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Abstract. The computation of matrix functions f(A), or related quantities like their trace, is
an important but challenging task, in particular for large and sparse matrices A. In recent years,
probing methods have become an often considered tool in this context, as they allow to replace the
computation of f(A) or tr(f(A)) by the evaluation of (a small number of) quantities of the form
F(A)v or vT f(A)v, respectively. These tasks can then efficiently be solved by standard techniques
like, e.g., Krylov subspace methods. It is well-known that probing methods are particularly efficient
when f(A) is approzimately sparse, e.g., when the entries of f(A) show a strong off-diagonal decay,
but a rigorous error analysis is lacking so far. In this paper we develop new theoretical results on the
existence of sparse approximations for f(A) and error bounds for probing methods based on graph
colorings. As a by-product, by carefully inspecting the proofs of these error bounds, we also gain
new insights into when to stop the Krylov iteration used for approximating f(A)v or vT f(A)v, thus
allowing for a practically efficient implementation of the probing methods.
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1. Introduction. Matrix functions f(A), where f : C — C is a scalar function
and A € C™*™ is a square matrix, play an essential role in many areas of science and
engineering. The inverse A~! is the most prominent example, another important case
is the matrix exponential f(A) = exp(A), which is used for the numerical solution
of time-dependent differential equations or the analysis of dynamical systems [23].
For the computation of communicability measures in network analysis, the matrix
exponential and the resolvent, generated by the scalar function f(z) = (a — 2)~*
with @ € C are widely used [17-19]. The matrix sign function f(A) = sign(A4) has
applications in control theory [23,46] and lattice quantum chromodynamics [7, 16,
39]. Inverse fractional powers f(A) = A~ with a € (0,1) are strongly related to
the matrix sign function and arise in generalized eigenvalue problems [40, Section
15.10], fractional differential equations [9] or sampling from multivariate Gaussian
distributions [42].

For many of these applications, the explicit computation of f(A) is not feasible as
the matrix A is typically large and sparse, while f(A) is a dense matrix. Therefore,
one has to resort to approximation techniques when f(A) or a related quantity like
f(A)b, b € C, the diagonal diag(f(A)) or the trace tr(f(A)) is required. This work
focuses on sparse approximations for the whole matrix f(A) on the one hand and on
approximating tr(f(A)) on the other hand. Computing the trace tr(f(A)) is a relevant
task. For example, the trace of the inverse is required in the study of fractals [48],
generalized cross-validation and its applications [26,29], or when computing discon-
nected fermion loop contributions in lattice quantum chromodynamics (QCD) [14,50].
In network analysis, the Estrada index—a total centrality measure for networks—is
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2 A. FROMMER, C. SCHIMMEL AND M. SCHWEITZER

defined as the trace of the exponential of the adjacency matrix of a graph [18,25] and
an analogous measure is given by the trace of the resolvent [17, Section 8.1]. For Her-
mitian positive definite matrices A, one can compute the log-determinant log(det(A))
as the trace of the logarithm of A. Amongst others, the log-determinant is needed
in machine learning and related fields [44,47]. Plenty of further applications can be
found in [55,56], e.g.

In recent years, probing methods [8,35,52,54] have emerged as an important tool in
this context. They obtain approximations by evaluating a small number of matrix-
vector products or bilinear forms involving f(A), which can be done by standard
techniques (e.g., Krylov subspace methods). We briefly summarize the main idea of
these methods in the following.

1.1. Probing methods. Recall that the (directed) graph G(A) = (V, E) of a
sparse matrix A € C™*™ is given by the vertices V' = {1,...,n} and egdes F =
{(4,4) 1 ai; # 0,1 # j}. By d(4,7) we denote the geodesic distance, i.e., the length of
the shortest path, from node i to node j in G(A) and by d(i, ) the geodesic distance
in the corresponding undirected graph |G(A)| which results from G(A) by removing
the direction of the edges.

Given a partitioning of the nodes V of G(4), i.e.,

V=WVU...UVy,, Vi#0fort=1,...,mand V; NV, =0 for £ # p, (1.1)
the corresponding probing vectors are defined as

vy = Z ei, L €{l,...,m} (e; is the ith canonical unit vector). (1.2)
1€Ve

The vectors vy can be used to, e.g., estimate tr(f(A)) via
tr(f(4) = T(f(A)) =Y _vi f(A)ur, (13)
=1
or even construct a sparse approximation to f(A) itself via

_ {[f(A)vz]i for j eV, ifd(i,j) < 14

A, =1 ¢ #3009 >

where d is a prescribed distance threshold. We refer to, e.g., [8,35,52,54] for detailed
discussions of such probing approaches and just expose the main motiviation: In the
(unrealistic) situation that f(A) is a sparse matrix with [f(A)];; = 0 for d(z,7) > d,
if the sets V; are chosen such that [f(A)];; = 0 for ¢,j € Vi, # j, both approxima-
tions (1.3) and (1.4) are actually exact. Therefore, if f(A) is approzimately sparse,
and the V; are built such that [f(A)];; is small for 4,j € Vp,i # j, we can expect
probing methods to yield accurate approximations.

1.2. Exponential decay in matrix functions. To make the notion of f(A)
precise, recall that f(A) is defined if for all eigenvalues A of A all derivatives of f at
A up to order v(A) — 1 exist, where v()) is the multiplicity of the elementary factor
(z — A) in the minimal polynomial of A, see [33], e.g. We tacitly assume that this
is always fulfilled whenever we consider f(A). Note that f(A) is then given as the
polynomial in A which interpolates f on the spectrum of A in the Hermite sense.
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One special form of approximate sparsity in f(A) that is frequently encountered in
practice is exponential decay of the entries of f(A) away from the sparsity pattern of
A.

DEFINITION 1.1. Let A € C™*" and let f be defined on the spectrum of A. The
matriz f(A) has exponential decay (away from the sparsity pattern of A) if

Hf(A)]ZJ‘ < qu(i)j) fOT ivj € {17 cee ,TL}, (15)

where d is the geodesic distance in G(A).

Of course, for given A the relation (1.5) can always be satisfied if we choose C' and
g € (0,1) large enough. To be meaningful, the concept of exponential decay therefore
implicitly assumes that C' and, in particular, ¢ are not too large or that (1.5) holds
uniformly for a whole, possibly infinite, family of matrices.

Decay in matrix functions has been studied extensively, starting with [13], where
accurate exponential decay bounds were presented for inverses of banded (Hermitian
positive definite) matrices. Lots of other results and decay bounds for different types
of functions and matrices can be found, e.g., in [4-6,15,21,22,38,43]. Many of them
are based on properties of polynomial approximations to f. Indeed, if ¢ and j have
distance d(i,7) in the graph G(A), then for every polynomial ps of degree at most
s =d(i,j) — 1 we have [ps(A)];; = 0, see [5], e.g., which implies

£ ()i = 1 (Ali = [ps(A)]is] < N1F(A) = ps(A) 2.

Herein, ||f(A) — ps(A)|l2 can be bounded further due to the following important
approximation result which uses the numerical range W(A) = {a% Az : ||z| = 1}.
THEOREM 1.2. Let A € C"*™ and let g : C — C be defined on the spectrum of A.
Then

lg(A)]2 < Kzenvl%) lg(2)], (1.6)

where K =1 if A is normal and K =1+ V2 otherwise.

Note that this result is almost a triviality for A Hermitian, while the general case is
much more involved, see, e.g., [11]. Applying Theorem 1.2 to g = f — p, immediately
gives the following result which relates the accuracy of polynomial approximation to
exponential decay in the matrix function. We will use it several times in this paper.
THEOREM 1.3. Assume that

i —pe(2)] < O, 1.
prsrggsgéglf@) ps(2)| < Cq (1.7)

where Il is the set of all polynomials with degree < s. Then, if W(A) C W we have

[F(A))iz| < 1F(A) = ps(A)ll2 < KCq® whenever d(i, j) > s.

