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Abstract

Deep neural networks (DNNs) have proven to be power-
ful tools for processing unstructured data. However for
high-dimensional data, like images, they are inherently
vulnerable to adversarial attacks. Small almost invisi-
ble perturbations added to the input can be used to fool
DNNs. Various attacks, hardening methods and detec-
tion methods have been introduced in recent years. Noto-
riously, Carlini-Wagner (CW) type attacks computed by
iterative minimization belong to those that are most dif-
ficult to detect. In this work, we demonstrate that such
iterative minimization attacks can by used as detectors
themselves. Thus, in some sense we show that one can
fight fire with fire. This work also outlines a mathematical
proof that under certain assumptions this detector pro-
vides asymptotically optimal separation of original and
attacked images. In numerical experiments, we obtain
AUROC values up to 99.73% for our detection method.
This distinctly surpasses state of the art detection rates
for CW attacks from the literature. We also give nu-
merical evidence that our method is robust against the
attacker’s choice of the method of attack.

1 Introduction

For many applications, deep learning has shown to out-
perform concurring machine learning approaches by far
[18, 36, 16]. Especially, when working with high-dimensional
input data like images, deep neural networks (DNNs) are
show impressive results. As discovered by Szegedy et al.
[38], this remarkable performance comes with a down-
side. Very small (noise-like) perturbation added to an
input image can result in incorrect predictions with high
confidence [38, 12, 28, 3, 27]. Such adversarial attacks
are usually crafted by performing a constrained gradient-
descent procedure with respect to the input data in order
to change the class predicted by the DNN and at the
same time modify the image by the least possible amount
measured. The new class can be either a class of choice
(targeted attack) or an arbitrary but different one (untar-
geted attack). Many other types of attacks such as the
fast signed gradient method [12] and DeepFool [28] have
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been introduced, but these methods do not fool DNNs
reliably.

Carlini & Wagner (CW) extended [38] with a method
that reliably attacks deep neural networks while control-
ling important features of the attack like sparsity and
maximum size over all pixels, see [3]. This method aims
at finding a targeted or an untargeted attack where the
distance between the attacked image and the original one
is minimal with respect to a chosen `p distance. Distances
of choice within in CW-type frameworks are mostly `p
with p = 0, 2,∞. Mixtures of p = 1, 2 have also been
proposed by some authors [5]. Except for the `0 distance,
these attacks are perceptually extremely hard to detect,
cf. figures 1 and 2. Minimization of the `0 distance min-
imizes the number of pixels changed, but also changes
these pixels by the maximally and the resulting spikes
are easy to detect. This changes for p > 0.

Typically, one distinguishes between three different at-
tack scenarios:

• white box attack: the attacker has access to the
DNN’s parameters / the whole framework including
defense strategies.

• black box attack: the attacker does not know the
DNN’s parameters / the whole framework including
defense strategies.

• gray box attack: in-between white and black box,
e.g. the attacker might know the framework but not
the parameters used.

The CW attack currently is one of the most efficient
white-box attacks.

Defense Methods. Several defense mechanisms have
been proposed to either harden neural networks or to de-
tect adversarial attacks. One such hardening method is
the so-called defensive distillation [29]. With a single re-
training step this method provides strong security, how-
ever not against CW attacks. Training for robustness via
adversarial training is another popular defense approach,
see e.g. [12, 25, 41, 19, 26]. See also [31] for an overview
regarding defense methods.

Most of these methods are not able to deal with at-
tacks based on iterative minimization like CW attacks.
In a white box setting the hardened networks can still be
subject to fooling.

Detection Methods. There are numerous detection
methods for adversarial attacks. In many works, it has
been observed and exploited that adversarial attacks are
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ples, see e.g. [1, 42, 39, 32]. This robustness issue can
be utilized by detection and defense methods. In [32], a
statistical test is proposed for a white-box setup. Statis-
tics are obtained under random corruptions of the inputs
and observing the corresponding softmax probability dis-
tributions. In [39], noise injection is combined with a
cryptography component by adding key-defined random-
ization to an ensemble of networks at both training and
test time. The authors assume in a gray-box setup that
the networks, attacks as well as the whole framework are
known to the attacker, however the keys are not. An-
other popular approach to detecting adversarial exam-
ples is based on filtering certain frequencies or detecting
them right in the input image. An adaptive noise re-
duction approach for detection of adversarial examples is
presented in [21]. JPEG compression ([30, 23]), similar
input transformations ([15]) and other filtering techniques
([20]) have demonstrated to filter out many types of ad-
versarial attacks as well. In [10], adversarial images are
detected based Bayesian uncertainty. It has also been
demonstrated that image transformations such as rota-
tions can be used [40] for filtering adversarial attacks. In
[22], detection is performed from a steganalysis point of
view by calculating filter statistics, the dependence be-
tween pixels is then modeled via higher order Markov
chains. In [46] it was discovered that eigenvectors cor-
responding to large eigenvalues of the fisher information
metric yield adversarial attacks and that adversarial at-
tacks in turn can be detected by means of their spectral
properties. Apart from that, also saliency maps can be
used to detect adversarial examples, see [44].

