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Abstract

In this work, in order to obtain higher-order schemes for solving forward backward stochastic dif-
ferential equations, we adopt the high-order multi-step method in [W. Zhao, Y. Fu and T. Zhou,
SIAM J. Sci. Comput., 36(4) (2014), pp.A1731-A1751] by combining multi-steps. Two reference
ordinary differential equations containing the conditional expectations and their derivatives are
derived from the backward component. These derivatives are approximated by finite difference
methods with multi-step combinations. The resulting scheme is a semi-discretization in the time
direction involving conditional expectations, which are solved by using the Gaussian quadrature
rules and polynomial interpolations on the spatial grids. Our new proposed multi-step scheme
allows for higher convergence rate up to ninth order, and are more efficient. Finally, we provide
a numerical illustration of the convergence of the proposed method.

Keywords forward backward stochastic differential equations, multi-step scheme, finite dif-
ference method, time-space grid, Gauss-Hermite quadrature rule

1 Introduction

Recently, the forward-backward stochastic differential equation (FBSDE) becomes an important
tool for formulating many problems in various areas including physics and financial mathematics.
We are interested in the numerical approximation of the general FBSDEs

dXt = a(t,Xt, Yt, Zt) dt+ b(t,Xt, Yt, Zt) dWt, X0 = x0, forward component
−dYt = f(t,Xt, Yt, Zt) dt− Zt dWt, backward component
YT = ξ = g(XT )

(1)

on a filtered complete probability space (Ω,F , P ) with the natural filtration (Ft)0≤t≤T , where
a : [0, T ] × Rn × Rm × Rm×d → Rn and b : [0, T ] × Rn × Rm × Rm×d → Rn×d, are drift
and diffusion coefficients in the forward component, respectively; Wt = (W 1

t , · · · ,W d
t )T is

a d-dimensional Brownian motion (all Brownian motions are independent with each other);
f(t,Xt, Yt, Zt) : [0, T ] × Rn × Rm × Rm×d → Rm is the driver function and ξ is the square-
integrable terminal condition. We see that the terminal condition YT depends on final value of
the forward component. Note that a, b and f are all Ft-adapted, and a triple (Xt, Yt, Zt) is called
an L2-adapted solution of (1) if it is Ft-adapted, square integrable, and satisfies{

Xt = X0 +
∫ t
0 a(s,Xs, Ys, Zs) ds+

∫ t
0 b(s,Xs, Ys, Zs) dWs,

Yt = ξ +
∫ T
t f(s,Xs, Ys, Zs) ds−

∫ T
t Zs dWs.

(2)

∗Corresponding author (teng@math.uni-wuppertal.de)
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One obtains decoupled FBSDEs if a and b are independent with Yt and Zt in (1), which become
backward stochastic differential equations (BSDEs) when a = 0 and b = 1.
The existence and uniqueness of solution of the BSDEs assuming the Lipschitz con-
ditions on f, a, b and g are proven by Pardoux and Peng [Pardoux and Peng, 1990,
Pardoux and Peng, 1992]. The uniqueness of solution is extended under more general as-
sumptions for f in [Lepeltier and Martin, 1997], but only in the one-dimensional case. The
existence and uniqueness of solution of FBSDEs have been studied in [Ma et al., 1994,
Peng and Wu, 1999].
In recent years, many numerical methods have been proposed for the BSDEs and FB-
SDEs. We list some of them here: [Bender and Zhang, 2008, Bender and Steiner, 2012,
Bouchard and Touzi, 2004, Crisan and Manolarakis, 2010, Cvitanic and Zhang, 2006,
Delarue and Menozzi, 2006, Douglas et al., 1996, Fu et al., 2017, Gobet et al., 2005,
Lemor et al., 2006, Ma and Zhang, 2005, Ma et al., 2008, Milsetin and Tretyakov, 2006,
Ruijter and Oosterlee, 2015, Teng, 2019, Teng et al., 2020, Zhao et al., 2006, Zhao et al., 2009,
Zhao et al., 2010, Zhao et al., 2012, Zhao et al., 2013, Zhao et al., 2014b, Zhang, 2004,
Zhang et al., 2013], and many others. In this literature, the high-order methods rely on the
high-order approaches for both the forward and backward components, where are clearly
difficult and computationally expensive to achieve.
Moreover, Zhao et al. proposed in [Zhao et al., 2014a] new kinds of high-order multi-step schemes
for FBSDEs, which can keep high-order accuracy while using the Euler method to solve the for-
ward component. This is of great interesting since the use of Euler method can dramatically
simplify the entire computations. However, the convergence rate is restricted to sixth order,
since the stability condition cannot be satisfied for a higher order. For this reason, we adopt
in this work this method by combining some multi-steps to achieve higher rate of convergence.
More precisely, we derive two reference ordinary differential equations (ODEs) which contain
the conditional expectations and their derivatives. We approximate these derivatives using finite
difference methods with the combination of multi-steps for a better stability. The resulting condi-
tional expectations are solved using the Gaussian quadrature rules, whereas the first component,
Xt is solved using the Euler method thanks to the local property of the generator of diffusion
processes. FBSDEs are numerically solved on the time-space grids. Numerical experiments are
presented to demonstrate the improvement in the rate of convergence.
In the next section, we start with preliminaries on FBSDEs and derive in Section 3 the approxi-
mations of derivatives using finite difference method with combined multi-steps. In Section 4, we
derive the reference ODEs, based on which the semi-discrete higher-order multi-step schemes are
introduced for solving decoupled FBSDEs. Section 5 is devoted to the fully discrete higher-order
schemes. In Section 6, these methods are extended to solve a coupled FBSDE. In Section 7, sev-
eral numerical experiments on the decoupled and coupled FBSDEs including two-dimensional
applications are provided to show the higher efficiency and accuracy. Finally, Section 8 concludes
this work.

2 Preliminaries

As mentioned before, throughout the paper we assume that (Ω,F , P ) is a complete, filtered
probability space. A standard d-dimensional Brownian motion Wt with a finite terminal time T
is defined, and the first component, Xt generates the filtration Ft = σ{Xs, 0 ≤ s ≤ t}. And the
usual hypotheses should be satisfied. We denote the set of all Ft-adapted and square integrable
processes in Rd with L2 = L2(0, T ;Rd), and list following notation to be used:

• | · | : the Euclidean norm in R, Rn and Rn×d;

• Fs,xt : σ-algebra generated by the diffusion process {Xr, s ≤ r ≤ t,Xs = x};
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• Es,xt [·] : conditional expectation under Fs,xt , i.e., Es,xt [·|Fs,xt ];

• Ckb : the set of continuous functions with uniformly bounded derivatives up to order k;

• Ck1,k2 : the set of functions with continuous partial derivatives ∂
∂t and ∂

∂x up to k1 and k2,
respectively;

• CL : the set of uniformly Lipschitz continuous function with respect to the spatial variables;

• C
1
2
L : the subset of CL such that its element is Hölder-12 continuous with respect to time,

with uniformly bounded Lipschitz and Hölder constants.

Let Xt be a diffusion process

Xt = x0 +

∫ t

0
a(s,Xs) ds+

∫ t

0
b(s,Xs) dWs (3)

starting at (t0, x0) and t ∈ [t0, T ], which has a unique solution. Note that Exs [Xt] := E
s,x
s [Xt] is

equal to E[Xt|Xs = x] for all s ≤ t with the Markov property of the diffusion process. Given
a measurable function g : [0, T ] × Rn → R, Exs [g(t,Xt)] is a function of (t, s, x) whose partial
derivative with respect to t reads

∂Exs [g(t,Xt)]

∂t
= lim

τ→0+

Exs [g(t+ τ,Xt+τ )]− Exs [g(t,Xt)]

τ

provided that the limit exists and is finite.

Definition 2.1 (Generator). The generator Axt of Xt satisfying (3) on a measurable function
g : [0, T ]× Rn → R is defined by

Axt g(t, x) = lim
h→0+

Ext [g(t+ h,Xt+h)]− g(t, x)

h
, x ∈ Rn.

Theorem 2.1. Let Xt be the diffusion process defined by (3), then it holds

Axt f(t, x) = Lt,xf(t, x) (4)

for f ∈ C1,2 ([0, T ]× Rn) with

Lt,x =
∂

∂t
+
∑
i

ai(t, x)
∂

∂xi
+

1

2

∑
i,j

(bb>)i,j(t, x)
∂2

∂xi∂xj
.