Thus, uniform exponential decay bounds for a family of matrices can be obtained if
there is a common superset W of their numerical ranges for which (1.7) holds, as it
is, e.g., the case for the results in [5,13,21].

In our error analysis to come we will sometimes distinguish between general exponen-
tial decay bounds for f(A) and bounds which are explicitly based on (1.7).
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1.3. Outline of the paper. The main goal of this paper is to obtain guidelines

for choosing the sets V4 in (1.1) and using this information to derive rigorous error
bounds for the resulting approximations (1.3) and (1.4) in case that f(A) exhibits
an exponential decay property. In addition, our analysis also sheds light onto when
to stop Krylov subspace iterations used for approximating f(A)v, or vf f(A)vg, re-
spectively, in order to reach an implementation that is as efficient as possible without
sacrificing accuracy.
This paper is organized as follows. In Section 2 we discuss the distance-d graph
coloring problem as it forms the basis of the discussed probing methods. In Section 3
we first give some new theoretical results on the existence of sparse approximations
of matrix functions and then prove new error bounds for the approximation (1.4) for
f(A). Section 4 covers error bounds for the approximation (1.3) of tr(f(A)), while
Section 5 uses the insights from Section 3 to develop stopping criteria for the Krylov
subspace approximation inside the probing method. We illustrate the quality of the
derived bounds in numerical experiments reported in Section 6. Concluding remarks
are given in Section 7.

2. Distance-d coloring. The quality of the approximations (1.3) and (1.4) cru-
cially depends on the partitioning (1.1). If f(A) has exponential decay with respect
to G(A), good partitionings can be obtained via graph colorings.

DEFINITION 2.1. A distance-d coloring of a graph G = (V, E) is a mapping col : V —
{1,...,m} such that col(i) # col(j) if d(i,5) < d. A distance-d coloring is optimal if
the number m of colors is minimal among all distance-d colorings of G.

For d = 1, the computation of an optimal distance-d coloring corresponds to the
classical graph coloring problem, which is known to be NP complete for general graphs
[34]. In our setting, we are mainly interested in low-cost methods for computing
a distance-d coloring with a sufficiently small number of colors. Efficient ways for
computing such colorings of graphs are usually based on greedy strategies, see, e.g.,
[34]. For example, a distance-d coloring of a graph G with V = {wy,...,w,} can be
obtained via col(w;) = 1 and col(w;) = min{k > 0 : k # col(w) for all w € W;} for
i=2,...,n where

W; = {’LUE {wl,...,wi,l} d(’LUZ,’LU) Sd} (21)

This coloring uses at most A(G)? 4+ 1 colors and can be implemented with cost
O(A(G)%n), where A(G) is the maximal degree of G [49, Proposition 4.2]. In the
next two sections, we discuss special classes of graphs where a (not necessarily opti-
mal) distance-d coloring can be obtained with cost O(n).

2.1. Distance-d colorings for graphs of banded matrices. Let A be a
banded matrix with semi-bandwidth f, i.e. [A];; = 0 whenever |i — j| > 3. Then
it is easy to verify that a distance-d coloring for G(A) with m = df + 1 colors is given
by

col(i)=(i—1)mod (d8+1)+1, i=1,...,n, (2.2)

and this coloring is optimal if all entries within the band of A are non-zero. If A is
sparse but not banded with small 3, one can first determine an ordering of the nodes
which aims at obtaining a (relatively) small bandwidth for the correspondingly per-
muted matrix and then define the coloring via (2.2) on the permuted nodes. Finding
a permutation resulting in a small bandwidth is an important topic in the context
of direct solvers for linear systems, and lots of low-cost methods have been proposed
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Fig. 2.1: Two-dimesional 7 x 7 lattice, Fig. 2.2: Distance-2 coloring produced
where each node is defined by two coor- by Theorem 2.2.
dinates 0 < wq, wy < 6.

over the years; see, e.g., [10,12,24,36,45,51]. A heuristic based on level sets is at the
basis of the classical Cuthill-McKee algorithm [12] with cost O(|V|+ |E|), and we re-
fer to [30] for an overview and comparison of various other recent low-cost heuristics.
The cost for computing the coloring is dominated by the cost for the computation of
the permutation of the nodes.

2.2. Distance-d colorings for regular lattices. As another special case, as-

sume that the graph G = (V, E) is a regular D-dimensional lattice for D > 1. For
D =1, the adjacency matrix is tridiagonal, a situation already covered by the banded
case discussed before.
First, note that the greedy coloring approach can be made more explicit when applied
to regular lattices: Each node w in a regular D-dimensional lattice can be identified
with its coordinates w = (wll, ... wlPl) € ZP see Figure 2.1(left) for an illustration.
Using this representation, we have d(v, w) = |[v—w||; = |[vM —wM|+- - [vlPT —wlP]]
and thus W; from (2.1) is given as

W; = {w c {wl,...,wi,l} : H’w—’lel < d}

For an infinite lattice it is known [1, Theorem 2.7] that the cardinality £p(d) of the
set {z € ZP 1 ||z]|y < d} is given as

(p(d) = ED: (?) (d - g - k) (where (“PF) =0ird<k).  (23)

k=0

So, in a greedy algorithm, W; can be obtained by examining at most £p(d) — 1 nodes
and check whether they have already been colored. Alternatively, a distance-d coloring
for regular D-dimensional lattices can also be obtained directly, due to the following
result which we prove in Appendix A.

THEOREM 2.2. Let G = (V, E) be a D-dimensional N1 X No---x Np lattice. Let any
node w € V be defined by its coordinates w = (w, ... wlPl), with 0 < wl! < N; —1,
i€1,...,D. Then a distance-d coloring with (d+ 1) colors is given by

D-1
col(w) = (Z wlkl (d + 1)k> +1, where wlk = wF mod (d+1). (2.4)
k=0
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Let us note that for D = 2, an optimal distance-d coloring is explicitly known with
[%(d + 1)% colors; see [20], while the coloring given in Theorem 2.2 needs approxi-
mately twice as many colors.

Two characteristics of the coloring of Theorem 2.2 for general D will further be ex-
ploited in the error analysis presented in Sections 3 and 4: Firstly, the construction
is based on the fact that we color all nodes w in the cube {w : 0 < wlk < d for k =
1,...,D} with (d + 1)P colors as illustrated in Figure 2.2 (red, solid square). This
coloring is then repeated by shifting this initial cube through the entire lattice (red,
dashed squares). Secondly, with this coloring every color class can be interpreted as
representing a coarse grid, where the distances between the nodes in one color class
are multiples of d+1. This is illustrated in Figure 2.2 where the green nodes represent
one color class.

REMARK 2.3. For D-dimensional lattices with an equal number of nodes in each
dimension, a recursively computable hierarchical distance-d coloring was introduced
in [52] for distances d = 2%, i = 0,1,..., using 2P = 24P colors. This approach
was recently extended to the case of lattices with an uneven number of nodes per
dimension and even more general graphs in [35]. Note that for D small and d not
too small, we have (d + 1)P < 2dP. For example, (d + 1)? < 2d? as soon as d > 2
and (d + 1) < 2d® as soon as d > 3. For the analysis in Section 3 and 4, the
colorings discussed in the present paper are more appropriate and the analysis of the
hierarchical probing approach is beyond the scope of this work. o
We end the discussion of regular lattices with the following result which bounds the
number of nodes that have exact distance d from a given node. The rather technical,
combinatorial proof is presented in Appendix A.

LEMMA 2.4. Let (5(d) := |{z € ZP : ||z|l1 = d}|, then ¢5(d) < 2DdP~!.

3. Sparse approximation of matrix functions. In this section we analyze
the error of the approximation (1.4) when one of the colorings from Section 2 is used.
Before doing so, we first discuss some general results on the existence and quality of
sparse approximations to reveal what is achievable at all.

