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ON A CLASS OF STOCHASTIC PARTIAL DIFFERENTIAL

EQUATIONS WITH MULTIPLE INVARIANT MEASURES

BÁLINT FARKAS, MARTIN FRIESEN, BARBARA RÜDIGER*, AND DENNIS SCHROERS

Abstract. In this work we investigate the long-time behavior for Markov processes
obtained as the unique mild solution to stochastic partial differential equations in a
Hilbert space. We analyze the existence and characterization of invariant measures
as well as convergence of transition probabilities. While in the existing literature
typically uniqueness of invariant measures is studied, we focus on the case where
the uniqueness of invariant measures fails to hold. Namely, introducing a generalized
dissipativity condition combined with a decomposition of the Hilbert space, we prove
the existence of multiple limiting distributions in dependence of the initial state of
the process and study the convergence of transition probabilities in the Wasserstein
2-distance. Finally, we apply our results to Lévy driven Ornstein-Uhlenbeck processes,
the Heath-Jarrow-Morton-Musiela equation as well as to stochastic partial differential
equations with delay.

1. Introduction

Stochastic partial differential equations arise in the modelling of applications in math-
ematical physics (e.g. Navier-Stokes equations [22, 18, 9, 37] or stochastic non-linear
Schrödinger equations [4, 13]), biology (e.g. catalytic branching processes [12, 30]), and
finance (e.g. forward prices [24, 38, 16]). While the construction of solutions to the un-
derlying stochastic equations is an important mathematical issue, having applications
in mind it is indispensable to also study their specific properties. Among them, an
investigation of the long-time behavior of solutions, that is existence and uniqueness of
invariant measures and convergence of transition probabilities, are often important and
at the same time also challenging mathematical topics. In this work we investigate the
long-time behavior of mild solutions to the stochastic partial differential equation of the
form

dXt = (AXt + F (Xt))dt+ σ(Xt)dWt +

∫
E
γ(Xt, ν)Ñ(dt, dν), t ≥ 0 (1.1)

on a separable Hilbert space H, where (A,D(A)) is the generator of a strongly continu-

ous semigroup (S(t))t≥0 on H, (Wt)t≥0 is a Q-Wiener process and Ñ(dt, dν) denotes a
compensated Poisson random measure. The precise conditions need to be imposed on
these objects will be formulated in the subsequent sections.

In the literature the study on the existence and uniqueness of invariant measures
often relies on different variants of a dissipativity condition. The simplest form of such
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a dissipativity condition is: There exists α > 0 such that

〈Ax−Ay, x− y〉H + 〈F (x)− F (y), x− y〉H ≤ −α‖x− y‖2H , x, y ∈ D(A). (1.2)

Indeed, if (1.2) is satisfied, σ and γ are globally Lipschitz-continuous, and α is large
enough, then there exists a unique invariant measure for the Markov process obtained
from (1.1), see, e.g., [32, Section 16], [10, Chapter 11, Section 6], and [36] where such a
condition was formulated for the Yosida approximations of the operator (A,D(A)). Note
that (1.2) is satisfied, if F is globally Lipschitz continuous and (A,D(A)) satisfies for
some β > 0 large enough the inequality 〈Ax, x〉H ≤ −β‖x‖2H , x ∈ D(A), i.e. (A,D(A))

is the generator of a strongly continuous semigroup satisfying ‖S(t)‖L(H) ≤ e−βt. Here
and below we denote by L(H) the space of bounded linear operators from H to H
and by ‖ · ‖L(H) its operator norm. For weaker variants of the dissipativity condition
(e.g. cases where (1.2) only holds for ‖x‖H , ‖y‖H ≥ R for some R > 0), in general
one can neither guarantee the existence nor uniqueness of an invariant measure. Hence,
to treat such cases, additional arguments, e.g. coupling methods, are required. Such
arguments have been applied to different stochastic partial differential equations on
Hilbert spaces in [33, 34, 35] where existence and, in particular, uniqueness of invariant
measures was studied. We also mention [7, 23] for an extension of Harris-type theorems
for Wasserstein distances, and [25, 21] for extensions of coupling methods.

In contrast to the aforementioned methods and applications, several stochastic mod-
els exhibit phase transition phenomena where uniqueness of invariant measures fails
to hold. For instance, the generator (A,D(A)) and drift F appearing in the Heath-
Jarrow-Morton-Musiela equation do not satisfy (1.2), but instead F is globally Lipschitz
continuous and the semigroup generated by (A,D(A)) satisfies

‖S(t)x− Px‖H ≤ e−αt‖x− Px‖H
for some projection operator P . Based on this property it was shown in [38, 36]
that the Heath-Jarrow-Morton-Musiela equation has infinitely many invariant measures
parametrized by the initial state of the process, see also Section 6. Another example is
related to stochastic Volterra equations as studied, e.g., in [6]. There, using a represen-
tation of stochastic Volterra equations via SPDEs and combined with some arguments
originated from the study of the Heath-Jarrow-Morton-Musiela equation, the authors
studied existence of limiting distributions allowing, in particular, that these distribu-
tions depend on the initial state of the process.

In this work we provide a general and unified approach for the study of multiple
invariant measures and, moreover, we show that with dependence on the initial distri-
bution the law of the mild solution of (1.1) is governed in the limit t→∞ by one of the
invariant measures. In particular, we show that the methods developed in [38, 36, 6]
can be embedded as a special case of a general framework where one replaces (1.2)
by a weaker dissipativity condition, which we call hereinafter generalized dissipativity
condition:

(GDC) There exists a projection operator P1 on the Hilbert space H and there exist
constants α > 0, β ≥ 0 such that, for x, y ∈ D(A), one has:

〈Ax−Ay, x− y〉H + 〈F (x)− F (y), x− y〉H
≤ −α‖x− y‖2H + (α+ β) ‖P1x− P1y‖2H .

Note that for the special case P1 = 0 condition (GDC) contains the classical dissipativity
condition. However, when P1 6= 0, the additional term ‖P1x − P1y‖2H describes the
influence of the non-dissipative part of the drift. Sufficient conditions and additional
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remarks on this condition are collected in the end of Section 2 while particular examples
are discussed in Sections 5 – 7.

We will show that under condition (GDC) and additional restrictions on the projected
coefficients P1F , P1σ, and P1γ, the Markov process obtained from (1.1) has for each
initial data X0 = x a limiting distribution πx depending only on P1x. Moreover, the
transition probabilities converge exponentially fast in the Wasserstein 2-distance to this
limiting distribution. In order to prove this result, we first decompose the Hilbert space
H according to

H = H0 ⊕H1, x = P0x+ P1x, P0 := I − P1,

where I denotes the identity operator on H, and then investigate the components P0Xt

and P1Xt separately. Based on an technique from [39], we construct, for each τ ≥ 0,
a coupling of Xt and Xt+τ . This coupling will be then used to efficiently estimate the
Wasserstein 2-distance for the solution started at two different points.

This work is organized as follows. In Section 2 we first discuss the special case where
F ≡ 0 and σ, γ are independent of X. In such a case X is an Ornstein-Uhlenbeck
type process and the collection of invariant measures can be easily characterized by its
characteristic function. This section can be seen as a motivation for our more general
results discussed in the subsequent sections. Afterward, we investigate in Sections 3
– 5 the general case for which the methods from Section 2 can not be applied. More
precisely, after having introduced and discussed in Section 3 the generalized dissipativity
condition (GDC), we state in Section 4 the precise conditions imposed on the coefficients
of the SPDE (1.1), discuss some properties of the solution and then provide sufficient
conditions for the generalized dissipativity condition (GDC). Based on condition (GDC)
we derive in Section 4 an estimate on the trajectories of the process when started at two
different initial points, i.e. we estimate the L2-norm of Xx

t − X
y
t when x 6= y. Based

on this estimate, we then state and prove our main results in Section 5. Examples are
then discussed in the subsequent Sections 6 and 7. Namely, the Heath-Jarrow-Morton-
Musiela equation is considered in Section 6 for which we first show that the main results
of Section 5 contain [38, 36], and then extend these results by characterizing its limiting
distributions more explicitly. Finally, we apply our results in Section 7 to an SPDE
with delay.

2. Ornstein-Uhlenbeck process in a Hilbert space

Let H be a separable Hilbert space and let (Zt)t≥0 be a H-valued Lévy process
with Lévy triplet (b,Q, µ) defined on a stochastic basis (Ω,F , (Ft)t≥0,P) with the usual
conditions. This has characteristic exponent Ψ of Lévy-Khinchine form, i.e.

E
[
ei〈u,Zt〉H

]
= etΨ(u), u ∈ H, t > 0,

with Ψ given by

Ψ(u) = i〈b, u〉H −
1

2
〈Qu, u〉H +

∫
H

(
ei〈u,z〉H − 1− i〈u, z〉H1{‖z‖H≤1}

)
µ(dz),

where b ∈ H denotes the drift, Q denotes the covariance operator being a positive,
symmetric, trace-class operator on H, and µ is a Lévy measure on H (see e.g. [27],
[3], [32], [28]). Let (S(t))t≥0 be a strongly continuous semigroup on H. The Ornstein-
Uhlenbeck process driven by (Zt)t≥0 is the unique mild solution to

dXx
t = AXx

t dt+ dZt, Xx
0 = x ∈ H, t ≥ 0,
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where (A,D(A)) denotes the generator of (S(t))t≥0, i.e. (Xx
t )t≥0 satisfies

Xx
t = S(t)x+

∫ t

0
S(t− s)dZs, t ≥ 0.

The characteristic function of (Xx
t )t≥0 is given by

E
[
ei〈u,Xx

t 〉H
]

= exp

(
i〈S(t)x, u〉H +

∫ t

0
Ψ(S(r)∗u)dr

)
, u ∈ H, t ≥ 0.

See e.g. the review article [3] where also sufficient conditions for the existence and for
the uniqueness as well as properties of invariant measures are discussed. It is well-
known that the Ornstein-Uhlenbeck process has a unique invariant measure provided
that (S(t))t≥0 is uniformly exponentially stable, that is

∃α > 0, M ≥ 1 : ‖S(t)‖L(H) ≤Me−αt, t ≥ 0,

and the Lévy measure µ satisfies a log-integrability condition for its big jumps∫
{‖z‖H>1}

log(1 + ‖z‖H)µ(dz) <∞. (2.1)

Below we show that for a uniformly convergent semigroup (S(t))t≥0 the corresponding
Ornstein-Uhlenbeck process may admit multiple invariant measures parameterized by
the range of the limiting projection operator of the semigroup.

Theorem 2.1. Suppose that (S(t))t≥0 is uniformly exponentially convergent, i.e. there
exists a projection operator P on H and constants M ≥ 1, α > 0 such that

‖S(t)x− Px‖H ≤M‖x‖He−αt, t ≥ 0, x ∈ H. (2.2)

Suppose that the Lévy process satisfies the following conditions:

(i) The drift b satisfies Pb = 0.
(ii) The covariance operator Q satisfies PQu = 0 for all u ∈ H.

(iii) The Lévy measure µ is supported on ker(P ) and satisfies (2.1).

Then for each x ∈ H it holds

Xx
t −→ Px+X0

∞, t→∞
in law, where X0

∞ is an H-valued random variable determined by

E
[
ei〈u,X0

∞〉H
]

= exp

(∫ ∞
0

Ψ(S(r)∗u)dr

)
.

In particular, the set of all limiting distributions for the Ornstein-Uhlenbeck process
(Xx

t )t≥0 is given by {δx ∗ µ∞ | x ∈ ran(P )}, where µ∞ denotes the law of X0
∞.

Proof. We first prove the existence of a constant C > 0 such that∫ ∞
0
|Ψ(S(r)∗u)|dr ≤ C(‖u‖H + ‖u‖2H), u ∈ H, (2.3)

where S(r)∗ denotes the adjoint operator to S(r) on L(H). To do so we estimate

|Ψ(S(r)∗u)| ≤ |〈b, S(r)∗u〉|+ |〈QS(r)∗u, S(r)∗u〉|

+

∫
{‖z‖H≤1}

∣∣∣ei〈S(r)∗u,z〉 − 1− i〈S(r)∗u, z〉
∣∣∣µ(dz)

+

∫
{‖z‖H>1}

∣∣∣ei〈S(r)∗u,z〉 − 1
∣∣∣µ(dz)

= I1 + I2 + I3 + I4.
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We find by (2.2) that ‖S(r)x‖H ≤Me−αr‖x‖H for all x ∈ ker(P ) and hence

I1 = |〈S(r)b, u〉| ≤ ‖u‖H‖S(r)b‖H ≤ ‖u‖HMe−αr‖b‖H .

For the second term I2 we use ran(Q) ⊂ ker(P ) so that

‖S(r)Qu‖H ≤Me−αr‖Qu‖H ≤ e−αr‖Q‖L(H)‖u‖H .

This yields ‖QS(r)∗‖L(H) = ‖S(r)Q‖L(H) ≤Me−αr‖Q‖L(H) and hence

I2 = |〈QS(r)∗u, S(r)∗u〉|
≤ ‖QS(r)∗u‖H‖S(r)∗u‖H
≤M‖u‖H‖QS(r)∗u‖H
≤M‖u‖2H‖Q‖L(H)Me−αr.