Some approaches also work with several images or se-
quences of images to detect adversarial images, see e.g. [6,
14]. Approaches that not only take input or output layers
into account, but also hidden layer statistics, are intro-
duced in [4, 47]. Auxiliary models trained for robustness
and equipped for detecting adversarial examples are pre-
sented in [45].

Recently, GANs have demonstrated to defend DNNs
against adversarial attacks very well, see [33]. This ap-
proach called defense-GAN iteratively filters out the ad-
versarial perturbation. The filtered result is then pre-
sented to the original classifier.

Semantic concepts in image classification tasks pres-
elect image data that only cover a tiny fraction of the
expressive power of rgb images. Therefore training data
sets can be embedded in lower dimensional manifolds and
DNNs are only trained with data within the manifolds
and behave arbitrarily in perpendicular directions. These
are also the directions used by adversarial perturbations.
Thus, the manifold distance of adversarial examples can
be used as criterion for detection in [17].

As opposed to many of the adversarial training and
hardening approaches, most of the works mentioned in
this paragraph are able to detect CW attacks with AU-
ROC values up to 99% [24]. For an overview we refer to
[43].

Our contribution. In this paper we present a novel
approach, how to use Carlini’s & Wagner’s attack frame-
work [3] not only to generate attacks, but also as a very
efficient detector for CW white box attacks. This state-
ment holds for any CW-type of attack generated by an
iterative minimization process. In this sense we fight fire
with fire.

A CW attack aims at finding the smallest perturba-
tion in a given `p norm, such that a given image is pushed
across the closest decision boundary. Applying another
CW attack to the perturbed image moves this image back
across the same decision boundary. Importantly, this sec-
ond attack oftentimes generates much smaller perturba-
tions. It is therefore properly the optimality of the CW
attack that leaves a treacherous footprint in the attacked
data. The perturbation is the easier to detect, the more
optimal it is.

For this mechanism, we outline a mathematical proof
(for the untargeted `2 case) that in the limit where the
number of iterations of the original CW attack tends to
infinity, by the counter attack method separation of at-
tacked and non-attacked images is possible with an area
under the receiver operator curve (AUROC) tending to
one. We therefore for the first time provide a detection
method for the CW `2 attack that is provably efficient.
This result is based on the mathematical characterization
of the stationary points and convergence for the CW at-
tack that is new by itself. We also demonstrate that this
(asymptotic) mathematical statement passes the numeri-
cal tests to a high extent. To this end, we threshold on the
`p norms of the computed perturbations of first and sec-
ond attack and find that statistical separation is possible
with AUROC values well above those of many competing
detection methods. This finding holds for both, targeted
and untargeted attacks. We show results for CIFAR10
and ImageNet and obtain AUROC values of up to 99.64%
for CIFAR10 and 99.73% for ImageNet when using the `2
norm. Our experiments show that the robustness under
attacks with different `p norms can be detected very well,
thus we can reliably detect iterative minimization attacks
without knowing the actual parameter p of the original
attack.

Related work. Unlike in [1, 42, 39, 32, 40], we do not
apply any additional perturbation or transformation to
the inputs of DNNs to detect adversarial examples. We
also do not filter noisy signals in images like [21].

We detect adversarial attacks by measuring the norm
of an adversarial perturbation obtained by a second at-
tack and afterwards thresholding on it. Thus, the works
closest to ours can be considered those that are based on
distance measures, see [4, 47, 17]. However, [4, 47] work
on the level of feature maps in hidden layers. All three
works do not use a second adversarial attack to detect
an attack. In spirit, [17] can be regarded to be closest
to our approach. The authors measure the distance from
a manifold containing the data, therefore a model of the
manifold is learned. Our method can be interpreted as
thresholding on the distance that is required to find the
closest decision boundary outside the given manifold that
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`0

`2

`∞

Figure 1: An illustration of attacked CIFAR10 images. (left): the
input image, (center): the added noise and (right): the resulting
adversarial image.

contains the image data. Unlike in [17], our approach does
not require a model of the manifold and is rather based
the intrinsic properties of CW attacks and other itera-
tive minimization attacks. During the finalization of this
paper, we found a work [48] that also pursues a counter
attack idea. However in this work, distance is consid-
ered in terms of Kullback-Leibler divergence of softmax
probabilities while we consider different norms on the in-
put space. The authors also trained a model with ad-
versarial examples whereas we only threshold on distance
measures. Furthermore, we provide a general theoreti-
cal statement that our method is provably efficient. We
conducted tests also with high definition ImageNet2012
data. The numerical results for CIFAR10 are in the same
range.

