
AM
C M

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 20/32

Edmond Chow, Andreas Frommer and Daniel B. Szyld

Asynchronous Richardson iterations

September 4, 2020

http://www.math.uni-wuppertal.de

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

ASYNCHRONOUS RICHARDSON ITERATIONS:
THEORY AND PRACTICE∗

EDMOND CHOW† , ANDREAS FROMMER‡ , AND DANIEL B. SZYLD§

Abstract. We consider asynchronous versions of the first and second order Richardson methods
for solving linear systems of equations. These methods depend on parameters whose values are
chosen a priori. We explore the parameter values that can be proven to give convergence of the
asynchronous methods. This is the first such analysis for asynchronous second order methods. We
find that for the first order method, the optimal parameter value for the synchronous case also gives an
asynchronously convergent method. For the second order method, the parameter ranges for which we
can prove asynchronous convergence do not contain the optimal parameter values for the synchronous
iteration. In practice, however, the asynchronous second order iterations may still converge using
the optimal parameter values, or parameter values close to the optimal ones, despite this result. We
explore this behavior with a multithreaded parallel implementation of the asynchronous methods.

Key words. Asynchronous iterations. Parallel computing. Second order Richardson method.

AMS subject classifications. 65F10, 65N22, 15A06

1. Introduction. A parallel asynchronous iterative method for solving a sys-
tem of equations is a fixed-point iteration in which processors do not synchronize
at the end of each iteration. Instead, processors proceed iterating with the latest
data that is available from other processors. Running an iterative method in such
an asynchronous fashion may reduce solution time when there is an imbalance of the
effective load between the processors because fast processors do not need to wait for
slow processors. Solution time may also be reduced when interprocessor communica-
tion costs are high because computation continues while communication takes place.
However, the convergence properties of a synchronous iterative method are changed
when running the method asynchronously.

Consider the system of equations x = G(x) in fixed point form, where G : Rn →
Rn, which can be written componentwise as xi = gi(x), i = 1, . . . , n. An asynchronous
iterative method for solving this system of equations can be defined mathematically
as the sequence of updates [2, 4, 6],

xki =

{
xk−1i if i /∈ Jk
gi(x

s1(k)
1 , x

s2(k)
2 , . . . , x

sn(k)
n) if i ∈ Jk

,

where xki denotes component i of the iterate at time instant k, Jk is the set of indices
updated at instant k, and sj(k) ≤ k − 1 is the last instant component j was updated
before being read when evaluating gi at instant k. We point out that (a) not all
updates are performed at the same time instant, and (b) updates may use stale
information, which models communication delays in reading or writing.

With some natural assumptions on the sequence of updates above, much work
has been done on showing the conditions under which asynchronous iterative methods
converge; see the survey [11]. For linear systems, where G(x) = Tx + c, T ∈ Rn×n,
c ∈ Rn, the pioneering result from [6] states that, under very mild conditions on the
sets Jk and the sequences sj(k), any asynchronous iteration converges for any initial

∗This version dated September 4, 2020.
†Georgia Institute of Technology, Atlanta, GA, USA (echow@cc.gatech.edu).
‡Bergische Universität Wuppertal, Wuppertal, Germany (frommer@math.uni-wuppertal.de).
§Temple University, Philadelphia, PA, USA (szyld@temple.edu).

1

mailto:echow@cc.gatech.edu
mailto:frommer@math.uni-wuppertal.de
mailto:szyld@temple.edu

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

vector if and only if ρ(|T |) < 1. Here, |T | ∈ Rn×n arises from T by taking absolute
values for each entry and ρ denotes the spectral radius. The mild conditions on Jk
and sj(k) are that

lim
k→∞

sj(k) =∞ for j = 1, . . . , n and(1)

each i ∈ {1, . . . , n} appears infinitely many times in the sets Jk.(2)

Since ρ(T) ≤ ρ(|T |), it appears that the condition for convergence of asynchronous
iterations is more strict than that of synchronous iterations.

For linear systems Ax = b, asynchronous iterative methods that are based on the
Jacobi or block Jacobi splitting, i.e., T = I − D−1A with D the diagonal or block
diagonal of A, have been extensively studied, although these splittings generally give
slow convergence; see [5, 16, 22, 23] for some recent references. In this paper, we
consider first and second order Richardson methods [19]. If information on the bounds
of the spectrum of A is available, this can be used to determine the parameter values
to use for the Richardson methods, and the second order Richardson method, in
particular, then converges rapidly. This paper explores the parameter values that can
be proven to give convergence of asynchronous Richardson methods. In particular, it
presents the first such analysis for second order methods.

Statements about the rate of convergence, however, cannot be made without a
description of the sets Jk and the sequences sj(k). Both depend on properties of
the parallel computation, including how the problem is partitioned among the pro-
cessors, and computer characteristics such as computation speed and interprocessor
communication latency and bandwidth. Indeed, one can imagine that in an asyn-
chronous computation where communication is fast and the workload is balanced, the
asynchronous computation may behave very much like the synchronous computation,
while it may behave very differently if load is unbalanced or communication costs are
high. In this paper, we will therefore not go into the details of an analysis of the
convergence rate, but we will demonstrate the actual behavior of asynchronous first
and second order Richardson methods using a parallel multithreaded implementation
of the methods.

Our theoretical and experimental results are suggestive for an asynchronous ver-
sion of the Chebyshev semi-iterative method. The Chebyshev method can be regarded
as the non-stationary counterpart of the stationary method which is the second or-
der Richardson method. If one uses the optimal parameter values in second order
Richardson, i.e., the parameter values that minimize the spectral radius of the iter-
ation operator, then, asymptotically, both second order Richardson and Chebychev
iterations have the same convergence rate [15]. For a short historical description of the
development of these methods, see [20]. Unlike those Krylov subspace methods which
rely on a variational principle, the second order Richardson and Chebyshev meth-
ods do not require inner products, which is what allows them to be easily executed
asynchronously.