For the third term I3 we obtain

I3 ≤ C
∫
{‖z‖H≤1}

|〈S(r)∗u, z〉|2µ(dz)

= C

∫
{‖z‖H≤1}∩ker(P )

|〈u, S(r)z〉|2µ(dz)

≤ C‖u‖2He−αr
∫
{‖z‖H≤1}

‖z‖2Hµ(dz),

where C > 0 is a generic constant. Proceeding similarly for the last term, we obtain

I3 ≤ C
∫
{‖z‖H>1}

min {1, |〈S(r)∗u, z〉|}µ(dz)

≤ C
∫
{‖z‖H>1}∩ker(P )

min
{

1, ‖u‖He−αr‖z‖H
}
µ(dz)

≤ C‖u‖He−αr

(
µ({‖z‖H > 1}) +

∫
{‖z‖H>1}

log(1 + ‖z‖H)µ(dz)

)
,

where we have used, for a = ‖u‖He−αr, b = ‖z‖H , the elementary inequalities

min{1, ab} ≤ C log(1 + ab)

≤ C min{log(1 + a), log(1 + b)}+ C log(1 + a) log(1 + b)

≤ Ca (1 + log(1 + b)) ,

see [19, appendix]. Combining the estimates for I1, I2, I3, I4 we conclude that (2.3) is
satisfied. Hence, using

lim
t→∞
〈S(t)x, u〉 = 〈Px, u〉

we find that

lim
t→∞

E
[
ei〈u,Xx

t 〉
]

= exp

(
i〈Px, u〉+

∫ ∞
0

Ψ(S(r)∗u)dr

)
. (2.4)

Since, in view of (2.3), u 7−→
∫∞

0 Ψ(S(r)∗u)dr is continuous at u = 0, the assertion
follows from Lévy’s continuity theorem combined with the particular form of (2.4). �

Below we briefly discuss an application of this result to a stochastic perturbation of
the Kolmogorov equation associated with a symmetric Markov semigroup. Let E be a
Polish space and η a Borel probability measure on E. Let (A,D(A)) be the generator
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of a symmetric Markov semigroup (S(t))t≥0 on H := L2(E, η). Then there exists, for
each f ∈ D(A), a unique solution to the Kolmogorov equation (see, e.g., [31])

dv(t)

dt
= Av(t), v(0) = f.

Below we consider an additive stochastic perturbation of this equation in the sense of
Itô, i.e. the stochastic partial differential equation

dv(t) = Av(t)dt+ dZt, v(0) = f, (2.5)

where (Zt)t≥0 is an L2(E, η)-valued Lévy process with characteristic function Ψ. Let
(v(t); f))t≥0 be the unique mild solution to this equation.

Corollary 2.2. Suppose that the semigroup generated by (A,D(A)) on L2(E, η) satisfies
(2.2) with the projection operator

Pv =

∫
E
v(x)η(dx),

and H = L2(E, η). Assume that the Lévy process (Zt)t≥0 satisfies the conditions (i) –
(iii) of Theorem 2.1. Then

v(t; f) −→
∫
E
f(x)η(dx) + v(∞), t→∞

in law, where v(∞) is a random variable whose characteristic function is given by

E
[
ei〈u,v(∞)〉L2

]
= exp

(∫ ∞
0

Ψ(S(r)∗u)dr

)
.

We close this section with an example of a semigroup (S(t))t≥0 for which this corollary
can be applied.

Example 2.3. Let (Xt)t≥0 be a Feller process on a separable Hilbert space E and let
(pt)t≥0 be its transition semigroup acting on Cb(E). Suppose that (Xt)t≥0 has a unique
invariant measure η. Then, by Yensen inequality, (pt)t≥0 can be uniquely extended to
a strongly continuous semigroup on L2(E, η) which is for simplicity again denoted by
(pt)t≥0. Suppose that this semigroup is L2-exponentially convergent in the sense that

lim
t→∞

∫
E

(
ptf −

∫
E
f(x)η(dx)

)2

dη = 0, ∀f ∈ L2(E, η).

Then (pt)t≥0 satisfies (2.2) with projection operator Pv =
∫
E v(x)η(dx).

3. Preliminaries

3.1. Framework and notation. Here and throughout this work, (Ω,F , (Ft)t∈R+ ,P)
is a filtered probability space satisfying the usual conditions. Let U be a separable
Hilbert space and W = (Wt)t≥0 be a Q-Wiener process with respect to (Ft)t∈R+ on
(Ω,F , (Ft)t∈R+ ,P), where Q : U → U is a non-negative, symmetric, trace class operator.
Let E be a Polish space, E the Borel-σ-field on E, and µ a σ-finite measure on (E, E).
Let N(dt, dν) be a (Ft)t≥0-Poisson random measure with compensator dtµ(dν) and

denote by Ñ(dt, dν) = N(dt, dν) − dtµ(dν) the corresponding compensated Poisson
random measure. Suppose that the random objects (Wt)t≥0 and N(dt, dν) are mutually
independent.
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In this work we investigate the long-time behavior of mild solutions to the stochastic
partial differential equation (1.1) with initial condition X0 ∈ L2(Ω,F0,P;H), that is

dXt = (AXt + F (Xt))dt+ σ(Xt)dWt +

∫
E
γ(Xx

t , ν)Ñ(dt, dν), t ≥ 0, (3.1)

where (A,D(A)) is the generator of a strongly continuous semigroup (S(t))t≥0 on H,
H 3 x 7→ F (x) ∈ H and H 3 x 7→ σ(x) ∈ L0

2 are Borel measurable mappings, and
(x, ν) 7→ γ(x, ν) is measurable from (H×E,B(H)⊗E) to (H,B(H)). Here B(H) denotes
the Borel-σ-algebra on H, and L0

2 := L0
2(H) is the Hilbert space of all Hilbert-Schmidt

operators from U0 to H, where U0 := Q1/2U is a separable Hilbert space endowed with
the scalar product

〈x, y〉0 := 〈Q−1/2x,Q−1/2y〉U =
∑
k∈N

1
λk
〈x, ek〉U 〈ek, y〉U , ∀x, y ∈ U0,

and Q−1/2 denotes the pseudoinverse of Q1/2. Here (ej)j∈N denotes an orthogonal basis
of eigenvectors of Q in U with corresponding eigenvalues (λj)j∈N. For comprehensive
introductions to integration concepts in infinite dimensional settings we refer e.g. to [10]
for the case of Q-Wiener processes and e.g. to [3], [32], [28] for compensated Poisson
random measures as integrators. Throughout this work we suppose that the coefficients
F, σ, γ are Lipschitz continuous. More precisely:

(A1) There exist constants LF , Lσ, Lγ ≥ 0 such that for all x, y ∈ H

‖F (x)− F (y)‖2H ≤ LF ‖x− y‖2H , (3.2)

‖σ(x)− σ(y)‖2L0
2(H) ≤ Lσ‖x− y‖

2
H ,∫

E
‖γ(x, ν)− γ(y, ν)‖2Hµ(dν) ≤ Lγ‖x− y‖2H .

Moreover we suppose that∫
E
‖γ(0, ν)‖2Hµ(dν) <∞. (3.3)

Note that condition (3.3) implies that the jumps satisfy the usual growth conditions,
i.e. ∫

E
‖γ(x, ν)‖2Hµ(dν) ≤ 2

∫
E
‖γ(x, ν)− γ(0, ν)‖2Hµ(dν) + 2

∫
E
‖γ(0, ν)‖2Hµ(dν)

≤ 2 max

{
Lγ ,

∫
E
‖γ(0, ν)‖2Hµ(dν)

}
(1 + ‖x‖2H).

Moreover, it follows from (GDC) and (3.2) that

〈Ax, x〉H ≤
(
β +

√
LF

)
‖x‖2H , x ∈ D(A).

Hence A− (β +
√
LF ) is dissipative and thus by the Lumer-Phillips theorem the semi-

group (S(t))t≥0 generated by (A,D(A)) is quasi-contractive, i.e.

‖S(t)x‖H ≤ e(β+
√
LF )t‖x‖H , x ∈ H. (3.4)

Then, under conditions (GDC) and (A1), for each initial condition X0 ∈ L2(Ω,F0,P;H)
there exists a unique cádlág, (Ft)t≥0-adapted, mean square continuous, mild solution
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(Xt)t≥0 to (3.1) such that, for each T > 0, there exists a constant C(T ) > 0 satisfying

E

[
sup
t∈[0,T ]

‖Xt‖2H

]
≤ C(T )

(
1 + E

[
‖X0‖2H

])
(3.5)

This means that (Xt)t≥0 satisfies P-a.s.

Xt = S(t)X0 +

∫ t

0
S(t− s)F (Xs)ds+

∫ t

0
S(t− s)σ(Xs)dWs (3.6)

+

∫ t

0

∫
E
S(t− s)γ(Xs, ν)Ñ(ds, dν), t ≥ 0,

where all (stochastic) integrals are well-defined, see, e.g., [1], [28], and [17]. Moreover, for
each X0, Y0 ∈ L2(Ω,F0,P;H), the corresponding unique solutions (Xt)t≥0 and (Yt)t≥0

satisfy

E
[
‖Xt − Yt‖2H

]
≤ C(T )E

[
‖X0 − Y0‖2H

]
, t ∈ [0, T ]. (3.7)

If X0 ≡ x ∈ H, then we denote by (Xx
t )t≥0 the corresponding solution to (3.1). Such

solution constitutes a Markov process whose transition probabilities pt(x, dy) = P[Xx
t ∈

dy] are measurable with respect to x. By slight abuse of notation we denote by (pt)t≥0

its transition semigroup, i.e., for each bounded measurable function f : H −→ R, ptf is
given by

ptf(x) = E [f(Xx
t )] =

∫
H
f(y)pt(x, dy), t ≥ 0, x ∈ H.

Using the continuous dependence on the initial condition, see (3.7), it can be shown
that ptf ∈ Cb(H) for each f ∈ Cb(H), i.e. the transition semigroup is Cb-Feller.

In this work we investigate the the existence of invariant measures and convergence
of the transition probabilities towards these measures for the Markov process (Xx

t )t≥0

with particular focus on the cases where uniqueness of invariant measures fails to hold.
We denote by p∗t the adjoint operator to pt defined by

p∗tρ(dx) =

∫
H
pt(y, dx)ρ(dy), t ≥ 0.

Recall that a probability measure π on (H,B(H)) is called invariant measure for the
semigroup (pt)t≥0 if and only if p∗tπ = π holds for each t ≥ 0. Let P2(H) be the space
of Borel probability measures ρ on (H,B(H)) with finite second moments. Recall that
P2(H) is separable and complete when equipped with the Wasserstein-2-distance

W2(ρ, ρ̃) = inf
G∈H(ρ,ρ̃)

(∫
H×H

‖x− y‖2HG(dx, dy)

) 1
2

, ρ, ρ̃ ∈ P2(H). (3.8)

Here H(ρ, ρ̃) denotes the set of all couplings of (ρ, ρ̃), i.e. Borel probability measures
on H ×H whose marginals are given by ρ and ρ̃, respectively, see [40, Section 6] for a
general introduction to couplings and Wasserstein distances.

3.2. Discussion of generalized dissipativity condition. In this section we briefly
discuss the condition

〈Ax, x〉H ≤ −λ0‖x‖2H + (λ0 + λ1)‖P1x‖2H , x ∈ D(A), (3.9)

where λ0 > 0 and λ1 ≥ 0. Note that, if (3.9) and condition (3.1) are satisfied, then

〈Ax−Ay, x− y〉H + 〈F (x)− F (y), x− y〉H (3.10)

≤ 〈Ax−Ay, x− y〉H +
√
LF ‖x− y‖2H
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≤ −
(
λ0 −

√
LF

)
‖x− y‖2H + (λ0 + λ1) ‖P1x− P1y‖2H ,

i.e. the generalized dissipativity condition (GDC) is satisfied for α = λ0 −
√
LF and

β = λ1 +
√
LF , provided that λ0 >

√
LF .

Proposition 3.1. Suppose that there exists an orthogonal decomposition H = H0⊕H1

of H into closed linear subspaces H0, H1 ⊂ H such that (S(t))t≥0 leaves H0 and H1

invariant and there exist constants λ0 > 0 and λ1 ≥ 0 satisfying

‖S(t)x0‖H ≤ e−λ0t‖x0‖H , ‖S(t)x1‖H ≤ eλ1t‖x1‖H , ∀t ≥ 0.

for all x0 ∈ H0 and x1 ∈ H1. Then (3.9) holds for P1 being the orthogonal projection
operator onto H1.