Organization of this work. The remainder of this
work is structured as follows: In section 2 we introduce
our detection method an provide a theoretical statement
that under certain assumptions a second identical attack
performed for an already attacked image is an ideal de-
tector for a given CW attack with norm `p. In section
section 3 we demonstrate that this finding also applies to
numerical experiments. We demonstrate, that once and
twice attacked images can be well separated by measur-
ing the distances between the attack’s input and output
in the `p-norm. For our evaluation we use the CIFAR10
test set as well as the ImageNet test set. We also show,
that any CW attack with a norm `p can be detected re-
liably by performing another CW attack with a different
norm `p′ . We also show that our approach works well for
both targeted and untargeted attacks.

2 Detection by Counter Attack

Let C = {1, . . . , c} denote the set of 2 ≤ c ∈ N distinct
classes. and let I = [0, 1] denote the closed unit interval.
An image is an element x ∈ In. Let ϕ : In → Ic be a
continuous function given by a DNN, almost everywhere

`0

`2

`∞

Figure 2: An illustration of attacked ImageNet images. (left): the
input image, (center): the added noise and (right): the resulting
adversarial image.

differentiable, that maps x to a probability distribution
y = ϕ(x) ∈ Ic with

∑c
i=1 yi = 1 and yi ≥ 0. Furthermore,

κ : In → C denotes the map that yields the corresponding
class index, i.e.,

κ(x) =

{
i if yi > yj ∀j ∈ C \ {i}
0 else.

(1)

This is a slight modification of the arg max function as
Ki = {x ∈ In : κ(x) = i} for i > 0 gives the set of
all x ∈ In predicted by ϕ to be a member of class i and
for i = 0 we obtain the set of all class boundaries with
respect to ϕ.

Given x ∈ Rn, the `p “norm” is defined as follows:

• for p ∈ N: ‖x‖p = (
∑n
i=1 |xi|p)

1
p ,

• for p = 0: ‖x‖0 = |{xi > 0}|,
• for p =∞: ‖x‖∞ = maxi |xi|.

The corresponding `p distance measure is given by distp(x, x
′) =

‖x− x′‖p and the n-dimensional open `p-neighborhood
with radius ε and center point x0 ∈ Rn is defined as
Bp(x0, ε) = {x ∈ Rn : distp(x, x0) < ε}.

The CW Attack. For any image x0 ∈ In the Carlini &
Wagner (CW) attack introduced in [3] can be formulated
as the following optimization problem:

xk = arg min
x∈Rn

distp(x0, x)

s.th. κ(x) 6= κ(x0) x ∈ In.
(2)

In order to obtain κ(x′) 6= κ(x), relaxations given by
a choice of differentiable terms f(x) are introduced. The
box constraint x ∈ In is enforced by a simple projection,
i.e., clipping the gradient. Both loss functions are jointly
minimized in a scalarized setting, i.e.,

F (x) := distp(x0, x) + a f(x)→ min . (3)

In their experiments, Carlini & Wagner perform a binary
search for the constant a such that κ(x) 6= κ(x0) is almost

3
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x∗

x0

xk

xk,j

attack

counter attack

class j

class i

Figure 3: Sketch of the action of the counter attack, x∗ is the
stationary point of the first attack, xk the final iterate of the first
attack and xk,j the final iterate of the second attack.

always satisfied. For further algorithmic details we refer
to [3]. Two illustrations of attacked images are given in
figures 1 and 2. In particular for the ImageNet dataset
in figure 2, even the perturbations themselves are imper-
ceptible.

The CW Counter Attack. The goal of the CW at-
tack is to estimate the distance of x0 to the closest class
boundary via distp(x0, xk). The more eager the attacker
minimizes the perturbation xk − x0 in a chosen p-norm,
the more likely it is that xk is close to a class boundary.
Hence, when estimating the distance of xk to the closest
class boundary by performing another CW attack which
yields an xk,j , it is likely that

distp(xk, xk,j)� distp(x0, xk) , (4)

cf. figure 3. This motivates our claim, that the CW at-
tack itself is a good detector for CW attacks. An image
x0 ∈ In, that has not been attacked, is likely to have
a greater distance to the closest class boundary than an
xk ∈ In which has already been subject to a CW attack.
In practice, it cannot be guaranteed that the CW attack
finds a point xk which is close to the closest boundary.
However, an interesting statements can be made on which
we elaborate in the following paragraph.