The proof can be simply completed by using the Itô’s lemma and the dominated convergence
theorem.

Remark 2.1. From (4) one can straightforwardly deduce that

AXt
t f(t,Xt) = Lt,Xtf(t,Xt),

which is a stochastic process.

By using the Itô’s lemma and Theorem 2.1 we calculate

dEx0t0 [f(t,Xt)]

dt

∣∣∣∣
t=t0

= lim
t→t+0

Ex0t0 [f(t,Xt)]− g(t0, x0)

t− t0
= Lt,xf(t0, x0) = Axt f(t0, x0),

from which we deduce Theorem (2.2) as follows.
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Theorem 2.2. Assume that f ∈ C1,2 ([0, T ]× Rn) and Ex0t0 [|Lt,Xtf(t,Xt)|] <∞, let t0 < t be a
fixed time, and x0 ∈ Rn be a fixed space point, it holds that

dEx0t0 [f(t,Xt)]

dt
= Ex0t0

[
AXt
t f(t,Xt)

]
, t ≥ t0.

Furthermore, one has the following identity

dEx0t0 [f(t,Xt)]

dt

∣∣∣∣
t=t0

=
dEx0t0 [f(t, X̃t)]

dt

∣∣∣∣∣
t=t0

, (5)

where X̃t is an approximating diffusion process defined by

X̃t = x0 +

∫ t

0
ã ds+

∫ t

0
b̃ dWs

with the smooth functions ãt = ã(t, X̃t; t0, x0) and b̃t = b̃(t, X̃t; t0, x0) of (t, X̃t) with the param-
eter (t0, x0) satisfying

ã(t0, X̃t0 ; t0, x0) = a(t0, x0) and b̃(t0, X̃t0 ; t0, x0) = b(t0, x0)

It has been noted in [Zhao et al., 2014a] that the different approximations of (5) can be obtained
by choosing different ãt’s and b̃t’s. One can simply e.g., choose ã(s, X̃s; t0, x0) = a(t0, x0) and
b̃(s, X̃s; t0, x0) = b(t0, x0) for all s ∈ [t0, t].
For existence, regularity and representation of solutions of decoupled FBSDEs we refer to
[Ma and Zhang, 2005, Peng, 1991, Zhang, 2001]. In the following of this section we will present
some of those. We denote the forward stochastic differential equation (SDE) starting from (s, x)
with Xs,x

t and consider the decoupled FBSDEs{
Xs,x
t = x+

∫ t
s a(r,Xs,x

r ) ds+
∫ t
s b(r,X

s,x
r ) dWr,

Y s,x
t = g(Xs,x

T ) +
∫ T
t f(r,Xs,x

r , Y s,x
r , Zs,xr ) dr −

∫ T
t Zs,xr dWr,

(6)

where t ∈ [s, T ], and the superscript s,x will be omitted when the context is clear.
Throughout the paper, we shall often make use of the following standing assumptions:

1. The functions a, b ∈ C1
b , and assume

sup
0≤t≤T

{|a(t, 0)|+ |b(t, 0)|} ≤ L,

where the common constant L > 0 denotes all the Lipschitz constants.

2. n = d and we assume that b satisfies

b(t, x)b>(t, x) ≥ 1

L
In, ∀(t, x) ∈ [0, T ]× Rn.

3. a, b, f, g ∈ CL, and assume that

sup
0≤t≤T

|f(t, 0, 0, 0)|+ |g(0)| ≤ L,

where L denotes all the Lipschitz constants.

4. a, b, f ∈ C
1
2
L .

4
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Under the above conditions, it is clear that (6) is well-posed; the resulting integrands by taking
conditional expectation on both side of the backward component is continuous with respect to
time; the nonlinear Feynman-Kac formula [Ma and Zhang, 2005, Peng, 1991] can be given as
follows.

Theorem 2.3. Let u ∈ C1,2 ([0, T ]× Rn) be a classical solution to the following PDE

Lt,xu(t, x) + f(t, x, u(t, x),∇u(t, x)b(t, x)) = 0, u(T, x) = g(x),

then Y s,x
t = u(t,Xs,x

t ), Zs,xt = ∇xu(t,Xs,x
t )b(t,Xs,x

t ), ∀t ∈ (s, T ] is the unique solution to (6).

3 Calculation of the weights in the FDM for approximating
derivative

In this section we calculate the weights in the FDM for approximating the function derivatives,
e.g., du(t)

dt . Let u(t) ∈ Ck+1
b , k is a positive integer, and ti = i∆t, i.e., t0 < t1 < · · · < tk.

3.1 Combination of two time points

We consider the Taylor’s expansions of u(ti) and u(ti+1), i = 0, · · · , k
u(ti) =

k∑
j=0

(∆ti)
j

j!

dju

dtj
(t0) +O(∆ti)

k+1

u(ti+1) =

k∑
j=0

(∆ti+1)
j

j!

dju

dtj
(t0) +O(∆ti+1)

k+1,

from which we can deduce

k∑
i=0

αk,iu(ti) =
k∑
j=0

k∑
i=0

αk,i(∆ti)
j

j!

dju

dtj
(t0) +O

(
k∑
i=0

αk,i(∆ti)
k+1

)

k∑
i=0

αk,iu(ti+1) =
k∑
j=0

k∑
i=0

αk,i(∆ti+1)
j

j!

dju

dtj
(t0) +O

(
k∑
i=0

αk,i(∆ti+1)
k+1

)
,

where αk,i, i = 0, 1, · · · , k are real numbers. Clearly, we obtain

k∑
i=0

αk,i(u(ti) + u(ti+1)) =
k∑
j=0

k∑
i=0

αk,i
(
(∆ti)

j + (∆ti+1)
j
)

j!

dju

dtj
(t0)

+O

(
k∑
i=0

αk,i

(
(∆ti)

k+1 + (∆ti+1)
k+1
))

and thus

du

dt
(t0) =

k∑
i=0

αk,i (u(ti) + u(ti+1)) +O

(
k∑
i=0

αk,i

(
(∆ti)

k+1 + (∆ti+1)
k+1
))

(7)
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by choosing
k∑
i=0

αk,i
(
(∆ti)

j + (∆ti+1)
j
)

j!
=

{
1, j = 1,

0, j 6= 1.
(8)

Due to ti = i∆t and ti+1 = (i+1)∆t the conditions in (8) are equivalent to the following system:
2 2 2 . . . 2
1 3 5 . . . k + (k + 1)
1 5 13 . . . k2 + (k + 1)2

...
...

...
...

...
1 1k + 2k 2k + 3k . . . kk + (k + 1)k

×

αk,0∆t
αk,1∆t
αk,2∆t

...
αk,k∆t

 =


0
1
0
...
0


which can be solved for αk,i∆t, i = 0, · · · , k. We refer to the algorithm proposed in
[Fornberg, 1988] for those solutions. We report αk,i∆t for k = 1, 2, · · · , 7 in Table 1, since
the related multi-step schemes proposed in this paper is unstable from k = 8, which will be
explained below. The multi-step schemes (combining two time points) can be constructed by

αk,i∆t i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

k = 1 −1
2

1
2

k = 2 −1 3
2 −1

2

k = 3 −17
12

11
4 −7

4
5
12

k = 4 −7
4

49
12 −15

4
7
4 −1

3

k = 5 −121
60

65
12 −77

12
53
12 −5

3
4
15

k = 6 −67
30

403
60 −29

3
35
4 −59

12
47
30 −13

60

k = 7 −2027
840

319
40 −1613

120
361
24 −269

24
641
120 −59

40
151
840

Table 1: The values of αk,i∆t for combining two time points.

approximating the reference ODEs (see Sec. 4.1) using (7). Therefore, we consider the following
ODE

Y (t)

dt
= f(t, Y (t)), t ∈ [0, T ) (9)

with the known terminal condition Y (T ) for studying stability, see also [Zhao et al., 2014a].
Applying (7) to (9) one obtain the multi-step scheme as

αk,0Y
n +

k∑
j=1

(αk,j−1 + αk,j)Y
n+j + αk,kY

n+k+1 = f(tn, Y
n) (10)

under the uniform time partition 0 = t0 < t1 < · · · < tN = T. (10) is stable if the roots {λk,j}kj=1

of the characteristic equation

P (λ) = αk,0λ
k+1 +

k∑
j=1

(αk,j−1 + αk,j)λ
k+1−j + αk,kλ

0 (11)

satisfies the following root conditions [Butcher, 2008]

• |λk,j | ≤ 1,

• P ′(λk,j) 6= 0 if |λk,j | = 1 (simple roots).

