parameters, x ∈ Rd0 is the input vector and Tl, l =
0, 1, · · · , L are affine transformations: T0 : Rd0 → Rk, Tl, l = 1, · · · , L − 1 : Rk → Rk and
TL : Rk → Rd1 , represented by

Tl(x) = Alx+ bl,

where Al ∈ Rkl×kl+1 is the weight matrix and bl ∈ Rkl is the bias vector, % : R → R is
a nonlinear function (e.g. tanh(x), sin(x),max{0, x} etc.) called the activation function, and
applied componentwise on the outputs of Tl, i.e., %(x1, x2, · · · , xn) = (%(x1), %(x2), · · · , %(xn)).
All the weight matrices and bias vectors are the parameters of the neural network, and can be
identified as mentioned above with θ ∈ Rρ, where ρ =

∑L
l=0 kl(kl + kl+1) = d0(1 + k) + k(1 +

k)(L − 1) + k(1 + d1) is the total number of parameters for the neural network defined in (3),
with fixed d0, d1, L and allow k to increase. We denote by Θk = Rρ the set of possible parameters
and Ψ%

d0,d1,L
(x; Θk) the set of all neural networks ψ%d0,d1,L(x; θ) and define

Ψ%
d0,d1,L

=
⋃
k∈N

Ψ%
d0,d1,L

(x; Θn)

as the class of all neural networks for the fixed structure given from d0, d1, L and %.
In Sec. 2.3, we present the LSTMs, which will be used for the LSTM-approach.

2.3 Learning long term dependencies with LSTM

LSTM networks are type of RNNs that operates in time. At each time step, it accepts an input
vector, updates its (possibly high-dimensional) hidden state via non-linear activation functions,
and uses it to make a prediction of its output. RNNs form a rich model class because their hidden
state can store information as high-dimensional distributed representations and their nonlinear
dynamics can implement rich and powerful computations, allowing the RNN to perform modeling
and prediction tasks for sequences with highly complex structure. A formal definition of the
standard RNN [Rumelhart et al., 1986] is as follows: given a sequence of inputs x1, x2, · · · , xN ,
each in Rd0 , the network computes a sequence of hidden states h1, h2, · · · , hN , each in Rk, and
a sequence of predictions ŷ1, ŷ2, · · · , ŷN , each in Rd1 , by the equations

hi = %(Ahhhi−1 +Ahxxi + bh),

yi = Ayhi + by,

where (Ahh, Ahx, bh, Ay, by) ∈ Rρ are trainable parameters and %(x) = tanh(x).
However, the traditional RNNs suffer from the vanishing or exploding gradients problem, when
the time step N increases. One way to deal with is to use the LSTM networks. An LSTM layer
consists of a set of recurrently connected blocks, known as memory blocks. These blocks can be
thought of a differentiable version of the memory chips in a digital computer. Each one contains
one or more recurrently connected memory cells and three multiplicative units, the input, output
and forget gates that provide continuous analogues of write, read and reset operations for the
cells. More precisely, the input to the cells is multiplied by the activation of the input gate, the
output to the network is multiplied by that of the output gate, and the previous cell values are
multiplied by the forget gate. The network can only interact with the cells via the gates. The

4
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LSTM algorithm is presented by the following equations

fi = %(Afhhi−1 +Afxxi + bf ),

ii = %(Aihhi−1 +Aixxi + bi),

oi = %(Aohhi−1 +Aoxxi + bo),

c̃i = %(Achhi−1 +Acxxi + bc),

ci = fi � ci−1 + ii � c̃i,
hi = oi � %(ci),

yi = Ayhi + by,

(4)

where (Afh, Afx, bf , Aih, Aix, bi, Aoh, Aox, bo, Ach, Acx, bc, Ay, by) ∈ Rρ are trainable parameters,
%(x) = tanh(x) and � is the element-wise product, (A � B)ij = (A)ij(B)ij for A,B ∈ Rp×q.
The traditional LSTM (RNN) architecture predicts an output ŷi at time point ti, and has a
label yi to create a local loss. In order to overcome the local minima problem in the SDNN-
approach we use a hybrid loss, i.e., local and global loss in our new formulation of the problem,
for which the LSTM architecture fits better. To represent the LSTM, we define as a function
ψ%d0,d1,L(x, h; θ) : Rd0 → Rd1 which performs the calculations as in (4) at time ti, and Ψ%

d0,d1,L
as

a class of LSTMs for the fixed structure given by d0, d1, L and %.

3 Forward time discretization of FBSDEs

In this section we consider the forward time discretization of FBSDE, which is the key for
presenting the FBSDE as a learning problem. For simplicity, we discuss the discretization with
one-dimensional processes, namely m = n = d = 1. The extension to higher dimensions is
possible and straightforward. The integral form of the forward SDE in (1) reads

Xt = X0 +

∫ t

0
µ (s,Xs) ds+

∫ t

0
σ (s,Xs) dWs, t ∈ [0, T ] . (5)

The drift µ(·) and diffusion σ(·) are assumed to be sufficiently smooth.
Lets consider a time discretization for the time interval [0, T ]

∆ = {ti|ti ∈ [0, T ], i = 0, 1, · · · , N, ti < ti+1,∆t = ti+1 − ti, t0 = 0, tN = T}.