Theoretical Considerations. In this paragraph we
outline the proof of the statement that asymptotically,
i.e., for very eager attackers, the counter attack tends to
detect all attacked samples with probability 1. However,
a clear and formal proof of all aspects regarding this state-
ment is beyond the scope of this paper and therefore left
for future work.

We assume that p = 2 and fix a choice for f which is

f(x) = max
i 6=t
{Zt(x)− Zi(x), 0} (5)

where Z denotes the neural network ϕ but without the fi-
nal softmax activation function. Note that equation (5) is
a construction for untargeted attack. Choosing a penalty
term for a targeted attack does not affect the arguments
provided in this section.

Furthermore, let

• t := κ(xorig) the original class,
• F := {x ∈ In : κ(x) 6= t} the feasible region,
• NF := {x ∈ In : κ(x) = t} the infeasible region,
• ∂F = ∂NF the class boundary between F andNF .

It is common knowledge that In can be decomposed into
a finite number of polytopes Q := {Qj : j = 1, . . . , s}
such that Z is affine linear on each Qj , see [8, 35]. In [8],
each of the polytopes Qj is expressed by a set of linear
constraints, therefore being convex.

For a locally Lipschitz function g, the Clarke general-
ized gradient is defined by

∇Cg(x) := conv{ lim
i→∞

∇g(xi) : xi → x and ∇g(xi) exists} .
(6)

Let S be the stationary set of problem (2),

S = {x ∈ In : 0 ∈ ∇CF (y) +NIn(x)} (7)

where ∇CF (x) is the set of all generalized gradients and
NIn(x) is the normal cone to the set In at point x. In
general, computing the set of generalized gradients is not
an easy task, but given the special structure of f – piece-
wise linear – it can be done relatively easily in this case.
Namely, the set ∇Cf(x) is a convex hull of the gradi-
ents of linear functions that are active at the point x,
[34]. Therefore, by [7, Corollary2, p.39], the generalized
gradient G(x) of F (x) has the form

G(x) = {ag(x) + 2(x− xorig), g(x) ∈ ∇Cf(x)} . (8)

The projected generalized gradient method [37] is de-
fined as follows. Let P (x) denote the orthogonal projec-
tion of x onto In. Given the learning schedule {αk} such
that

limαk = 0 and
∞∑

k=1

αk =∞, (9)

the iterative sequence is generated as

xk+1 = P (xk − αkGk), Gk ∈ ∇CF (xk), k = 0, 1, . . .
(10)

In this paper we add the following condition for the learn-
ing rate

∞∑

k=1

α2
k <∞ , (11)

which strengthens the conditions (9) and does not alter
the statements from [37].

It can be shown that every accumulation point of the
sequence {xk} generated by (10) converges to a stationary
point of F . The proof of this theorem can be found in
[37] and only requires that the set S only contains isolated
points from In, which can be shown with moderate effort
exploiting the piece-wise linear structure of f .

Now, considering an iterate xk ∈ F , it is also clear
that reducing F (xk) means decreasing the distance of
xk to x0, provided αk+1 is sufficiently small. There-
fore, xk ∈ F cannot be a stationary point. Assume that
the CW attack converges to x∗ and is successful, i.e.,
x∗ /∈ NF . This implies x∗ ∈ ∂F . Summarizing this, any
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xk

x∗

xθ

v

w

NF (2)

F (2)

B(x∗, ε)

B(x∗, 2ε)

B(x∗, 3ε)

Figure 4: Situation present in the counter attack. By bounding
cos(θ) from below we show that x reduces its distance to x∗ when
performing a gradient descent step under the given assumptions.
Therefore, x never leaves B(x∗, 3ε).

successful CW attack converges to a stationary point on
the boundary ∂F of the feasible set.

Let us now consider the counter attack and therefore
let F (2) ⊂ NF (1) := NF denote the counter attack’s
feasible region and NF (2) ⊂ F (1) := F the infeasible
region. We seek to minimize the functional

F (2)(x) := distp(xk, x)p + bf (2)(x) (12)

where x∗ is the stationary point that we are approach-
ing in the first iterative attack. For now, let p = 2.
Let {Q1, . . . , Qs} be the set of all polytopes that fulfill
x∗ ∈ Qi, i = 1, . . . , s. We assume that the first attack
is successful and that there exists an iterate xk of the
first attack such that dist(x∗, xk) < ε and furthermore
we assume that B(x∗, 3ε) ⊂ ⋃si=1Qi.

Theorem 1. By the preceding assumptions and further
assuming, that the counter attack starts at xk ∈ NF (2),
stops when reaching F (2) and uses a sufficiently small
step size α, then the counter attack iteration minimizing
F (2) never leaves B(x∗, 3ε).