In recent related work, asynchronous versions of Schwarz and optimized Schwarz
methods have been developed [12, 17, 25].

2. The setting. From the beginning, we assume that the original system

Âx = b̂, Â ∈ Cn×n, b̂ ∈ Cn

2

P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t

is preconditioned with a nonsingular matrix M , that is, we have Â = M − N , T =
M−1N , c = M−1b̂, and the original linear system is equivalent to

(3) Ax = c, where A = M−1Â = I − T, c = M−1b̂.

For the convergence results on asynchronous Richardson iterations to come, we
will always assume that the following assumptions are met:

T is non-negative, i.e. T ≥ 0 where ≥ is to be understood entrywise,(4)

T is convergent, i.e. ρ(T) < 1,(5)

spec(A) ⊂ R+.(6)

In other words, we are assuming that Â = M−N is a convergent weak splitting in the
sense of [18]1 with the additional property that the spectrum of T is real. Note that if
Â is symmetric and positive definite (spd), and M is the diagonal or a block diagonal
of Â, which then is also spd, (6) is fulfilled. If, in addition, Â is a Stieltjes matrix, i.e.
an M-matrix which is spd, and if again M is the diagonal or a block diagonal of Â,
then (4) and (5) are also fulfilled; see [3, Chapter 5], [21, Section 3.5], [26, Chapter
11].

With the splitting A = I − T , the standard, synchronous iterative method is as
follows. Given x0, for k = 0, 1, . . ., compute

(7) xk+1 = Txk + c.

We note then that if we denote λmin and λmax to be the smallest and largest
eigenvalue of A, we have

λmin = 1− ρ, λmax ≤ 1 + ρ.

3. First order Richardson. The first order Richardson method consists of
taking a linear combination of the previous iterate with that which would come from
the standard iteration (7). This method can be seen as the simplest case of a semi-
iterative method [8, 9, 21, 26]. The sum of the coefficients of the linear combination
must add up to one, since otherwise the method will not produce iterates that converge
towards A−1b.2

We first consider the stationary case where the parameter α defining the Richard-
son iteration is fixed for all iterations. We consider later the non-stationary case where
α = αk depends on the iteration number.

The synchronous stationary iteration is

(8) xk+1 = (1− α)xk + α(Txk + c) = xk + α[c− (I − T)xk] = xk + αrk,

where rk = c− (I − T)xk is the residual of the equivalent system (3).
The convergence analysis of this synchronous method is straight-forward and well-

known; see [26, Section 11.4]. The analysis consists of analyzing the spectral radius
of the iteration matrix

Tα = (1− α)I + αT = I − α(I − T) = I − αA.

If µ ∈ spec(Tα), then µ = 1− α+ αλ, with λ ∈ spec(T), i.e., λ ∈ [−ρ, ρ].

1See also [24, 7].
2Gene Golub in his thesis [14] calls this a method of averaging, following the nomenclature used

by von Neumann.

3

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Theorem 1. Let spec(A) ⊂ R+. Then
(i) iteration (8) converges if α ∈ (0, 2/λmax),

(ii) the optimal choice is α = 2/(λmin + λmax) in the sense that this choice mini-
mizes ρ(Tα),

(iii) the optimal choice w.r.t. the information spec(A) ⊂ [a, b], a > 0 is α =
2/(a+ b).

Proof. We have spec(Tα) = {1− αλ : λ ∈ spec(A)} and thus

ρ(Tα) = max{|1− αλmin|, |1− αλmax|}.

From this we see that ρ(Tα) < 1 iff α ∈ (0, 2/λmax), which is (i), and that ρ(Tα) is
minimal if 1−αλmin = −(1−αλmax) which gives (ii). Part (iii) follows from equating
1− αa with −(1− αb).

Note that in our situation we know spec(A) ⊂ [1 − ρ, 1 + ρ], and, by (iii) the
optimal α w.r.t. this information is α = 1.

For the asynchronous iteration, we analyze when ρ(|Tα|) < 1. We adopt the
notation w > 0 for w ∈ Rn if wi > 0 for i = 1, . . . , n. Our analysis relies on the
following often-used fact from non-negative matrix theory which we restate with its
proof for convenience.

Lemma 2. Let T ∈ Rn×n, T ≥ 0 with spectral radius ρ. Then for every ε > 0
there exists a positive vector wε > 0, wε ∈ Rn, such that

Twε ≤ (ρ+ ε)wε.

Proof. For δ > 0, let

Tδ = T + δE, where E =

1 · · · 1
...

. . .
...

1 · · · 1

 .
Then Tδ has only positive entries, and by the Perron-Frobenius Theorem, see [3, 21],
e.g., there exists wδ > 0 such that Tδwδ = ρ(Tδ)wδ which, since Ewδ ≥ wδ, gives

(9) Twδ ≤ (ρ(Tδ)− δ)wδ.

By continuity of the spectral radius, we can choose δ = δ(ε) such that ρ(Tδ(ε)) ≤ ρ+ε,
so that (9) becomes the assertion of the lemma (with wε = wδ(ε)).

In Theorem 3 below, as well as in Theorem 6, we will also use the fact that if, for
T ∈ Rn×n, T ≥ 0 and w ∈ Rn, w > 0, we have Tw ≤ νw, then ρ(T) ≤ ν. This follows
immediately from observing that Tw ≤ νw is equivalent to ‖T‖w ≤ ν where ‖ · ‖w
is the matrix norm induced by the weighted maximum norm ‖x‖w = maxni=1 |xi/wi|
on Rn.