Proof. Let P0 be the orthogonal projection operator onto H0. Since (S(t))t≥0 leaves the
closed subspaceH0 invariant, its restriction (S(t)|H0)t≥0 ontoH0 is a strongly continuous
semigroup of contractions on H0 with generator (A0, D(A0)) being the H0 part of A,
that is

A0x = Ax, x ∈ D(A0) = {y ∈ D(A) ∩H0 | Ay ∈ H0}.
Since H0 is closed and S(t) leaves H0 invariant, it follows that Ay = limt→0

S(t)y−y
t ∈ H0

for y ∈ D(A) ∩ H0, i.e. D(A0) = D(A) ∩ H0 and P0 : D(A) → D(A0). Arguing
exactly in the same way shows that the restriction (S(t)|H1)t≥0 is a strongly continuous
semigroup of contractions on H1 with generator (A1, D(A1)) given by A1x = Ax and
x ∈ D(A1) = D(A) ∩ H1 so that P1 : D(A) → D(A1). Since S(t) leaves H0 and H1

invariant, we obtain P0S(t) = S(t)P0, P1S(t) = S(t)P1 from which we conclude that
AP1x = P1Ax and AP0x = P0Ax for x ∈ D(A).

Since (eλ0tS(t)|H0)t≥0 is a strongly continuous semigroup of contractions on H0 with
generator A0 + λ0I, and (e−λ1tS(t)|H1)t≥0 is a strongly continuous semigroup of con-
tractions on H1 with generator A1 − λ1I, we have by the Lumer-Phillips theorem (see
[31, Theorem 4.3])

〈A0x0, x0〉H ≤ −λ0‖x0‖2H and 〈A1x1, x1〉H ≤ λ1‖x1‖2H , x0 ∈ H0, x1 ∈ H1.

Hence we find that

〈Ax, x〉H = 〈Ax, P0x〉H + 〈Ax, P1x〉H
= 〈P0Ax, P0x〉H + 〈P1Ax, P1x〉H
= 〈A0P0x, P0x〉H + 〈A1P1x, P1x〉H
≤ −λ0‖P0x‖2H + λ1‖P1x‖2H
= −λ0‖x‖2H + (λ0 + λ1)‖P1x‖2H ,

where the last equality follows from H0 ⊥ H1. This proves the assertion. �

At this point it is worthwhile to mention that Onno van Gaans has investigated in [39]
ergodicity for a class of Lévy driven stochastic partial differential equations where the
semigroup (S(t))t≥0 was supposed to be hyperbolic. Proposition 3.1 can be also applied
for hyperbolic semigroups provided that the hyperbolic decomposition is orthogonal.
The conditions of previous proposition are satisfied whenever (S(t))t≥0 is a symmetric,
uniformly convergent semigroup.

Remark 3.2. Suppose that (S(t))t≥0 is a strongly continuous semigroup on H and there
exists an orthogonal projection operator P on H and λ0 > 0 such that

‖S(t)x− Px‖H ≤ e−λ0t‖x− Px‖H , t ≥ 0, x ∈ H. (3.11)
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Then the conditions of Proposition 3.1 are satisfied for H0 = ker(P ) and H1 = ran(P )
with λ0 > 0 and λ1 = 0. In particular, (S(t))t≥0 is a semigroup of contractions.

The following example shows that (3.9) can also be satisfied for non-symmetric and
non-convergent semigroups.

Example 3.3. Let H = R2, H0 = R × {0}, H1 = {0} × R, and denote by P0, P1 the

projection operators onto H0 and H1, respectively. Let A be given by A =

(
−1 1
0 1

)
.

Then 〈(
x
y

)
, A

(
x
y

)〉
= −x2 + xy + y2

≤ −1

2
(x2 + y2) + 2y2

= −1

2
‖(x, y)‖2H + 2‖P1(x, y)‖2H ,

i.e. (3.9) holds for λ0 = 1
2 and λ1 = 3

2 . Since etA =

(
e−t et−e−t

2
0 et

)
, it is clear that

neither the conditions of Proposition 3.1 nor of Remark 3.2 are satisfied.

3.3. Key stability estimate. Define, for x, y ∈ D(A), the function

L(‖ · ‖2H)(x, y) := 2〈A(x− y) + F (x)− F (y), x− y〉H + ‖σ(x)− σ(y)‖2L0
2(H)

+

∫
E
‖γ(x, ν)− γ(y, ν)‖2Hµ(dν).

Remark that if (1.1) has a strong solution, then the function

L(‖ · ‖2H)(z) := 2〈A(z) + F (z), z〉H + ‖σ(z)‖2L0
2(H) +

∫
E
‖γ(z, ν)‖2Hµ(dν).

is simply the generator L applied to the unbounded function ‖z‖2H , see, e.g,. [2, equation
(3.4)]). Since we work with mild solutions instead, all computations given below require
to use additionally Yosida approximations for the mild solution of (1.1).

Below we first prove a Lyapunov-type estimate for L(‖ · ‖2H) and then deduce from
that by an application of the generalized Itô-formula A.2 to (3.1) an estimate for the
L2-norm of Xx

t −X
y
t .

Lemma 3.4. Assume that condition (GDC) and (A1) are satisfied. Then

L(‖ · ‖2H)(x, y) ≤ − (2α− Lσ − Lγ) ‖x− y‖2H + 2(α+ β)‖P1x− P1y‖2H (3.12)

holds for x, y ∈ D(A).

Proof. Using first (A1) and then (GDC) we find that

L(‖ · ‖2H)(x, y) ≤ (Lσ + Lγ)‖x− y‖2H
+ 2〈Ax−Ay, x− y〉H + 2〈F (x)− F (y), x− y〉H
≤ − (2α− Lσ − Lγ) ‖x− y‖2H + 2 (α+ β) ‖P1x− P1y‖2H .

This proves the asserted inequality. �

The following is our key stability estimate.
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Proposition 3.5. Suppose that (GDC) and (A1) are satisfied, that

ε := 2α− Lσ − Lγ > 0, (3.13)

and suppose that

sup
x∈H

∫
E
‖γ(x, ν)‖4µ(dν) <∞. (3.14)

Then, for each X0, Y0 ∈ L2(Ω,F0,P;H) and all t ≥ 0,

E
[
‖Xt − Yt‖2H

]
≤e−εtE

[
‖X0 − Y0‖2H

]
+ 2(α+ β)

∫ t

0
e−ε(t−s)E

[
‖P1Xs − P1Ys‖2H

]
ds, (3.15)

where (Xt)t≥0 and (Yt)t≥0 denote the unique solutions to (3.1), respectively.

Proof. Let (Xn
t )t≥0 and (Y n

t )t≥0 be the strong solutions to the corresponding Yosida-
approximation systems{

dXn
t = AXn

t +RnF (Xn
t )dt+Rnσ(Xn

t )dWt +
∫
E Rnγ(Xn

t , ν)Ñ(dt, dν),

Xn
0 = RnX0, t ≥ 0

and {
dY n

t = AY n
t +RnF (Y n

t )dt+Rnσ(Y n
t )dWt +

∫
E Rnγ(Y n

t , ν)Ñ(dt, dν),

Y n
0 = RnY0, t ≥ 0

where Rn = n(n − A)−1 for n ∈ N with n > α + β +
√
LF =: λ. By (3.4) we find for

each n ≥ 1 + λ the inequality

‖Rnz‖H ≤
n

n− λ
‖z‖H ≤ (1 + λ)‖z‖H .

By classical properties of the resolvent (see [31, Lemma 3.2]), one clearly has Rnz → z
as n→∞ in H . Moreover, by properties of the Yosida approximation of mild solutions
of SPDEs (compare e.g. with Appendix A2 in [28] or Section 2 in [2]) we have

lim
n→∞

E

[
sup
t∈[0,T ]

‖Xn
t −Xt‖2H + sup

t∈[0,T ]
‖Y n

t − Yt‖2H

]
= 0, ∀T > 0

and hence there exists a subsequence (which is again denoted by n) such that Xn
t −→ Xt

and Y n
t −→ Yt hold a.s. for each t ≥ 0. Following a method proposed in [2] we verify

that sufficient conditions are satisfied to apply the generalized Itô-formula from Theorem
A.2 to the function F (t, z) := eεt‖z‖2H , where ε = 2α− Lσ − Lγ is given by (3.13):

Xn
t − Y n

t = Rn(X0 − Y0) +

∫ t

0
{A(Xn

s − Y n
s ) +Rn(F (Xn

s )− F (Y n
s ))} ds

+

∫ t

0
Rn(σ(Xn

s )− σ(Y n
s ))dWs +

∫ t

0

∫
E
Rn(γ(Xn

s , ν)− γ(Y n
s , ν))Ñ(ds, dν).

Observe that, by condition (A1) and (3.14), one has∫ t

0

∫
E
‖Rn(γ(Xn

s , ν)− γ(Y n
s , ν))‖2Hµ(dν)ds

+

∫ t

0

∫
E
‖Rn(γ(Xn

s , ν)− γ(Y n
s , ν))‖4Hµ(dν)ds

≤ (1 + λ)2

∫ t

0

∫
E
‖γ(Xn

s , ν)− γ(Y n
s , ν)‖2Hµ(dν)ds
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+ 8(1 + λ)4

∫ t

0

∫
E

(
‖γ(Xn

s , ν)‖4H + ‖γ(Y n
s , ν)‖4H

)
µ(dν)ds

≤ Lγ(1 + λ)2

∫ t

0
‖Xn

s − Y n
s ‖2Hds

+ 16(1 + λ)4t sup
z∈H

∫
E
‖γ(z, ν)‖4Hµ(dν) <∞.

Thus we can apply the generalized Itô-formula from Theorem A.2 and obtain (similar
to (3.5) in [2])

eεt‖Xn
t − Y n

t ‖2H − ‖Rn(X0 − Y0)‖2H

=

∫ t

0
〈2eεs(Xn

s − Y n
t ), Rn(σ(Xn

s )− σ(Y n
s ))dWs〉H

+

∫ t

0
eεs
[
ε‖Xn

s − Y n
s ‖2H + Ln(‖ · ‖2H)(Xn

s , Y
n
s )
]
ds

+

∫ t

0

∫
E

eεs
[
‖Xn

s − Y n
s +Rn(γ(Xn

s , ν)− γ(Y n
s , ν))‖2H − ‖Xn

s − Y n
s ‖2H

]
Ñ(ds, dν),

(3.16)

where we used, for z, w ∈ D(A), the notation

Ln(‖ · ‖2H)(z, w) := 2〈z − w,A(z − w) +Rn(F (z)− F (w))〉H + ‖Rn(σ(z)− σ(w))‖2L0
2(H)

+

∫
E
‖Rn(γ(z, ν)− γ(w, ν))‖2Hµ(dν).

Taking expectations in (3.16) yields

eεtE
[
‖Xn

t − Y n
t ‖2H

]
− E

[
‖Rn(X0 − Y0)‖2H

]
= E

[∫ t

0
eεs
(
ε‖Xn

s − Y n
s ‖2H + Ln(‖ · ‖2H)(Xn

s , Y
n
s )
)
ds

]
. (3.17)

Lemma 3.4 yields

eεtE
[
‖Xn

t − Y n
t ‖2H

]
− E

[
‖Rn(x− y)‖2H

]
− 2(α+ β)

∫ t

0
eεsE

[
‖P1X

n
s − P1Y

n
s ‖2H

]
ds

≤ E
[∫ t

0
eεs(−L(‖ · ‖2H)(Xn

s , Y
n
s ) + Ln(‖ · ‖2H)(Xn

s , Y
n
s ))ds

]
.

Below we prove that the right-hand-side tends to zero as n → ∞, which would imply
the assertion of this theorem. To prove the desired convergence to zero we apply the
generalized Lebesgue Theorem (see [28, Theorem 7.1.8]). For this reason we have to
prove that

L(‖ · ‖2H)(Xn
s , Y

n
s )− Ln(‖ · ‖2H)(Xn

s , Y
n
s )→ 0 (3.18)

holds a.s. for each s > 0 as n → ∞ and, moreover, there exists a constant C > 0 such
that

|L(‖ · ‖2H)(Xn
s , Y

n
s )− Ln(‖ · ‖2H)(Xn

s , Y
n
s )| ≤ C‖Xn

s − Y n
s ‖2H . (3.19)

We start with the proof of (3.18). Denote Fns := F (Xn
s )−F (Y n

s ), σns := σ(Xn
s )−σ(Y n

s )
and γns (ν) := γ(Xn

s , ν)− γ(Y n
s , ν) and analogously Fs := F (Xs)−F (Ys), σs := σ(Xs)−

σ(Ys) and γs(ν) := γ(Xs, ν)− γ(Ys, ν) for each n ∈ N, s ≥ 0 and ν ∈ E. Then

|(L(‖ · ‖2H)(Xn
s , Y

n
s )− Ln(‖ · ‖2H)(Xn

s , Y
n
s ))|
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≤ 2|〈Xn
s − Y n

s , F
n
s −RnFns 〉H |+ |‖σns ‖2L0

2
− ‖Rnσns ‖2L0

2
|

+

∣∣∣∣∫
E
‖γns (ν)‖2H − ‖Rnγns (ν)‖2Hµ(dν)

∣∣∣∣
=: I1 + I2 + I3.

For the first term I1 we estimate

I1 ≤ 2‖Xn
s − Y n

s ‖H‖Fns −RnFns ‖H
≤ 2‖Xn

s − Y n
s ‖H (‖Fns − Fs‖H + ‖Fs −RnFs‖H + ‖RnFs −RnFns ‖H)

≤ 2‖Xn
s − Y n

s ‖H (‖Fns − Fs‖H + ‖Fs −RnFs‖H + (1 + λ)‖Fs − Fns ‖H) .