For notational convenience we write Xi = Xti , Wi = Wti , ∆Wi = Wi+1 −Wi and the approxi-
mated process as X∆

i = X∆
ti . We start with X∆

0 = X0 and one of the following forward schemes
is used to determine the other values up to time tN , namely X∆

i+1, for i = 0, 1, · · · , N − 1. The
convergence of the schemes is analyzed as the strong convergence rate γs and the weak one γw.
Each one, for sufficiently small ∆t, satisfies the following equations [Kloeden and Platen, 1992]
(Chapter 9.6 and 9.7)

E
[
XT −X∆

T

]
≤ C (∆t)γs , E

[
p(XT )− p(X∆

T )
]
≤ C (∆t)γw ,

with C > 0 a constant, which does not depend on ∆t, and p(·) any 2(γw + 1) times continuously
differentiable function of polynomial growth. The well-known Euler scheme reads

X∆
i+1 = X∆

i + µ
(
ti, X

∆
i

)
∆t+ σ

(
ti, X

∆
i

)
∆Wi,

where ∆Wi ∼ N (0, ∆t). The scheme has γs = 1
2 and γw = 1. The same forward discretizations

can be applied for the BSDE. For the time interval [ti, ti+1], the integral form of the BSDE reads

Yti = Yti+1 +

∫ ti+1

ti

f (s,Xs, Ys, Zs) ds−
∫ ti+1

ti

Zs dWs,

5
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and the forward integral form is given as

Yti+1 = Yti −
∫ ti+1

ti

f (s,Xs, Ys, Zs) ds+

∫ ti+1

ti

Zs dWs.

Applying the Euler scheme for the latter equation one obtains

Y ∆
i+1 = Y ∆

i − f
(
ti, X

∆
i , Y

∆
i , Z

∆
i

)
∆t+ Z∆

i ∆Wi,

:= F (ti, X
∆
i , Y

∆
i , Z

∆
i ,∆t,∆Wi).

(6)

4 The SDNN-approach and DNN-approach

The numerical approximation of Y ∆
i , i = 0, 1, · · · , N in the SDNN-approach is designed as

follows: starting from an estimation Y0(θ) of Y ∆
0 and Z0(θ) of Z∆

0 , and then using at each time
step ti, i = 1, 2, · · · , N − 1 a different feedforward multilayer neural network ψ%i,d0,d1,L(x; θ) :

Rd0 → Rd1 to approximate Z∆
i as Zi(θ), where the input x of the network is the Markovian

process X∆
i and d0 = d, d1 = 1 × d. The approximation Y ∆

i , i = 1, 2, · · · , N , namely Yi(θ),
is calculated using the Euler discretization (6). Note that this algorithm forms a global deep
neural network composed of neural networks at each time step using as input data the paths
of (X∆

i )i=0,1,··· ,N and (Wi)i=0,1,··· ,N , and gives as output YN (θ). The output aims to match the
terminal condition g(X∆

T ) of the BSDE, and then optimizes over the parameters θ the expected
square loss function:

E
[
|g(X∆

T )− YN (θ)|2
]
,

which can be done by using stochastic gradient descent-type (SGD) algorithms. The algorithm
framework (without using batch normalization, mini-batches and Adam optimizer) for m = 1
and n = d ∈ N is formulated in Framework 4.1, we refer [E et al., 2017] for a more general
framework.

Framework 4.1. Let T, γ ∈ (0,∞), d, ρ,N ∈ N, let (Ω,F ,P, {Ft}0≤t≤T ) be a complete, filtered
probability space, f (t,Xt, Yt, Zt) : [0, T ] × Rd × R × R1×d → R and g(XT ) : Rd → R are Ft-
adapted, let Wi : [0, T ] × Ω → Rd, i ∈ N0, be independent d-dimensional standard Brownian
motions on (Ω,F ,P, {Ft}0≤t≤T ), let t0, t1, · · · , tN ∈ [0, T ] be real numbers with

0 = t0 < t1 < · · · < tN = T,

for every θ ∈ Rρ let Y0(θ) ∈ R and Z0(θ) ∈ R1×d, for every θ ∈ Rρ, i ∈ {1, 2, · · · , N − 1},
let X∆

i : [0, T ] × Ω → Rd be a Markovian process, let d0 = d, d1 = 1 × d and ψ%i,d0,d1,L(x; θ) :

Rd0 → Rd1 a function (Neural Network) and the output given as Zi(θ), for every θ ∈ Rρ, let
Y(θ) : 0, · · · , N ×Ω→ R be the stochastic process which satisfies for all i ∈ {0, 1, 2, · · · , N − 1}
the initial value Ym0 (θ) and

Ymi+1(θ) = F
(
ti, X

∆,m
i ,Ymi (θ),Zmi (θ),∆t,Wm

i

)
,

for every m ∈ N0 and let φm : Rρ → R be the function which satisfies for all θ ∈ Rρ, ω ∈ Ω that

φm(θ, ω) = |g(X∆,m
N (ω))− YmN (θ, ω)|2,

and let Φm : Rρ → Rρ be a function which satisfies for all ω ∈ Ω, θ ∈ {v ∈ Rρ : (Rρ 3 w →
φms (w,ω) ∈ R is differentiable at v ∈ Rρ)} that

Φm(θ, ω) = (∇θφm)(θ, ω),

6
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and let Θ : N0 × Ω→ Rρ be a stochastic process which satisfy for all m ∈ N that

Θm = Θm−1 − γΦm(Θm−1).