Theorem 3. Assume that (4), (5) and (6) hold and let ρ = ρ(T). Then ρ(|Tα|) <
1 if α ∈ (0, 2

1+ρ), where 2
1+ρ > 1.

Proof. Let ε > 0 and, by Lemma 2, let wε > 0 be a vector for which Twε ≤
(ρ+ ε)wε. Then we have

|Tα|wε ≤ |1−α|wε+αTwε ≤ (|1−α|+α(ρ+ε))wε = νwε with ν = |1−α|+α(ρ+ε).

4

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

For 0 < α ≤ 1 we have 0 ≤ ν = (1 − α) + (ρ + ε)α = 1 − α(1 − (ρ + ε)) which
is less than 1 if ε > 0 is taken small enough. For 1 < α < 2

1+ρ we have 0 < ν =

(α − 1) + (ρ + ε)α = (1 + ρ + ε)α − 1 which, for α fixed, is again less than 1 for ε
sufficiently small.

We note that α = 1, the optimal parameter value for the synchronous iteration
w.r.t the information spec(A) ⊆ [1− ρ, 1 + ρ], is covered by this theorem.

We discuss now the case in which α = αk, i.e., the case, where the first order
Richardson parameter changes from one iteration to the next. As long as
0 < αk ≤ α < 2

1+ρ , the “non-stationary” asynchronous method converges as well,

using [11, Corollary 3.2]. In fact, using the latter result, we have the following
theorem.

Theorem 4. Let Tk : Cn → Cn, k ∈ N be a pool of linear operators sharing the
same fixed point x∗ = A−1b and being all contractive w.r.t. this fixed point in the same
weighted max-norm, i.e., ‖Tk − x∗‖w ≤ γk‖x− x∗‖ for all x ∈ Cn. If 0 ≤ γk ≤ γ < 1
for some γ ∈ [0, 1), then the asynchronous iterations which at each step picks one of
the operators form the pool as its iteration operator, produces iterates which converge
to x∗.

The result for non-stationary first order Richardson follows by using the vectors
wε from Lemma 2 for T and by observing that with Tk = (1− αk)I + αkT we have

‖(1− αk)I + αkT‖wε ≤ |1− αk|+ αk(ρ+ ε) ≤ |1− α|+ α(ρ+ ε).

Taking ε > 0 such that ρ+ ε < 1 and (1 + ρ+ ε)α− 1 < 1 gives |1−α|+α(ρ+ ε) < 1.

4. Second order Richardson. The second order Richardson method is the
semi-iterative method one obtains when correcting xk with a linear combination of
(xk − xk−1) and the residual at step k, rather than just the residual as used in the
standard iteration (7). Equivalently, one can take xk+1 to be a linear combination of
the first order Richardson iterate (8) with just xk−1, as follows,

xk+1 = (1 + β)[(1− α)xk + α(Txk + c)]− βxk−1

= −βxk−1 + (1 + β)xk + (1 + β)α[−xk + Txk + c)]

= xk − β(xk−1 − xk) + (1 + β)α[c− (I − T)xk)]

= xk + β(xk − xk−1) + (1 + β)α(c−Axk)(10)

= (1 + β)(I − αA)xk − βxk−1 + (1 + β)αc, k = 1, 2,

In addition to x0, it is now necessary to also prescribe x1, and for this it is possible
to use one step of (7) or one step of first order Richardson [14].

The results to come are more restrictive than those for first order Richardson,
since we can show the convergence of asynchronous second order Richardson only
for parameter values which are quite far from the optimal ones for the synchronous
iteration.

We can write the three-term recurrence in (10) using a matrix of doubled size as
follows, cf. [27],[

xk+1

xk

]
=

[
(1 + β)(I − αA) −βI

I 0

]
︸ ︷︷ ︸

:=Tα,β

[
xk

xk−1

]
+

[
(1 + β)αc

0

]
·

5

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

For the synchronous iteration (10), two approaches have been used to analyze
convergence. For the first approach [27], we note that if λ is an eigenvalue of Tα,β
with eigenvector [st], then s = λt and (1 + β)[(I − αA)]s − βt = λs, that is, (1 +
β)(I−αA)λt−βt = λ2t. Thus, assuming that t 6= 0, this implies that det[(1 +β)(I−
αA)λ − βI − λ2I] = 0, so that for µ ∈ spec(A), the eigenvalues of Tα,β must satisfy
the quadratic equation

(11) λ2 − (1 + β)(1− αµ)λ+ β = 0.

Figure 1 (first column) plots the spectral radius of Tα,β as a function of α and β for
three examples.

Frankel [10] shows that the values of the parameters α and β that minimize the
maximum of the modulus of the solution of (11) are given by α = 2/(a + b) and

β =
(√

b−
√
a√

b+
√
a

)2
:= q2, for A such that spec(A) ⊂ [a, b] with a > 0. The resulting

minimal value for ρ(Tα,β), the spectral radius of the iteration operator, is q.
For the second approach [14, 15], assuming one uses the above optimal parameters,

the recurrence of the polynomials defining (10) is used to bound the 2-norm of the
error as

(12) ‖xk − x∗‖2 ≤
[
qk
(

1 + k
1− q2

1 + q2

)]
‖x0 − x∗‖2,

where x∗ is the solution of (3). Here, it is assumed that the first iterate is x1 =
x0 + α(b−Ax0).

In summary, the following is thus known for the synchronous iteration.

Theorem 5. Let A be spd. Then
(i) the optimal parameters w.r.t. the information spec(A) ⊂ [a, b] with a > 0

are α = 2/(a + b) and β =
(

b−a
a+b+2

√
ab

)2
=
(√

b−
√
a√

b+
√
a

)2
, and the asymptotic

convergence factor ρ(Tα,β) is equal to q =
√
b−
√
a√

b+
√
a

,

(ii) with these parameters and with x1 = x0 +α(b−Ax0), a bound for the 2-norm
of the errors is given in (12).