Using that Xn
s → Xs and Y n

s → Ys as a.s. for some subsequence (also denoted by n),
we easily find that the right-hand side tends to zero. The convergence of the second
term follows from

I2 =
∣∣∣‖σns ‖L0

2
− ‖Rnσns ‖L0

2

∣∣∣ (‖σns ‖L0
2

+ ‖Rnσns ‖L0
2

)
≤ (2 + λ)

√
Lσ‖σns −Rnσns ‖L0

2
‖Xn

s − Y n
s ‖H

≤ (2 + λ)2
√
Lσ‖Xn

s − Y n
s ‖H

(
‖σns − σs‖L0

2
+ ‖σs −Rnσs‖L0

2
+ ‖σs − σns ‖L0

2

)
.

It remains to show the convergence of the third term. First, observe

I3 ≤ (2 + λ)

∫
E
‖γns (ν)−Rnγns (ν)‖H‖γns (ν)‖Hµ(dν)

≤ (2 + λ)

∫
E

(
‖γns (ν)− γs(ν)‖H + ‖γs(ν)−Rnγs(ν)‖H

+ ‖Rnγs(ν)−Rnγns (ν)‖H
)
‖γns (ν)‖Hµ(dν)

≤ (2 + λ)

(∫
E
‖γns (ν)‖2Hµ(dν)

) 1
2
[(∫

E
‖γns (ν)− γs(ν)‖2Hµ(dν)

) 1
2

+

(∫
E
‖γs(ν)−Rnγs(ν)‖2Hµ(dν)

) 1
2

+

(∫
E
‖Rnγs(ν)−Rnγns (ν)‖2Hµ(dν)

) 1
2
]

≤
√

2(2 + λ)2Lγ‖Xn
s − Y n

s ‖H (‖Xn
s −Xs‖H + ‖Y n

s − Ys‖H)

+ (2 + λ)
√
Lγ‖Xn

s − Y n
s ‖H

(∫
E
‖γs(ν)−Rnγs(ν)‖2Hµ(dν)

) 1
2

= I1
3 + I2

3

where the last inequality follows from condition (A1) combined with the inequality

‖Rnγs(ν)−Rnγns (ν)‖2H
≤ (1 + λ)2‖γs(ν)− γns (ν)‖2H
≤ 2(1 + λ)2

(
‖γ(Xs, ν)− γ(Ys, ν)‖2H + ‖γ(Xn

s , ν)− γ(Y n
s , ν)‖2H

)
.

The first expression I1
1 clearly tends to zero as n → ∞. For the second expression

I2
3 we use the inequality ‖γs(ν) − Rnγs(ν)‖2H ≤ 2(2 + λ)2‖γs(ν)‖2H so that dominated

convergence theorem is applicable, which shows that I2
3 → 0 as n→∞ a.s.. This proves

(3.18). Concerning (3.19), we find that

|(L(‖ · ‖2H)(Xn
s , Y

n
s )− Ln(‖ · ‖2H)(Xn

s , Y
n
s ))|
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≤ 2|〈Xn
s − Y n

s , F
n
s −RnFns 〉H |+ |‖σns ‖2L0

2(H) − ‖Rnσ
n
s ‖2L0

2(H)|

+

∣∣∣∣∫
E
‖γns (ν)‖2H − ‖Rnγns (ν)‖2Hµ(dν)

∣∣∣∣
≤ 2(2 + λ)‖Xn

s − Y n
s ‖H‖Fns ‖H +

(
1 + (1 + λ)2

) [
‖σns ‖2L0

2(H) +

∫
E
‖γns (ν)‖2Hµ(dν)

]
≤ 2(2 + λ)LF ‖Xn

s − Y n
s ‖2H +

(
1 + (1 + λ)2

)
(Lσ + Lγ)‖Xn

s − Y n
s ‖2H .

Hence the generalized Lebesgue Theorem is applicable, and thus the assertion of this
theorem is proved. �

Note that condition (3.14) is used to guarantee that the Itô-formula A.2 for Hilbert
space valued jump diffusions can be applied for (x, t) → etε‖x‖2H . The assertion of
Proposition 3.5 is also true when ε ≤ 0, but will be only applied for the case when
ε > 0.

4. Convergence to limiting distribution

4.1. The strongly dissipative case. As a consequence of our key stability estimate
we can provide a simple proof for the existence and uniqueneness of a unique limiting
distribution.

Theorem 4.1. Assume that conditions (GDC), (A1), and (3.14) are satisfied. Suppose
that

δ := ε+ 2(α+ β) = 2β − Lσ − Lγ > 0 (4.1)

Then there exists a constant C > 0 such that

W2(p∗tρ, p
∗
t ρ̃) ≤ CW2(ρ, ρ̃)e−δ/2t, t ≥ 0,

for any ρ, ρ̃ ∈ P2(H). In particular, the Markov process determined by (3.1) has a
unique invariant measure π. This measure has finite second moments and it holds that

W2(p∗tρ, π) ≤ CW2(ρ, π)e−δ/2t, t ≥ 0,

for each ρ ∈ P2(H).

Proof. Since the proof is rather standard we give only a sketch of proof. Namely, for
given x, y ∈ H we find by Proposition 3.5

E[‖Xx
t −X

y
t ‖2H ] ≤ e−εt‖x− y‖2H + 2(α+ β)

∫ t

0
e−ε(t−s)E[‖Xx

s −Xy
s ‖2H ]ds.

from which we readily deduce that

E[‖Xx
t −X

y
t ‖2H ] ≤ ‖x− y‖2 − δ

∫ t

0
E[‖Xx

s −Xy
s ‖2H ]ds.

This implies that
E[‖Xx

t −X
y
t ‖2H ] ≤ ‖x− y‖2e−δt, t ≥ 0.

The assertion can be now deduced by standard arguments. �

The condition δ > 0 requires that the drift is strong enough. It can be seen as an
analogue of the conditions introduced in [32, Section 16], [10, Chapter 11, Section 6],
and [36], where a similar statement was derived.

Opposite to this case, in this work we focus on the study of multiple invariant mea-
sures. For this purpose we will assume that ε > 0 which is weaker than condition
(4.1).
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4.2. The Case of Vanishing Coefficients. While Proposition 3.5 provides an esti-
mate on the L2-norm of the difference Xx

t − X
y
t , such an estimate alone does neither

imply the existence nor uniqueness of an invariant distribution. However, if the co-
efficients F, σ, γ vanish at H1, then we may characterize the limiting distributions in
L2.

Theorem 4.2. Suppose that (GDC) holds with a projection operator P1, (A1), (3.14),
(3.13) are satisfied, that (S(t))t≥0 leaves H0 := ran(I−P1) invariant, and that ran(P1) ⊂
ker(A). Moreover, assume that

P1F ≡ 0, P1σ ≡ 0, P1γ ≡ 0. (4.2)

Given any X0 ∈ L2(Ω,F0,P;H) which satisfies

F (P1x) = 0, σ(P1x) = 0, γ(P1x, ·) = 0, a.s., (4.3)

then the inequality

E
[
‖Xt − P1X0‖2H

]
≤ e−εtE

[
‖(I − P1)X0‖2H

]
holds. In particular, let ρ be the law of X0 ∈ L2(Ω,F0,P;H) and ρ1 be the law of P1X0,
respectively. Then ρ1 is an invariant measure.

Proof. Fix X0 ∈ L2(Ω,F0,P;H) with property (4.3) and set P0 = I − P1. Since
ran(P1) ⊂ ker(A) we find that S(t)P1 = P1 for t ≥ 0 and hence P0S(t)P1 = 0. More-
over, since (S(t))t≥0 leaves H0 invariant, we obtain P0S(t) = P0S(t)P0 + P0S(t)P1 =
P0S(t)P0 = S(t)P0. Hence, using (4.2) we find that

P1Xt = P1S(t)X0 = P1S(t)P0X0 + P1S(t)P1X0 = P1X0.

From this we conclude that (P0Xt)t≥0 satisfies

P0Xt = P0S(t)X0 +

∫ t

0
P0S(t− s)F (Xs)ds+

∫ t

0
P0S(t− s)σ(Xs)dWs

+

∫ t

0

∫
E
P0S(t− s)γ(Xs)Ñ(ds, dν)

= S(t)P0X0 +

∫ t

0
S(t− s)P0F (P1X0 + P0Xt)ds+

∫ t

0
S(t− s)P0σ(P1X0 + P0Xs)dWs

+

∫ t

0

∫
E
S(t− s)P0γ(P1X0 + P0Xs)Ñ(ds, dν)

= S(t)P0X0 +

∫ t

0
S(t− s)F̃ (P0Xt)ds+

∫ t

0
S(t− s)σ̃(P0Xs)dWs∫ t

0

∫
E
S(t− s)γ̃(P0Xs)Ñ(ds, dν),

where we have set F̃ (y) := P0F (P1X0 + y), σ̃(y) := P0σ(P1X0 + y) and γ̃(y, ν) :=
P0γ(P1X0 + y, ν) for all y ∈ H0 and ν ∈ E. Since these coefficients share the same
Lipschitz estimates as F, σ and γ, are F0-measurable and the noise terms are indepen-
dent of F0, we can apply Proposition 3.5 (conditionally on F0) to the process (P0Xt)t≥0

obtained from the above auxiliary SPDE and obtain

E[‖Xt − P1X0‖2H ] = E[‖P0Xt‖2H ] = E[‖P0Xt − P0Y
0
t ‖2H ] ≤ e−εtE[‖P0X0‖2H ],

where we have used that P0Yt = 0 for the unique solution with Y0 = 0 due to (4.3). �

This theorem can be applied, for instance, to the Heath-Jarrow-Morton-Musiela equa-
tion, see Section 5.
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4.3. Main result: The General Case. In Theorem 4.2 we have assumed (4.2), (4.3),
and that (S(t))t≥0 leaves H0 invariant. Below we continue with the more general case.
Namely, for the projection operator P1 given by condition (GDC) we set P0 = I − P1

and suppose that:

(A2) The semigroup (S(t))t≥0 leaves H1 := ran(I − P0) invariant, one has

P1σ = P1γ = 0 and P1F (x) = P1F (P1x), x ∈ H.

Let us briefly comment on this condition. Let (Xt)t≥0 be the unique solution to (3.6) and
decompose the process Xt according to Xt = P0Xt+P1Xt. Then condition (A2) simply
implies that P1Xt is F0-measurable and satisfies ω-wisely the deterministic equation

f(t;x) = P1S(t)x+

∫ t

0
P1S(t− s)P1F (P1f(s;x))ds, f(0, x) = x ∈ H, (4.4)

i.e. P1Xt = f(t;x) with f(0, x) = x = X0 holds a.s. Our next condition imposes a
control on this component:

(A3) For each x ∈ H1 = ran(P1) there exists f̃(x) ∈ H1 and constants C(x) > 0,
δ(x) > 0 such that

‖f(t;x)− f̃(x)‖2H ≤ C(x)e−δ(x)t, t ≥ 0.

Without loss of generality we will always suppose that δ(x) ∈ (0, |ε|). Such assump-
tion will simplify our arguments later on. Note that, if P1F (P1·) = 0 then condition
(A3) reduces to a condition on the limiting behavior of the semigroup (S(t))t≥0 when
restricted to H1 = ran(P1). In such a case condition (A3) is, for instance, satisfied if
ran(P1) ⊂ ker(A). Recall that condition (GDC) was formulated in the introduction and
that (A1), (3.14) and (3.13) were formulated in Section 3. The following is our main
result in this Section.

Theorem 4.3. Suppose that condition (GDC) holds for some projection operator P1,
that conditions (A1) – (A3), (3.14) and (3.13) are satisfied. Then the following asser-
tions hold:

(a) For each x ∈ H there exists an invariant measure πδx ∈ P2(H) for the Markov
semigroup (pt)t≥0 and a constant K(α, β, ε, h) > 0 such that

W2(pt(x, ·), πδx) ≤ K(α, β, ε, x)e−
δ(x)
2
t, t ≥ 0.

(b) Suppose, in addition to the conditions of (A3), that there are constants δ and
C, such that

δ(x) ≥ δ > 0 and C(x) ≤ C(1 + ‖x‖H)4, x ∈ H. (4.5)

Then, for each ρ ∈ P2(H), there exists an invariant measure πρ ∈ P2(H) for
the Markov semigroup (pt)t≥0 and a constant K(α, β, ε) > 0 such that

W2(p∗tρ, πρ) ≤ K(α, β, ε)

∫
H

(1 + ‖x‖H)2ρ(dx)e−
δ
2
t, t ≥ 0.

The proof of this theorem relies on the key stability estimate formulated in Propo-
sition 3.5 and is given at the end of this section. So far we have stated the existence
of invariant measures parametrized by the initial state of the process. However, under
the given conditions it can also be shown that πδx as well as πρ depend only on the H1

part of x or ρ, respectively.
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Corollary 4.4. Suppose that condition (GDC) holds for some projection operator P1,
that conditions (A1) – (A3), (3.14) and (3.13) are satisfied. Then the following asser-
tions hold:

(a) Let x, y ∈ H be such that P1x = P1y. Then πδx = πδy .