In the case of sufficiently large ρ ∈ N (dimension of network parameters), N ∈ N (number of
time layers), m ∈ N (gradient descent iteration) and sufficiently small γ ∈ (0,∞) (learning rate),
the triple (X0,Y0(θ),Z0(θ) at t0 and (X∆

i ,Yi(θ),Zi(θ))i=1,2,··· ,N−1 for times t1, · · · , tN−1 and
(X∆

N ,YN (θ)) at terminal time tN are the approximated solution of the FBSDE (1).
The SDNN-approach uses the Adam optimizer [Kingma and Ba, 2014] as a SGD optimization
method with mini-batches. In the implementations, N − 1 fully-connected feedforward neural
networks are employed to approximate Zi(θ), i = 1, 2, · · · , N − 1, θ ∈ Rρ. Each of the neural
networks consists of 4 global layers (the input layer (d-dimensional), 2 hidden layers (d+10-
dimensional) and the output layer (d-dimensional). The authors also adopt batch normalization
(BN) [Ioffe and Szegedy, 2015] right after each matrix multiplication and before activation. The
rectifier function R 3 x → max{0, x} ∈ [0,∞) is used as the activation function for the hidden
variables. All the weights are initialized using a normal or a uniform distribution without any
pre-training. The choice of the dimension of the parameters is given in Remark 4.1.

Remark 4.1. Let ρ ∈ N be the dimension of the parameters in the SDNN-approach.

1. 1 + d components of θ ∈ Rρ are employed for approximating Y ∆
0 ∈ R and Z∆

0 ∈ R1×d

respectively.

2. In each of N − 1 neural networks, d(d + 10) components of θ ∈ Rρ are used to uniquely
describe the linear transformation form d-dimensional input layer to (d+10)-dimensional
first hidden layer.

3. In each of N − 1 neural networks, (d + 10)2 components of θ ∈ Rρ are used to uniquely
describe the linear transformation form (d+10)-dimensional first hidden layer to (d+10)-
dimensional second hidden layer.

4. In each of N − 1 neural networks, d(d + 10) components of θ ∈ Rρ are used to uniquely
describe the linear transformation form (d+10)-dimensional second hidden layer to d-
dimensional output layer.

5. After each of above the linear transformation in items 2.-4., a componentwise affine linear
transformation within the batch normalization procedure is applied, i.e., in each of the em-
ployed N−1 neural networks, 2(d+10) components of θ ∈ Rρ for the componentwise affine
linear transformation between the first linear transformation and the first application of the
activation function, and again 2(d + 10) components of θ ∈ Rρ between the second linear
transformation and the second application of the activation function, and 2d components
of θ ∈ Rρ after the third linear transformation.

Therefore, ρ is given as

ρ = (1 + d)︸ ︷︷ ︸
item 1.

+ (N − 1)(d(d+ 10) + (d+ 10)2 + d(d+ 10))︸ ︷︷ ︸
items 2.-4.

+ (N − 1)(2d(d+ 10) + 2d(d+ 10) + 2d)︸ ︷︷ ︸
item 5.

= d+ 1 + (N − 1)(2d(d+ 10) + (d+ 10)2 + 4(d+ 10) + 2d).

(7)

7
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Figure 1: Graph of the SDNN-approach.

For a better view of the SDNN-approach, we give a graphical in Figure 1. The framework for the
DNN-approach is similar to Framework 4.1. Instead of deep networks at each time layer for the
approximation for approximating Z, we consider only one network. The numerical approximation
in our DNN-approach for Y ∆

i , i = 0, 1, · · · , N is designed as follows: starting from an estimation
Y0(θ) of Y ∆

0 and Z0(θ) of Z∆
0 , and then using at each time step ti, i = 1, 2, · · · , N − 1 the same

neural network ψ%d0,d1,L(x; θ) : Rd0 → Rd1 to approximate Z∆
i as Zi(θ), where the input x of

the network is now the time discretization ti and the Markovian process X∆
i (since from the

Feynman-Kac formula Zt,xt = (∇u(t, x))σ(t, x)) and d0 = d+ 1, d1 = 1× d. The approximation
Y ∆
i , i = 1, 2, · · · , N , namely Yi(θ), is calculated using the Euler discretization (6). The output

aims again to match the terminal condition g(X∆
T ) of the BSDE, and then optimizes over the

parameters θ the expected square loss function:

E
[
|g(X∆

T )− YN (θ)|2
]
.

In the DNN-approach we also use the Adam optimizer with mini-batches. We consider 6 global
layers (the input layer (d+1-dimensional), 4 hidden layers (d+10-dimensional) and the output
layer (d-dimensional). Compared to the SDNN-approach we take 2 hidden layers more for a
better accuracy, since only one (same) network at each time step is used. Note that the ap-
proximations can not be further improved by taking > 4 hidden layers. The rectifier function
R 3 x → max(0, x) ∈ [0,∞) is used as the activation function for the hidden variables. All the
weights of the network are initialized using [Glorot and Bengio, 2010] and the uniform distri-
bution for the initialization of the solution of the BSDE. The choice of the dimension of the
parameters is given in Remark 4.2.

Remark 4.2. Let ρ ∈ N be the dimension of the parameters of the DNN-approach.

1. 1 + d components of θ ∈ Rρ are employed for approximating Y ∆
0 ∈ R and Z∆

0 ∈ R1×d

respectively.

2. (d + 1)(d + 10) + (d + 10) components of θ ∈ Rρ are used to uniquely describe the lin-
ear transformation form d+1-dimensional input layer to (d+10)-dimensional first hidden
layer; (d + 10)2 + (d + 10) components of θ ∈ Rρ are used to uniquely describe the linear

8
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transformation form (d+10)-dimensional first hidden layer to (d+10)-dimensional second
hidden layer; (d+10)2+(d+10) components of θ ∈ Rρ are used to uniquely describe the lin-
ear transformation form (d+10)-dimensional second hidden layer to (d+10)-dimensional
third hidden layer; (d+10)2+(d+10) components of θ ∈ Rρ are used to uniquely describe the
linear transformation form (d+10)-dimensional third hidden layer to (d+10)-dimensional
fourth hidden layer

3. d(d+ 10) +d components of θ ∈ Rρ are used to uniquely describe the linear transformation
form (d+10)-dimensional fourth hidden layer to d-dimensional output layer.