Proof. Let x ∈ B(x∗, 3ε)\B(x∗, 2ε) andG(2)(x) ∈ ∇CF (2)(x)
any gradient with corresponding g(2)(x) ∈ ∇Cf (2)(x) which
is fixed for x being member of a chosen polytope Qi. We
can assume that x ∈ NF (2)◦ since we are done oth-
erwise. Furthermore, let v := xk − x, w := x∗ − x

and cos(θ) = vTw
‖v‖‖w‖ where ‖·‖ = ‖·‖2. This implies

x∗ − xk = w − v and

cos(θ) =
‖v‖2 + ‖w‖2 − ‖w − v‖2

2 ‖v‖ ‖w‖

≥ 4ε2 + ε2 − ε2
2 · 3ε · 4ε =

1

6
(13)

Since G(2)(x) = 2(x− xk) + b g(2)(x), we obtain

G(2)(x)T (x− x∗)
= 2(x− xk)T (x− x∗) + b g(2)(x)T (x− x∗)︸ ︷︷ ︸

>0

> 2(x− xk)T (x− x∗) ≥ 2ε2 cos(θ) =
ε2

3
. (14)

Note that, g(2)(x)T (x−x∗) > 0 follows from x−x∗ being

an ascent direction. This holds due to x ∈ Qi ∩ NF (2)◦

which implies f (2)(x) > 0 and the fact that x∗ ∈ Qi as
well and f (2)(x∗) = 0. Hence, the difference in distance
to x∗ when performing a gradient descent step is

‖x− x∗‖2 −
∥∥∥x− x∗ − αG(2)(x)

∥∥∥
2

(15)

= 2αG(2)(x)T (x− x∗)− α2
∥∥∥G(2)(x)

∥∥∥
2

︸ ︷︷ ︸
≤C(b)

≥ 2α · ε
2

3
− α2C(b) .

The latter expression is greater than zero iff the step-size

schedule α is small enough, i.e., α < 2ε2

3C(b) . Hence, the

distance to x∗ decreases.

We now take into account the stochastic effects that
stem from choosing an arbitrary initial image x ∈ In

represented by a random variable X. Let k be the number
of iterates of the original CW attack and let Xk ∈ F (2)

be the final iterate after k ≥ 1 iterations, starting at
X0 = X. For any random variables Y,Z ∈ In let

D(Y ) = dist(Y,F) = inf
y∈F

dist(Y, y) and

D(0,k) = dist(X0, Xk) ≥ D(X0) , (16)

provided Xk ∈ F , which means that the k-th iterate is
a successful attack. For δ ∈ R, we define the distri-
bution function corresponding to a random variable D
(representing a random distance) by FD(δ) = P (D ≤
δ) = D∗P ((−∞, δ]) where the push forward measure is
D∗P (B) = P (D−1(B)) for all B in the Borel σ-algebra.
The area under receiver operator characteristic curve of
D(Y ) and D(Z) is defined by

AUROC (D(Y ), D(Z)) =

∫

R
FD(Y )(δ) dD(Z)∗P (δ).

(17)

Obviously, it holds that D(Y ), D(0,k) ≥ 0. The following
lemma formalizes under realistic assumptions that we ob-
tain perfect separability of D(X) and D(Xk) as we keep
iterating the initial CW attack, i.e., k →∞.

Lemma 2. Let D(X) ≥ 0 with P (D(X) = 0) = 0 and
D(Xk)→ 0 for k →∞ weakly by law. Then,

AUROC (D(Xk), D(X))
k→∞−→ 1 . (18)

Proof. Let δ0 be the Dirac measure in 0 with distribution
function

Fδ0(z) =

{
1 z ≥ 0

0 else.
(19)

By the characterization of weak convergence in law by the
Helly-Bray lemma [11, Theorem 3], FD(Xk)(δ) → Fδ0(δ)
for all δ where Fδ0(δ) is continuous. This is the fact is for
all δ > 0. As P (D(X) = 0) = 0, this implies FD(Xk) →
Fδ0 D(X)∗P -almost surely. Furthermore, it holds that

5
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dominated convergence

AUROC (D(Xk), D(X)) =

∫

R
FD(Xk)(δ) dD(X)∗P (δ)

k→∞−→
∫

R
Fδ0(δ) dD(X)∗P (δ)

=

∫

R+

dD(X)∗P (δ) = 1

(20)

as D(X) ≥ 0 by assumption which concludes the proof.