(b) Suppose, in addition, that (4.5) holds. Let ρ, ρ̃ ∈ P2(H) be such that ρ ◦ P−1
1 =

ρ̃ ◦ P−1
1 . Then πρ = πρ̃.

Let us briefly compare the conditions imposed in Theorem 4.2 with those imposed in
Theorem 4.3. In Theorem 4.3 we have weakened (4.2) with respect to F by replacing
P1F = 0 by P1F (x) = P1F (P1x). Moreover, we have replaced ran(P1) ⊂ ker(A)
by condition (A3). Finally note that condition (4.3) is not assumed in Theorem 4.3.
Below we provide a counter example showing that, in general, condition (A3) cannot
be omitted.

Example 4.5. Let H = R2 and (Wt)t≥0 be a 2-dimensional standard Brownian motion.
Let Yt = (Y 1

t , Y
2
t ) ∈ H = R2 be the solution of

dYt =

(
−1 1
0 1

)
Ytdt+

(
1 0
0 0

)
dWt.

Then condition (A1) holds for F = 0, γ = 0 and clearly σ(x) =

(
1 0
0 0

)
. Example

3.3 shows that (GDC) holds with P1 being the projection onto the second coordinate.
Moreover, (4.2) and hence (A2) holds. However, since

Y 2
t = etY 2

0 +

∫ t

0
et−sdW 2

s

it is clear that condition (A3) is not satisfied. Moreover, Y 2
t does not have a limiting

distribution and hence also Yt cannot have a limiting distribution.

Next we turn to a proof of Theorem 4.3 and Corollary 4.4.

4.4. Construction of a coupling. Let x ∈ H and let (Xx
t )t≥0 be the unique mild so-

lution to (3.6). Below we construct for given τ ≥ 0 a coupling for the law of (Xx
t , X

x
t+τ ).

Let (Y x,τ
t )t≥0 be the unique mild solution to the SPDE

Y x,τ
t = S(t)x+

∫ t

0
S(t− s)F (Y x,τ

s )ds+

∫ t

0
S(t− s)σ(Y x,τ

s )dW τ
s (4.6)

+

∫ t

0

∫
E
S(t− s)γ(Y x,τ

s , ν)Ñ τ (ds, dν), t ≥ 0,

where W τ
s = Wτ+s −Wτ is a Q-Wiener process, and Ñ τ (ds, dν) defined by

Ñ τ ((0, t]×A) := Ñ((τ, τ + t]×A)

for t > 0 and A ∈ E is a Poisson random measure with respect to the filtration (Fτs )s≥0

defined by Fτs = Fs+τ .

Lemma 4.6. Suppose that (GDC), (A1), (3.14) and (3.13) are satisfied. Then for each
x ∈ H and t, τ ≥ 0 the following assertions hold:

(a) Y x,τ
t has the same law as Xx

t .
(b) It holds that

E
[
‖Y x,τ

t −Xx
t+τ‖2H

]
≤ e−εtE

[
‖x−Xx

τ ‖2H
]
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+ 2(α+ β)

∫ t

0
e−ε(t−s)E

[
‖P1Y

x,τ
s − P1X

x
s+τ‖2H

]
ds.

Proof. (a) Since (3.6) has a unique solution it follows from the Yamada-Watanabe
Theorem (see [26]) that also uniqueness in law holds for this equation. Since the driving
noises N τ and W τ in (4.6) have the same law as N and W from (3.6), it follows that
the unique solution to (4.6) has the same law as the solution to (3.6). This proves the
assertion.

(b) Set Xx,τ
t := Xx

t+τ , then by direct computation we find that

Xx,τ
t = S(t)S(τ)x+

∫ t+τ

0
S(t+ τ − s)F (Xx

s )ds+

∫ t+τ

0
S(t+ τ − s)σ(Xx

s )dWs

+

∫ t+τ

0

∫
E
S(t+ τ − s)γ(Xx

s , ν)Ñ(ds, dν)

= S(t)S(τ)x+ S(t)

∫ τ

0
S(τ − s)F (Xx

s )ds+ S(t)

∫ τ

0
S(τ − s)σ(Xx

s )dWs

+ S(t)

∫ τ

0

∫
E
S(τ − s)γ(Xx

s , ν)Ñ(ds, dν)

+

∫ t+τ

τ
S(t+ τ − s)F (Xx

s )ds+

∫ t+τ

τ
S(t+ τ − s)σ(Xx

s )dWs

+

∫ t+τ

τ

∫
E
S(t+ τ − s)γ(Xx

s , ν)Ñ(ds, dν)

= S(t)Xx,τ
0 +

∫ t

0
S(t− s)F (Xx,τ

s )ds+

∫ t

0
S(t− s)σ(Xx,τ

s )dW τ
s

+

∫ t

0

∫
E
S(t− s)γ(Xx,τ

s , ν)Ñ τ (ds, dν),

where in the last equality we have used, for appropriate integrands Φ(s, ν) and Ψ(s),
that ∫ τ+t

τ
Ψ(s)dWs =

∫ t

0
Ψ(s+ τ)dW τ

s ,∫ τ+t

τ

∫
E

Φ(s, ν)Ñ(ds, dν) =

∫ t

0

∫
E

Φ(s+ τ, ν)Ñ τ (ds, dν).

Hence (Xx,τ
t )t≥0 also solves (4.6) with Fτ0 = Fτ and initial condition Xx,τ

0 = Xx
τ .

Consequently, the assertion follows from Proposition 3.5 applied to Xx,τ
t and Y x,τ

t . �

4.5. Proof of Theorem 4.3.

Proof of Theorem 4.3. Fix x ∈ H and recall that pt(x, ·) denotes the transition proba-
bilities of the Markov process obtained from (3.6). Below we prove that (pt(x, ·))t≥0 ⊂
P2(H) is a Cauchy sequence with respect to the Wasserstein distance W2. Fix t, τ ≥ 0.
We treat the cases τ ∈ (0, 1] and τ > 1 separately.

Case 0 < τ ≤ 1: Then using the coupling lemma 4.6.(b) yields

W2(pt+τ (x, ·), pt(x, ·)) ≤
(
E
[
‖Y x,τ

t −Xx
t+τ‖2H

])1/2
≤ e−

ε
2
t
(
E
[
‖Xx

τ − x‖2H
])1/2

+
√

2(α+ β)

(∫ t

0
e−ε(t−s)E

[
‖P1Y

x,τ
s − P1X

x
s+τ‖2H

]
ds

)1/2
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=: I1 + I2.

The first term I1 can be estimated by

I1 ≤ e−
ε
2
t sup
s∈[0,1]

(
E
[
‖Xx

s − x‖2H
])1/2

.

To estimate the second term I2 we first observe that by condition (A2) we have P1Y
x,τ
s =

P1X
x
s = f(s;x) being deterministic and hence by condition (A3) one has for each s ≥ 0

that

E
[
‖P1Y

x,τ
s − P1X

x
s+τ‖2H

]
≤ 2‖P1Y

x,τ
s − f̃(x)‖2H + 2‖P1X

x
s+τ − X̃x

∞‖2H
≤ 4C(x)e−δ(x)s. (4.7)

This readily yields ∫ t

0
e−ε(t−s)E

[
‖P1Y

x,τ
s − P1X

x
s+τ‖2H

]
ds

≤ 4C(x)

∫ t

0
e−ε(t−s)e−δ(x)sds

= 4C(x)e−εt
e(ε−δ(x))t − 1

ε− δ(x)

≤ 4C(x)
e−δ(x)t

ε− δ(x)
. (4.8)

Inserting this into the definition of I2 gives

I2 ≤ 2

√
(α+ β)C(x)

ε− δ(x)
e−

δ(x)
2
t.

Case τ > 1: Fix some N ∈ N with τ < N < 2τ and define a sequence of numbers
(an)n=0,...,N by

an :=
τ

N
n, n = 0, . . . , N.

Then a0 = 0, aN = τ and an − an−1 = τ
N =: κ ∈ (1

2 , 1) for n = 1, . . . , N . Hence we
obtain from the coupling Lemma 4.6.(b)

W2(pt+τ (x, ·), pt(x, ·))

≤
N∑
n=1

W2(pt+an(x, ·), pt+an−1(x, ·))

≤
N∑
n=1

(
E
[
‖Y x,κ

t+an−1
−Xx

t+an−1+κ‖2H
])1/2

≤
N∑
n=1

e−
ε
2

(t+an−1)
(
E
[
‖Xx

κ − x‖2H
])1/2

+
√

2(α+ β)
N∑
n=1

(∫ t+an−1

0
e−ε(t+an−1−s)E

[
‖P1Y

x,κ
s − P1X

x
s+κ‖2H

]
ds

)1/2

=: J1 + J2.
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For the first term J1 we use κ > 1
2 so that

N∑
n=1

e−
ε
2
κ(n−1) ≤

∞∑
n=0

e−
ε
4
n =

(
1− e−

ε
4

)−1
,

from which we obtain

J1 = e−
ε
2
t sup
s∈[0,1]

(
E[‖Xx

s − x‖2H ]
) 1

2

N∑
n=1

e−
ε
2
κ(n−1)

≤ sup
s∈[0,1]

(
E[‖Xx

s − x‖2H ]
) 1

2

(
1− e−

ε
4

)−1
e−

ε
2
t.

To estimate the second term J2 we first observe that by condition (A2) we have P1Y
x,τ
s =

P1X
x
s = f(s;x) being deterministic and hence by condition (A3), one has for s ≥ 0

E
[
‖P1Y

x,κ
s − P1X

x
s+κ‖2H

]
≤ 2‖P1Y

x,κ
s − f̃(x)‖2H + 2‖P1X

x
s+κ − f̃(x)‖2H

≤ 4C(x)e−δ(x)s.

Hence we find that∫ t+an−1

0
e−ε(t+an−1−s)E

[
‖P1Y

x,κ
s − P1X

x
s+κ‖2H

]
ds

≤ 4C(x)

∫ t+an−1

0
e−ε(t+an−1−s)e−δ(x)sds

= 4C(x)e−ε(t+an−1) e(ε−δ(x))(t+an−1) − 1

ε− δ(x)

≤ 4C(x)
e−δ(x)t

ε− δ(x)
e−δ(x)an−1

≤ 4C(x)
e−δ(x)t

ε− δ(x)
e−

δ(x)
2

(n−1)

where the last inequality follows from an−1 = κ(n−1) ≥ 1
2(n−1). From this we readily

derive the estimate

J2 ≤ 2

√
(α+ β)C(x)

ε− δ(x)

(
1− e−

δ(x)
4

)−1
e−

δ(x)
2
t.

Hence, using also (3.5) we obtain

W2(pt+τ (x, ·), pt(x, ·)) ≤ K(α, β, ε, x)e−
δ(x)
2
t, t, τ ≥ 0, (4.9)

where the constant K(α, β, ε, x) > 0 is given by

K(α, β, ε, x) = K(ε)(1 + ‖x‖H) + 2

√
(α+ β)C(x)

ε− δ(x)

(
1− e−

δ(x)
4

)−1

with another constant K(ε) > 0. This implies that, for each x ∈ H, (pt(x, ·))t≥0 has a
limit in P2(H). Denote this limit by πδx . Assertion (a) now follows by taking the limit
τ →∞ in (4.9) and using the fact that K(α, β, ε, x) is independent of τ .

It remains to prove assertion (b). First observe that, using δ(x) ≥ δ > 0 and C(x) ≤
C(1 + ‖x‖H)4, we have

K(α, β, ε, x) ≤ (1 + ‖x‖H)2K̃(α, β, ε)
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for some constant K̃(α, β, ε). Note that

p∗tρ(dy) =

∫
H
pt(z, dy)ρ(dz) and p∗t+τρ(dy) =

∫
H
pt+τ (z, dy)ρ(dz).

Hence using first the convexity of the Wasserstein distance and then (4.9) we find that

W2(p∗t+τρ, p
∗
tρ) ≤

∫
H

W2(pt+τ (x, ·), pt(x, ·))ρ(dx)

≤ K̃(α, β, ε)

∫
H

(1 + ‖x‖H)2ρ(dx) · e−
δ
2
t.

Since ρ ∈ P2(H), the assertion is proved. �

4.6. Proof of Corollary 4.4.

Proof of Corollary 4.4. Recall that, by condition (A2) the process P1X
x
t solves

P1X
x
t = P1S(t)P1x+

∫ t

0
P1S(t− s)F (P1X

x
s )ds.

Since F is globally Lipschitz continuous by condition (A1), it follows that this equation
has for each x ∈ H a unique solution and is deterministic. From this we readily conclude
that P1X

x
t = P1X

y
t holds for all t ≥ 0, provided that P1x = P1y. Hence Proposition 3.5

yields for such x, y

E
[
‖Xx

t −X
y
t ‖2H

]
≤ e−εt‖x− y‖2H , ∀t ≥ 0. (4.10)

Then for each x, y ∈ H with P1x = P1y and each t ≥ 0 we obtain

W2(πδx , πδy) ≤W2(πδx , pt(x, ·)) + W2(pt(x, ·), pt(y, ·)) + W2(pt(y, ·), πδy)

≤W2(πδx , pt(x, ·)) + e−
ε
2
t‖x− y‖H + W2(pt(y, ·), πδy).