Therefore, ρ is given as

ρ = (1 + d) + (d+ 1)(d+ 10) + 4(d+ 10) + 3(d+ 10)2︸ ︷︷ ︸
items 1.-2.

+ d(d+ 10) + d︸ ︷︷ ︸
item 3.

= 2d+ 1 + (2d+ 5)(d+ 10) + 3(d+ 10)2.

Compared to (7), the complexity in the DNN-approach is substantially reduced. Having only one
network for each time step reduces the computation time, and one deep neural network offers
more stable approximation of Z process at each time step. The graph of the DNN-approach is
similar to Figure 1, with the exception of having the same network at each time step, and the
input has also the time discretization ti.

5 The LSTM-approach

The idea of the LSTM-approach is to reformulate the learning of the BSDEs to overcome the poor
local minima or divergence problem, which could occur in both the SDNN- and DNN-approaches.
The reason for the problem is that a loss function only based on terminal condition is not
sufficient for long learning process high value of N . It has been indicated by [Huré et al., 2020]
that using the LSTM networks only with a global loss function can not solve that problem. Our
idea is to include some local information in the loss function and then apply the LSTM networks.
More precisely, since we know both the terminal condition and the dynamics of the BSDE at
each time step, we create thus a hybrid loss which includes these informations. Next, we need
such a neural network that both the dynamics of the BSDE at each time step and the terminal
condition can be matched, the LSTM network can serve that purpose. Due to the included local
information, i.e., the dynamics of the BSDE at each time step, we use the Euler method. To
the best of our knowledge, the only articles considering a local loss in learning BSDE problems
are [Huré et al., 2020] and [Güler et al., 2019].
Using an LSTM, we develop the following scheme:

• At time t0, use an estimation Y0(θ) for Y ∆
0 and Z0(θ) for Z∆

0 .

• At each time ti, i = 1, 2, · · · , N : use the LSTM network ψ%d0,d1,L(x, h; θ) : Rd0 → Rd1 to

approximate Y ∆
i as Yi(θ), where the input x of the network is the Markovian process X∆

i ,
d0 = d, d1 = 1 and h is the activation at a previous time step, and

Zi(θ) = σ (xi)
∂ψ%d0,d1,L(x, h; θ)

∂x

∣∣∣
x=xi

.

Then, calculate the local loss

L1
i (θ) := |F

(
ti−1, X

∆
i−1,Yi−1(θ),Zi−1(θ),∆t,∆Wi−1

)
− Yi(θ)|2.
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• Again at time tN = T , using the terminal condition of the BSDE we have the second term
of the loss (global loss)

L2(θ) = |g(X∆
T )− YN (θ)|2.

• The final loss is given as

L(θ) = E
[ N∑
j=1

L1
j + L2

]
,

which will be minimized by optimizing the network over the parameters θ.

Note that the derivatives above are calculated using automatic differentiation in tensorflow. As
it is observed from the algorithm above, the idea of LSTM-approach is to create a network to
approximate the solution of the BSDE such that it matches the terminal condition and follows
the dynamics of the BSDE at each time step. This later part provides more information to
the network, which insures that the algorithm will not get stuck to poor local minima or will
converge. Note that the parameters are shared at each time step, this reduces the computation
time.
The algorithm framework for m = 1 and n = d ∈ N is formulated in Framework 5.1.

Framework 5.1. Let T, γ ∈ (0,∞), d, ρ,N ∈ N, let (Ω,F ,P, {Ft}0≤t≤T ) be a complete, filtered
probability space, f (t,Xt, Yt, Zt) : [0, T ] × Rd × R × R1×d → R and g(XT ) : Rd → R are Ft-
adapted, let Wi : [0, T ] × Ω → Rd, i ∈ N0, be independent d-dimensional standard Brownian
motions on (Ω,F ,P, {Ft}0≤t≤T ), let t0, t1, · · · , tN ∈ [0, T ] be real numbers with

0 = t0 < t1 < · · · < tN = T,

for every θ ∈ Rρ let Y0(θ) ∈ R and Z0(θ) ∈ R1×d, for i ∈ {0, 1, 2, · · · , N}, let X∆
i :

[0, T ] × Ω → Rd be a Markovian process, let d0 = d, d1 = 1 and ψ%d0,d1,L(x, h; θ) : Rd0 → Rd1

a function (LSTM) and the output given as Yi(θ), let ψ%x,d0,d1,L(x, h; θ) : Rd1 → Rd0 be the

derivative function of the network with respect to the input x, let σ ∈ Rd×d and Zi(θ) =

σ (xi)ψ
%
x,d0,d1,L

(x; θ)
∣∣∣
x=xi

, for every m ∈ N0, i ∈ {1, 2, · · · , N}, let φmi,1 : Rρ → R be the function

which satisfies for all θ ∈ Rρ, ω ∈ Ω that

φmi,1(θ, ω) = |F
(
ti−1, X

∆,m
i−1 (ω),Ymi−1(θ, ω),Zmi−1(θ, ω),∆t,∆Wm

i−1(ω)
)
− Yi(θ, ω)|2,

and let φm2 : Rρ → R be the function which satisfies for all θ ∈ Rρ, ω ∈ Ω that

φm2 (θ, ω) = |g(X∆
N (ω))− YN (θ, ω)|2,

and let φm : Rρ → R be the function which satisfies for all θ ∈ Rρ, ω ∈ Ω that

φm(θ, ω) =
N∑
j=1

φmj,1(θ, ω) + φm2 (θ, ω),

and let Φm : Rρ → Rρ be a function which satisfies for all ω ∈ Ω, θ ∈ {v ∈ Rρ : (Rρ 3 w →
φms (w,ω) ∈ R is differentiable at v ∈ Rρ)} that

Φm(θ, ω) = (∇θφm)(θ, ω),

and let Θ : N0 × Ω→ Rρ be a stochastic process which satisfy for all m ∈ N that

Θm = Θm−1 − γΦm(Θm−1).