Le now X be a random input image. As X ∈ NF (1),
it holds that D(X) > 0 almost surely, such that in-
deed P (D(X) = 0) = 0. Let furthermore Xk be the
k-th iterate inside F (1)of the CW attack starting with
X. Given that the attack is successful, we obtain that

Xk
k→∞−→ X∗ ∈ ∂F , thus

dist(Xk, X
∗)

k→∞−→ 0 (21)

almost surely. Now there exists a learning rate schedule
αk,j and a multiplier a such that for all steps Xk,j of the
counter attack originating at Xk, the distance

D̄(k,j) = dist(Xk,j , Xk) ≤ 8 dist(Xk, X
∗)

k→∞−→ 0 (22)

almost surely. Note that the latter inequality holds since
we can choose ε in theorem 1, such that dist(xk, x

∗) > ε/2
and then obtain this constant 8 by using the triangle
inequality. Therefore, let Xk,j∗ be the first iterate of
the CW counter attack in F (2). We consider D̄(k,j∗) =
dist(Xk, Xk,j∗) ≤ 8 dist(Xk, X

∗)
k→∞−→ 0 almost surely.

As this trivially implies D̄(k,j∗) k→∞−→ 0, we obtain the
following theorem by application of Lemma 2:

Theorem 3. Under the assumptions outlined above, we
obtain the perfect separation of the distribution of the dis-
tance metric D̄(k,j∗) of the CW counter attack from the
distribution on the distance metric D(0,k) of the original
CW attack, i.e.,

AUROC
(
D(0,k), D̄(k,j∗)

)
k→∞−→ 1 . (23)

3 Numerical Experiments

We now demonstrate how our theoretical considerations
apply to numerical experiments. Therefore we aim at
separating the distributionsD(k) and D̄(k,j). For our tests
we used the framework [2] (provided with [3]). For the
CIFAR10 dataset consisting of tiny 32× 32 RGB images
with concepts from 10 classes, containing 50k training and
10k test images, we used a network with 4 convolutional
layers and two dense ones as included and used per default
in [2]. For the ImageNet2012 high resolution RGB images
we used a pre-trained Inception network [13] (trained on
all 1000 classes). For all tests we used default parameters.

Numbers of samples in X and X̄
CIFAR10 ImageNet2012

`0 5000 500
`2 5000 500
`∞ 1000 500

Table 1: Numbers of images in X and X̄ , respectively.

Success rates
CIFAR10 ImageNet2012

1st attack 2nd attack 1st attack 2nd attack
`0 100% 100% 100% 100%
`2 100% 100% 100% 100%
`∞ 100% 100% 100% 100%

Table 2: Success rates of first and second attacks. An attack is
considered successful if the predicted class of the attack’s output is
different from the predicted class of the attack’s input.

For each of the two datasets, we randomly split the
test set into two equally sized portions X and X̄ . For one
portion we compute the values D(k) and for the other
one also D̄(k,j) such that they refer to two distinct sets of
original images. Since CW attacks can be computation-
ally demanding, we chose the sample sizes for X and X̄
as stated in table 1.

Since we discuss the distance measuresD(k) and D̄(k,j)

for different `p norms, we now alter our notation. Let
γp : In → In be the function that maps x ∈ X to its `p
attacked counterpart for p = 0, 2,∞. In order to demon-
strate the separability of X and γp(X̄ ) under a second `q
attack, we compute the two scalar sets

Dq ={distq(x, γq(x)) : x ∈ X} and

D̄p,q ={distq(γp(x̄), γq(γp(x̄))) : x̄ ∈ X̄} (24)

for q = 0, 2,∞.

`p Counter Attacks. For now we focus on the case
p = q where the first and the second attack are per-
formed by means of the same `p norm as this matches
with our theoretical findings from section 2. First the
state success rates of γp(X̄ ), i.e., the percentages where
κ(x̄) 6= κ(γp(x̄)) for x̄ ∈ X̄ , see table 2. For all attacks
γp, p = 0, 2,∞, we obtain ideal success rates.

The separability of original data X and attacked data
γp(X̄ ) is visualized by violin plots for Dp and D̄p,p in sec-
tion 3 for CIFAR10 and in section 3 for ImageNet2012.
For both datasets we observe a similar behavior. In the
first three panels of each figure, i.e., for p = 0, 2, we ob-
serve well-separable distributions. For p =∞ this separa-
bility seems rather moderate. When looking at absolute
`∞ distances, we observe that both distributions peak for
an `∞ distance of roughly 0.1. For `2, the absolute dis-
tances are much higher. This is clear, since the `∞ norm
is independent of the image dimensions whereas the other
norms suffer from the curse of dimensionality. This can
be omitted by re-normalizing the shrinkage coefficient for
`p distance minimization. However it also underlines the
punchline of our method, the more efficient the iterative
minimization process, the better our detection method –
the efficiency becomes treacherous. Less efficient attacks
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Figure 5: Violin plots displaying the distributions of distances in Dp (top) and D̄p,p (bottom) from equation (24) for the CIFAR10
dataset, p = 0, 2,∞ in ascending order from left to right.
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Figure 6: Violin plots displaying the distributions of distances in Dp (top) and D̄p,p (bottom) from equation (24) for the ImageNet2012
dataset, p = 0, 2,∞ in ascending order from left to right.

are not suitable detectors, however such attacks can po-
tentially be detected by other detection methods as they
tend to be more perceptible.