Letting t→∞ yields πδx = πδy and hence assertion (a) is proved.

To prove assertion (b), let ρ, ρ̃ ∈ P2(H) be such that ρ ◦ P−1
1 = ρ̃ ◦ P−1

1 . Then

W2(πρ, πρ̃) ≤W2(πρ, p
∗
tρ) + W2(p∗tρ, p

∗
t ρ̃) + W2(p∗t ρ̃, πρ̃)

Again, by letting t→∞, it suffices to prove that

lim sup
t→∞

W2(p∗tρ, p
∗
t ρ̃) = 0. (4.11)

Let G be a coupling of (ρ, ρ̃). Using the convexity of the Wasserstein distance and
Proposition 3.5 gives

W2(p∗tρ, p
∗
t ρ̃)

≤
∫
H×H

W2(pt(x, ·), pt(y, ·))G(dx, dy)

≤
∫
H×H

(
E
[
‖Xx

t −X
y
t ‖2H

])1/2
G(dx, dy)

≤
∫
H×H

e−
ε
2
t‖x− y‖HG(dx, dy)

+
√

2(α+ β)

∫
H×H

(∫ t

0
e−ε(t−s)E

[
‖P1X

x
s − P1X

y
s ‖2H

]
ds

)1/2

G(dx, dy)

=: I1 + I2.
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The first term I1 satisfies

I1 ≤
(

2 +

∫
H
‖x‖2Hρ(dx) +

∫
H
‖y‖2H ρ̃(dy)

)
e−

ε
2
t.

For the second term we first use (A2) so that P1X
x
s = P1X

P1x
s , P1X

y
s = P1X

P1y
s and

hence we find for each T > 0 a constant C(T ) > 0 such that for t ∈ [0, T ]

I2 =
√

2(α+ β)

∫
H1×H1

(∫ t

0
e−ε(t−s)‖P1X

x
s − P1X

y
s ‖2Hds

)1/2

G(dx, dy)

≤ C(T )

(∫
H×H

‖P1x− P1y‖2HG(dx, dy)

)1/2

.

Let us choose a particular coupling G as follows: By disintegration we write ρ(dx) =
ρ(x1, dx0)(ρ ◦ P−1

1 )(dx1), ρ̃(dx) = ρ̃(x1, dx0)(ρ̃ ◦ P−1
1 )(dx1) = ρ̃(x1, dx0)(ρ ◦ P−1

1 )(dx1)
where ρ(x1, dx0), ρ̃(x1, dx0) are conditional probabilities defined on B(H0) and we have
used that (ρ ◦ P−1

1 )(dx1) = (ρ̃ ◦ P−1
1 )(dx1). Then G is, for A,B ∈ B(H), given by

G(A×B) :=

∫
H×H

1A(x0, x1)1B(y0, y1)ρ(x1, dx0)ρ̃(y1, dy0)G̃(dx1, dy1),

where G̃ is a probability measure on H2
1 given, for A1, B1 ∈ B(H1), by

G̃(A1 ×B1) = (ρ ◦ P−1
1 )(A1 ∩B1) = ρ ({x ∈ H | P1x ∈ A1 ∩B1}) .

For this particular choice of G we find that∫
H×
‖P1x− P1y‖2HG(dx, dy) =

∫
H1×H1

∫
H2

0

‖x1 − y1‖2Hρ(x1, dx0)ρ̃(y1, dy0)G̃(dx1, dy1)

=

∫
H1×H1

‖x1 − y1‖2HG̃(dx1, dy1) = 0

and hence I2 = 0, since G̃ is supported on the diagonal of H1 ×H1. This proves (4.11)
and completes the proof. �

5. The Heath-Jarrow-Mortion-Musiela equation

The Heath-Jarrow-Morton-Musiela equation (HJMM-equation) describes the term
structure of interest rates in terms of its forward rate dynamics modelled, for β > 0
fixed, on the separable Hilbert space of forward curves

Hβ = {h : R+ → R : h is absolutely continuous and ‖h‖β <∞} , (5.1)

〈h, g〉β = h(∞)g(∞) +

∫ ∞
0

h′(x)g′(x)eβxdx

with norm ‖h‖2β = 〈h, h〉β. Such space was first motivated and introduced by Filipovic

[15]. Note that h(∞) := limx→∞ h(x) exists, whenever
∫∞

0 (h′(x))2eβxdx < ∞. It is
called the long rate of the forward curve h. The HJMM-equation on Hβ is given by{

dXt = (AXt + FHJMM (σ, γ)(Xt)) dt+ σ(Xt)dWt +
∫
E γ(Xt, ν)Ñ(dt, dν),

X0 = h0 ∈ L2(Ω,F0,P;Hβ)
(5.2)

where (Wt)t≥0 is a Q-Wiener process, Ñ(dt, dν) is a compensated Poisson random mea-
sure on E with compensator dtµ(dν) as defined in Section 2 for H := Hβ, and

(i) A is the infinitesimal generator of the shift semigroup (S(t))t∈R+ on Hβ, that is
S(t)h(x) := h(x+ t) for all t, x ≥ 0.
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(ii) h 7→ σ(h) is a B(Hβ)/B(L0
2)-measurable mapping from Hβ into L0

2(Hβ) and
(h, ν) 7→ γ(h, ν) is B(Hβ) ⊗ E/B(Hβ)-measurable mapping from Hβ × E into
Hβ.

(iii) The drift is of the form

FHJMM (σ, γ)(h) =
∑
j∈N

σj(h)Σj(h)−
∫
E
γ(h, ν)

(
eΓ(h,ν) − 1

)
µ(dν),

with σj(h) =
√
λjσ(h)ej ,

Σj(h)(t) =

∫ t

0
σj(h)(s)ds and Γ(h, ν)(t) = −

∫ t

0
γ(h, ν)(s)ds.

The special form of the drift stems from mathematical finance and is sufficient for the
absence of arbitrage opportunities. We denote the space of all forward rates with long
rate equal to zero by

H0
β = {h ∈ Hβ : h(∞) = 0}.

For the construction of a unique mild solution to (5.2) the following conditions have
been introduced in [11]:

(B1) σ : Hβ → L0
2(H0

β), γ : Hβ × E → H0
β′ are Borel measurable for some β′ > β.

(B2) There exists a function Φ : E → R+ such that Φ(ν) ≥ |Γ(h, ν)(t)| for all h ∈ Hβ,
ν ∈ E and t ≥ 0.

(B3) There is an M ≥ 0 such that, for all h ∈ Hβ, and some β′ > β

‖σ(h)‖L0
2(Hβ) ≤M,

∫
E

eΦ(ν) max{‖γ(h, ν)‖2β′ , ‖γ(h, ν)‖4β′}µ(dν) ≤M.

(B4) The function F2 : Hβ → H0
β defined by

F2(h) = −
∫
E
γ(h, ν)

(
eΓ(h,ν) − 1

)
µ(dν)

has the weak derivative given by

d

dx
F2(h) =

∫
E
γ(h, ν)2eΓ(h,ν)µ(dν)−

∫
E

(
d

dx
γ(h, ν)

)(
eΓ(h,ν) − 1

)
µ(dν).

(B5) There are constants Lσ, Lγ > 0 such that, for all h1, h2 ∈ Hβ, we have

‖σ(h1)− σ(h2)‖2L0
2(Hβ) ≤ Lσ‖h1 − h2‖2β,∫

E
eΦ(ν)‖γ(h1, ν)− γ(h2, ν)‖2β′µ(dν) ≤ Lγ‖h1 − h2‖2β.

The following is the basic existence and uniqueness result for the Heath-Jarrow-Morton-
Musiela equation (5.2).

Theorem 5.1. [11] Suppose that conditions (B1) – (B5) are satisfied. Then FHJMM :
Hβ −→ H0

β and there exists a constant LF > 0 such that, for each h1, h2 ∈ Hβ,

‖FHJMM (h1)− FHJMM (h2)‖2β ≤ LF ‖h1 − h2‖2β. (5.3)

This constant can be choosen as

LF =
max(Lσ, Lγ)

√
M

β

√6M
√

2 +

√
8

β3
+

16

β
+

√
16(1 + 1√

β
)2 + 48

(β′ − β)

 . (5.4)

Moreover, for each initial condition h ∈ L2(Ω,F0,P;Hβ) there is a unique adapted,
cádlág mild solution (Xt)t≥0 to (5.2).
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Proof. This result can be found essentially in [11], where the bound on LF is an imme-
diate result from its derivation. �

Using the space of all functions with zero long rate we obtain the decomposition

Hβ = H0
β ⊕ R, h = (h− h(∞)) + h(∞),

where h(∞) ∈ R is identified with a constant function. Denote by

P0h = h− h(∞) and P1h = h(∞)

the corresponding projections onto H0
β and R, respectively. Such a decomposition of Hβ

was first used in [38] to study invariant measures for the HJMM-equation driven by a
Q-Wiener process. An extension to the Lévy driven HJMM-equation was then obtained
in [36]. The proof of the next theorem shows that the results of Section 4 imply the
stability properties of the HJMM-equation as a particular case.

Theorem 5.2. Suppose that conditions (B1) – (B5) are satisfied. If

β > 2
√
LF + Lσ + Lγ , (5.5)

then for each initial distribution ρ on Hβ with finite second moments there exists an
invariant measure πρ and it holds that

W2(p∗tρ, πρ) ≤ K

(
1 +

∫
Hβ

‖h‖2Hβρ(dh) +

∫
Hβ

‖h‖2Hβπρ(dh)

)
e−

β−2
√
LF−Lσ−Lγ

2
t (5.6)

for some constant K = K(β, σ, γ) > 0. Moreover, given ρ, ρ̃ such that ρ◦P−1
1 = ρ̃◦P−1

1 ,
then πρ = πρ̃.

Proof. Observe that the assertion is an immediate consequence of Theorem 4.3 and
Corollary 4.4. Below we briefly verify the assumptions given in these statements. Con-
dition (A1) follows from (B1), (B5), and (5.3). The growth condition (3.14) is satisfied
by (B3) and the fact that ‖ · ‖β ≤ ‖ · ‖β′ for β < β′. It is not difficult to see that

‖S(t)h− P1h‖β ≤ e−
β
2
t‖h− P1h‖β, t ≥ 0

and that (S(t))t≥0 leaves H0
β as well as R ⊂ Hβ invariant. Hence Remark 3.2 yields

that

〈Ah, h〉 ≤ −β
2
‖h‖2β +

β

2
‖P1h‖2β, h ∈ D(A).

It follows from the considerations in Section 2 (see (3.10)) that (GDC) is satisfied for

α = β
2 −
√
LF . Consequently, ε = β − 2

√
LF − Lσ − Lγ and (3.13) holds due to (5.5).

Since the coefficients map into H0
β and S(t)P1h = h(∞) = P1h, conditions (A2), (A3)

and (4.5) are trivially satisfied. The particular form of the estimate (5.6) follows from
the proof of Theorem 4.3. �

Comparing our result with [38, 36], we allow for a more general jump noise and prove
convergence in the stronger Wasserstein distance with an exponential rate. Moreover,
assuming that the volatilities map constant functions onto zero, i.e.

σ(c) ≡ 0, γ(c, ν) ≡ 0, ∀c ∈ R ⊂ Hβ, ν ∈ E (5.7)

shows that F (c) ≡ 0 and hence also (4.3) is satisfied. Hence we may apply Theorem 4.2
to characterize these invariant measures more explicitly.
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Corollary 5.3. Suppose that conditions (B1) – (B5) are satisfied, that (5.5) and (5.7)
hold. Then

E
[
‖Xt −X0(∞)‖2β

]
≤ E

[
‖X0 −X0(∞)‖2β

]
e−(β−2

√
LF−Lσ−Lγ)t

for each X0 ∈ L2(Ω,F0,P, H).

We close this section by applying our results for the particular example discussed
before also in [36].

Example 5.4. Take

σ1(h)(x) :=

∫ ∞
x

min
(

e−βy, |h′(y)|
)
dy

and σj ≡ 0 for j ≥ 2. Then

‖σ(h)‖2L0
2

= ‖σ1(h)‖2β ≤
∫ ∞

0
(e−2βx)eβxdx =

1

β
=: M

and since min(a, b1)−min(a, b2) ≤ |b1 − b2| for a, b1, b2 ∈ R+, we also have

‖σ(h1)− σ(h2)‖2L0
2

= ‖σ1(h)− σ1(h2)‖2β

=

∫ ∞
0

(min(e−βx, |h′1(x)|)−min(e−βx, |h′2(x)|))2eβxdx

≤
∫ ∞

0
(h′1(x)− h′2(x))2eβxdx

≤ ‖h1 − h2‖2β.

Consequently, by taking γ ≡ 0, the conditions (B1) – (B5) are satisfied with Lσ = 1 and
Lγ = 0 and M = 1

β for the Lipschitz and growth constants. By (5.4) we get

LF =
1√
β3

√6
√

2

β
+

√
8

β3
+

16

β
+

√
16(1 + 1√

β
)2 + 48

(β′ − β)

 ,

for all β′ > β. Choosing β ≥ 3 and β′ > β large enough such that LF < 1, we find that

2
√
LF + Lσ + Lγ < 3 = β,

i.e. (5.5) is satisfied. It is clear that σ(c) ≡ 0 for each constant function c. Hence
Corollary 5.3 is applicable.