6
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k 2 3 4 5 6 7 8

max (|λk,j |) 0.5000 0.5424 0.6344 0.7438 0.8636 0.9915 1.1264

Table 2: The maximum absolute root of (11) except the simple roots

With the αk,j in Tabel 1, 1 is the simple root of the latter characteristic function for each k,
except which we list the maximum absolute values of the roots for k = 2, · · · , 8 in Table 2, from
which we see that the multi-step scheme (10) is unstable for k ≥ 8. However, compared to the
multi-step scheme proposed in [Zhao et al., 2014a](unstable ≥ 7), stability for k = 7 has been
achieved, i.e., 1-order higher convergence rate is obtained. Combination of more time points can
be done similarly, and provide other multi-step schemes, which have different instabilities. In
our investigation we find that the multi-step scheme resulted by combining four time points are
stable for k ≤ 9, which is the best. Thus, we show its detailed derivation in next subsection and
will consider it in the numerical experiments.

3.2 Combination of four time points

Similarly but slightly different to the multi-step scheme in Section 3.1, we need to consider the
Taylor’s expansions of u(ti), u(ti+1), u(ti+2) and u(ti+3), i = 0, · · · , k,

u(ti) =

k∑
j=0

(∆ti)
j

j!

dju

dtj
(t0) +O(∆ti)

k+1,

u(ti+1) =
k∑
j=0

(∆ti+1)
j

j!

dju

dtj
(t0) +O(∆ti+1)

k+1,

u(ti+2) =
k∑
j=0

(∆ti+2)
j

j!

dju

dtj
(t0) +O(∆ti+2)

k+1,

u(ti+3) =
k∑
j=0

(∆ti+3)
j

j!

dju

dtj
(t0) +O(∆ti+3)

k+1,

from which we can deduce

k∑
i=0

αk,iu(ti) =

k∑
j=0

k∑
i=0

αk,i(∆ti)
j

j!

dju

dtj
(t0) +O

(
k∑
i=0

αk,i(∆ti)
k+1

)
,

k∑
i=0

αk,iu(ti+1) =
k∑
j=0

k∑
i=0

αk,i(∆ti+1)
j

j!

dju

dtj
(t0) +O

(
k∑
i=0

αk,i(∆ti+1)
k+1

)
,

k∑
i=0

αk,iu(ti+2) =
k∑
j=0

k∑
i=0

αk,i(∆ti+2)
j

j!

dju

dtj
(t0) +O

(
k∑
i=0

αk,i(∆ti+2)
k+1

)
,

k∑
i=0

αk,iu(ti+3) =

k∑
j=0

k∑
i=0

αk,i(∆ti+3)
j

j!

dju

dtj
(t0) +O

(
k∑
i=0

αk,i(∆ti+3)
k+1

)
,

7
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where αk,i, i = 0, 1, · · · , k are real numbers as well. Straightforwardly, we obtain

k∑
i=0

αk,i(u(ti) + u(ti+1) + u(ti+2) + u(ti+3)) =

k∑
j=0

k∑
i=0

αk,i
(
(∆ti)

j + (∆ti+1)
j + (∆ti+2)

j + (∆ti+3)
j
)

j!

dju

dtj
(t0)

+O

(
k∑
i=0

αk,i

(
(∆ti)

k+1 + (∆ti+1)
k+1 + (∆ti+2)

k+1 + (∆ti+3)
k+1
))

︸ ︷︷ ︸
:=ε

(12)

and thus

du

dt
(t0) =

k∑
i=0

αk,i (u(ti) + u(ti+1) + u(ti+2) + u(ti+3)) + ε (13)

by choosing

k∑
i=0

αk,i
(
(∆ti)

j + (∆ti+1)
j + (∆ti+2)

j + (∆ti+3)
j
)

j!
=

{
1, j = 1,

0, j 6= 1

which are equivalent to the following system:
4 4 . . . 4
6 10 . . . k + (k + 1) + (k + 2) + (k + 3)
14 30 . . . k2 + (k + 1)2 + (k + 2)2 + (k + 3)2

...
...

...
...

1k + 2k + 3k 1k + 2k + 3k + 4k . . . kk + (k + 1)k + (k + 2)k + (k + 3)k

×

αk,0∆t
αk,1∆t
αk,2∆t

...
αk,k∆t

 =


0
1
0
...
0

 .
In Table 3 we report solutions of the latter system for k = 1, · · · , 9. Applying (13) to (9) one

αk,i∆t i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

k = 1 −1
4

1
4

k = 2 −3
4

5
4 −1

2

k = 3 −4
3 3 −9

4
7
12

k = 4 −11
6 5 −21

4
31
12 −1

2

k = 5 −87
40

161
24 −26

3 6 −53
24

41
120

k = 6 −19
8

949
120 −35

3 10 −125
24

37
24 −1

5

k = 7 −419
168

1049
120 −85

6
85
6 −75

8
97
24 −31

30
5
42

k = 8 −145
56

2661
280 −101

6
39
2 −385

24
75
8 −37

10
37
42 - 2

21

k = 9 −6781
2520

2917
280 −4303

210
841
30 −3461

120
887
40 −367

30
953
210 -106105

32
315

Table 3: The values of αk,i∆t for combining four time points.

obtain the multi-step scheme as

αk,0Y
n + (αk,0 + αk,1)Y

n+1 + (αk,0 + αk,1 + αk,2)Y
n+2

+
k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)Y
n+j + (αk,k−2 + αk,k−1 + αk,k)Y

n+k+1

+ (αk,k−1 + αk,k)Y
n+k+2 + αk,kY

n+k+3 = f(tn, Y
n)

(14)

8
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whose characteristic equation reads

αk,0λ
k+3 + (αk,0 + αk,1)λ

k+2 + (αk,0 + αk,1 + αk,2)λ
k+1

+

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)λ
k+3−j

+ (αk,k−2 + αk,k−1 + αk,k)λ
2 + (αk,k−1 + αk,k)λ

1 + αk,kλ
0 = 0.

(15)

With the αk,j in Table 3, 1 is the simple root of the latter characteristic function for each k. The
maximum absolute values of the roots for k = 2, · · · , 10 expect the simple roots are listed in
Table 4, also the multi-step scheme (14) is stable for k ≤ 9. We remark that the stability cannot

k 2 3 4 5 6 7 8 9 10

max (|λk,j |) 0.6667 0.6614 0.6875 0.7104 0.7224 0.7376 0.8134 0.9931 1.2286

Table 4: The maximum absolute root of (15) except the simple roots

be guaranteed for k > 9 by combining more time points, e.g., the multi-step scheme constructed
by combining five time points is stable for k ≤ 8.

4 The semi-discrete multi-step scheme for decoupled FBSDEs

Following the idea in [Zhao et al., 2014a] we derive the semi-discrete scheme for (1) in the
decoupled case. We consider the time interval [0, T ] with the following partition

0 = t0 < t1 < t2 < · · · tNT
= T.

We denote tn+k − tn by ∆tn,k and Wtn+k
−Wtn by ∆Wn,k, i.e., ∆ttn,t = t − tn and ∆Wtn,t =

Wt −Wtn for t ≥ tn.

4.1 Two reference ODEs

Let (Xt, Yt, Zt) be the solution of the decoupled FBSDEs (1). By taking conditional expectation
Extn [·] on both sides of the backward component in (1) one obtains the integral equation

Extn [Yt] = Extn [ξ] +

∫ T

t
Extn [f(s,Xs, Ys, Zs)] ds, ∀t ∈ [tn, T ].

As explained in Sec. 2, the integrand in the latter integral equation is continuous with respect
to the time. By taking the derivative with respect to t on both sides one thus obtain the first
reference ODE:

dExtn [Yt]

dt
= −Extn [f(t,Xt, Yt, Zt)] , ∀t ∈ [tn, T ]. (16)

Furthermore, we have

Ytn = Yt +

∫ t

tn

f(s,Xs, Ys, Zs) ds−
∫ t

tn

Zs dWs, t ∈ [tn, T ].