3.1. General results on sparse approximations. We place ourselves in a
slightly broader context, as it was also done in [3], and formulate sparse approximation
results in terms of a matrix B € C"*" (instead of f(A)) with a decay property with
respect to a general graph G = (V, E) with V = {1,...,n} (instead of G(A))). The
following essential result from [3] forms the basis for sparse approximations of matrices
with exponential decay.

THEOREM 3.1. Let {Bs}ses be a family of ns x ns matrices having exponential decay
with respect to a family of corresponding graphs {G}ses with geodesic distances ds,

[Bslis] < Cq09), i, =1...,n,

with C > 0,q € (0,1) independent of s. Assume that the graphs have bounded maximal
degree A(G) < ¢ for all s. Then for every e > 0, By contains at most O(ns) entries
greater than € in magnitude.

Furthermore, the following result for matrices with exponential off-diagonal decay was
also given in [3].

THEOREM 3.2. Let {Bs}ses be a family of ns X ng matrices with

|[Bs}ij| < qui_jl, ,j=1...,n,
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with C > 0,q € (0,1) independent of s. Then for € > 0 there exists m independent of
s such that

1By — B{™|ly < & for m > m,

where B{™ € C"*"< s the banded matriz with [Bgm)]ij = [Bgli; for |i —j| < m and
[Bgm)]ij = 0 for |i — j| > m. In particular, for any fixed m > m the matrices B™
contain O(ng) nonzeros.

To obtain a generalization for matrices with general exponential (not necessarily off-
diagonal) decay, we define the level sets of a node j € V' in a graph G = (V, E) with

[V|=n as
L) ={ieV,d(i,j) =6}, §=0,....,n—1,
L)(j) = {i € V, d(i, j) = oo}.
Note that for any node j we have
V = UL LG u L)),

since every node i has either distance smaller than n from j or cannot be reached
from 7, in which case i € L(>)(j). With these notations we can give the following
generalization of Theorem 3.2.

THEOREM 3.3. Let {Bs}ses be a family of ng X ng matrices having exponential decay

[Bslij| < Cq®9), ij=1,....n

with respect to the distances dg in a family of graphs {Gs}ses, where C > 0,q € (0,1)

are independent of s. Furthermore, assume that for all nodes j all level sets Lgé) ()
of all graphs G are polynomially bounded, i.e., we have

ILO ()] < K 5° (3.1)
with K > 0 and o > 0, both independent of s and j. For m > 0 define the matric

B™ wia

(B, = _
) 0 otherwise.

Then for e > 0 there exists m independent of s such that ||Bs — Bgm)||1 < ¢ for all
m > m. Moreover, for any fized m > m the matrices Bgm) contain O(ng) nonzeros.
Proof. Let my := mq(q, @) be such that Jaq% < 1 holds for 6 > m;. Then for m > my

we obtain

[By)ij — [B{™)i;

— ma B.l..
max > |[Bil

Ns

B, - By = wiix 3
=14

=1

da(i.g)>m
ns—1 ns—1
18 ds(ihd) — p)s YN oy
< = <
<diix >, Oq ifiix 0 X KOG < OK 3 6%
k =m+1 d=m-+1
di‘(iyj)>m
oo 5 s oo s \/am+1
=CK Z 5Oéq2q§ < CK Z q? < CK
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Let mgo := may(q,€) be such that

m+1
CK V4
1=va

<e

holds for m > mgy. Then for m > m := max{m;, mo} we have ||Bs — Bgm)Hl < g, and
the number of non-zero elements in Bgm) is at most

N m 8§/ - m o
YOG = (140 K6) = Ofn,),
from which the assertion of the theorem follows. O
Note that off-diagonal decay is equivalent to decay with respect to a chain graph and
thus Theorem 3.2 is covered by this theorem: For a chain the level sets L?(j) contain
at most two elements, i.e., we have a = 0. For general o > 0 we now have a similar
result for other important cases, e.g., when the graphs G are regular D-dimensional
lattices.
Theorem 3.3 was formulated in [3] with the assumption (3.1) on polynomially bounded
level sets replaced by the less restrictive assumption that the family of graphs {G}
has bounded maximal degree. This turns out to have been too optimistic, as the
following example shows.
EXAMPLE 3.4. Let 0 < ¢ < 1, let t € N be such that ¢ > 1 holds, and let G}, be
the full ¢-ary tree with height p, which has n, = 14+¢+--- + ¥ = (PT1 —1)/(t — 1)
nodes. Then the maximal degree of the graphs G, is bounded, A(G,) =t + 1. Let j
be the root of this tree so that the level set L,(f) (j) is formed exactly by all nodes at
depth ¢ in the tree, implying

1LY () =1°,6=0,...,p, L&) =0.
Let B, be the n, x n, matrix with [B,];; = ¢%»(/) where d, is the distance in G,,.
Then B, has exponential decay with respect to G/, and for all m we have

P P
1Bo=By = 30 Bl = 30 Dl = 30 " = (p-m)(t)™t,
dp(i,5)>m d=m+1 S=m-+1

where the last inequality holds because of tq > 1. Thus, the first m for which || B, —
B,(,m)Hl < 1 holds is m = p = Q(logn), in which case we have B,(,m) = B,. o
In this example the exponential decay in B, is not enough to compensate the expo-
nential growth of the level sets. This motivated condition (3.1) in Theorem 3.3.

3.2. Analysis of probing for sparse approximation of f(A). We now turn
back to the specific situation where B = f(A) and G = G(A). The existence results of
the previous section do not reveal how a sparse approximation is obtained in practice
without computing f(A). We now investigate the probing approximation (1.4) for
obtaining such an approximation.

The following result gives an entrywise bound for the probing approximation f(A)!
from (1.4) provided the probing vectors are obtained from a distance-2d coloring of
G(A)]

PROPOSITION 3.5. Let f(A) have exponential decay (1.5), let the sets Vi be the color
classes of a distance-2d coloring of |G(A)| and v, the corresponding probing vectors
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(1.2). Let f(A) be the approzimation defined by (1.4). Then with ¢ = Cq® the
following entrywise error bound holds for alli,5 € {1,...,n}

(IVe| = Ve for j € Vp if d(i,j) < d,

o [d. .
()]s = A1) < { 30>

Proof. The assertion is trivial for d(i,j) > d, since then d(i,j) > d(i,j) > d and
[f(A)];; = 0 by (1.4). For 4, with d(i,) < d we have

A5 = [f(Aodi = D [f(Aik, where j € V.

keV,
Thus,
FA = [F(A]ig = D IF(A)in- (3.2)
keVy
k#j

If we had d(i, k) < d for some k € V; with k # j, then
A(j, k) < A(, 1) +dG, k) = d(3,5) + A, k) < 24, (3.3)

which is a contradiction to j, k € V. Thus d(i, k) > d(i, k) > d, and therefore we have

(A - A, < S e = (Vil - 1)e,

keVy

k#j
which concludes the proof. O
Note that d(i,5) = d(j,4) is crucial in (3.3), and that we do not necessarily have that
d(j,k) < d(i,7) + d(i, k) for the distances in the directed graph. This is why for a
structurally non-symmetric matrix the proposition has to rely on a coloring of the
undirected graph rather than the directed one.
Proposition 3.5 immediately implies bounds for the 1-, 2- and Frobenius norms.
COROLLARY 3.6. Let the assumptions of Proposition 3.5 hold and let v = maxy |V;|.
Then with € = Cq¢ we have

IF(A) = F( Ay < [ £(A) = F(A)F < nly - 1)e (3.4)

and

I1£(A) = F(AM )y < n(y - 1e. (3.5)

For a family of matrices {As}scs, As € C™*™= with uniform exponential decay (1.5),
the bounds in (3.4) and (3.5) are at least of order O(nse). If, similarly to Theorem 3.3,
we assume that the level sets are polynomially bounded, the bound for the 1-norm
can be made independent of ng.