6. Stochastic partial differential equations with delay

6.1. Description of the model. Let H be a separable Hilbert space and (Wt)t≥0

a Q-Wiener process on a stochastic basis (Ω,F , (Ft)t≥0,P) with the usual conditions.
Below we investigate invariant measures for the stochastic delay equation{

dXt = (AXt +G(Xt+·)) dt+ σ(Xt, Xt+·)dWt, t > 0

X0 = φ0, X0+· = φ,
(6.1)

where φ0 ∈ L2(Ω,F0,P;H), φ ∈ L2(Ω,F0,P;L2([−1, 0];H)) and for t ≥ 1 Xt+· denotes
the past segment of the trajectory, i.e.

Xt+· : [−1, 0] −→ H

s 7−→ Xt+s,
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and for t ∈ [0, 1)

Xt+· : [−1, 0] −→ H

s 7−→ φ(t+ s)1[−1,−t)(s) +Xt+s1[−t,0](s),

and

(i) (A,D(A)) is the infinitesimal generator of a strongly continuous semigroup
(S(t))t≥0 on H.

(ii) (ψ0, ψ) 7→ σ(ψ0, ψ) is measurable from H × L2([−1, 0];H) to L0
2(H).

(iii) G : W 1,2([−1, 0];H)→ H is a continuous linear operator given by the Riemann-
Stieltjes integral

Gφ :=

∫ 0

−1
η(ds)φ(s)

where η : [−1, 0]→ L(H) is of bounded variation.

Such an equation is usually studied in an extended Hilbert space which also takes the
evolution of the past segment (Xt+·)t≥0 into account, see [8]. Below we follow this
approach. Namely, introduce the new Hilbert space

H = H × L2([−1, 0];H), ‖(φ0, φ)‖H =
(
‖φ0‖2H + ‖φ‖2L2([−1,0];H)

)1/2
. (6.2)

Define the operator

A0 :=

(
A 0

0 d
ds

)
D(A) = {(φ0, φ)T ∈ D(A)×W 1,2([0, 1];H) : φ(0) = φ0},

which generates a strongly continuous semigroup (S0(t))t≥0 on H, given by

S0(t) :=

(
S(t) 0
St T0(t)

)
(6.3)

due to [5, Theorem 3.25]. Here (T0(t))t≥0 is the nilpotent left shift semigroup on
L2([−1, 0];H) and

Stφ0(τ) :=

{
S(t+ τ)φ0, −t < τ ≤ 0

0, −1 ≤ τ ≤ −t,
It then follows from [5, Theorem 3.29] that the operator A with domain D(A) = D(A0)
given by

A :=

(
A G

0 d
ds

)
= A0 +

(
0 G
0 0

)
(6.4)

is the generator of a strongly continuous semigroup (S(t))t≥0 on H. Thus, we can
formally identify (6.1) with the H-valued SPDE{

dXt = AXtdt+ Σ(Xt)dWt

X0 = (φ0, φ)T t ≥ 0,
Σ(φ0, φ) :=

(
σ(φ0, φ) 0

0 0

)
. (6.5)

6.2. Main results for (6.5). Next we proceed to apply the results of this work to the
SPDE (6.5). For this purpose we we make the following assumption:

(C1) There exists an Lσ > 0 such that

‖σ(φ0, φ)− σ(ψ0, ψ)‖2L2
0(H) ≤ Lσ

(
‖φ0 − ψ0‖2H + ‖φ− ψ‖2L2([−1,0];H)

)
holds for all (φ, φ0), (ψ0, ψ) ∈ H.

(C2) The operator (A,D(A)) satisfies (GDC) with projection operators P0, P1 and
constants α > 0, β ≥ 0.



P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t

ON A CLASS OF SPDES WITH MULTIPLE INVARIANT MEASURES 27

We will see that condition (C1) implies (A1), condition (C2) will be used to prove that
A also satisfies (GDC) with respect to a (possibly equivalent) scalar product on H.

Proposition 6.1. Suppose that conditions (C1), (C2) are satisfied, that η has a jump
at −1 and that one of the following conditions hold:

(i) G is bounded on L2([−1, 0];H) or
(ii) (S(t))t≥0 leaves H0 = ran(P0) and H1 = ran(P1) invariant, H0, H1 are orthogo-

nal, ran(G) ⊂ H1 and GP0 extends to a bounded linear operator on L2([−1, 0];H).

Then for each initial condition (φ0, φ) ∈ L2(Ω,F0,P;H) there exists a unique mild
solution (Xt)t≥0 ⊂ L2(Ω,F ,P;H) to (6.5).

Proof. Under condition (i) we work on the Hilbert space H while under condition (ii)
we work on the Hilbert space Hτ given by H equipped with the equivalent norm given
by

‖(φ0, φ)‖2Hτ := ‖φ0‖2H +

∫ 0

−1
‖P0φ(s)‖2Hds+

∫ 0

−1
‖P1φ(s)‖2Hτ(s)ds. (6.6)

where

τ(r) =

∫ r

−1
‖η(dr)‖L(H), r ∈ [−1, 0] (6.7)

denotes the variation of η. Note that due to a result of Webb (see [41] and Remark 6.4
below) this norm is, indeed, equivalent to the original norm on H. For condition (A1)
we first observe that LF = Lγ = 0 and if assumption (i) holds, then

‖Σ(φ0, φ)− Σ(ψ0, ψ)‖2L2
0(H) ≤ ‖σ(φ0, φ)− σ(ψ0, ψ)‖2L2

0(H)

≤ Lσ
(
‖φ0 − ψ0‖2H + ‖φ− ψ‖2L2([−1,0];H)

)
= Lσ‖(φ0, φ)T − (ψ0, ψ)T ‖2H.

If condition (ii) holds, then analogously we obtain

‖Σ(φ0, φ)− Σ(ψ0, ψ)‖2L2
0(Hτ ) ≤ Lσ‖(φ0, φ)T − (ψ0, ψ)T ‖2H

≤ max{1, τ(0)}Lσ‖(φ0, φ)T − (ψ0, ψ)T ‖2Hτ .
This shows that condition (A1) is satisfied. Finally, it follows from Proposition 6.5
below that the operator (A, D(A)) satisfies condition (GDC). �

We proceed to formulate our main results on invariant measures for (6.5). For this
purpose we introduce the following additional condition:

(C3) For each (φ0, φ) ∈ H there exist M(φ0, φ) ≥ 1, δ(φ0, φ) > 0 and an element

f̃(φ0, φ) ∈ H such that

‖S(t)(P1φ0, φ)− f̃(φ0, φ)‖H ≤M(φ0, φ)e−tδ(φ0,φ), t ≥ 0.

Observe that (C3) is precisely condition (A3). This is trivially satisfied, if (S(t))t≥0 is
exponentially stable which is for example the case in the setting of [5, Corollary 5.9].

Introduce the subspaces

H0 := H0 × {0} and H1 := H1 × L2([−1, 0];H),

which yield an orthogonal decomposition of H with projection operators

P0 : H −→ H0, (φ0, φ) 7−→ (P0φ0, 0),

P1 : H −→ H1, (φ0, φ) 7−→ (P1φ0, φ).
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The following is our main result for this section.

Theorem 6.2. Suppose that conditions (C1) – (C3) hold, that P1σ(φ0, φ) = 0 for all
(φ0, φ) ∈ H, and that one of the following conditions are satisfied:

(i) G is bounded on L2([−1, 0];H), GP1 = P1G, (S(t))t≥0 commutes with P1, and

α > 1/2 + Lσ/2;

(ii) (S(t))t≥0 leaves H0 = ran(P0) and H1 = ran(P1) invariant, H0, H1 are orthogo-
nal, ran(G) ⊂ H1, GP0 extends to a bounded linear operator on L2([−1, 0];H),
and

α > 1/2 + max{1, τ(0)}Lσ/2.
Then the assertions of Theorem 4.3 and Corollary 4.4 are applicable. In particular, for
each (φ0, φ) ∈ L2(Ω,F0,P;H) there exists an invariant measure πLaw(h) for the Markov
process (Xt)t≥0, and this measure satisfies πLaw(h) = πLaw(P1h).

Proof. Let us first show condition (A2) is satisfied, i.e. that S(t) leaves H1 invariant
and P1Σ = 0. It follows from Lemma 6.6 below that P1 commutes with the semigroup
(S(t))t≥0. Moreover, one has

P1Σ(φ0, φ) =

(
P1σ(φ0, φ) 0

0 0

)
= 0

due to P1σ = 0. This shows that condition (A2) is satisfied. Condition (A3) is imme-
diate by assumption (C3) while (3.13) reduces under condition (i) to

ε = 2

(
α− 1

2

)
− Lσ > 0,

and under condition (ii) to

ε = 2

(
α− 1

2

)
−max{1, τ(0)}Lσ > 0.

Altogether we conclude that Theorems 4.3 and 4.4 apply, which proves the assertion. �

Remark 6.3. Condition (ii) is slightly more restrictive on the semigroup and the pro-
jection operators than condition (i). In contrast to the latter, condition (ii) contains
delay operators like point evaluations in H1 , that is G = δ−1P1 for δ−1φ = φ(−1) for
φ ∈W 1,2([−1, 0];H1).

6.3. Some technical results. Let us first provide a sufficient and easy to check con-
dition for the operator A to satisfy the generalized dissipativity condition (GDC), and
afterward we state our main result on invariant measures for this stochastic delay equa-
tion. As a first step we recall a result from [41].

Remark 6.4 (An equivalent scalar product). Let τ be defined as in (6.7) and suppose
that η has a jump at −1. Suppose that there exists c ∈ R such that A− c is dissipative.
Then the Hilbert space norm defined by

‖(φ0, φ)‖2Hτ := ‖φ0‖2H +

∫ 0

−1
‖φ(s)‖2Hτ(s)ds

is equivalent to the original one on H. Moreover, A − γI is dissipative for every γ ≥
max{0, c+ τ(0)} with respect to this norm, i.e.

〈A(φ0, φ)T , (φ0, φ)〉Hτ ≤ γ‖(φ0, φ)T ‖Hτ , ∀(φ0, φ) ∈ D(A).
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Based on this observation we can now provide sufficient conditions for (A, D(A)) to
satisfy (GDC).

Proposition 6.5. Suppose that A satisfies (GDC) with constants α, β ≥ 0.

(i) If G extends to a continuous linear operator on L2([−1, 0];H) and α > 1/2, then
A satisfies (GDC), i.e.,

〈A(φ0, φ)T , (φ0, φ)T 〉H ≤ −α̃‖(φ0, φ)‖2H +
(
α̃+ β̃

)
‖P1(φ0, φ)T ‖2H

where ε > 0 is such that ε <
√

2α− 1, and

α̃ := α− 1 + ε2

2
and β̃ := β + α+

1

2ε2
‖G‖2L(L2([−1,0];H)) +

ε2

2
.

(ii) Assume that H0, H1 provide an orthogonal decomposition of H such the semi-
group generated (S(t))t≥0 generated by (A,D(A)) leaves H0 and H1 invariant.
Moreover, suppose that ran(G) ⊆ H1, and that W 1,2([−1, 0];H) 3 φ 7→ GP0φ ∈
H1 extends to a continuous linear operator GP0 : L2([−1, 0];H) → H1 with
operator norm denoted by ‖GP0‖. Define an equivalent Hilbert space norm by
(6.6). If α > 1/2, then A satisfies (GDC) with respect to this norm, i.e., it holds
that

〈A(φ0, φ)T , (φ0, φ)T 〉Hτ ≤ −
(
α− 1

2

)
‖(φ0, φ)‖Hτ

+

((
α− 1

2

)
+ β + τ(0) +

‖GP0‖
2

)
‖P1(φ0, φ)‖2Hτ

Proof. (i) For (φ0, φ)T ∈ D(A0) we have

〈A0(φ0, φ)T , (φ0, φ)T 〉H = 〈Aφ0, φ0〉H +

∫ 0

−1

〈
d

ds
φ(s), φ(s)

〉
H

ds

= 〈Aφ0, φ0〉H +

∫ 0

−1

1

2

d

ds
‖φ(s)‖2Hds

= 〈Aφ0, φ0〉H +
1

2
(‖φ(0)‖2H − ‖φ(−1)‖2H)

≤ 〈Aφ0, φ0〉H +
1

2
‖φ0‖2H ,

where we used the fact that φ0 = φ(0). Making further use of the fact that A satisfies
(GDC) we find

〈A0(φ0, φ)T , (φ0, φ)T 〉H ≤−
(
α− 1

2

)
‖φ0‖2H + (β + α)‖P1φ0‖2H

≤ −
(
α− 1

2

)
‖(φ0, φ)‖2H +

(
β + 2α− 1

2

)
‖(P1φ0, φ)T ‖2H.