Next, we study the performance in terms of detection
accuracy, i.e., the relative frequency of correctly classi-
fied as attacked / original for two different thresholds,
as well as in terms of the area under receiver operator
characteristic curve (AUROC, [9]) which is a threshold
independent performance measure.

In all further discussions, true positives are correctly
classified attacked images and true negatives are correctly
classified original (non-attacked) images. More precisely,
we fix the following notations:

• threshold: the value t used for discriminating whether
d ∈ Dq or d ∈ D̄p,q ,
• true positive: TP = |{d ∈ D̄p,q : d < t}| ,
• false negative: FN = |{d ∈ D̄p,q : d ≥ t}| ,
• true negative: TN = |{d ∈ Dq : d ≥ t}| ,
• false positive: FP = |{d ∈ Dq : d < t}| ,
• accuracy: TP+TN

TP+FN+TN+FP ,

• precision: TP
TP+FP ,

• recall: TP
TP+FN .

For this paragraph, let p = q.
In table 3 we report several metrics for two choices

of threshold computation. Choice no. 1 is obtained by
0.5× recall +0.25×accuracy +0.25×precision, choice no.
2 is obtained by maximizing accuracy. While choice no. 1
rather aims at detecting many adversarial attacks, there-
fore accepting to produce additional false positive detec-
tions, choice no. 2 aims attributes the same importance
to the reduction of false positives and false negatives.

In accordance to our findings in section 3 we observe

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

0.0
0.2
0.4
0.6
0.8
1.0

tru
e 

po
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0: 0.91439092
2: 0.99124688
: 0.962898

Figure 7: ROC curves and AUROC values for the different `p norms,
p = 0, 2,∞.

high accuracy, recall and precision values. In particular
the `2 attack shows very strong results and can be de-
tected best by a repeated attack. Please recall that we
reduced the number of images for our tests with the `∞ at-
tack to 1,000 original and 1,000 attacked images as these
tests were computationally intensive. Noteworthily, out
of 10,000 images we only obtain 16 false positive detec-
tions, i.e., images that are falsely accused to be attacked
ones, and 56 false negatives, i.e., attacked images that are
not detected, when using threshold choice no. 1. For the
`∞ attack we observe an over production of false posi-
tives. However, most of the 1,000 attacked images were
still detected.

Returning to the Original Class. As motivated in
section 2, the second attack theoretically is supposed to
make γp(x̄) for x̄ ∈ X̄ return across the decision boundary
that it passed via the first attack, i.e.,

κ(γp(γp(x̄)) = κ(x̄) . (25)

We present results for the number of returnees, i.e., Rp =
|{x̄ ∈ X̄ : κ(γp(γp(x̄)) = κ(x̄)}|, and the corresponding
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threshold choice no. 1 threshold choice no. 2
`0 `2 `∞ `0 `2 `∞

True Positive 4,723 4,817 984 4,723 4,803 982
False Negative 277 183 16 277 197 18
True Negative 4,239 4,792 837 4,239 4,809 840
False Positive 761 208 163 761 191 160

Accuracy 0.8962 0.9609 0.9105 0.8962 0.9612 0.9110
Recall 0.9446 0.9634 0.9840 0.9446 0.9606 0.9820

Precision 0.8612 0.9586 0.8579 0.8612 0.9617 0.8599
Threshold 5.0126 0.00891 0.0324 5.0126 0.008225 0.0321

Table 3: Sensitivity & Specificity values for the CIFAR10. Choice no. 1 of thresholds is obtained by maximizing 0.5 × recall + 0.25 ×
accuracy + 0.25× precision, choice no. 2 is obtained by simply maximizing accuracy. True positives is the number of correctly classified
attacked images, true negatives is the number of correctly classified original images.

percentages (return rates) given by Rp/|X̄ | in table 4. For
both datasets we observe strong return rates, in particular
for `2 only 3 out of 5000 samples x̄ ∈ X̄ do not fulfill
κ(γp(γp(x̄)) = κ(x̄).

dataset `0 `2 `∞
Returnees CIFAR10 4994 4997 995
Percentage CIFAR10 99.88% 99.94% 99.5%
Returnees ImageNet2012 500 486 488
Percentage ImageNet2012 100% 97.20% 97.6%

Table 4: Number of returnees as well as return rates.