THEOREM 3.7. Let {As}ses, be a family of ng X ng matrices such that f(As) has
uniform exponential decay (1.5). Assume that the sizes of the level sets Lgf;) (j) of the
undirected graphs |G(As)| satisfy

ILO)(j)] < K 6% for all nodes j =1,... n,
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and let f(A)4 be the approzimation defined by (1.4) with probing vectors resulting
from a distance 2d-coloring of |G(A,)|. Then with e = Cq® there exists d independent
of s such that for d > d we have

| f(As) — f(As)[d]||1 <egforallses .

Proof. For every d > 0 we have

1£(As) = F(A)y = :aXZ| [f(A5)]351
<ufic (3 @I+ X Y @A) G Vi)
as(i,zj)>d d. (z,j)<dkk‘;£j(])
ns—1 ns—1
<max (3 LOGIC+ Y Y EO6)ICe’)
(R v _ i s=d+t
ds(i,5)<d
ns—1 ns—1
max (Y KsCq’ + Z > KsoCq)
=N ST S=d+1
d. (z,])<d
ng—1 ns—1
ulhee () K5°Cq’ +Z|L(”) Y KiCq) (3.6)
0=d+1 6=d+1
< Z K5a0q5+(1+ZKp‘“) Z K§*Cq’,
S=d+1 p=1 S=d+1

where we used (3.2) for the second line and that d,(i, k) > d for k € Vi), k # j, see
(3.3), for the third. As shown in the proof of Theorem 3.3 there exists d; such that

1

Z K&“Cq’ < aq% for d > dy,
S=d+1

with C = fl\ja. Hence, we obtain

| f(As) — f(As d]||1_<2+ZKp> % for d > d;.

d
Since Y p* < d**!, we can find dy such that for d > dy we have
p=1

d
(2+2Kpa)aq% <e.
p=1

The assertion thus holds for d = max{dy,ds}. O
While the formulation of Theorem 3.7 is focused on the uniform approximation prop-
erty, we can also directly use (3.6) to obtain error bounds for a single matrix A. We



ANALYSIS OF PROBING FOR DECAYING MATRIX FUNCTIONS 11

illustrate this for S-banded matrices, where—as opposed to the result formulated in
Corollary 3.6—we now obtain a bound for the 1-norm that does not depend on n.
COROLLARY 3.8. Let A € C"*" be a B-banded matriz and let f(A) have exponential
decay (1.5). Let f(A)Y be the approzimation defined by (1.4) with probing vectors
resulting from the coloring (2.2). Then

2+ 2dpB
1—gq

e, wheree = Cq?.

1F(A) = F(A)]1 < 28q

Proof. For all nodes j and levels § we have |L(®)(5)| < 23. Using this and (3.6) the
approximation error of f(A)l% can be bounded as

n—1 d n—1
1£(A) = FAM] < Y 28C + > ILPG) Y 28Cq°
d=d+1 p=0 d=d+1
n—1 e’}
<26C(L+1+2d6) Y ¢’ <260(2+2d8) Y ¢,
d=d+1 d=d+1

which concludes the proof. O

Another situation in which it is possible to improve upon the result of Corollary 3.6,
now for the Frobenius norm, is when the decay bounds that we have available have
their origin in a polynomial approximation property (1.7).

THEOREM 3.9. Let A € C™*" and assume that the function [ fulfills (1.7). Let
F(A be the approzimation defined by (1.4) with probing vectors vy resulting from a
distance 2d-coloring of |G(A)| with color classes Vy. Then

I£(A) = F(A| g < 2K /ne, with e = Cql,

where K =1 when A is normal and K = 1 + /2 otherwise.

Proof. Let pgq be a polynomial of degree d such that |f(z) — pa(z)| < Cg¢? for all
z € W(A), which exists since f satisfies (1.7). We now estimate the two terms in the
triangle inequality

1£(A) = F(O e < (1£(A) = pa(A) e + [LF (A = pa(A)|| (3.7)

individually. For the first term, note that for ¢ = 1,...,n we have ||f(4)e; —
pa(A)eilla < ||f(A) — pa(A)||2 < Ke due to Theorem 1.2. This directly implies

1£(A) = pa(A)||r < Kv/ne. (3.8)

Similarly, we also have || f(A)ve — pa(A)ve|l2 < Kellvg|l2 = Key/|Ve|. For the degree
d polynomial py the sparse approximation pg(A) [ is exact so that

1A = pa(A)7 = 1F( D = pa(D V7= D £ (A)ve = pa(Avell3
< Zz=1 K?2?|V,| = K%*n,
which gives the estimate
1F A = pa(A)r = [F( A = pa(A) V) < K /ne. (3.9)

Inserting (3.8) and (3.9) into (3.7) gives the desired result. O
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4. Approximation of the trace of matrix functions. We now turn to in-
vestigating the accuracy of the probing method (1.3) for approximating the trace
tr(f(A)). As we will see, instead of using distance-2d colorings for the undirected
graph |G(A)| we can now work with distance-d colorings in the directed graph G(A).
This reflects the fact that the trace, being the sum of bilinears e f(A)e; appears as
a “quadratic” quantity. For the probing vectors defined in (1.2) we have

o F(A)oe =Y (D + D F(As

i€Vy i,JEVy
1#£]
from which we immediately obtain
te(f(A) =D [F( D =D vi' (Ao =Y D [F( Ay
i=1 (=1 =1 i,jiyg
i#j

Thus, the error of the approximation 7 (f(A)) from in (1.3) is given by

o> ()l (4.1)

(=14,5€V,
i#j

[tr(£(A)) = T(f(A)] =

To obtain bounds for the error (4.1) when f(A) has exponential decay (1.5), consider
a distance-d coloring of G(A) with color classes Vp,¢ = 1,...,m. Then, with the
corresponding probing vectors (1.2) and with e = Cq?, an immediate error bound is
given by

[tr(f(A) = T(FANI< DS D e =D IVel(IVel = De. (4.2)

t=14,4€eV; =1
1#]

If we assume that the size of the color classes is asymptotically given by O(-), i.e.,
if the nodes are distributed uniformly among the color classes, and if the number of
colors m is independent of n, then the error bound (4.2) is of order O(n?)e. In the
following we discuss cases in which better error bounds than (4.2) can be obtained.
Similar to the case of the sparse approximation discussed in Section 3.2, we can give
O(n)e error bounds by exploiting knowledge about the specific coloring of G(A). E.g.,
for banded matrices A, using the coloring (2.2), we obtain the following improved error
bound. Note that the result also holds for matrices A for which a permutation PZAP
is banded if we permute the probing vectors accordingly.
THEOREM 4.1. Assume that A € C**" is S-banded and that f(A) has exponential
decay (1.5). Let T(f(A)) be the approximation (1.3) to the trace, where the vectors vg
are computed with respect to the coloring (2.2) for a given distance d and put ¢ = Cq®.
Then

[r(f(A) = T(H A < e7— 3

Proof. The color classes of the coloring (2.2) are given as

n—~4
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By inserting the decay bounds into (4.1), we obtain

[tr(f(A)) = TN <D D 1Ayl < Z Z . (4.3)

(=1 i,jEVz JEVE
1#] #J

Now, for any color ¢, if i,j € Vi, i = £+ rm,j = £+ sm, then d(i,j) = |r — s|d. Thus,
for all £ we have

L2t 15 L2t L2

Z g0 = Z Z gl < 9 Z Z g

1,jEV r=0 s=0 r=0 k=
% sr !
I .
q q
<2y = 2|V .
= — —
r=0 1 q ! q
Inserting this relation into (4.3) gives
m d d om
[tr(f(A)) - <D Vil20 1 = 2nC _qd et
=1

A similar O(ng?) bound can be formulated if G(A) is a regular D-dimensional lattice
and the coloring of Theorem 2.2 is used. We state this results using the polylogarithm
Lis(z) =Y 2, f—
THEOREM 4.2. Let A € C™*" be a matriz for which G(A) is a reqular D-dimensional
lattice. Let f(A) have exponential decay (1.5). Let T(f(A)) be defined by (1.3), where
the vectors vy are computed with respect to the distance-d coloring of Theorem 2.2.
Then

| tr(£(A)) = T(£(A)| < 2CDnLiz-p(q").