10
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For sufficiently large ρ ∈ N, N ∈ N, m ∈ N and sufficiently small γ ∈ (0,∞), the triple
(X∆

i ,Yi(θ),Zi(θ))i=0,1,··· ,N for times t0, t1, · · · , tN are the approximated solution of the FBSDEs.
In the LSTM-approach, we use the Adam optimizer with mini-batches. We consider only one
network (LSTM) to approximate Yi(θ), i = 1, · · · , N, θ ∈ Rρ. It has the structure as in (4).
We use as activation function for LSTM layer R 3 x → tanh(x) ∈ [−1, 1]. The initial value of
activation h0 and cell c0 are considered as weights to be learned during the optimization process.
All the network weights are initialized following the way proposed in [Glorot and Bengio, 2010]
and the uniform distribution for the initialization of the solution of the BSDE. The choice of
the dimension of the parameters is given in Remark 5.1.

Remark 5.1. Let ρ ∈ N be the dimension of the parameters in the LSTM-approach.

1. 1 + d components of θ ∈ Rρ are employed for approximating Y ∆
0 ∈ R and Z∆

0 ∈ R1×d

respectively.

2. 2(d+ 10) components of θ ∈ Rρ are employed for initializing the activation h0 and the cell
c0.

3. 4d(d+ 10) + 4(d+ 10)2 + 4(d+ 10) components of θ ∈ Rρ are used to uniquely describe the
linear transformation form d-dimensional input layer to (d+10)-dimensional output of the
LSTM.

4. (d+ 10) + 1 components of θ ∈ Rρ are used to uniquely describe the linear transformation
form (d+10)-dimensional LSTM output layer to 1-dimensional output layer.

Therefore, ρ is given as

ρ = 1 + d+ 2(d+ 10) + 4d(d+ 10)2 + 4(d+ 10)︸ ︷︷ ︸
items 1.-3.

+ (d+ 10) + 1︸ ︷︷ ︸
item 4.

= 8d+ 72 + 4d(d+ 10)2.

Since the complexity of the algorithm for LSTM-approach does not depend on N as in the
SDNN-approach (Remarks 4.1 and 5.1), it is thus lower for a high N and higher for a low N
compared to SDNN-approach. However, it insures that the algorithm will converge for a long
learning process and very complex structures. The graph of LSTM-approach is presented in
Figure 2.

6 Numerical results

In this section we illustrate the improved performances in the DNN- and LSTM-approach com-
pared to the SDNN-approach in several high dimensional examples, which are taken in the
related references for the purpose of comparison. The settings of each approach and used hy-
perparameters will be mentioned below in each example. The results are presented using 10
independent runs with Tensorflow 1.15 from Google Colab.
We start with the Burgers type FBSDE, where the driver function depends on the processes Y
and Z, and has an explicit solution.
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Figure 2: Graph of the LSTM-approach.

Example 1. Consider the Burgers type FBSDE [E et al., 2017]
dXt = σ dWt, X0 = 0,

−dYt =
(
Yt − 2+d

2d

) (∑d
i=1 Z

i
t

)
dt− Zt dWt,

YT = 1− 1
1+exp(T+ 1

d

∑d
i=1X

i
T )
,

where, Wt = (W 1
t ,W

2
t , · · · ,W d

t )>, Xt = (X1
t , X

2
t , · · · , Xd

t )> and Zt = (Z1
t , Z

2
t , · · · , Zdt ). The

analytic solution is given by
Yt = 1− 1

1+exp(t+ 1
d

∑d
i=1X

i
t)
,

Zt = σ
d

exp(t+ 1
d

∑d
i=1X

i
t)

(1+exp(t+ 1
d

∑d
i=1X

i
t))

21Rd .

The exact solution with d = 50, T = 0.2 and σ = d√
2

is (Y0, Z0)
.
= (0.5, (0.1768, · · · , 0.1768)).

We consider the same hyperparameters for both the SDNN- and DNN-approach. We choose a
learning rate of 5e− 3, set number of iterations for the optimizer to m = 6000 and batch size to
be 64. The results are reported in Table 1 and 2 for the SDNN-approach and the DNN-approach,
respectively, for an increasing time discretization N. Note that the approximations are calculated
as the average of 10 independent runs, | · | is the absolute value and s(·) represents the standard

deviation. Moreover, εY0 = |Y0 − Y0|, Z0 = 1
d

∑d
i=1Z i0 and εZ0 =

∑d
i=1 |Zi

0−Zi
0|

d . The speedup in
Table 2 is calculated as the ratio of computation time (in seconds) of the SDNN-approach and
those of the DNN-approach.
From Table 1 and 2 we observe that the DNN-approach gives higher accuracy for both pro-
cesses Y and Z, for less computation time. To illustrate how good paths of each process are
approximated, we display the averages of paths for Y as Ȳ and Z as Z̄, and the averages of
approximated paths for Y as Ȳ and Z as Z̄ for both approaches in Figure 3, where N = 32, and
the average over the dimension is also considered for the Z process, in order to have one value
at each time point.
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Table 1: The results by the SDNN-approach for Example 1.

N Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time

8 0.9795 0.4795 0.0506 0.7506 0.5738 0.0054 170.19

16 0.8172 0.3172 0.0250 1.1494 0.9727 0.0131 375.11

32 0.7042 0.2042 0.0085 1.2302 1.0535 0.0138 880.72

Table 2: The results by the DNN-approach for Example 1.

N Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time Speedup

8 0.5202 0.0486 0.0254 0.1777 0.1190 0.0454 97.18 1.87

16 0.5820 0.0820 0.0932 0.2402 0.1322 0.0754 191.27 1.96

32 0.5139 0.0852 0.0773 0.1173 0.1198 0.0610 418.47 2.11

(a) Y process. (b) Z process.

Figure 3: The comparison of averages of the exact path Ȳ , Z̄ and the approximated paths Ȳ, Z̄
using the SDNN- and DNN-approach for Example 1.

We see that the DNN-approach approximates paths of both the processes better than the SDNN-
approach in this example when d = 50.
Next, we consider an example with a driver function where the Z process grows quadratically.

Example 2. Consider the nonlinear BSDE [Gobet and Turkedjiev, 2015]{
−dYt =

(
‖Zt‖2R1×d − ‖∇ψ(t,Wt)‖2Rd −

(
∂t + 1

2∆
)
ψ(t,Wt)

)
dt− Zt dWt,

YT = sin
(
‖WT ‖2αRd

)
,

where ψ(t,Wt) = sin
((
T − t+ ‖Wt‖2Rd

)α)
. The analytic solution is{

Yt = sin
((
T − t+ ‖Wt‖2Rd

)α)
,

Zt = 2αW>t cos
((
T − t+ ‖Wt‖2Rd

)α) (
T − t+ ‖Wt‖2Rd

)α−1
.

The exact solution with d = 50, T = 1 and α = 0.4 is (Y0, Z0)
.
= (0.8415, (0, · · · , 0)). We choose

a learning rate of 5e−3, set number of iterations for the optimizer to m = 4000 and batch size to
be 64 for both approaches. We report the results in Table 3 and 4 for the SDNN-approach and
the DNN-approach respectively. We observe that the DNN-approach (less computational time)
gives comparable results for Y as the SDNN-approach, and slightly better approximation for Z.
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Table 3: The results by the SDNN-approach for Example 2 with d = 50.

N Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time

8 0.8407 0.0012 0.0006 0.0001 0.0036 0.0003 140.57

16 0.8431 0.0018 0.0011 -0.0000 0.0052 0.0005 283.38

32 0.8503 0.0089 0.0025 -0.0004 0.0090 0.0016 634.56

Table 4: The results by the DNN-approach results for Example 2 with d = 50.

N Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time Speedup

8 0.8452 0.0037 0.0016 -0.0000 0.0030 0.0004 67.96 2.07

16 0.8461 0.0046 0.0018 -0.0001 0.0036 0.0005 132.92 2.13

32 0.8464 0.0049 0.0017 -0.0000 0.0040 0.0006 296.28 2.14

(a) Y process. (b) Z process.

Figure 4: The comparison of averages of the exact path Ȳ , Z̄ and the approximated paths Ȳ, Z̄
using the SDNN- and DNN-approach for Example 2 with d = 50.

To show this, as in the previous example, we display the averages of paths for both processes of
each approach in Figure 4, where N = 32.
In order to compare both the approaches in a higher dimension, we set d = 100. The results
are reported in Table 5 and 6 for the SDNN- and DNN-approach, respectively. Furthermore,
the averages of paths are also displayed in Figure 51, where N = 32. We observe that the
approximations of Z is still slightly better in the DNN-approach. However, the approximations
of Y is better in the SDNN-approach.
In order to further confirm whether the SDNN-approach performs always better than the DNN-
approach to approximate Y in the case of that d = 100, we consider the problem of option pricing
with different interest rates, which have been considered in e.g., [E et al., 2017, E et al., 2019,
Teng, 2019], and option pricing with default risk.

Example 3. Consider the option pricing FBSDE with different interest rates [Bergman, 1995]
dSt = µSt dt+ σSt dWt, S0 = S0,

−dYt = −RlYt − µ−Rl

σ

∑d
i=1 Z

i
t +

(
Rb −Rl

)
max

(
1
σ

∑d
i=1 Z

i
t − Yt, 0

)
dt− Zt dWt,

YT = max (maxd=1,··· ,D(ST,d −K1, 0)− 2 max (maxd=1,··· ,D(ST,d −K2, 0) ,

1The results with the LSTM-approach will be analyzed in the following sections.
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Table 5: The results by the SDNN-approach for Example 2 with d = 100.

N Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time

8 0.8418 0.0005 0.0004 -0.0001 0.0022 0.0002 388.04

16 0.8434 0.0019 0.0009 0.0003 0.0032 0.0002 739.02

32 0.8503 0.0088 0.0009 -0.0001 0.0068 0.0006 1180.95

Table 6: The results by the DNN-approach results for Example 2 with d = 100.

N Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time Speedup

8 0.8621 0.0206 0.0056 -0.0001 0.0040 0.0004 203.93 1.90

16 0.8610 0.0195 0.0041 0.0000 0.0044 0.0004 434.52 1.70

32 0.8620 0.0205 0.0051 0.0002 0.0055 0.0007 743.81 1.59

(a) Y process. (b) Z process.

Figure 5: The comparison of averages of the exact path Ȳ , Z̄ and the approximated paths Ȳ, Z̄
using SDNN-, DNN- and LSTM-approach for Example 2 with d = 100.

where St = (S1
t , S

2
t , · · · , Sdt )>. The benchmark value with T = 0.5, µ = 0.06, σ = 0.2, Rl = 0.04,

Rb = 0.06, K1 = 120, K2 = 150 and S0 = 100 is Y0
.
= 21.2988, which is computed using

the multilevel Monte Carlo with 7 Picard iterations approach [E et al., 2019]. In this example,
we use a learning rate of 5e − 2, set number of iterations for the optimizer to m = 4000 and
batch size to be 64. We present the results in Table 7 and 8 for the SDNN-approach and the
DNN-approach, respectively.