By multiplying both sides of the latter equation by ∆W>tn,t and again taking the conditional
expectation Extn [·] on its both sides we obtain

0 = Extn

[
Yt∆W

>
tn,t

]
+

∫ t

tn

Extn

[
f(s,Xs, Ys, Zs)∆W

>
tn,s

]
ds−

∫ t

tn

Extn [Zs] ds, t ∈ [tn, T ].

9
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Similarly, we obtain the second reference ODE:

dExtn
[
Yt∆W

>
tn,t

]
dt

= −Extn
[
f(t,Xt, Yt, Zt)∆W

>
tn,t

]
+ Extn [Zt] , t ∈ [tn, T ]. (17)

by taking the derivative with respect to t ∈ [tn, T ].

4.2 The semi-discrete scheme

Let ā(t, x) and b̄(t, x) be smooth functions for t ∈ [tn, T ] and x ∈ Rn satisfying b̄(t, x) = b(t, x)
and b̄(t, x) = b(t, x), and thus define the diffusion process

X̄tn,x
t = x+

∫ t

tn

b̄(s, X̄tn,x
s ) ds+

∫ t

tn

b̄(s, X̄tn,x
s ) dWs. (18)

Let (Xtn,x
t , Y tn,x

t , Ztn,xt ) be the solution of the decoupled FBSDEs, i.e., Y tn,x
t and Ztn,xt can be

represented by u(t,Xtn,x
t ) and ∇xu(t,Xtn,x

t )b(s,Xtn,x
s ), respectively, see Theorem 2.3.

Therefore, we set Ȳ tn,x
t = u(t, X̄tn,x

t ) and Z̄tn,xt = ∇xu(t, X̄tn,x
t )b(s, X̄tn,x

s ) to have

dExtn [Y tn,x
t ]

dt

∣∣∣∣∣
t=tn

=
dExtn [Ȳ tn,x

t ]

dt

∣∣∣∣∣
t=tn

and
dExtn [Y tn,x

t ∆W>tn,t]

dt

∣∣∣∣∣
t=tn

=
dExtn [Ȳ tn,x

t ∆W>tn,t]

dt

∣∣∣∣∣
t=tn

by Theorem 2.2. Then, we apply (13) to terms on the right hand side of both the latter equations
to obtain

dExtn [Y tn,x
t ]

dt

∣∣∣∣∣
t=tn

=
k∑
i=0

αk,iE
x
tn

[
Ȳ tn,x
tn+i

+ Ȳ tn,x
tn+i+1

+ Ȳ tn,x
tn+i+2

+ Ȳ tn,x
tn+i+3

]
+ R̄ky,n

= αk,0E
x
tn

[
Ȳ tn,x
tn

]
+ (αk,0 + αk,1)E

x
tn

[
Ȳ tn,x
tn+1

]
+ (αk,0 + αk,1 + αk,2)E

x
tn

[
Ȳ tn,x
tn+2

]
+

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x
tn

[
Ȳ tn,x
tn+j

]
+ (αk,k−2 + αk,k−1 + αk,k)E

x
tn

[
Ȳ tn,x
tn+k+1

]
+ (αk,k−1 + αk,k)E

x
tn

[
Ȳ tn,x
tn+k+2

]
+ αk,kE

x
tn

[
Ȳ tn,x
tn+k+3

]
+ R̄ky,n

(19)

and

dExtn [Y tn,x
t ∆W>tn,t]

dt

∣∣∣∣∣
t=tn

=

k∑
i=1

αk,iE
x
tn

[
Ȳ tn,x
tn+i

∆W>n,i + Ȳ tn,x
tn+i+1

∆W>n,i+1

+Ȳ tn,x
tn+i+2

∆W>n,i+2 + Ȳ tn,x
tn+i+3

∆W>n,i+3

]
+ R̄kz,n

= (αk,0 + αk,1)E
x
tn

[
Ȳ tn,x
tn+1

∆W>n,1

]
+ (αk,0 + αk,1 + αk,2)E

x
tn

[
Ȳ tn,x
tn+2

∆W>n,2

]
+

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x
tn

[
Ȳ tn,x
tn+j

∆W>n,j

]
+ (αk,k−2 + αk,k−1 + αk,k)E

x
tn

[
Ȳ tn,x
tn+k+1

∆W>n,k+1

]
+ (αk,k−1 + αk,k)E

x
tn

[
Ȳ tn,x
tn+k+2

∆W>n,k+2

]
+ αk,kE

x
tn

[
Ȳ tn,x
tn+k+3

∆W>n,k+3

]
+ R̄kz,n

(20)

10
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where αk,i are given in Table 3, R̄ky,n and R̄kz,n are truncation errors. We insert respectively (19)
and (20) into (16) and (17), and obtain

αk,0E
x
tn

[
Ȳ tn,x
tn

]
+ (αk,0 + αk,1)E

x
tn

[
Ȳ tn,x
tn+1

]
+ (αk,0 + αk,1 + αk,2)E

x
tn

[
Ȳ tn,x
tn+2

]
+

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x
tn

[
Ȳ tn,x
tn+j

]
+ (αk,k−2 + αk,k−1 + αk,k)E

x
tn

[
Ȳ tn,x
tn+k+1

]
+ (αk,k−1 + αk,k)E

x
tn

[
Ȳ tn,x
tn+k+2

]
+ αk,kE

x
tn

[
Ȳ tn,x
tn+k+3

]
= −f(tn, x, Ytn , Ztn) +Rky,n

(21)

and

(αk,0 + αk,1)E
x
tn

[
Ȳ tn,x
tn+1

∆W>n,1

]
+ (αk,0 + αk,1 + αk,2)E

x
tn

[
Ȳ tn,x
tn+2

∆W>n,2

]
+

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x
tn

[
Ȳ tn,x
tn+j

∆W>n,j

]
+ (αk,k−2 + αk,k−1 + αk,k)E

x
tn

[
Ȳ tn,x
tn+k+1

∆W>n,k+1

]
+ (αk,k−1 + αk,k)E

x
tn

[
Ȳ tn,x
tn+k+2

∆W>n,k+2

]
+ αk,kE

x
tn

[
Ȳ tn,x
tn+k+3

∆W>n,k+3

]
= Ztn +Rkz,n

(22)

with Rky,n = −R̄ky,n and Rkz,n = −R̄kz,n.
We denote the numerical approximations of Yt and Zt at tn by Y n and Zn, respectively. Further-
more, for ā and b̄ in (18) we choose ā(t, X̄tn,x

t ) = a(tn, x) and b̄(t, X̄tn,x
t ) = b(tn, x) for t ∈ [tn, T ].

Finally, from (21) and (22), the semi-discrete scheme can be obtained as

Scheme 1. Assume that Y NT−i and ZNT−i are known for i = 0, 1, · · · , k + 2. For n = NT −
k − 3, · · · , 0, Xn,j , Y n = Y n(Xn) and Zn = Zn(Xn) can be solved by

Xn,j = Xn + a(tn, X
n)∆tn,j + b(tn, X

n)∆Wn,j , j = 1, · · · , k + 3, (23)

Zn = (αk,0 + αk,1)E
Xn

tn

[
Ȳ n+1∆W>n,1

]
+ (αk,0 + αk,1 + αk,2)E

Xn

tn

[
Ȳ n+2∆W>n,2

]
+

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
Xn

tn

[
Ȳ n+j∆W>n,j

]
+ (αk,k−2 + αk,k−1 + αk,k)E

Xn

tn

[
Ȳ n+k+1∆W>n,k+1

]
+ (αk,k−1 + αk,k)E

Xn

tn

[
Ȳ n+k+2∆W>n,k+2

]
+ αk,kE

Xn

tn

[
Ȳ n+k+3∆W>n,k+3

]
,

(24)

αk,0Y
n = −(αk,0 + αk,1)E

Xn

tn

[
Ȳ n+1

]
− (αk,0 + αk,1 + αk,2)E

Xn

tn

[
Ȳ n+2

]
−

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
Xn

tn

[
Ȳ n+j

]
− (αk,k−2 + αk,k−1 + αk,k)E

Xn

tn

[
Ȳ n+k+1

]
− (αk,k−1 + αk,k)E

Xn

tn

[
Ȳ n+k+2

]
− αk,kEX

n

tn

[
Ȳ n+k+3

]
− f(tn, X

n, Y n, Zn).