Proof. Again,

k K
tr(f(A) = TFANI <Y Y FANG <> >0 Cgltd,

=144V, =1ijeV,
1#] 1#]
with the color classes Vp from Theorem 2.2. For this coloring, as illustrated in Fig-
ure 2.2, the distances between nodes from the same color class are multiples of d and
these nodes actually form again a regular D-dimensional lattice. Lemma 2.4 shows
that for each node the number of nodes with distance ¢ in this lattice, i.e., with
distance dd in the original lattice, is bounded by 2D é°~!. Thus

Z > oqt 7J)<Z|V4|22D6D LCg™

(=14,j€V, =1
i#j

< 20Dn26D—1q6d
6=1
=20DnLi;_p(q?).
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|
REMARK 4.3. For a given value of D, the bound from Theorem 4.2 can be cast into
a more explicit form by noting that all polylogarithms of negative integer order are

rational functions of the form Li_,(z) = (111 SZ()ZS)H where p, is a polynomial of degree

s such that ps(0) = 0. An explicit representation can be found in terms of Eulerian
numbers; see, e.g., [37]. In particular, the first few polylogarithms of negative integer
order are given by

z z+ 22 z 4422+ 23
L._ == L'_ = -
G—np  MeE=g—p U=

Using these relations we, e.g., find the following bound for D = 4

Li_l (Z) =

qd +4q2d _|_q3d

()~ T(F(A)] < 80Tt

which for large d behaves like 8Cng?.

Let us further note that for the case D = 1, i.e., a tridiagonal matrix A, both Theo-
rem 4.1 and Theorem 4.2 are applicable. Since Lig(2) = 1%, both theorems actually
agree in this case. o
As in the situation where we looked at the approximation quality for the matrix
function as a whole, we can again derive improved error bounds when we have a
polynomial approximation property (1.7) available.

THEOREM 4.4. Let A € C™*" and assume that [ fulfills condition (1.7). Let the
approzimation T(f(A)) in (1.3) be obtained using a distance-d coloring of G(A).
Then, with € = Cq% we have

ltr(f(A)) = T(f(A))] < 2Kne, (4.4)

where K =1 when A is normal and K = 1+ /2 otherwise.

Proof. We proceed as in the proof of Theorem 3.9. Let pg be a polynomial of degree d
such that |f(2) —pa(2)| < Cq? < ¢ for all z € W(A), which exists since f fulfills (1.7).
Then

1£(A) = pa(A)]lz < Ke. (4.5)

We write

[tr(£(A)) = T(fF(A] < [te(f(A)) = tr(pa(A)] + |T(f(A)) — tr(pa(A))].  (4.6)

For the first term, we get, using the linearity of the trace, (4.5) and the Cauchy-
Schwarz inequality

{=1

[tr(f(A)) = tr(pa(A))| < Y lef (f(A) —pa(A)) e <Y Ke = Kne. (4.7)
(=1

For the second term, note that the probing approximation 7 (pq(A)) for the trace is
exact, tr(pa(A)) = T (pa(A)). Therefore, in a similar manner as for the first term, we
obtain

IT(f(A)) = tr(pa(A)] = |T(F(A)) = Tpa(ADI < Y o] (f(A) = pa(A)) ve|
=1
< iKWAa:Kna. (4.8)
=1
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Inserting (4.7) and (4.8) into (4.6) concludes the proof. O

The numerical examples in Section 6 illustrate that the error of the probing-based
approximations scales indeed linearly with the dimension n of the matrix. In this
sense, O(n)e error bounds are the best we can achieve.

5. Using Krylov subspace methods in the probing approach. Probing

methods require the computation of matrix-vector products f(A)vy or bilinear forms
v} f(A)ve. Both are standard tasks in numerical linear algebra, for which a plethora
of different methods has been developed. Widely used methods for both tasks are
Krylov subspace methods. As with any iterative method, an important question
arising in this context is how to find a good stopping criterion in order to keep the
computational cost as small as possible while at the same time guaranteeing that the
desired overall accuracy is reached in the approximation of f(A) or tr(f(A)).
We now answer this question for the situation that the decay bounds we have available
stem from a polynomial approximation property of the form (1.7). We begin by very
shortly reviewing a few important facts about Arnoldi’s method, the prototype Krylov
subspace method; see, e.g., [23, Section 3.5] or [33, Section 13.2] for details. The
approximation for f(A)b from s steps of Arnoldi’s method is given by

fs = [Ibl2We f(H)en, (5.1)

where the columns of W, are the orthonormal Arnoldi basis vectors and H, =
WHAW, € C*** is the upper Hessenberg matrix containing the orthogonalization
coefficients. We have that

fs = ||bH2WSﬁsfl(Hs)el = ﬁsfl(A)by

where ps_1 is the polynomial of degree s — 1 that interpolates f on the eigenvalues of
H, in the Hermite sense. Theorem 1.2 together with (1.7) shows that there exists a
polynomial ps_1 of degree s — 1 such that

1(A)b = ps—1(AD)dll2 < [|F(A) = ps—1(A)]l2 - [IBll2 < [[bll2EKCq*

where K =1 if A is normal and K = 1 4+ v/2 otherwise. Due to the near-optimality
property of the Arnoldi polynomial [31, Section 4.2.2], the error of the Arnoldi ap-
proximation is within a factor 2 of the best possible polynomial approximation, which
implies

1F(A)b = foll2 < 2bll2KCq* . (5:2)

5.1. Sparse approximation. Let fs(@ denote the Arnoldi approximation (5.1)
for f(A)ve. By replacing f(A)v, by fs(z) in (1.4), we obtain the approximation

sl {[%forjeve it (i, j) < d 53)

A i = ’

T =10 if (4, j) > d,

where the color classes V; come from a distance-2d coloring of |G(A)|. In the triangle
inequality

——[d] | (@]

1F(A) = FCA) || < [1£(A) = £ + | £(A)D — F(A) ], (5.4)
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Theorem 3.9 shows that for the Frobenius norm the first term in (5.4) can be bounded
as

1£(A) - FA) e < 26Cqt Vi (5.5)

For the second term, note that

——1d] m
LA = 7 =3 e — £,

so that inserting (5.2), we obtain

s m ) 12
171 = F@) e < (X0, Al 352000

m 1/2
_ 22 2(s—1)
o (LSS D SN )
= 2KCqYy/n. (5.6)

Inequalities (5.5) and (5.6), on the one hand, give us the final estimate

1£A) = 70 e < 260G + ¢ ). (5.7)

On the other hand, they also that show after d + 1 Arnoldi steps we can expect the
Krylov approximation error to have the same magnitude as the probing error. If we
perform more than s = d+ 1 Arnoldi steps, the overall error is likely to be dominated
by the probing error, so that further Arnoldi iterations will have no or little effect on
the overall error. Choosing s = d 4+ 1 the overall bound simplifies to

1£(A) — 70 < 4K Ve,

As we will illustrate in the numerical experiments in Section 6, performing more than
d + 1 Arnoldi steps does typically indeed not lead to any further reduction of the
overall error. Heuristically this can be further motivated as follows: The entries of
the vector f(A)v, that we approximate by the Arnoldi iterates does not contain the
exact entries of f(A), but perturbed entries due to the “mixing” of contributions from
nodes of the same color. Until the d+ 1st iteration of the Arnoldi method, this mixing
does not occur in the basis vectors; see Figure 5.1 for an illustration. For s > d + 1,
then, the additional accuracy with which we approximate f(A)v, is spoiled by the
loss of accuracy in the approximation of f(A) due to increased mixing.