For the asynchronous second order Richardson, the following theorem proves con-
vergence for certain ranges for α and β.

Theorem 6. Assume that (4), (5) and (6) are fulfilled and let ρ = ρ(T). Then
we have ρ(|Tα,β |) < 1, provided

(13) α > 0 and |1 + β|(|1− α|+ αρ) + |β| < 1.

Before we prove the theorem, consider the choice α = 1. For this choice, the theorem
states that asynchronous iterations converge for −1 ≤ β < 1−ρ

1+ρ , as can be seen from
considering the two cases β ≥ 0 and −1 < β < 0 separately. If the information about
the spectral interval is spec(A) ⊂ [1− ρ, 1 + ρ], Theorem 5 gives that the optimal α
for the synchronous iteration is α = 1, and the corresponding optimal β will be close
to 1 for ρ close to 1. The range of β for which Theorem 6 guarantees convergence of
the asynchronous iteration for α = 1, however, has 1 − ρ as an upper bound for β
according to (13), and this will be close to 0 if ρ is close to 1.
Proof of Theorem 6. Let ε > 0 be small enough such that we still have

|1 + β|(|1− α|+ α(ρ+ ε)) + |β| < 1,

6

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

and let wε > 0 be a vector with Twε ≤ (ρ+ε)wε which exists by Lemma 2. Let γ > 1
and consider the vector [wεγwε]. Then, if α > 0, we have

|Tα,β |
[
wε
γwε

]
=

[
|1 + β| · |I − αA| |β|I

I 0

] [
wε
γwε

]
≤
[
(|1 + β| · (|1− α|+ α(ρ+ ε)) + |β|γ)wε

wε

]
≤ σε

[
wε
γwε

]
,

with

(14) σε = max{ 1γ , |1 + β| · (|1− α|+ α(ρ+ ε)) + |β|γ}.

Now, since |1 + β|(|1− α|+ α(ρ+ ε)) + |β| < 1, we can choose γ > 1 close enough to
1 such that we also have |1 + β|(|1 − α| + α(ρ + ε)) + γ|β| < 1, which gives σε < 1
in (14).

We note that for β < −1, the inequality |1 + β|(|1−α|+αρ) + |β| < 1 cannot be
fulfilled. Denoting ν := |1− α|+ αρ we can distinguish the two cases 0 ≤ ν < 1 and
ν ≥ 1. In the first case, we obtain that |1 + β|ν + |β| < 1 if −1 ≤ β < 1−ν

1+ν . In the
second case, there is no β which satisfies the inequality.

To compare with (11), let us study the eigenvalues of |Tα,β |. We follow the same
development as before for Tα,β and write:

|Tα,β |
[
s
t

]
= λ

[
s
t

]
.

Looking at the second block row of |Tα,β |, we see that s = λt. Then, the first block
row reads

(|1 + β||I − αA|λ+ |β|I − λ2I)t = 0.

This means that
det(|1 + β||I − αA|λ+ |β|I − λ2I) = 0.

For every eigenvalue µ = µi of |I − αA| we thus have that λ satisfies the quadratic
equation

(15) λ2 − |1 + β|µλ− |β| = 0.

Figure 1 (second column) plots the spectral radius of |Tα,β | as a function of α and β
for three examples.

5. Discussion. For the second order Richardson method, Figure 1 plots the
contours of the spectral radius of Tα,β (synchronous case) and of |Tα,β | (asynchronous
case) as a function of α and β when λmin(A) = 1 − ρ and λmax(A) = 1 + ρ, for ρ
equal to 0.1, 0.5, and 0.9. The spectral radii were computed from the roots of the
polynomials (11) and (15). In our setting, the optimal α is always 1.

In the synchronous case, as ρ increases, the optimal value of β increases from near
0 toward 1.

The plots for the asynchronous case are best explained in terms of the plots for the
synchronous case. When β ≤ 0, ρ(|Tα,β |) and ρ(Tα,β) appear to be the same. When
β > 0, it appears that ρ(|Tα,β |) > ρ(Tα,β). In particular, the region where the spectral
radius is less than 1 is smaller in the asynchronous case than in the synchronous case.
The effect is that ρ(|Tα,β |) is smallest for β = 0, which corresponds to the first order
method.