(25)

Remark 4.1. 1. Ȳ n+j is the value of Y n+j at the space point Xn,j for j = 1, · · · , k + 3.

2. The latter implicit equation can be solved by using iterative methods, e.g., Newton’s method
or Picard scheme.
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3. By Theorem 2.2 and (12) it holds [Butcher, 2008]

R̄ky,n = O(∆t)k and R̄kz,n = O(∆t)k

provided that Lk+4
t,x u(t, x) is bounded, where R̄ky,n and R̄kz,n are defined in (19) and (20),

respectively.

4. Similar to the scheme proposed in [Zhao et al., 2014a], one can obtain high-order accurate
numerical solutions for (24) and (25), although the Euler scheme is used for (23). This is
the main advantages because the usage of the Euler scheme reduces dramatically the total
computational complexity, and one is only interested in the solution of (24) and (25) in
many applications.

5 The fully discrete multi-step scheme for decoupled FBSDEs

To solve (Xn, Y n, Zn) numerically, next we consider the space discretization. We define firstly
the partition of the real space as Rnh = {xi|xi ∈ Rn} with

hn = max
x∈Rn

dist(x,Rnh),

where dist(x,Rnh) is the distance from x to Rxh. Furthermore, for each x we define the neighbor
grid set (local subset) Rnh,x satisfying

1. dist(x,Rnh) < dist(x,Rnh)/ Rnh,x,

2. the number of elements in Rnh,x is finite and uniformly bounded.

Based on the space discretization, we can solve Y n(x) and Zn(x) for each grid point x ∈ Rnh,
n = Nt − k − 3, · · · , 0, by

Zn = (αk,0 + αk,1)E
x
tn

[
Ȳ n+1∆W>n,1

]
+ (αk,0 + αk,1 + αk,2)E

x
tn

[
Ȳ n+2∆W>n,2

]
+

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x
tn

[
Ȳ n+j∆W>n,j

]
+ (αk,k−2 + αk,k−1 + αk,k)E

x
tn

[
Ȳ n+k+1∆W>n,k+1

]
+ (αk,k−1 + αk,k)E

x
tn

[
Ȳ n+k+2∆W>n,k+2

]
+ αk,kE

x
tn

[
Ȳ n+k+3∆W>n,k+3

]
,

(26)

αk,0Y
n = −(αk,0 + αk,1)E

x
tn

[
Ȳ n+1

]
− (αk,0 + αk,1 + αk,2)E

x
tn

[
Ȳ n+2

]
−

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x
tn

[
Ȳ n+j

]
− (αk,k−2 + αk,k−1 + αk,k)E

x
tn

[
Ȳ n+k+1

]
− (αk,k−1 + αk,k)E

x
tn

[
Ȳ n+k+2

]
− αk,kExtn

[
Ȳ n+k+3

]
− f(tn, x, Y

n, Zn).

(27)

Note that Ȳ n+j is the value of Y n+j at the space point Xn,j generated by

Xn,j = x+ a(tn, x)∆tn,j + b(tn, x)∆Wn,j , j = 1, · · · , k + 3.

However, Xn,j does not belong to Rn+jh . This is to say that the value of Y n+j at Xn,j needs to be

approximated based on the values of Y n+j on Rn+jh , this can be done using a local interpolation.
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By LInh,XF we denote the interpolated value of the function F at space point X ∈ Rn by using
the values of F only in the neighbor grid set, namely Rnh,X . Including the interpolations, (26)
and (27) become

Zn = (αk,0 + αk,1)E
x
tn

[
LIn+1

h,Xn,jY
n+1∆W>n,1

]
+ (αk,0 + αk,1 + αk,2)E

x
tn

[
LIn+2

h,Xn,jY
n+2∆W>n,2

]
+

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x
tn

[
LIn+j

h,Xn,jY
n+j∆W>n,j

]
+ (αk,k−2 + αk,k−1 + αk,k)E

x
tn

[
LIn+k+1

h,Xn,j Y
n+k+1

∆W>n,k+1

]
+ (αk,k−1 + αk,k)E

x
tn

[
LIn+k+2

h,Xn,j Y
n+k+2∆W>n,k+2

]
+ αk,kE

x
tn

[
LIn+k+3

h,Xn,j Y
n+k+3

∆W>n,k+3

]
+Rk,LIhz,n ,

(28)

αk,0Y
n =− (αk,0 + αk,1)E

x
tn

[
LIn+1

h,Xn,jY
n+1
]
− (αk,0 + αk,1 + αk,2)E

x
tn

[
LIn+2

h,Xn,jY
n+2
]

−
k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x
tn

[
LIn+j

h,Xn,jY
n+j
]

− (αk,k−2 + αk,k−1 + αk,k)E
x
tn

[
LIn+k+1

h,Xn,j Y
n+k+1

]
− (αk,k−1 + αk,k)E

x
tn

[
LIn+k+2

h,Xn,j Y
n+k+2

]
− αk,kExtn

[
LIn+k+3

h,Xn,j Y
n+k+3

]
− f(tn, x, Y

n, Zn) +Rk,LIhy,n .

(29)

Furthermore, to approximate the conditional expectations in (28) and (29) we employ the Gauss-
Hermite quadrature rule which is an extension of the Gaussian quadrature method for approxi-
mating the value of integrals of the form

∫∞
−∞ exp(−x2)g(x) dx by

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x) exp(−x>x) dx ≈
L∑

j=1

wjg(aj), (30)

where x = (x1, · · · , xn)>, x>x =
n∑
j=1

x2j , L is the number of used sample points, j =

(j1, j2, · · · , jn) ,
L∑

j=1

=

L,··· ,L∑
j1=1,··· ,jn=1

, aj = (aj1 , · · · , ajn) and ωj =
n∏
i=1

ωji , {aji}Lji=1 are the

roots of the Hermite polynomial HL(x) of degree L and {ωji}Lji=1 are corresponding weights
[Abramowitz and Stegun, 1972]. For a standard n-dimensional standard normal distributed ran-
dom variable X we know that

E [g(X)] =
1

(2π)
d
2

∫ ∞
−∞

g(x) exp

(
−x>x

2

)
dx

=
1

(π)
d
2

∫ ∞
−∞

g(
√

2x) exp
(
−x>x

)
dx

30
=

1

(π)
d
2

L∑
j=1

ωjg(aj) +RGHL ,

13
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where RGHL is the truncation error of the Gauss-Hermite quadrature rule for g.

Now we consider the conditional expectations of the form Extn

[
LIn+j

h,Xn,jY
n+j∆W>n,j

]
and

Extn

[
LIn+j

h,Xn,jY
n+j
]

in (28) and (29). We know that LIn+j
h,Xn,jY

n+j is the interpolated value of

Ȳ n+j , which is a function of Xn,j and can be represented by (Theorem 2.3)

Ȳ n+j = Y n+j
(
Xn+j

)
= Y n+j

(
Xn+j + a(tn, X

n)∆tn,j + b(tn, X
n)∆Wn,j

)
,

with ∆Wn,j ∼
√

∆tn,jN(0, In). Straightforwardly, we can approximate those conditional expec-
tations as

E
x,h
tn

[
Ȳ n+j

]
=

1

π
d
2

L∑
j=1

ωjY
n+j

(
x + a(tn,x)∆tn,j + b(tn,x)∆tn,j

√
2∆tn,jaj

)
+RGHL (Y )

and

E
x,h
tn

[
Ȳ n+j∆W>tn,j

]
=

1

π
d
2

L∑
j=1

ωjY
n+j

(
x + a(tn,x)∆tn,j + b(tn,x)∆tn,j

√
2∆tn,jaj

)
aj+R

GH
L (YW ),

where Ex,h
tn [·] denotes the approximation of Ex

tn [·] . Finally, by inserting these approximations
into (28) and (29) we obtain

Zn = (αk,0 + αk,1)E
x,h
tn

[
LIn+1

h,Xn,jY
n+1∆W>n,1

]
+ (αk,0 + αk,1 + αk,2)E

x,h
tn

[
LIn+2

h,Xn,jY
n+2∆W>n,2

]
+

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x,h
tn

[
LIn+j

h,Xn,jY
n+j∆W>n,j

]
+ (αk,k−2 + αk,k−1 + αk,k)E

x,h
tn

[
LIn+k+1

h,Xn,j Y
n+k+1

∆W>n,k+1

]
+ (αk,k−1 + αk,k)E

x,h
tn

[
LIn+k+2

h,Xn,j Y
n+k+2∆W>n,k+2

]
+ αk,kE

x,h
tn

[
LIn+k+3

h,Xn,j Y
n+k+3

∆W>n,k+3

]
+Rk,LIhz,n +Rk,Ez,n ,

(31)