Cross attacks. As the `p norms used in our tests are
equivalent except for `0, we expect that cross attacks, i.e.,
the case p 6= q is supposed to yield a good separation of
Dq and D̄p,q (cf. equation (24)). Figures 8 and 9 show
results for cross attacks. Each column shows the detection
performance of a norm `q.
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Figure 8: ROC curves and AUROC values for the different cross
attacks performed on the CIFAR10 dataset. The task is to separate
Dq and D̄p,q , the `q norm is the one used for detection, q = 0, 2,∞
is the row index and p = 0, 2,∞ the column index.

In both cases, for CIFAR10 and ImageNet2012, when
comparing the different columns of both plots we observe
a superiority of the `2 norm. In our tests we observe
that the `2 norm also requires lowest computational ef-
fort, thus the `2 norm might be favorable from both per-
spectives. Noteworthily there is also only a minor per-
formance degradation when going from CIFAR10 to Im-
ageNet2012 even though the perturbations introduced by
the `p attacks, in particular for p = 2, are almost im-
perceptible, cf. also figure 2. For a better overview, the
presented results are summarized in table 5.
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Figure 9: ROC curves and AUROC values for the different cross
attacks performed on the ImageNet2012 dataset. The task is to
separate Dq and D̄p,q , the `q norm is the one used for detection,
q = 0, 2,∞ is the row index and p = 0, 2,∞ the column index.

Targeted Attacks. So far, all results presented have
been computed for untargetted attacks. In principle a tar-
geted attack γp only increases the distances distq(γp(x̄), x̄)
while the distance measures distq(γq(γp(x̄)), γq(x̄)) corre-
sponding to another untargeted attack γq in principle are
supposed to remain unaffected. Thus, targeted attacks
should be even easier to detect. However, it might hap-
pen that we sometimes lose the property that after a sec-
ond attack the predicted class returns to the one of the
original image, i.e., κ(γq(γp(x̄))) = κ(x̄) does not need
to hold. For instance, it might happen that the shortest
straight `p path crosses another class before reaching its
desired destination. In figure 10 we indeed observe that
a targeted `2 attack yields a higher AUROC value than
an untargeted one.
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Figure 10: ROC curves and AUROC values for `2 detections on
CIFAR10 data where the first attack was once targeted and once
untargeted.
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nt Metrics CIFAR10 ImageNet2012

L0 91.86% 99.62% 99.64% 98.73 99.30 99.73
L2 91.25% 99.13% 99.17% 95.82 96.04 96.75
L∞ 89.23% 96.81% 96.29% 96.31 94.55 95.61

Metrics L0 L2 L∞ L0 L2 L∞

Table 5: Summarizing table for crossed-attacked. First column represents the first attack used to craft data and last row the one performed
for detection. We remind that CIFAR10 data sets shuffle 1000 regular images and 1000 adversarial images while ImageNet2012 data sets
hold 500 clean images and 500 perturbed images.

4 Conclusion and Outlook

We outlined a mathematical proof for asymptotically op-
timal detection of CW attacks via counter attacks for the
`2 norm and demonstrated in numerical experiments that
our findings hold to a high extent in practice for different
`p norms. We obtained AUROC values of up to 99.73%
on the CIFAR10 dataset and demonstrated that also cross
attacks based on different norms `p and `q yield high de-
tection performance.

Our results are in range of state-of-the-art results.
DBA [48] shows a superior detection accuracy for CI-
FAR10, however the underlying neural network is also
much stronger which makes a clear comparison difficult.
AUROC values are not reported. Our results for the `2-
attack with CIFAR10 outperform those of defense-GAN
[33] for fashion MNIST by far (which is also difficult to
compare). The same statement holds for the CIFAR10
results presented for I-defender [47] when detecting an it-
erative `2 attack. I-defender was successful for roughly
90% of the test data.

We expect that our results can be further improved
by proceeding similarly to [14] and investigating statis-
tics obtained from sets of attacked and original images
instead of single samples (the latter is how we proceed
so far). All networks used in our tests have not been
hardened / trained for robustness. We anticipate that
our method might benefit from using hardened networks
as the `p-distance of the first attack might even increase.
Furthermore, works that study the nature of adversarial
attacks found that most attacks are located close to deci-
sion boundaries, see e.g. [43]. In accordance with the find-
ings in [48] this suggests, that our counter attack frame-
work might transfer also to other attacks than the CW
attack. Studies on these aspects as well as an extension
of our mathematical analysis remain future work.

Acknowledgement. H. G., M. P. and M. R. acknowl-
edge interesting discussions with T. Hantschmann.
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