7

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

synchronous, = 0.1

0
.2

0
.2

0
.3

0
.3 0
.3

0
.3

0
.4

0
.4

0
.4

0
.4

0
.4

0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

0
.6

0
.6

0.6

0
.6

0
.6

0
.6

0
.7

0
.7

0
.7

0.7

0
.7

0
.7

0.7

0
.8

0
.8

0
.8

0.8

0.8

0
.8

0
.8

0.8

0
.9

0
.9

0.9
0.9

0.9

0
.9

0
.9

0
.9

1
1

1

1111

1
1

1

1.1

1.1

1.1

1
.1

1.2

1.2

1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
asynchronous, = 0.1

0
.20

.3

0
.3

0
.4

0
.4

0
.4

0
.5

0
.5

0
.5

0
.50

.6

0
.6

0.6

0
.6

0
.6

0
.7

0
.7

0
.7

0
.7

0
.7

0.7 0
.8

0.8

0
.8

0.8

0
.8

0
.8

0.8 0
.9

0.9

0
.9

0
.9

0.9

0
.9

0
.9

1

1

1

1

11

1
1

1

1
.1

1.1

1.1

1
.1

1
.1

1.1

1
.1

1.2

1
.2

1
.2

1.2

1.2

1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

synchronous, = 0.5

0
.4

0
.4

0
.5

0
.5

0
.5

0
.5

0
.6

0
.6

0.6

0
.6

0
.60

.7

0
.7

0.7

0.7

0
.7

0
.7

0.8

0.8

0
.8

0.8

0.8

0
.8

0
.8

0
.8

0.9

0.9

0.9

0
.9

0.9

0.9

0.9

0
.9

0
.9

0
.9

1111

1
1

1 1 1 1

1
1

1

1
1.1

1.1

1.1

1
.1

1.1

1.1
1.1

1.2

1.2

1.2

1
.2

1.2

1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
asynchronous, = 0.5

0
.6

0
.7

0.7

0
.70

.8

0.8

0
.8

0
.8

0.9

0
.9

0.9

0.9

0
.9

0
.9

11

1
1

1

1 1

1

1

1

1.1

1.1

1
.1

1
.1

1.1

1
.1

1
.2

1.2

1
.2

1
.2

1.2

1
.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

synchronous, = 0.9

0
.7

0
.7

0
.8

0
.8

0
.8

0
.8

0.9

0
.9

0.9
0.9

0
.9

0
.9

0.92

0
.9

2

0
.9

2

0.92
0.92

0
.9

2
0
.9

2

0.94

0
.9

4

0
.9

4

0.94
0.94

0
.9

4
0
.9

4

0.96

0.96

0
.9

6

0.96
0.96 0.96

0
.9

6
0
.9

6

0.98

0.98

0.98

0
.9

8

0.98
0.98 0.98 0.98

0
.9

8
0
.9

8

1111

1
1

1 1 1 1

1
1

1.1
1.1

1.1

1
.1

1.1

1.1

1.1
1.1

1.2

1.2

1.2

1
.2

1.2

1.2

1.2
1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
asynchronous, = 0.9

0
.9

20
.9

4

0
.9

4

0
.9

6

0
.9

6

0.96

0
.9

6

0.98

0
.9

8

0.98

0
.9

8
0
.9

8

11

1

1

1 1 1

1

1
.1

1.1

1
.1

1
.1

1
.1

1.1

1.2

1
.2

1
.2

1
.2

1.2

1
.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

Fig. 1. Spectral radius of Tα,β (synchronous case) and of |Tα,β | (asynchronous case) as a
function of α and β when λmin(A) = 1− ρ and λmax(A) = 1 + ρ, for three values of ρ.

8

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Consider ρ = 0.5. For the synchronous case, the optimal β is approximately
0.0718. Although the asynchronous method can converge for this value of β, the
value of 0 gives a lower value of ρ(|Tα,β |). Now consider ρ = 0.9. For the synchronous
case, the optimal β, minimizing ρ(Tα,β), is approximately 0.3929. Regarding the
asynchronous method we have that |Tα,β | has spectral radius greater than 1 for this
value of β. To guarantee convergence, the asynchronous method must use a very
small value of β.

These results are quite negative for the asynchronous second order method. How-
ever, in practice, the situation could be more favorable. The condition ρ(|Tα,β |) < 1
for the asynchronous method guarantees that the method will converge for any ini-
tial vector and any specific asynchronous iterations, i.e., any choice of the delays,
k − sj(k), and any choice of the sets Jk of components to update (satisfying the
mild conditions (1) and (2)). In practice, the asynchronous method may converge
despite ρ(|Tα,β |) > 1. One could imagine that the “degree of asynchrony” affects the
convergence of the asynchronous method, and we explore this next with numerical
experiments.

6. Numerical behavior. The asynchronous first and second order Richardson
methods were implemented in parallel using multithreading and shared memory. Tests
were run on a dual processor Intel Xeon computer with a total of 20 cores. The threads
were pinned to the cores using “scatter” thread affinity.

The test matrix A arises from the standard finite difference Laplacian matrix Â on
a 100×100 grid of unknowns. With Jacobi preconditioning, the preconditioned matrix
A remains spd and thus satisfies (6), while T = I − A is the iteration matrix which
satisfies (4) and (5). A right-hand side vector was chosen randomly with components
chosen independently from the uniform distribution on (−0.5, 0.5). The same vector
was used for all tests. The initial vector for all iterations was zero.

Different numbers of threads were used in different tests. Each thread was as-
signed approximately the same number of unknowns to update. The iterations per-
formed by each thread were terminated when the all the unknowns were updated an
average of 500 times. Because the threads operate asynchronously, the number of
updates performed on each unknown is generally different. We refer to the difference
between the largest number of updates and the smallest number of updates as the
range. When the iterations are terminated, we measure the residual norm relative to
the initial residual norm. The residual norm is not calculated during the iterations,
as such calculations involving dot products induce synchronization in the method.

6.1. First order Richardson. For the asynchronous first order Richardson
method, Table 1 shows the convergence results for tests with different numbers of
threads. For the given matrix, the optimal α is 1. For each number of threads,
the method was run 100 times. Columns 2 and 3 of the table show the average
range, and the average relative residual norm when the asynchronous iterations were
terminated. For comparison, the relative residual norm attained after 500 iterations
of the synchronous first order Richardson method is 1.691939 × 10−2. Evidently,
the convergence of the asynchronous method is better than the convergence of the
synchronous method. This perhaps nonintuitive result is due to the fact that the
asynchronous method has a multiplicative effect [22, 23], i.e., unknowns are not all
updated at the same time, and when unknowns are updated, they are immediately
available to other threads. Indeed, for a single thread, the asynchronous method
corresponds to Gauss-Seidel, giving a relative residual norm of 7.421009×10−3 which is
lower than that of the synchronous method, which corresponds to the Jacobi method.

9

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

As the number of threads is increased, convergence generally worsens slightly as the
method departs from a pure Gauss-Seidel method. The convergence is always better
than the convergence of the synchronous method for all numbers of threads tested.