αk,0Y
n =− (αk,0 + αk,1)E

x,h
tn

[
LIn+1

h,Xn,jY
n+1
]
− (αk,0 + αk,1 + αk,2)E

x,h
tn

[
LIn+2

h,Xn,jY
n+2
]

−
k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x,h
tn

[
LIn+j

h,Xn,jY
n+j
]

− (αk,k−2 + αk,k−1 + αk,k)E
x,h
tn

[
LIn+k+1

h,Xn,j Y
n+k+1

]
− (αk,k−1 + αk,k)E

x,h
tn

[
LIn+k+2

h,Xn,j Y
n+k+2

]
− αk,kEx,htn

[
LIn+k+3

h,Xn,j Y
n+k+3

]
− f(tn, x, Y

n, Zn) +Rk,LIhy,n +Rk,Ey,n .

(32)

Remark 5.1. 1. The estimate of Rk,Ey,n or Rk,Ez,n reads [Abramowitz and Stegun, 1972,
Shen et al., 2011, Zhao et al., 2014b]

O
(

L!

2L(2L)!

)
.

2. For the local interpolation errors Rk,LIhy,n or Rk,LIhz,n the following estimate holds

O
(
hr+1

)
(33)
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when using r-degree polynomial interpolation in k-step scheme, and provided that a, b, f
and g are sufficiently smooth such that Lk+4

t,x u(t, x) is bounded and u(t, ·) ∈ Cr+1
b , see

[Abramowitz and Stegun, 1972, Burden and Faires, 2001, Butcher, 2008, Zhao et al., 2014b].
3. To balance the time discretization error Rky,n = O(∆t)k and Rkz,n = O(∆t)k, one needs to
control well both the interpolation and integration error mentioned in last two points.
4. For a k-step scheme we need to know the support values of Y NT−i and ZNT−i, i = 0, · · · , k+2.
One can use the following three ways to deal with this problem: before running the multi-
step scheme, we choose a quite smaller ∆t and run one-step scheme until NT − k − 2; Al-
ternatively, one can prepare these initial values “iteratively”, namely we compute Y NT−1 and
ZNT−1 based on Y NT and ZNT with k = 1, and the compute Y NT−2 and ZNT−2 based on
Y NT , Y NT−1, ZNT , ZNT−1 with k = 2 and so on; Finally, one can use the Runge-Kutta scheme
proposed in [Crisan and Chassagneux, 2014] with small ∆t to initialize our proposed multi-step
scheme.

By removing all the error terms, from (31) and (32) we obtain our fully discrete scheme as
follows.

Scheme 2. Assume that Y NT−i and ZNT−i on RNT−i
h are known for i = 0, 1, · · · , k + 2. For

n = NT − k − 3, · · · , 0 and x ∈ Rnh, Y n = Y n(x) and Zn = Zn(x) can be solved by

Xn,j = x+ a(tn, x)∆tn,j + b(tn, x)∆Wn,j , j = 1, · · · , k + 3,

Zn = (αk,0 + αk,1)E
x,h
tn

[
LIn+1

h,Xn,jY
n+1∆W>n,1

]
+ (αk,0 + αk,1 + αk,2)E

x,h
tn

[
LIn+2

h,Xn,jY
n+2∆W>n,2

]
+

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x,h
tn

[
LIn+j

h,Xn,jY
n+j∆W>n,j

]
+ (αk,k−2 + αk,k−1 + αk,k)E

x,h
tn

[
LIn+k+1

h,Xn,j Y
n+k+1

∆W>n,k+1

]
+ (αk,k−1 + αk,k)E

x,h
tn

[
LIn+k+2

h,Xn,j Y
n+k+2∆W>n,k+2

]
+ αk,kE

x,h
tn

[
LIn+k+3

h,Xn,j Y
n+k+3

∆W>n,k+3

]
,

αk,0Y
n =− (αk,0 + αk,1)E

x,h
tn

[
LIn+1

h,Xn,jY
n+1
]
− (αk,0 + αk,1 + αk,2)E

x,h
tn

[
LIn+2

h,Xn,jY
n+2
]

−
k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x,h
tn

[
LIn+j

h,Xn,jY
n+j
]

− (αk,k−2 + αk,k−1 + αk,k)E
x,h
tn

[
LIn+k+1

h,Xn,j Y
n+k+1

]
− (αk,k−1 + αk,k)E

x,h
tn

[
LIn+k+2

h,Xn,j Y
n+k+2

]
− αk,kEx,htn

[
LIn+k+3

h,Xn,j Y
n+k+3

]
− f(tn, x, Y

n, Zn).

6 Numerical schemes for coupled FBSDEs

The authors in [Zhao et al., 2014b] extended their scheme proposed for solving decoupled FBS-
DEs to the one which can solve fully coupled FBSDEs. Similarly, our Scheme 2 can be extended
to solve (1) in a fully coupled case.

Scheme 3. Assume that Y NT−i and ZNT−i on RNT−i
h are known for i = 0, 1, · · · , k + 2. For

n = NT − k − 3, · · · , 0 and x ∈ Rnh, Y n = Y n(x) and Zn = Zn(x) can be solved by
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1. set Y n,0 = Y n+1(x) and Zn,0 = Zn+1(x), and set l = 0;
2. for l = 0, 1, · · · , solve Y n,l+1 = Y n,l+1(x) and Zn,l+1 = Zn,l+1(x) by

Xn,j = x+ a(tn, x, Y
n,l(x), Zn,l(x))∆tn,j + b(tn, x, Y

n,l(x), Zn,l(x))∆Wn,j , j = 1, · · · , k + 3,

Zn = (αk,0 + αk,1)E
x,h
tn

[
LIn+1

h,Xn,jY
n+1∆W>n,1

]
+ (αk,0 + αk,1 + αk,2)E

x,h
tn

[
LIn+2

h,Xn,jY
n+2∆W>n,2

]
+

k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x,h
tn

[
LIn+j

h,Xn,jY
n+j∆W>n,j

]
+ (αk,k−2 + αk,k−1 + αk,k)E

x,h
tn

[
LIn+k+1

h,Xn,j Y
n+k+1

∆W>n,k+1

]
+ (αk,k−1 + αk,k)E

x,h
tn

[
LIn+k+2

h,Xn,j Y
n+k+2∆W>n,k+2

]
+ αk,kE

x,h
tn

[
LIn+k+3

h,Xn,j Y
n+k+3

∆W>n,k+3

]
,

αk,0Y
n = −(αk,0 + αk,1)E

x,h
tn

[
LIn+1

h,Xn,jY
n+1
]
− (αk,0 + αk,1 + αk,2)E

x,h
tn

[
LIn+2

h,Xn,jY
n+2
]

−
k∑
j=3

(αk,j−3 + αk,j−2 + αk,j−1 + αk,j)E
x,h
tn

[
LIn+j

h,Xn,jY
n+j
]

− (αk,k−2 + αk,k−1 + αk,k)E
x,h
tn

[
LIn+k+1

h,Xn,j Y
n+k+1

]
− (αk,k−1 + αk,k)E

x,h
tn

[
LIn+k+2

h,Xn,j Y
n+k+2

]
− αk,kEx,htn

[
LIn+k+3

h,Xn,j Y
n+k+3

]
− f(tn, x, Y

n, Zn).

until max
(∣∣Y n,l+1 − Y n,l

∣∣ , ∣∣Zn,l+1 − Zn,l
∣∣) < ε0,

3. let Y n = Y n,l+1 and Zn = Zn,l+1.

Remark 6.1. 1. Scheme 3 coincides with Scheme 2 if a and b do not depend on Y and Z.
2. We only assume that the coupled FBSDEs are uniquely solvable, the lacking analysis will be
the task of future work.