To estimate the operator A we will use that

〈Gφ, φ0〉H ≤ ‖Gφ‖H‖φ0‖H

≤ 1

2ε2
‖Gφ‖2H +

ε2

2
‖φ0‖2H

=
1

2ε2
‖G‖2L(L2([−1,0];H))‖φ‖

2
L2([−1,0];H) +

ε2

2
‖φ0‖2H

≤ 1

2ε2
‖G‖2L(L2([−1,0];H))‖P1(φ0, φ)T ‖2H +

ε2

2
‖(φ0, φ)T ‖2H
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where ε > 0. Thus we obtain

〈A(φ0, φ)T , (φ0, φ)T 〉H
= 〈A0(φ0, φ)T , (φ0, φ)T 〉H + 〈Gφ, φ0〉H

≤ −
(
α− 1

2

)
‖(φ0, φ)‖2H +

(
β + 2α− 1

2

)
‖P1(φ0, φ)T ‖2H

+
1

2ε2
‖G‖2L(L2([−1,0];H))‖P1(φ0, φ)T ‖2H +

ε2

2
‖(φ0, φ)T ‖2H

= −
(
α− 1 + ε2

2

)
‖(φ0, φ)‖2H +

(
β + 2α− 1

2
+

1

2ε2
‖G‖2L(L2([−1,0];H))

)
‖P1(φ0, φ)T ‖2H.

Assuming ε is so small that ε <
√

2α− 1, we obtain α− 1+ε2

2 > 0 and

β + 2α− 1

2
+

1

2ε2
‖G‖2L(L2([−1,0];H))

=

(
α− 1 + ε2

2

)
+ β + α+

1

2ε2
‖G‖2L(L2([−1,0];H)) +

ε2

2
> 0

which proves the assertion.
(ii) As P0, P1 are complementary self-adjoint projections, they induce an orthogonal

decomposition H = H0 ⊕ H1. Thus, for (φ0, φ) ∈ H we have (φ0, φ) = (P0φ0, P0φ) +
(P1φ0, P1φ) which gives also an orthogonal decomposition

H =
(
H0 × L2([−1, 0];H0)

)
⊕
(
H1 × L2([−1, 0];H1)

)
.

Applying Remark 6.4 to the Hilbert space H1 × L2([−1, 0];H1) we find that

‖P1φ0‖H2 +

∫ 0

−1
‖P1φ(s)‖2Hτ(s)ds

gives rise to a norm on H1×L2([−1, 0];H1) which is equivalent to the one given by (6.2)
when applied to (P1φ0, P1φ). Thus, the norm defined in (6.6) is, indeed, equivalent to
the original norm on H. Let (φ0, φ) ∈ D(A), so that φ(0) = φ0 and we can write:

〈A(φ0, φ)T , (φ0, φ)T 〉Hτ

=

〈(
Aφ0 +Gφ,

d

ds
φ

)T
, (φ0, φ)T

〉
Hτ

= 〈Aφ0, φ0〉H + 〈Gφ, φ0〉H

+

∫ 0

−1

〈
d

ds
P0φ(s), P0φ(s)

〉
H

ds+

∫ 0

−1

〈
d

ds
P1φ(s), P1φ(s)

〉
H

τ(s)ds

= I1 + I2 + I3 + I4.

For the first term I1 we use φ0 = P0φ0 +P1φ0, then the fact that P0, P1 are self-adjoint
projection operators and finally P0A = AP0, P1A = AP1 (similarly to the proof of
Proposition 3.1) to find that

I1 = 〈P0Aφ0, P0φ0〉H + 〈P1Aφ0, P1φ0〉H
= 〈AP0φ0, P0φ0〉H + 〈AP1φ1, P1φ0〉H ≤ −α‖P0φ0‖2H + 〈AP1φ1, P1φ0〉H ,

where the last inequality follows from (GDC) combined with P1P0φ0 = 0. Likewise, for
the second term we use that ran(G) ⊂ H1 so that P0G = 0 to obtain

I2 = 〈Gφ,P1φ0〉H



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt ON A CLASS OF SPDES WITH MULTIPLE INVARIANT MEASURES 31

= 〈GP0φ, P1φ0〉H + 〈GP1φ, P1φ0〉H
≤ ‖GP0‖‖P0φ‖L2([−1,0];H)‖P1φ0‖H + 〈GP1φ, P1φ0〉H

≤ ‖GP0‖
2
‖P0φ‖2L2([−1,0];H) +

‖GP0‖
2
‖P1φ0‖2H + 〈GP1φ, P1φ0〉H .

For the third term we obtain

I3 =
1

2

∫ 0

−1

d

ds
‖P0φ(s)‖2Hds ≤

1

2
‖P0φ0‖2H .

To summarize, we obtain

〈A(φ0, φ)T , (φ0, φ)T 〉Hτ

≤ −
(
α− 1

2

)
‖P0φ0‖2H +

‖GP0‖
2

(
‖P1φ0‖2H + ‖P0φ‖2L2([−1,0];H)

)
+ 〈AP1φ1, P1φ0〉H + 〈GP1φ, P1φ0〉H +

∫ 0

−1

〈
d

ds
P1φ(s), P1φ(s)

〉
H

τ(s)ds

= −
(
α− 1

2

)
‖(φ0, φ)T ‖2Hτ +

(
α− 1

2

)
‖P1φ0‖2H +

(
α− 1

2

)∫ 0

−1
‖P0φ(s)‖2Hds

+

(
α− 1

2

)∫ 0

−1
‖P1φ(s)‖2Hτ(s)ds+

‖GP0‖
2
‖P1φ0‖2H +

‖GP0‖
2

∫ 0

−1
‖P0φ(s)‖2Hds

+
〈
A(P1φ0, P1φ)T , (P1φ0, P1φ)T

〉
Hτ

≤ −
(
α− 1

2

)
‖(φ0, φ)T ‖2Hτ +

(
α− 1

2
+ γ +

‖GP0‖
2

)
‖P1φ0‖2H

+

(
α− 1

2
+
‖GP0‖

2

)∫ 0

−1
‖P0φ(s)‖2Hds+

(
α− 1

2
+ γ

)∫ 0

−1
‖P1φ(s)‖2Hτ(s)ds

≤ −
(
α− 1

2

)
‖(φ0, φ)T ‖2Hτ +

(
α− 1

2
+ γ +

‖GP0‖
2

)
‖P1(φ0, φ)T ‖2Hτ ,

where we have used the fact that A − βI is dissipative so that by Remark 6.4 with
γ = β + τ(0)〈

A(P1φ0, P1φ)T , (P1φ0, P1φ)T
〉
Hτ ≤ γ‖(P1φ0, P1φ)T ‖2Hτ

= γ‖P1φ0‖2H + γ

∫ 0

−1
‖P1φ(s)‖2Hτ(s)ds.

This proves the assertion. �

The next result has been used in the previous proof.

Lemma 6.6. Consider the setting of stochastic delay equation, i.e., let (S0(t))t≥0,
(S(t))t≥0, (A0, D(A0)), (A, D(A)), G, P1 as in Sections 6.1, 6.2 and Theorem 6.2.
In particular suppose that P1S(t) = P1S(t), where S(t) is given in (6.3). Then

P1S(t) = S(t)P1, t ≥ 0.

Proof. We prove this statement in two different cases. Let us first consider the case
whereG satisfies assumption (i) from Proposition 6.5, i.e. G is bounded from L2([−1, 0];H)
to H. Since G is bounded we obtain from the bounded perturbation theorem (the
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Dyson-Phillips series) the representation

S(t) =
∞∑
n=0

S(n)
0 (t),

where the series converges in L(H), and S(n)
0 (t) is inductively defined by

S(0)
0 (t) = S0(t), S(n+1)

0 (t) =

∫ t

0
S(n)

0 (s)

(
0 G
0 0

)
S(

0t− s)ds.

Thus it suffices to prove that

P1S(n)
0 (t) = S(n)

0 (t)P1, n ≥ 1, t ≥ 0. (6.8)

For n = 0 we use the particular form of P1 and S0(t) to find that

P1S0(t)(φ0, φ)T = P1

(
S(t)φ0

Stφ0 + T0(t)φ

)
=

(
P1S(t)φ0

Stφ0 + T0(t)φ

)
=

(
S(t)P1φ0

Stφ0 + T0(t)φ

)
= S0(t)P1(φ0, φ)T ,

where we have used that S(t) commutes with P1. Now suppose that (6.8) holds for
some n ≥ 0. Then

P1S(n+1)
0 (t) = P1S0(t) +

∫ t

0
P1S(n)

0 (s)

(
0 G
0 0

)
S(

0t− s)ds

= S0(t)P1 +

∫ t

0
S(n)

0 (s)

(
0 G
0 0

)
S(n)

0 (t− s)P1ds = S(n+1)
0 (t)P1,

where we have used that

P1

(
0 G
0 0

)
(φ0, φ)T = P1(Gφ, 0)T

= (P1Gφ, 0) = (GP1φ, 0) =

(
G 0
0 0

)
P1(φ0, φ)T .

This completes the proof for the case where G : L2([−1, 0];H) −→ H is bounded.
Let us now consider the case where condition (ii) from Proposition 6.5 holds. Fol-

lowing [5, Theorem 3.29] we know that the semigroup (S(t))t≥0 is constructed as a
Miyadera-Voigt perturbation and hence has due to [14, Chapter III, Corollary 3.15] a
series representation of the form

S(t) =

∞∑
n=0

V
nS0(t),

where V denotes the closure of the operator

F 7−→ V F (t) :=

∫ t

0
F (s)

(
0 G
0 0

)
S0(t− s)ds,

where F ∈ C([0, t0], Ls(H)) for some small t0 > 0 and Ls(H) denotes the space of
bounded linear operators over H equipped with the strong operator topology. Following
the same computations as in the first case, we can prove that P1V

nS0(t) = V nS0(t)P1

and hence P1V
nS0(t) = V

nS0(t)P1. This proves the assertion also in this case. �
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Appendix A. Itô formula

Below we recall an Itô formula for Hilbert space valued semimartingales of the form

X(t) = X(0) +

∫ t

0
a(s)ds+

∫ t

0
σ(s)dWs +

∫ t

0

∫
E
γ(s, ν)Ñ(ds, dν),

where a and σ are as before and (γ(t, ν))t≥0 is a predictable, H-valued stochastic process
for each ν ∈ E such that

E
[∫ t

0

∫
E
‖γ(s, ν)‖2Hµ(dν)ds

]
<∞

and

E
[∫ t

0
‖σ(s)‖2L0

2
ds

]
<∞.

For this purpose we first introduce the class of quasi-sublinear functions.

Definition A.1 (Sublinear Functions). A continuous, non-decreasing function h :
R+ → R+ is called quasi-sublinear, if there exists a constant C > 0 such that

h(x+ y) ≤ C(h(x) + h(y))

h(xy) ≤ C(h(x)h(y))

for all x, y ≥ 0.

The following Itô-Formula is a combination of [20] and [29].

Theorem A.2 (Generalized Itô-Formula). Let F ∈ C2(R+ ×H,R) and suppose there
exist quasi-sublinear functions h1, h2 : R+ → R+ such that for all t ≥ 0 and x ∈ H

‖Fx(t, x)‖H ≤ h1(‖x‖H), ‖Fxx(t, x)‖L(H,L(H,R)) ≤ h2(‖x‖H)

and ∫ t

0

∫
E
‖γ(s, ν)‖2Hµ(dν)ds+

∫ t

0

∫
E
h1(‖γ(s, ν)‖H)2‖γ(s, ν)‖2Hµ(dν)ds

+

∫ t

0

∫
E
h2(‖γ(s, ν)‖H)‖γ(s, ν)‖2Hµ(dν)ds <∞

Then P-almost surely for each t ≥ 0:∫ t

0
‖Ft(s,X(s))‖Hds+

∫ t

0

∫
E
|F (s,X(s) + γ(s, ν))− F (s,X(s))|2µ(dν)ds

+

∫ t

0

∫
E
|F (s,X(s) + γ(s, ν))− F (s,X(s))− 〈Fx(s,X(s)), γ(s, ν)〉H)|µ(dν)ds <∞.

Moreover, the generalized Itô-formula holds P-almost surely for each t ≥ 0 and

F (t,X(t)) = F (0, X(0)) +

∫ t

0
LF (s,X(s))ds

+

∫ t

0
〈Fx(s,X(s)), σ(s)dWs〉H

+

∫ t+

0

∫
E
{F (s,X(s−) + γ(s, ν))− F (s,X(s−))} Ñ(ds, dν)

where LF (x,X(s)) is given by

LF (s,X(s))
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=

∫ t

0
{Ft(s,X(s)) + 〈Fx(s,X(s)), a(s)〉H} ds

+
1

2

∫ t

0
tr [Fxx(s,X(s))σ(s)Qσ(s)∗] ds

+

∫ t

0

∫
E
{F (s,X(s) + γ(s, ν))− F (s,X(s))− 〈Fx(s,X(s)), γ(s, ν)〉H}µ(dν)ds

Acknowledgements. Dennis Schroers was funded within the project STORM: Stochas-
tics for Time-Space Risk Models, from the Research Council of Norway (RCN). Project
number: 274410.

References
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15. Damir Filipović, Consistency Problems for HJM Interest Rate Models, Springer, Berlin ; Heidelberg
; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo, 2001.
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