5.2. Approximating the trace. The s-step Arnoldi approximation for a bilin-
ear form v}’ f(A)v, is given by

i f(A)ve = oY = ||og|3ef! £ (Hy)er. (5.8)

Using the relation between Krylov subspace methods, Gaussian quadrature and mo-
ment matching, it has been shown in [27,28,53], e.g., that (5.8) is exact if f is a
polynomial up to degree 2s — 1 when A is Hermitian and up to degree s when A is
non-Hermitian. This leads to the following result.

THEOREM 5.1. The error of the approzimation (5.8) satisfies

25=1 when A is Hermitian,

S

[vff F(A)oe — o] < 2fuef3EC - .
otherwise.

q
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[+000000000 ~ 0] [+++00+000 ] [ ]

Fig. 5.1: Spreading of the nonzero entries in the first three Arnoldi basis vectors,
starting with vy = e; + e1;. Entries to which only the iteration corresponding to
node 1 contributed are marked by an orange asterisk (+) while entries to which only
the iteration corresponding to node 11 contributed are marked by a blue cross (x).
Because the nodes have a distance of 5, no mixing occurs in the first 3 basis vectors.

Proof. We consider just the Hermitian case; the non-Hermitian case follows analo-
gously. Let p5,_;(z) € IIos_1 be such that

o < Cg* . 5.9
max £(2) ~pe-a(2)] < C (5:9)

As the approximation (5.8) is exact for vH p3, | (A)v, we have

o f(A)ve = o] = [vf (F(A) = phe_1(A))ve — Joelized! (f(Hy) = p3o_y (Hs))ea-
From this, using the triangular inequality and the Cauchy-Schwarz inequality, we get

(0" f(A)yve — [|vell3et’ f(H e |

lvell2 1| f (A)ve = p3_y (Avellz + vell3 || f(Hs)er — p3o—1 (Hs)enll

lvell3 11F(A) = 3oy (A)ll2 + vell3 | f(Hs) — p5e—y (Ho)|l2

Now, [[f(A) — pis_1(A)]|l2 < C¢?*~! due to (5.9) and (1.6), and the same bound
applies to ||f(Hs) — p,_1(Hs)|l2, since W(H) € W(A) due to Hy = WH AW, with

W, having orthonormal columns. O
Thus, choosing s = [%] or s = d, we obtain the bound

<
<

IT(f(A) =Y al| <KCq" Y el = KCq* Y [Vi| = 2K Cng*.
=1 =1

{=1

We are therefore in the order of magnitude of the bound for the probing error given
in Theorem 4.4 for probing vectors coming from a distance-d coloring of G(A) after
d (or = d/2 if A is Hermitian) Arnoldi steps.

6. Numerical experiments. In this section, we perform various numerical ex-
periments both on model problems and on matrices coming from applications to
investigate the quality of our error bounds, with particular emphasis on their scaling
behavior with respect to growing matrix dimension n and increasing probing distance
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A, = tridiag(—1,4,-1), f(A) =A™, d=5 A, = tridiag(—1,4, —1), f(A) = A=, n = 1000

T T T T T T T T T T T T
o Re — Frobenius norm error
10° ™3, |--- Bound from Theorem 3.9 |
1072 1 .
— Frobenius norm error » N
--- Bound from Theorem 3.9 10 2l
3 | | | | I | | I I I I I | | | J
1077200 400 600 800 1,000 1,200 1,400 2 3 4 5 6 7 8 9 10
d
n

Fig. 6.1: Actual Frobenius norm error and error bound for the sparse approxima-
tion (1.4) corresponding to the coloring (2.2) for the matrix A,, = tridiag(—1,4,—1) €
C™*™ and f(z) = 1/z for varying n (left) and d (right).

d. Unless explicitly stated otherwise, we compute the exact quantities f(A)v, and
veT f(A)v, used to obtain the exact error of our approximations to machine precision,
using a factorization of A.

6.1. Tridiagonal model problem. As a first, simple test example, following
[6], we consider the family of tridiagonal matrices A,, = tridiag(—1,4—1) € C"*". The
spectra of these matrices satisfy spec(A,) C [2,6] independently of n. We consider
the two functions f(z) = 1/z and f(z) = z~'/? in the following and we always use
the banded matrix coloring (2.2) with § = 1. In a first experiment, we compute
sparse approximations of A, ! for varying dimension n while d = 5 is fixed and for
varying d while n = 1000 is fixed. From [13, Theorem 2.4], the entries of A, ! exhibit
V31

V3L
with our error bounds from Theorem 3.9 are depicted in Figure 6.1. In both cases,

the bounds are quite tight and closely follow the actual error curve. We repeat the

an exponential decay with C' = % and ¢ = The actual error norms together

experiment for the inverse square root A, 12 The entries of this matrix function again
decay exponentially, with C' = v/2 and ¢ = %, see [21, Theorem 4]. This time, we
compare the actual error to the 1-norm error bound of Corollary 3.8, because the decay
bound from [21, Theorem 4] is not based on a polynomial approximation property of
the form (1.7). The results of this experiment are shown in Figure 6.2. Again we see
a good agreement between the actual error and the error bound, although it is not
quite as sharp as before, overestimating the error by between one and two orders of
magnitude. Still, the qualitative behavior is captured quite accurately. In particular,
the 1-norm error is independent of n, as predicted by our theoretical results.

We also use this example to illustrate the influence of the number of Arnoldi steps used
for approximating f(A)vy in the approximation (5.3), see Figure 6.3. We fix n = 1000
and d = 5 and compute the approximation error resulting when s Arnoldi steps
per vector are performed, for s = 1,...,2d and compare it to the bound (5.7). We
observe that the bound is in very good agreement with the actual error, and further,
that the approximation error stagnates after s = d + 1, confirming our intuition
explained in Section 5.1 that from this point on, the increased accuracy of the Krylov
approximation is counteracted by the increased mixing between contributions of nodes
from the same color class, so that no further decrease of the overall approximation
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A, = tridiag(—1,4,—1), f(A) = A2, d=5 A, = tridiag(—1,4, —1), f(A) = A=Y/2, n = 1000

— Frobenius norm error

10-2F 1 100 & --- Bound from Theorem 3.9 ||

1072

1074 1 :
— Frobenius norm error
--- Bound from Theorem 3.9 106

1074

|
200 400 600 800 1,000 1,200 1,400
n

Fig. 6.2: Actual 1-norm error and error bound for the sparse approximation (1.4)
corresponding to the coloring (2.2) for the matrix A, = tridiag(—1,4,—1) € C**"
and f(z) = 2z~ Y/2 for varying n (left) and d (right).

A, = tridiag(—1,4, —1), f(A) = A1, n = 1000, d = 5

‘ ‘ ‘ ‘ ‘ ‘ ‘
10t k. — Frobenius norm error [
e, --- Bound (5.8)
.
100 - ‘s~ |
‘\
107 :
102Ny T -
| | | | [ [ [ [

1 2 3 4 5 6 7 8 9 10
Arnoldi steps

Fig. 6.3: Actual Frobenius norm error and error bound (in dependence of the number
of Arnoldi steps) for the sparse approximation (5.3) corresponding to the coloring (2.2)
for the matrix A, = tridiag(—1,4,—1) € C™*" and f(z) = 1/z with n = 1000, and
d=>5.

error can be expected.

We conclude our first experiment by computing an estimate of the trace for both ma-
trix functions, using exactly the same experimental parameters as before and compare
the actual error to the bound (4.4) from Theorem 4.4. Note that we could alterna-
tively use the bound from Theorem 4.1 which is tailored to banded matrices. Both
bounds almost agree here, the latter one being slightly less sharp, by a factor 1_%
Figure 6.4 shows that, as expected, the results are very similar to what can be ob-
served in the context of computing a sparse approximation and we again observe a
very good qualitative and quantitative agreement between the bounds and the actual
error.