Table 1
Asynchronous first order Richardson for different numbers of threads. For comparison, the

synchronous method attains an average relative residual norm of 1.691939 × 10−2 for all numbers
of threads. Timings for the asynchronous and synchronous methods for performing a fixed number
of iterations are also given.

number of average average rel. async sync
threads range resid. norm time (s) time (s)

1 0.0 7.421009× 10−03 0.060177 0.048345
2 17.1 7.491060× 10−03 0.034049 0.030291
3 76.1 7.686441× 10−03 0.022664 0.020642
4 98.3 7.624358× 10−03 0.018009 0.017360
5 129.6 7.940683× 10−03 0.015023 0.015171
6 138.1 7.902309× 10−03 0.012898 0.012751
7 144.6 8.021550× 10−03 0.011334 0.012374
8 172.2 8.149458× 10−03 0.010997 0.012067
9 240.4 8.500669× 10−03 0.010039 0.010737
10 191.4 8.248697× 10−03 0.009339 0.010642
11 222.4 8.363452× 10−03 0.009225 0.010741
12 215.5 8.311822× 10−03 0.008861 0.010590
13 248.9 8.450671× 10−03 0.009132 0.010339
14 227.7 8.416794× 10−03 0.007867 0.009669
15 253.7 8.403988× 10−03 0.009014 0.009998
16 292.2 8.610365× 10−03 0.008414 0.009871
17 284.6 8.530868× 10−03 0.008179 0.009668
18 305.9 8.573682× 10−03 0.007307 0.009660
19 288.4 8.445288× 10−03 0.007020 0.009496
20 297.3 8.448706× 10−03 0.007200 0.009249

The table also shows timings for the asynchronous method and the synchronous
method for different numbers of threads (for performing a fixed number of iterations).
For small numbers of threads, the synchronous method is faster in performing 500
iterations than the asynchronous method in performing an average of 500 iterations
by each thread. This can be explained by two factors: (1) the asynchronous method
has more work to do because each thread, after each iteration, needs to count how
many iterations have been performed by other threads in order to decide whether to
terminate, and (2) the asynchronous method has more write invalidations of cache
lines compared to the synchronous method which writes new values of x to a sep-
arate array. However, for large numbers of threads, despite these two factors, the
asynchronous method is faster (in performing 500 iterations), due to the elimination
of thread synchronization. The overhead of threads waiting for other threads in the
synchronous method is evidently larger when more threads are used.

6.2. Second order Richardson. For the asynchronous second order Richard-
son method, Table 2 shows the convergence results for different numbers of threads
using the values α = 1 and β ≈ 0.93968 which are optimal for the synchronous
method. For these values, the asynchronous method is not guaranteed to converge.
For each number of threads, the method was run 100 times. The table shows the
average range, the average relative residual norm, and the number of failures, which
is the number of times the relative residual norm is greater than unity in the 100 runs.

When a single thread is used, the asynchronous method is mathematically iden-
tical to the synchronous method. When a small number of threads was used, the

10

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Table 2
Asynchronous second order Richardson for different numbers of threads. The parameter values

α = 1 and β ≈ 0.93968 that were used are optimal for synchronous iterations. For comparison, the
synchronous method attains an average relative residual norm of 1.258388 × 10−7 for all numbers
of threads. Timings for the asynchronous and synchronous methods are also given.

number of average average rel. number of async sync
threads range resid. norm failures time (s) time (s)

1 0.0 1.258388× 10−7 0 0.053275 0.052961
2 40.8 4.235170× 10−7 0 0.031146 0.032542
3 104.3 6.175605× 10−6 0 0.019592 0.023368
4 115.7 1.444428× 10−5 0 0.016493 0.018801
5 166.0 1.495107× 10−4 0 0.013533 0.017519
6 163.0 4.524130× 10−4 0 0.011563 0.014606
7 200.1 1.868556× 10−3 0 0.010649 0.013078
8 151.5 9.259216× 10−3 0 0.009794 0.012843
9 246.0 4.035731× 10−2 1 0.008917 0.012560
10 203.2 1.088207× 10−1 1 0.009000 0.012371
11 209.4 4.582844× 10−1 21 0.008972 0.011905
12 185.5 1.678645× 10+0 25 0.008397 0.011527
13 227.6 1.046313× 10+1 32 0.008216 0.011698
14 205.9 3.971405× 10+1 43 0.007081 0.010863
15 239.3 5.207066× 10+2 35 0.007568 0.010828
16 166.8 2.317140× 10+2 24 0.007101 0.011470
17 226.3 3.303636× 10+1 22 0.006217 0.011161
18 191.8 6.415417× 10+1 30 0.005972 0.010969
19 237.6 2.377968× 10+1 23 0.006237 0.011147
20 173.8 3.136173× 10+1 46 0.006614 0.011012

asynchronous method always converged in the 100 runs, with a degradation in the
“convergence rate” as the number of threads is increased. What we mean here with
convergence rate is how small is the residual when the termination criterion is satisfied.
When a larger number of threads was used, the number of failures of the asynchronous
method generally increases. This is due to an increased degree of asynchrony, which
is somewhat reflected by the increasing average range.

The table also shows timings for the asynchronous and synchronous second order
Richardson methods. The asynchronous method is faster (when performing a fixed
number of iterations) when more than 1 thread is used, and the difference is generally
larger when more threads are used.

To attempt to make the asynchronous method more robust, we test using a smaller
value of β. This is analogous to underestimating the bounds of the spectrum in the
inexact Chebyshev method [13]. Table 3 shows the convergence results using α = 1
and β = 0.9. With this value of β, the asynchronous method is still not guaranteed
to converge, but it can be observed that convergence is always obtained in the 100
runs for each number of threads. However, the convergence rate is degraded for this
choice of β, i.e., compared to Table 2 when a small number of threads is used.