Table 7: The results by the SDNN-approach for Example 3.

N Y0 |Y0 − Y0| s(|Y0 − Y0|) Time

8 20.9536 0.3452 0.1047 387.58

16 21.0679 0.2309 0.1008 748.90

32 21.0961 0.2027 0.0725 1433.66
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Table 8: The results by the DNN-approach for Example 3.

N Y0 |Y0 − Y0| s(|Y0 − Y0|) Time Speedup

8 20.9283 0.3705 0.0620 193.92 2.00

16 21.0183 0.2805 0.0652 450.65 1.66

32 21.0583 0.2405 0.0335 822.40 1.74

Example 4. Consider the option pricing FBSDE with default risk [Han et al., 2018]
dSt = µSt dt+ σSt dWt, S0 = S0,

−dYt = −Yt
(

(1− δ)
(

max
(

max
(
Yt − vh, 0

) γh−γl
vh−vl + γh − γl, 0

)
+ γl

)
+R

)
dt− Zt dWt,

YT = mini=1,··· ,d
(
SiT
)
,

The benchmark value with T = 1, δ = 1.5, R = 0.02, µ = 0.02, σ = 0.2, vh = 50, vl = 70,
γh = 0.2, γl = 0.02 and S0 = 100 is Y0

.
= 57.300, which is computed using the multilevel Picard

approach ([E et al., 2019]). We use the same hyperparameters as those in Example 3 and report
the results in Table 9 and 10 for the SDNN-approach and the DNN-approach, respectively.
Fortunately, in Example 3 and 4, we see the comparable approximations for Y using both

Table 9: The results by the SDNN-approach for Example 4.

N Y0 |Y0 − Y0| s(|Y0 − Y0|) Time

8 56.2321 1.0679 0.0610 281.08

16 56.8045 0.4955 0.0738 582.82

32 57.1297 0.1703 0.0676 1078.46

Table 10: The results by the DNN-approach for Example 4.

N Y0 |Y0 − Y0| s(|Y0 − Y0|) Time Speedup

8 56.1079 1.1921 0.1224 186.60 1.51

16 56.6225 0.6775 0.1180 436.80 1.33

32 56.8515 0.4485 0.2002 902.64 1.20

the approaches for d = 100, and the less computational cost in the DNN-approach is again
highlighted. With our numerical analysis above we conclude that the DNN-approach, i.e., using
only one neural network, can give comparable approximation for Y, and better approximation
for Z (especially for the whole time domain) than the SDNN-approach for less computational
cost.
As introduced before, when the solution has extremely complex structure, both the SDNN- and
DNN-approach can be stuck in poor local minima or divergence. To tackle this problem we have
proposed the LSTM-approach. We consider Example 5 where the SDNN- and DNN-approach
can not converge.
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Example 5. Consider the non-linear FBSDE [Huré et al., 2020]
dXt = µdt+ σ dWt, X0 = x0,

−dYt =
(

cos
(
X̄
) (

exp
(
T−t

2

)
+ σ2

2

)
+ µ sin

(
X̄
))

exp
(
T−t

2

)
−1

2

(
sin
(
X̄
)

cos
(
X̄
)

exp (T − t)
)2

+ 1
2

(
YtZ̄

)2)
dt− Zt dWt,

YT = cos
(
X̄
)
,

where X̄ =
∑d

i=1X
i
t and Z̄ =

∑d
i=1 Z

i
t . And the analytic solution is given by{

Yt = exp
(
T−t

2

)
cos
(
X̄
)
,

Zt = −σ exp
(
T−t

2

)
sin
(
X̄
)
1Rd .

We start with d = 1, the exact solution with T = 2, µ = 0.2, σ = 1 and x0 = 1 is
(Y0, Z0)

.
= (1.4687,−2.2874). We consider use the same hyperparameters for the SDNN-and

LSTM-approach: learning rate of 1e− 2, m = 1000 and batch size of 64. In our tests, the LSTM
architecture with automatic differentiation fits well the new loss formulation. Using another net-
work architecture, e.g. as those in the SDNN- and DNN-approach, or using the LSTM without
automatic differentiation, doesn’t improve the results. It is important to note that the SDNN-
approach still gets stuck in poor local minima or diverge by increasing the number of epochs.
The results are given in Table 11 and 12 for the SDNN- and LSTM-approach, respectively.

Table 11: The results by the SDNN-approach for Example 5 with d = 1.

N Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time

8 4.5356 3.0669 0.5538 -0.1582 2.1292 0.0473 18.87

16 nan nan nan nan nan nan nan

32 nan nan nan nan nan nan nan

64 nan nan nan nan nan nan nan

Table 12: The results by the LTSM-approach for Example 5 with d = 1.

N Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time

8 1.2044 0.2783 0.1502 -1.5655 0.7219 0.0222 19.28

16 1.3604 0.1552 0.0893 -1.7355 0.5518 0.0192 37.40

32 1.4019 0.1705 0.1639 -1.8397 0.4476 0.0742 72.09

64 1.3062 0.3090 0.2508 -1.8786 0.4088 0.1627 146.82

Clearly, while the SDNN-approach diverges, the LSTM-approach gives the stable results.
We also test this example when d = 100, the exact solution with T = 1, µ = 0.2

d , σ = 1√
d

and

x0 = 1 is (Y0, Z0)
.
= (1.4217, (0.0835, · · · , 0.0835)). We use the same hyperparameters as those

in the case of that d = 1. The results are reported in Table 13 and 14. We conclude that the
proposed LSTM-approach can solve the local minimum problem.
Finally, to see how well does the LSTM-approach work for a general nonlinear high dimensional
problem (not so complex structure), we run the LSTM-algorithm for Example 2 for d = 100 and
Example 4. We just use the hyperparameters as those used in these exmaples above, i.e., without
the hyperparameter optimization. The results are presented in Table 15 and 16, respectively,
which are quite promising. We observe that the approximation for Y is comparable to that by
using the SDNN- and DNN-approach. And the approximation of Z is more stable in all the time
steps than both the SDNN- and DNN-approach, this has been shown in Figure 5.
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Table 13: The results by the SDNN-approach for Example 5 with d = 100.

N Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time

8 2.8730 1.4512 0.0943 0.0933 0.0297 0.0028 102.41

16 2.8537 1.4320 0.0803 0.0962 0.0327 0.0020 197.07

32 2.9854 1.5636 0.1866 0.0838 0.0353 0.0025 391.88

64 3.4819 2.0601 0.2943 0.0414 0.0663 0.0088 750.17

Table 14: The results by the LTSM-approach for Example 5 with d = 100.

N Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time

8 2.0506 0.6289 0.0156 0.0001 0.0834 0.0004 120.40

16 1.8866 0.4649 0.0289 -0.0001 0.0836 0.0004 228.88

32 1.5747 0.2205 0.0603 0.0002 0.0833 0.0004 438.06

64 1.3145 0.1120 0.0805 -0.0000 0.0835 0.0010 831.47

Table 15: The results by the LSTM-approach for Example 2 with d = 100.

N Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time

8 0.8392 0.0023 0.0007 0.0000 0.0024 0.0003 441.11

16 0.8356 0.0059 0.0010 -0.0001 0.0027 0.0004 824.62

32 0.8306 0.0109 0.0023 0.0001 0.0002 0.0002 1527.73

Table 16: The results by the LSTM-approach for Example 4.

N Y0 |Y0 − Y0| s(|Y0 − Y0|) Time

8 56.1480 1.1520 0.0309 497.99

16 56.4575 0.8425 0.0648 838.68

32 56.9438 0.4049 0.2474 1248.72

7 Conclusions

In this work we have proposed the DNN-approach to improve the performances of the SDNN-
approach proposed in [E et al., 2017] in terms of computational time, and the LSTM-approach
to overcome the poor local minima or divergence problem which could appear in both the
SDNN- and DNN-approach, especially when the solution has extremely complex structure. With
our numerical results we find that the LSTM-approach works generally well, i.e., without local
minima problem, and the DNN-approach is the best choice due to its efficiency when the solution
structure is not so complex. Furthermore, our both approaches give more stable approximation
for Z in each time step than the SDNN-approach. A rigorous convergence analysis for the
proposed approaches is the task of our ongoing work.

References

[Ankirchner et al., 2010] Ankirchner, S., Blanchet-Scalliet, C., and Eyraud-Loisel, A. (2010).
Credit risk premia and quadratic bsdes with a single jump. Int. J. Theor. Appl. Finance,
13(07):1103–1129.

18



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

[Bender and Zhang, 2008] Bender, C. and Zhang, J. (2008). Time discretization and markovian
iteration for coupled FBSDEs. Ann. Appl. Probab., 18(1):143–177.

[Bergman, 1995] Bergman, Y. Z. (1995). Option pricing with differential interest rates. Rev.
Financ. Stud., 8(2):475–500.

[Bouchard and Touzi, 2004] Bouchard, B. and Touzi, N. (2004). Discrete-time approximation
and monte-carlo simulation of backward stochastic differential equations. Stoch. Process Their
Appl., 111(2):175–206.

[Crisan and Manolarakis, ] Crisan, D. and Manolarakis, K. Solving backward stochastic dif-
ferential equations using the cubature method: Application to nonlinear pricing. SIAM J.
Financial Math., 3(1):534–571.

[E et al., 2017] E, W., Han, J., and Jentzen, A. (2017). Deep learning-based numerical methods
for high-dimensional parabolic partial differential equations and backward stochastic differ-
ential equations. Commun. Math. Stat., 5(4):349–380.

[E et al., 2019] E, W., Hutzenthaler, M., Jentzen, A., and Kruse, T. (2019). On multilevel
picard numerical approximations for high-dimensional nonlinear parabolic partial differential
equations and high-dimensional nonlinear backward stochastic differential equations. J. Sci.
Comput., 79(3):1534–1571.

[Eyraud-Loisel, 2005] Eyraud-Loisel, A. (2005). Backward stochastic differential equations with
enlarged filtration: Option hedging of an insider trader in a financial market with jumps.
Stoch. Process Their Appl., 115(11):1745–1763.

[Fahim et al., 2011] Fahim, A., Touzi, N., and Warin, X. (2011). A probabilistic numerical
method for fully nonlinear parabolic PDEs. Ann. Appl. Probab., 21(4):1322–1364.

[Fu et al., 2017] Fu, Y., , Zhao, W., Zhou, T., and and (2017). Efficient spectral sparse grid
approximations for solving multi-dimensional forward backward SDEs. Discrete Continuous
Dyn. Syst. Ser. B, 22(9):3439–3458.

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pages 249–256.

[Gobet and Labart, 2010] Gobet, E. and Labart, C. (2010). Solving BSDE with adaptive control
variate. SIAM J. Numer. Anal., 48(1):257–277.

[Gobet et al., 2005] Gobet, E., Lemor, J.-P., and Warin, X. (2005). A regression-based monte
carlo method to solve backward stochastic differential equations. Ann. Appl. Probab.,
15(3):2172–2202.
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