6.2. Shifted two-dimensional Laplace 01)2era2tor. As a second model prob-
lem, we consider the family of matrices Ay € CN %N arising from discretization of
the Laplace equation with homogeneous Dirichlet boundary conditions on a regular
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A, = tridiag(—1,4, —1), f(A) = A", d=5 A, = tridiag(—1,4, —1), f(A) = A~%, n = 1000

_____ L — Error
N PP S 102 [~ --- Bound from Theorem 4.4

100 - B |

10°

— Error 1072
10-2 | --- Bound from Theorem 4.4 | |

| | | | 10—4 | | | | | | | |
400 800 1,200 1,600 2,000 1 2 3 4 5 6 7 8 9 10

n d
A, = tridiag(—1,4, 1), f(A) = A™Y2, d=5 A, = tridiag(—1,4, —1), f(A) = A~/2, n = 1000

10' : 104

_________________ — Error
_________ P --- Bound from Theorem 4.1
100 .-~ . 10% - .

101/ 10° |- T N
1072 — Error g 10-2 | bl LV

--- Bound from Theorem 4.1

| | | | 10~4 L - L ; -
400 300 1,200 1,600 2,000 12 3 4 5 6 7 8 9 10

n d

Fig. 6.4: Actual absolute error and error bound for the trace estimate (1.3) corre-
sponding to the coloring (2.2) for the matrix A, = tridiag(—1,4,—1) € C™*™ and
f(z) = 1/z (top row) and f(z) = z=/? (bottom row). Results for varying n are
shown in the left column while results for varying d are shown in the right column.

square grid. We apply a shift of 4 to the diagonal of the matrix in order to obtain an
N-independent decay in f(An), giving

AN =INQ®Mny+MyRIN € CN2XN2,

where My = tridiag(—1,4, —1) € CV*¥ is the tridiagonal matrix from the previous
experiment. Applying this shift to the Laplacian matrix is common practice for
obtaining good model problems for exponentially decaying matrices; see, e.g, [6,52],
were the same (or similar) families of matrices were considered.

We have spec(Ay) C [4,12] independent of N so that [13, Theorem 2.4] guarantees an

exponential decay of the entries of Aj\,l with C = % and ¢ = :/f;,% We determine the
color classes according to the optimal coloring for two-dimensional lattices from [20].
We again begin by approximating A;,l for increasing values of N while keeping d =5
fixed and compare the actual error norm to the bound from Theorem 3.9. The results
of this experiment are presented on the left-hand side of Figure 6.5 and we observe
that the approximation error scales linearly with N = /n, as predicted by our theory.
The magnitude of the error is overestimated by about one order of magnitude. On the
right-hand side of Figure 6.5 the results for an experiment with varying d and fixed
N = 32 are given. Again, we observe good qualitative and quantitative agreement
between the error bound and actual error norm.

Next, in Figure 6.6, we also approximate tr(Afvl), using the same experimental setup
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Ay = Iy @ My + My ® Iy,
My = tridiag(—1,4, —1), f(A) = A~1,d=5

Ay =IN® My + My ® Iy,
My = tridiag(—1,4, 1), f(4) = A1, N =32

T T T T T T I I I I I I
-2 - | — Frobenius norm error
_____ --n 100 k5 --- Bound from Theorem 3.9 []
T 102 |
1073
— Frobenius norm error 1074
--- Bound from Theorem 3.9
1074 L | | | | | ] 5
107° :
82 122 162 242 322 482 642 1 2 3 4 5 6 7 8 9 10

n

Fig. 6.5: Actual Frobenius norm error and error bound for the sparse approxima-
tion (1.4) corresponding to the coloring (2.4) for the matrix Ay = In @ My + My ®
Iy € CNXN? where My = tridiag(—1,4,—1) € CV*N and f(z) = 1/z for varying
N (left) and d (right).

Ay = In ® My + My @ Iy,

Ay =In @ My + My ® Iy,

My = tridiag(—1,4, -1), f(A)= A=, d=5 My = tridiag(—1,4, 1), f(4) = A1, N = 32
T T T T T T T :
) P — Error
L s | 102 F- --- Bound from Theorem 4.4 ||

100

—2
10 1072
— Error
T --- Bound from Theorem 4.4 | 54
| | | | | | | | | | | | |
82 122 162 242 322 482 642 1 2 3 4 5 6 7 8 9 10
n d

Fig. 6.6: Actual absolute error and error bound for the trace estimate (1.3) corre-
sponding to the coloring (2.4) for the matrix Ay = INn@ My + My ® Iy € C’NzXN2,
where My = tridiag(—1,4, —1) € CN*N and f(z) = 1/z for varying N (left) and d
(right).

as for the sparse approximation and compare to the bound from Theorem 4.4. Again,
we could also have used the lattice-specific bound from Theorem 4.2, which differs
from that of Theorem 4.4 by a factor ﬁ ~ 2 in this case. The results of this
experiment are shown in Figure 6.6. The scaling behavior for growing N and d is
again captured very accurately, although we overestimate the actual error norm by
quite a large margin.

6.3. Thresholded covariance matrix. For a next experiment, we consider the
problem of computing a sparse approximation of an inverse covariance matrix, a task
frequently occurring in uncertainty quanitification; see [2]. We use the example matrix
from [54]: Let Ayz = cov(N,a, ) € CN**N* be a covariance matrix corresponding
to integer points (x;,y;) arranged as a regular N x N grid with respect to a decaying,



22

: : : : ‘ : : : : :
Y ) N N S S S —— 105 |- — Frobenius norm error H
_______________ --- Bound from Theorem 3.8
1072 a 107
10-°
107
— Frobenius norm error 10710
107 --- Bound from Theorem 3.8 ||
| T T T T T —15 | | | | | |
12 212 312 412 512 612 712 812 107y 2 3 4 5 6 7 8
n d

A. FROMMER, C. SCHIMMEL AND M. SCHWEITZER

Apnz = cov(N,3,5), f(A)=A"1, d=3

Apnz = cov(N,2,7), f(A)=A"1, d=3

Ane = cov(51,3,5), f(A) = A™!

Anz = cov(51,2,7), f(A) = A7t
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100 — Frobenius norm error ||
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Fig. 6.7: Actual Frobenius norm error and error bound for the sparse approxima-
tion (1.4) corresponding to a greedy coloring for the matrix Ay2 = cov(N,«, ) €
CN**N* and f(z) = 1/z for the parameter sets o« = 3,8 =5 (top) and a = 2,8 =7
(bottom). Results for varying n are shown in the left column while results for varying
d are shown in the right column.

thresholded covariance function. More precisely,

cw) =)\
(1 — Mol ) i) — (25, )]2 < o

0 otherwise.

[Ali;

We use the two parameter sets 3,6 =5 and a = 2,8 = 7 and compute a
sparse approximation for A~!'. Again, we perform one experiment in which we vary
n = N? while d = 3 is fixed and one experiment in which we vary d while N = 512
is fixed. The resulting Frobenius norms of the error together with our bounds are
given in Figure 6.7. For the first parameter set, a = 3,3 = 5, we observe that while
the qualitative behavior for growing n is accurately reproduced by our bound, we
overestimate the actual error by several orders of magnitude. Thus, the bounds do
give a valuable insight into the scaling behavior of the method but are not useful for
judging whether the computed approximation is accurate enough for the application at
hand. For growing d, we also observe that the slope of the error curve is much steeper
than predicted by our bound, showing that also the qualitative behavior of the actual
error is not accurately captured here. For the second parameter set, « = 2,8 = 7, our
bounds look much better. For varying n, we still get an accurate impression of the
qualitative scaling behavior while overestimating the error norm only by about one
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A= A(¢), f(A) =log(A), d =3 A= A(8), f(A) =log(A), n = 2000
103 T T T . . . T T
— Error
--------------- 108 . --- Bound from Theorem 4.1 ||
102 T A B
10! /—/7
— Error
1001 --- Bound from Theorem 4.1 | |
1000 1500 2060 25‘00 SdOO 35‘00 4000 1 é i") 4‘1 5‘ é ‘7 8

n d

Fig. 6.8: Actual absolute error and error bound for the trace estimate (1.3) correspond-
ing to the coloring (2.2) for the precision matrix A(¢) of a GMRF and f(z) = log(z)
for varying n (left) and d (right)

order of magnitude. For varying d, we still do not get a completely accurate reflection
of the slope of the error curve, but the slopes agree much better than before.