6.3. Synchronous and asynchronous convergence timings. In the previ-
ous subsections, we compared the timings of asynchronous and synchronous iterations
for a fixed number of iterations. In this subsection, we compare the residual norms
that are achieved in parallel implementations of the synchronous and asynchronous
methods as a function of time.

In these tests, we used ten threads on a single Intel Xeon processor with 10 cores,
with each thread pinned to one of the two hyperthreads on each core. The test matrix
is again from the standard finite difference Laplacian matrix, but now on a 300× 300

11

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Table 3
Asynchronous second order Richardson for different numbers of threads. Parameter values:

α = 1 and β = 0.9.

number of average average rel. number of time
threads range resid. norm failures (sec.)

1 0.0 9.566179× 10−5 0 0.053059
2 47.7 1.032052× 10−4 0 0.030998
3 105.8 1.802432× 10−4 0 0.019752
4 122.3 1.499666× 10−4 0 0.016426
5 148.3 2.081259× 10−4 0 0.013676
6 154.7 2.091337× 10−4 0 0.011510
7 208.8 2.745261× 10−4 0 0.010352
8 182.9 2.802124× 10−4 0 0.010104
9 230.9 3.434991× 10−4 0 0.009003
10 190.7 2.701899× 10−4 0 0.008824
11 185.7 3.500390× 10−4 0 0.008086
12 154.8 3.445788× 10−4 0 0.008059
13 198.9 6.526787× 10−4 0 0.008342
14 219.4 2.479312× 10−3 0 0.007052
15 212.1 8.821667× 10−3 0 0.008112
16 158.8 2.594421× 10−3 0 0.006902
17 227.1 1.113219× 10−3 0 0.006715
18 191.0 6.389028× 10−3 0 0.006050
19 227.5 1.464582× 10−3 0 0.006365
20 173.2 4.955854× 10−3 0 0.006487

grid of unknowns.
The 90, 000 unknowns were partitioned into 10 partitions and each thread was

assigned to update the unknowns in one partition. Two types of partitionings were
used: balanced, where each partition contains 9000 unknowns; and unbalanced, where
5 partitions contain 6000 unknowns and 5 partitions contain 12000 unknowns.

Figure 2 shows the results for the first order Richardson method (using the optimal
α = 1). This figure was generated by running the parallel method for a fixed number of
iterations, t, in the synchronous case, or when all threads have executed an average of
t iterations in the asynchronous case. The relative residual norm was then computed.
For a given value of t, 20 tests were performed and the average relative residual norm
was computed. These averages for different values of t are plotted in the figure, where
the x-axis is the average execution time for tests with a given t. The variations in
residual norms and timings for a given t are very small, and practically indiscernible
from the averages if they were plotted.

Figure 2 shows that, for first order Richardson for the given test system, the
asynchronous method is faster than the synchronous method. The unbalanced case
is significantly slower than the balanced case for the synchronous iteration, whereas
for the asynchronous iteration there is only a minor difference between the balanced
and the unbalanced case.

Figure 3 shows the results for the second order Richardson method, using the
optimal values of α and β. This figure was generated in the same way as the previ-
ous figure, but here, the result of each of the 20 tests is plotted individually in the
asynchronous case, since the variations in the results are now much larger. For the
synchronous iteration (solid lines), the unbalanced case is slower than the balanced
case, as expected. The asynchronous iteration (circles) is sometimes faster and some-
times slower than the synchronous iteration (circles above and below the solid lines
of the same color). We also observe that the asynchronous method is substantially

12

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

0 0.05 0.1 0.15 0.2 0.25

Time

10-2

10-1

R
e
l.
 r

e
s
id

 n
o
rm

Sync unbalanced
Sync balanced
Async unbalanced
Async balanced

Fig. 2. First order Richardson conver-
gence with time.

0 0.1 0.2 0.3 0.4

Time

10-5

100

R
e
l.
 r

e
s
id

 n
o
rm

Sync unbalanced
Sync balanced
Async unbalanced
Async balanced

Fig. 3. Second order Richardson con-
vergence with time.

slower when the partitions are unbalanced, compared to when they are balanced. This
is in contrast to the observation for first order Richardson, which was not as sensitive
to imbalance. As we had observed in Section 6.2, an increased degree of asynchrony
is detrimental to the convergence of the second order Richardson method, and here
it is the load imbalance that increases the degree of asynchrony.

Comparing the asynchronous first and second order Richardson methods for the
given test problem with the use of optimal parameter values, the second order method
can converge much faster than the first order method. Convergence can be reliable
although it is not guaranteed.

7. Conclusion. Except to say whether or not an asynchronous iterative method
will converge in the asymptotic limit, the convergence behavior of these methods is
strongly problem-dependent and computer platform-dependent and not well covered
by theory. For the first and second order Richardson methods, in the setting where
ρ(T) < 1, T ≥ 0, and spec(A) ⊂ R+, this paper provides a description of the param-
eter values for which the asynchronous versions of these methods are guaranteed to
converge. Numerically, however, we find that this theoretical description can give a
pessimistic view of asynchronous iterative methods. For a standard test problem, a
multithreaded parallel implementation of asynchronous iterations can converge reli-
ably in cases where it is theoretically possible for such iterations to diverge. How likely
divergence will occur depends on the degree of asynchrony in the computation, which
is difficult to quantify. A possible theoretical approach is to analyze asynchronous
iterative methods as randomized algorithms [1].

Asynchronous execution of the first order Richardson method can clearly give
much lower time-to-solution than synchronous execution. Asynchronous execution of
the second order Richardson method may be slightly faster than synchronous exe-
cution because each iteration performed by a thread is executed more rapidly. On
the other hand, execution may be slower because asynchrony is detrimental to the
convergence of the method. The second order method, with its use of not one but
two previous iterates, appears to require much tighter coupling between the threads
that are working in parallel.