7 Numerical experiments

In this section we use some numerical examples to show that our Schemes 2 and 3 can reach
ninth-order convergence rate for solving FBSDEs. The uniform partitions in both time and
space will be used, that is, the time interval [0, T ] will be uniformly divided into NT parts with
∆t = T

NT
such that tn = n∆t, n = 0, 1, · · · , NT ; the space partition is Rnh = Rh for all n with

Rh = R1,h ×R2,h × · · ·Rn,h,

where Rj,h is the partition of R

Rj,h =
{
xji : xji = ih, i = 0,±1, · · · ,±∞

}
, j = 1, 2, · · · , n.

In our numerical experiments we choose the local Lagrange interpolation for LInh,x based
on the set of some neighbor grids near x, i.e., Rh,x ⊂ Rh such that (33) holds. Following
[Zhao et al., 2014a], we set sufficiently many Gauss-Hermite quadrature points such that the
quadrature error could be negligible. Note that the truncation error is defined in (12), in or-
der to thus balance the time and space truncation error in our numerical examples, we force
hr+1 = (∆t)k+1, where r is the degree of the Lagrangian interpolation polynomials. For example,

one can firstly specify a value of r, and then adjust the value of h such that h = ∆t
k+1
r+1 . For the

numerical results in this paper, r is set to be a value from the set {10, 11, · · · , 21} to control
the errors. Furthermore, we will consider k from 3 such that at least one combination of four
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αk,i s is included, but until k = 9 due to the stability condition, see Scheme 2 and 3. Finally, CR
and RT are used to denote the convergence rate and the running time in second, respectively.
For the comparison purpose, we will directly take examples considered in [Zhao et al., 2014a].
Numerical experiment were performed in MATLAB with an Intel(R) Core(TM) i5-8350 CPU @
1.70 GHz and 15 G RAM.

Example 1 The first example reads
dXt = 1

1+2 exp(t+Xt)
dt+ exp(t+Xt)

1+exp(t+Xt)
dWt, X0 = 1,

−dYt =
(
− 2Yt

1+2 exp(t+Xt)
− 1

2

(
YtZt

1+exp(t+Xt)
− Y 2

t Zt

))
dt− Zt dWt,

YT = exp(T+XT )
1+exp(T+XT ) ,

with the analytic solution {
Yt = exp(t+Xt)

1+exp(t+Xt)
,

Zt = (exp(t+Xt))2

(1+exp(t+Xt))3
.

Obviously, in this example, the generator a and b does not depend on Yt and Zt, i.e., a decoupled
FBSDE. All the convergence rates, running time and absolute errors are reported in Table 5.
In the proposed scheme, k + 3 points are needed for the iterations, i.e., one need 12 points
when k = 9. From the other side we can not choose a large value for NT due to the accuracy
of double precision. Therefore, to show the convergence rate up to ninth order we consider
NT = {16, 20, 24, 28, 32} in this example. From Table 5 we see that the quite high accuracy of

Scheme 2 NT = 16 NT = 20 NT = 24 NT = 28 NT = 32 CR

k = 3
|Y 0 − Y0| 4.717e-06 2.613e-06 1.569e-06 1.015e-06 6.905e-07 2.78
|Z0 − Z0| 2.547e-05 1.552e-05 1.009e-05 6.889e-06 4.903e-06 2.39

RT 0.37 0.49 0.65 0.91 1.19

k = 4
|Y 0 − Y0| 6.871e-07 3.152e-07 1.629e-07 9.240e-08 5.618e-08 3.61
|Z0 − Z0| 6.879e-06 3.097e-06 1.595e-06 9.027e-07 5.488e-07 3.65

RT 0.39 0.61 0.85 1.12 1.41

k = 5
|Y 0 − Y0| 5.623e-08 2.077e-08 9.011e-09 4.355e-09 2.343e-09 4.59
|Z0 − Z0| 6.522e-07 2.427e-07 1.047e-07 5.016e-08 2.704e-08 4.60

RT 0.46 0.69 0.95 1.25 1.58

k = 6
|Y 0 − Y0| 3.549e-09 1.073e-09 3.929e-10 1.623e-10 7.549e-11 5.56
|Z0 − Z0| 5.658e-08 1.632e-08 6.000e-09 2.519e-09 1.168e-09 5.59

RT 0.52 0.85 1.26 1.74 2.10

k = 7
|Y 0 − Y0| 2.156e-10 4.809e-11 1.457e-11 5.075e-12 2.019e-12 6.73
|Z0 − Z0| 6.349e-09 1.556e-09 4.796e-10 1.749e-10 7.147e-11 6.47

RT 0.60 1.10 1.65 2.15 2.79

k = 8
|Y 0 − Y0| 6.025e-11 8.573e-12 3.292e-12 7.027e-13 4.868e-13 7.10
|Z0 − Z0| 1.029e-09 1.934e-10 5.811e-11 1.459e-11 6.696e-12 7.35

RT 0.62 1.17 1.73 2.37 3.11

k = 9
|Y 0 − Y0| 2.315e-11 4.131e-12 9.073e-13 2.169e-13 2.398e-14 9.55
|Z0 − Z0| 3.672e-10 5.073e-11 1.184e-11 2.528e-12 5.760e-13 9.19

RT 0.69 1.32 2.04 2.83 3.74

Table 5: Errors, running time and convergence rates for Example 1, T = 1

Scheme 2 for solving decoupled FBSDEs. Scheme 2 is a k-order scheme up to k = 9, and more
efficient for taking a larger value for k, which is consistent with the theory [Butcher, 2008], see
also Table 4
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For the second example we consider the coupled FBSDE (taken from [Zhao et al., 2014a]) to
test Scheme 3, in which an iterative process is required with longer computational time.

Example 2 
dXt = −1

2 sin(t+Xt) cos(t+Xt)(Y
2
t + Zt) ds

+1
2 cos(t+Xt) + (Yt sin(t+Xt) + Zt + 1) dWs, X0 = 1.5,

−dYt = (YtZt − cos(t+Xt)) dt− Zt dWt,

YT = sin(T +XT ).

has the analytic solution {
Yt = sin(t+Xt),

Zt = cos2(t+Xt).

In this coupled FBSDE, the diffusion coefficient b depends on X,Y and Z, i.e., quite general.
Due to the same reasons as those explained for Example 1, we set NT = {13, 15, 17, 19, 21} in
order to show the convergence rate up to ninth order. From the results listed in Table 6 one can

Scheme 3 NT = 13 NT = 15 NT = 17 NT = 19 NT = 21 CR

k = 3
|Y 0 − Y0| 2.269e-04 1.398e-04 9.186e-05 6.025e-05 4.336e-05 3.47
|Z0 − Z0| 1.562e-04 1.143e-04 6.555e-05 4.431e-05 3.359e-05 3.36

RT 3.89 4.79 5.78 6.53 7.84

k = 4
|Y 0 − Y0| 9.569e-06 7.654e-06 4.799e-06 2.734e-06 1.571e-06 3.83
|Z0 − Z0| 1.447e-04 1.126e-04 6.268e-05 3.009e-05 1.223e-05 5.14

RT 4.51 5.73 6.79 8.12 10.43

k = 5
|Y 0 − Y0| 4.773e-07 1.740e-07 3.835e-08 6.464e-08 2.325e-08 5.96
|Z0 − Z0| 2.433e-06 6.129e-07 2.215e-08 1.988e-07 2.968e-07 4.89

RT 21.07 28.68 35.43 41.14 53.55

k = 6
|Y 0 − Y0| 4.469e-08 2.509e-08 1.361e-08 6.572e-09 3.257e-09 5.47
|Z0 − Z0| 4.257e-07 3.145e-07 1.629e-07 7.017e-08 2.121e-08 6.15

RT 33.49 48.76 63.83 80.93 99.07

k = 7
|Y 0 − Y0| 6.510e-10 4.904e-10 1.536e-11 4.256e-11 3.250e-11 7.20
|Z0 − Z0| 1.218e-08 1.207e-08 8.072e-10 3.704e-09 2.249e-10 7.56

RT 34.39 53.76 75.34 97.09 120.69

k = 8
|Y 0 − Y0| 1.876e-10 8.477e-11 3.098e-11 1.028e-11 5.961e-12 7.51
|Z0 − Z0| 8.841e-09 2.877e-09 1.727e-10 7.179e-11 5.141e-10 8.19