6.4. Maximum likelihood estimation for Gaussian Markov Random
Fields. In a last experiment, we consider the problem of maximum likelihood es-
timation for Gaussian Markov Random Fields (GMRFs). A GMRF is a multivariate
joint Gaussian distribution defined with respect to some underlying graph, where each
random variable corresponds to a node of the graph. The GMRF can be described
by the positive definite and sparse precision matrix A € R™"*"™ (which is the inverse of
the covariance matrix ¥ of the Gaussian distribution). Often, the precision matrix is
parameterized by some unknown parameter ¢, i.e., A = A(¢) which can be estimated
by a maximum likelihood estimator. Let x € R™ be a sample from the Gaussian
distribution. The log-likelihood of this sample is then given by the functional

logp(x | ¢) = logdet(A(¢)) — 27 A(¢)x + G, (6.1)

where G is a constant independent of ¢; see, e.g., [32]. The computationally demand-
ing part in the evaluation of (6.1) is the evaluation of the log-determinant. Due to
the relation

log det(A(¢)) = trlog(A(¢)),

the log-determinant can be estimated by the probing approximation (1.3) applied to
the matrix logarithm.
We consider the GMRF model from [41]. Given a set of n points s; € [0, 1], we define

a Gaussian random variable x;,7 = 1,...,n at each point. The entries of the precision
matrix are
A N 1+¢ZZ:17;€# X?j ifi = j, 6.2
[A()i; = 5 | (6.2)
—oX5; otherwise,

where x° is given by

5 _ 1 if ||Sz — SjHQ < 5,
Y 0 otherwise,
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where ¢ is a distance threshold which determines which points s; are connected in the
graph underlying the GMRF. The resulting matrix is unstructured and sparse, but
can be reordered to a matrix with rather narrow bandwidth by the Cuthill-McKee
reordering, so that the coloring (2.2) can be used.

In our experiment, reported in Figure 6.8, we fix ¢ = 20 and use § = 0.02 when
n = 1000. For other values of n, we scale § accordingly so that the average number of
non-zeros per row and the bandwidth stay approximately constant for all values of n.
In contrast to the previous experiments, we now mimick a situation that one typically
faces in practice, namely that no explicit expressions for C' and ¢ in (1.5) are known,
e.g., because the extremal eigenvalues of A(¢) are not known. In this case, one can
obtain heuristic decay estimates by computing one (or a few) columns of log(A(¢))
(e.g., by a Krylov subspace method) and then estimating C' and ¢ from the observed
decay pattern.

First, we vary n between 1000 and 5000 while keeping d = 3 fixed. Then, we fix
n = 2000 and vary d between 1 and 10. We compare the actual error of the probing
approximation for the trace of the logarithm to the bound from Theorem 4.1 for
banded matrices, using the estimated values of C' and g computed from a single
column of log(A(¢)). In both cases, we can observe a good qualitative agreement
between our bound and the actual error.

7. Conclusions. We have presented a detailed a priori error analysis of probing
methods for the computation of sparse approximations and trace estimates of ma-
trix functions, with a special emphasis on graph coloring based probing and matrix
functions that exhibit an exponential decay. As illustrated in several numerical ex-
periments, our error bounds accurately predict the scaling behavior of the error with
respect to the matrix dimension n or the coloring distance d. A particularly interest-
ing observation in this context is that the error of the trace estimates decreases with
exponent d, while the error of sparse approximations decreases only with exponent
%. In addition to these error bounds for practical algorithms, we have also proven a
new result on the existence of sparse approximations of matrix functions, improving
on known results from the literature. While our results typically give a good idea of
the qualitative behavior of the actual error, they sometimes severely overestimate the
actual error. Possible directions for future research include developing further ideas
to improve the quality of the error bounds and looking at new approaches for efficient
distance-d coloring algorithms for appropriate classes of graphs.

Appendix A. Proof of Theorem 2.2 and Lemma 2.4.

A.1. Proof of Theorem 2.2. Since for every node w = (wl!l, ... wlPl) we have
wlkl € {0,...,d} for k=1,..., D, we know that the coloring

D-1
col(w) = (Z m(d—&— 1)k> +1

k=0
produces at most (d + 1) colors. Now assume col(w) = col(v) for nodes w # v. We

want to show that d(v,w) = ||v — wl]y > d. Because of

wlkl = wH mod (d+1)

we have w*l = (d + 1)a + wl* and v¥ = (d + 1)b + ol¥] for some integers a,b > 0,

and since col(w) = col(v) we have wlkl = ylk] for all k = 1,...,D. Since w # v there
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exists at least one k such that w*l = (d + 1)a + wik] #(d+1)b+ ol = ¥ which is
equivalent to a # b for d > 0. By fixing such a k& we obtain

d(w,v) = |lw—v|; > |w[k] —v[k]| =(d+1)ja—b>d+1

which proves the assertion. O

A.2. Proof of Lemma 2.4. From (2.3) we obtain

50 = tofa ~ a1 = 3 () (** D =ET),

k=0

where we used (17) = () + ()

We will now use a proof technique called double counting to prove that

D)

k=0

is equal to

]

(D)0 &

For this, we first give a combinatorial interpretation of (A.1), then formulate an
equivalent statement which at last results in (A.2).

Let X = {Xy,...,Xp} be a set with D elements and let Y = {Y3,...,Y;_1} be a
set with d — 1 elements with X NY = (). Then (A.1) counts the number of ways for
choosing subsets A C X and B C X UY with |[B| =D —1 and AN B = (). This can
be seen as follows: If 0 < k < D is the number of elements in A, then (f) counts the
number of ways for choosing A. Since AN B = () there are D + (d — 1) — k elements
left for the set B. Thus, the number of ways for choosing B with |B| = D —1 is given
by (‘Hg:]fl). The sum over the number of elements in A gives (A.1).

Now, choosing such a B C X UY with |B| = D —1 and AN B = {) is equivalent to
choosing subsets N C X and M C Y such that |[M|+|N| = D—1and (NUM)NA = (.
Hence, we now count the number of ways for choosing subsets A C X, N C X and
M CY with M|+ |N|=D—-1land (NUM)NA=0. If 1 <k <D —1is the
number of elements in M, then there are (],:C) ) ways for choosing M. The number of

>
Il

ways for choosing the left D — 1 — k elements of N out of Y is given by ( Dci_ll_ k)
Since (N U M) N A = () there are D — k elements left for A, i.e., there are 2% ways

for choosing A. The sum over the number of elements in M gives (A.2).

As a last step, we need to bound (A.2), where we use (}) = -2 ("."), (}) < ”k— and
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2" < (n+ 1)!. We then have

= /D\/ d-1 2D,,€:D*1 D _(D=1\( d=1 \,p,
k)\D-1-k D-k\ k J\D-1-%
k=0 k=0

= 1 (D-1\(d-1P '
<D}, ( k >(D1k)!2Dk

where the last equality comes from the binomial formula for ((d — 1) + 1)P~1. O

We want to remark that the estimate from Lemma 2.4 tends to severely overestimate
the actual size of the level sets for larger values of D. This is exclusively due to
the constant factor 2D, while the factor dP~! is actually the sharpest one possible.
Asymptotically, for fixed D and growing d, we have

2D

D—1
D1

0y ~

This can be seen by carefully examining the proof above, noting that the asymptotic
behavior is governed by the term corresponding to k£ = 0, i.e., (g:ll)ZD and that

asymptotically, for growing d we have (g:ll) ~ %.
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