Acknowledgments. Work on this paper commenced while the three authors
were attending a workshop at the Centre International de Rencontres Mathématiques,
Luminy, France in September 2019. The center’s support for such an event is greatly

13

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

appreciated. Work of the first and third authors was supported in part by the U.S.
Department of Energy under grants DE-SC-0016564 and DE-SC-0016578.

REFERENCES

[1] Haim Avron, Alex Druinsky, and Anshul Gupta. Revisiting asynchronous linear solvers: Prov-
able convergence rate through randomization. Journal of the ACM, 62(6):51:1–51:27, De-
cember 2015.

[2] Gérard M. Baudet. Asynchronous iterative methods for multiprocessors. Journal of the ACM,
25(2):226–244, April 1978.

[3] Abraham Berman and Robert J. Plemmons. Nonnegative Matrices in the Mathematical Sci-
ences. Academic Press, New York, third edition, 1979. Reprinted by SIAM, Philadelphia,
1994.

[4] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, NJ, 1989.

[5] Iain Bethune, J Mark Bull, Nicholas J Dingle, and Nicholas J Higham. Performance analysis of
asynchronous Jacobi’s method implemented in MPI, SHMEM and OpenMP. International
Journal on High Performance Computing Applications, 28(1):97–111, February 2014.

[6] Dan Chazan and Willard L. Miranker. Chaotic relaxation. Linear Algebra and its Applications,
2:199–222, 1969.

[7] Joan-Josep Climent and Carmen Perea. Some comparison theorems for weak nonnegative
splittings of bounded operators. Linear Algebra and its Applications, 275–276:77–106,
1998.

[8] Michael Eiermann and Wilhelm Niethammer. On the construction of semiiterative methods.
SIAM Journal on Numerical Analysis, 20:1153–1160, 1983.

[9] Michael Eiermann, Wilhelm Niethammer, and Richard S. Varga. A study of semiiterative
methods for nonsymmetric systems of linear equations. Numerische Mathematik, 47:505–
533, 1985.

[10] Stanley P. Frankel. Convergence rates of iterative treatments of partial differential equations.
Mathematical Tables and Aids to Computations, 4:65–75, 1950.

[11] Andreas Frommer and Daniel B. Szyld. On asynchronous iterations. Journal of Computational
and Applied Mathematics, 123:201–216, 2000.

[12] Christian Glusa, Erik G. Boman, Edmond Chow, Sivasankaran Rajamanickam, and Daniel B.
Szyld. Scalable asynchronous domain decomposition solvers. Technical Report 19-10-11,
Department of Mathematics, Temple University, October 2019. Revised April 2020and
July 2020. To appear in SIAM Journal on Scientific Computing.

[13] Gene Golub and Michael Overton. The convergence of inexact Chebyshev and Richardson
iterative methods for solving linear systems. Numerische Mathematik, 53(5):571–594, 1988.

[14] Gene H. Golub. The use of Chebichev matrix polynomials in the iterative solution of linear
equations compared to the method of succesive relaxation. PhD thesis, Department of
Mathematics, University of Illinois, Urbana, 1959.

[15] Gene H. Golub and Richard S. Varga. Chebyshev semi-iterative methods, successive overre-
laxation iterative methods, and second order Richardson iterative methods, Part I. Nu-
merische Mathematik, 3:147–156, 1961.

[16] James Hook and Nicholas Dingle. Performance analysis of asynchronous parallel Jacobi. Ad-
vances in Engineering Software, 77(3):831–866, 2018.

[17] Frédéric Magoulès, Daniel B. Szyld, and Cédric Venet. Asynchronous optimized Schwarz meth-
ods with and without overlap. Numerische Mathematik, 137:199–227, 2017.

[18] Ivo Marek and Daniel B. Szyld. Comparison theorems for weak splittings of bounded operators.
Numerische Mathematik, 58:387–397, 1990.

[19] Lewis F. Richardson. The approximate arithmetical solution by finite differences of physical
problems involving differential equations with an application to the stresses to a masonry
dam. Philosophical Transactions of the Royal Society of London, Series A, Mathematical
and Physical Sciences, 210:307–357, 1910.

[20] Yousef Saad. Iterative methods for linear systems of equations: A brief historical journey.
arXiv:1908.01083 [math.HO], To appear in Mathematics of Computation 75 Years, Su-
sanne C. Brenner, Igor Shparlinski, Chi-Wang Shu, and Daniel B. Szyld, editors, American
Mathematical Society, Providence, RI, 2020.

[21] Richard S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
Second Edition, revised and expanded, Springer, Berlin, 2000.

[22] Jordi Wolfson-Pou and Edmond Chow. Convergence models and surprising results for the asyn-

14

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

chronous Jacobi method. In 2018 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21-25, 2018, pages 940–949,
2018.

[23] Jordi Wolfson-Pou and Edmond Chow. Modeling the asynchronous Jacobi method without
communication delays. Journal of Parallel and Distributed Computing, 128:84–98, 2019.

[24] Zbigniew I. Woźnicki. Nonnegative splitting theory. Japan Journal of Industrial and Applied
Mathematics, 11:289–342, 1994.

[25] Ichitaro Yamazaki, Edmond Chow, Aurélien Bouteiller, and Jack Dongarra. Performance
of asynchronous optimized Schwarz with one-sided communication. Parallel Computing,
86:66–81, 2019.

[26] David M. Young. Iterative Solution of Large Linear Systems. Academic Press, New York, 1971.
[27] David M. Young. Second-degree iterative methods for the solution of large linear systems.

Journal of Approximation Theory, 5:137–148, 1972.

15

	Introduction
	The setting
	First order Richardson
	Second order Richardson
	Discussion
	Numerical behavior
	First order Richardson
	Second order Richardson
	Synchronous and asynchronous convergence timings

	Conclusion
	References