RT 35.76 90.17 149.87 172.70 247.68

k = 9
|Y 0 − Y0| 1.926e-11 5.744e-12 5.828e-13 9.910e-13 3.098e-14 12.10
|Z0 − Z0| 2.502e-10 1.526e-10 3.190e-11 3.039e-11 2.234e-12 9.07

RT 55.19 173.80 275.15 384.02 503.85

Table 6: Errors, running time and convergence rates for Example 2, T = 1

clearly draw same conclusions as those having been for Example 1.
Finally, we illustrate the accuracy of the proposed scheme for a two-dimensional example, which
is also taken from [Zhao et al., 2014a] and reads
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Example 3

(
dX1

t

dX2
t

)
=

(
1
2 sin2(t+X1

t )
1
2 sin2(t+X2

t )

)
dt+

(
1
2 cos2(t+X1

t )
1
2 cos2(t+X2

t )

)
dWt,

(
X1

0

X2
0

)
=

(
0
0

)
,

(
dY 1

t

dY 2
t

)
=


−3

2 cos(t+X1
t ) sin(t+X2

t )− 3
2 sin(t+X1

t ) cos(t+X2
t )− Z2

t

+1
2Y

1
t

(
1
4 cos4(t+X2

t ) + 1
4 cos4(t+X1

t )
)
− 1

4(Y 2
t )3

3
2 sin(t+X1

t ) cos(t+X2
t ) + 3

2 cos(t+X1
t ) sin(t+X2

t )− Z1
t

+1
2Y

2
t

(
1
4 cos4(t+X2

t ) + 1
4 cos4(t+X1

t )
)
− 1

4Y
1
t (Y 2

t )2

 dt−
(
Z1
t

Z2
t

)
dWt,

(
Y 1
T

Y 2
T

)
=

(
sin(T +X1

T ) sin(T +X2
T )

cos(T +X1
T ) cos(T +X2

T )

)
with the analytic solution

(
Y 1
t

Y 2
t

)
=

(
sin(t+X1

t ) sin(t+X2
t )

cos(t+X1
t ) cos(t+X2

t )

)
,(

Z1
t

Z2
t

)
=

 1
2 cos(t+X1

t ) sin(t+X2
t ) cos2(t+X2

t )
+1

2 sin(t+X1
t ) cos(t+X2

t ) cos2(t+X1
t )

−1
2 sin(t+X1

t ) cos3(t+X2
t )− 1

2 cos3(t+X1
t ) sin(t+X2

t )

 .

The numerical approximations are reported in Table 7, which show that our multi-step scheme is
still quite highly accurate for solving a two-dimensional FBSDE. We observe that the convergence
rates are roughly consistent with the theoretical results, the slight deviation comes from the
quadratures and especially the two-dimensional interpolations. Obviously, the high efficiency
and accuracy have been shown in this example. Note that the parallel computing toolbox in
MATLAB has been used in this example, more precisely, the parallel for-Loops (parfor) is used
for the two-dimensional interpolation on the grid points.

8 Conclusion

In this work, by combining the multi-steps we have adopted the high-order multi-step method
in [W. Zhao, Y. Fu and T. Zhou, SIAM J. Sci. Comput., 36(4) (2014), pp.A1731-A1751] for
solving FBSDEs. First of all, our new schemes allow for higher convergence rate up to ninth
order, and are more efficient. Secondly, they keep the key feature of the method in [W. Zhao, Y.
Fu and T. Zhou, SIAM J. Sci. Comput. 36(4), pp.A1731-A1751], that is the numerical solution
of backward component maintains the higher-order accuracy by using the Euler method to
the forward component. This feature makes our schemes be promising in solving problems in
practice. The effectiveness and higher-order accuracy have been confirmed by the numerical
experiments. A rigorous stability analysis for the proposed schemes is the task of future work.
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Scheme 2 NT = 16 NT = 20 NT = 24 NT = 28 NT = 32 CR

k = 3

|Y 0,1 − Y 1
0 | 4.308e-03 2.447e-03 1.495e-03 9.726e-04 6.651e-04 2.70

|Y 0,2 − Y 2
0 | 3.896e-03 2.200e-03 1.340e-03 8.705e-04 5.949e-04 2.71

|Z0,1 − Z1
0 | 3.887e-03 2.041e-03 1.201e-03 7.602e-04 5.110e-04 2.93

|Z0,2 − Z2
0 | 2.980e-03 1.491e-03 8.465e-04 5.243e-04 3.451e-04 3.11

RT 34.65 53.68 74.87 92.42 130.14

k = 4

|Y 0,1 − Y 1
0 | 8.829e-04 4.437e-04 2.417e-04 1.413e-04 8.759e-05 3.34

|Y 0,2 − Y 2
0 | 7.776e-04 3.845e-04 2.072e-04 1.202e-04 7.413e-05 3.39

|Z0,1 − Z1
0 | 6.653e-04 2.556e-04 1.161e-04 5.899e-05 3.270e-05 4.35

|Z0,2 − Z2
0 | 6.845e-04 2.659e-04 1.218e-04 6.268e-05 3.521e-05 4.29

RT 43.52 70.30 100.41 142.95 195.94

k = 5

|Y 0,1 − Y 1
0 | 5.686e-05 2.367e-05 1.084e-05 5.445e-06 2.952e-06 4.27

|Y 0,2 − Y 2
0 | 5.131e-05 2.112e-05 9.605e-06 4.801e-06 2.595e-06 4.31

|Z0,1 − Z1
0 | 7.703e-05 2.621e-05 1.067e-05 4.923e-06 2.517e-06 4.94

|Z0,2 − Z2
0 | 7.237e-05 2.402e-05 9.582e-06 4.363e-06 2.201e-06 5.04

RT 50.72 79.97 132.00 186.09 231.84

k = 6

|Y 0,1 − Y 1
0 | 4.277e-06 1.706e-06 7.258e-07 3.354e-07 1.674e-07 4.68

|Y 0,2 − Y 2
0 | 3.857e-06 1.509e-06 6.336e-07 2.901e-07 1.437e-07 4.75

|Z0,1 − Z1
0 | 5.569e-06 1.667e-06 5.803e-07 2.309e-07 1.016e-07 5.78

|Z0,2 − Z2
0 | 5.531e-06 1.655e-06 5.791e-07 2.313e-07 1.026e-07 5.76

RT 64.97 110.97 173.50 246.96 337.71

k = 7

|Y 0,1 − Y 1
0 | 5.753e-07 1.843e-07 6.513e-08 2.568e-08 1.115e-08 5.70

|Y 0,2 − Y 2
0 | 5.312e-07 1.669e-07 5.836e-08 2.283e-08 9.864e-09 5.76

|Z0,1 − Z1
0 | 9.466e-07 2.291e-07 7.027e-08 2.528e-08 1.027e-08 6.52

|Z0,2 − Z2
0 | 9.091e-07 2.157e-07 6.529e-08 2.326e-08 9.404e-09 6.59

RT 73.89 139.46 234.34 339.44 453.70

k = 8

|Y 0,1 − Y 1
0 | 2.586e-08 1.080e-08 4.077e-09 1.592e-09 6.652e-10 5.30

|Y 0,2 − Y 2
0 | 2.384e-08 9.742e-09 3.623e-09 1.400e-09 5.802e-10 5.39

|Z0,1 − Z1
0 | 6.238e-08 1.548e-08 4.186e-09 1.299e-09 4.791e-10 7.06

|Z0,2 − Z2
0 | 6.290e-08 1.534e-08 4.077e-09 1.255e-09 4.579e-10 7.14

RT 84.65 177.96 299.48 436.73 592.02

k = 9

|Y 0,1 − Y 1
0 | 8.294e-09 2.371e-09 6.964e-10 2.250e-10 8.045e-11 6.70

|Y 0,2 − Y 2
0 | 7.739e-09 2.153e-09 6.229e-10 1.991e-10 6.989e-11 6.80

|Z0,1 − Z1
0 | 2.771e-08 5.329e-09 1.262e-09 3.491e-10 1.245e-10 7.84

|Z0,2 − Z2
0 | 2.748e-08 5.202e-09 1.217e-09 3.350e-10 9.998e-11 8.08

RT 91.19 210.99 356.54 534.76 760.94

Table 7: Errors, running time and convergence rates for Example 3, T = 1
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