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LINEARLY IMPLICIT GARK SCHEMES∗12

ADRIAN SANDU† , MICHAEL GÜNTHER‡ , AND STEVEN ROBERTS§13

Abstract. Systems driven by multiple physical processes are central to many areas of science and14
engineering. Time discretization of multiphysics systems is challenging, since different processes have15
different levels of stiffness and characteristic time scales. The multimethod approach discretizes each16
physical process with an appropriate numerical method; the methods are coupled appropriately such17
that the overall solution has the desired accuracy and stability properties. The authors developed the18
general-structure additive Runge–Kutta (GARK) framework, which constructs multimethods based19
on Runge–Kutta schemes.20

This paper constructs the new GARK-ROS/GARK-ROW families of multimethods based on21
linearly implicit Rosenbrock/Rosenbrock-W schemes. For ordinary differential equation models, we22
develop a general order condition theory for linearly implicit methods with any number of parti-23
tions, using exact or approximate Jacobians. We generalize the order condition theory to two-way24
partitioned index-1 differential-algebraic equations. Applications of the framework include decou-25
pled linearly implicit, linearly implicit/explicit, and linearly implicit/implicit methods. Practical26
GARK-ROS and GARK-ROW schemes of order up to four are constructed.27

Key words. Multiphysics systems, GARK methods, linear implicitness28

AMS subject classifications. 65L05, 65L06, 65L07, 65L20.29

1. Introduction. We are concerned with the numerical solution of differential30

equations arising in the simulation of multiphysics systems. Such equations are of31

great practical importance as they model diverse phenomena that appear in mechan-32

ical and chemical engineering, aeronautics, astrophysics, plasma physics, meteorology33

and oceanography, finance, environmental sciences, and urban modeling. A general34

representation of multiphysics dynamical systems has the form:35

(1.1)
dy

dt
= f(y) =

N∑
m=1

f{m}(y), t0 ≤ t ≤ tF , y(t0) = y0 ∈ Rd,36

where (1.1) is driven by multiple physical processes f{m} : Rd → Rd with different37

dynamical characteristics, and acting simultaneously.38

Time discretization of complex systems (1.1) is challenging, since different processes39

have different levels of stiffness and characteristic time scales. Explicit schemes [14]40

advance the solution using only information from previous steps at a low computa-41

tional cost per-timestep; however, in addition to step size limitations due to stability42

considerations, explicit timesteps can be only as large as the fastest time scale in the43

system. Implicit schemes that advance solutions using past and future information [15]44

remove the stability restrictions on timestep size; however their computational cost45

per-timestep is large, as they solve one or more systems of nonlinear equations. Stiff-46
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2 A. SANDU AND M. GÜNTHER AND S. ROBERTS

ness in any individual process requires the use of an implicit solver for the entire47

multiphysics system (1.1).48

Linearly implicit methods seek to preserve the good stability properties of implicit49

schemes, but avoid solving large nonlinear systems of equations; instead, they only50

require solutions of linear systems at each step. In his seminal 1963 paper [20] Rosen-51

brock proposed linearly implicit Runge–Kutta type methods. An s-stage Rosenbrock52

method solves the autonomous system (1.1) in its aggregated form (i.e., treating all53

individual components in the same way) as follows [15, Section IV.7]54

ki = h f

yn +

i−1∑
j=1

αi,j kj

+ hJn

i∑
j=1

γi,j kj , i = 1, . . . , s,(1.2a)55

yn+1 = yn +

s∑
i=1

bi ki,(1.2b)56

57

where the matrix Jn := fy(yn) ∈ Rd×d is the Jacobian of the aggregated right hand58

side function (1.1). Each stage vector ki is the solution of a linear system with matrix59

Id − h γi,i Jn, and if γi,i = γ for all i then the same LU factorization can be reused60

for all stages. We consider the following matrices of method coefficients:61

(1.3) b = [bi]1≤i≤s, α = [αi,j ]1≤i,j≤s, γ = [γi,j ]1≤i,j≤s, β = α+ γ,62

where in (1.2a) α is strictly lower triangular, and γ is lower triangular. Let ⊗ denote63

the Kronecker product. We also introduce the following notation which will be used64

frequently throughout the paper:65

α⊗d k := (α⊗ Id) k.66

The Rosenbrock method (1.2) is written in compact matrix notation as follows:67

k = h f (11s ⊗ yn +α⊗d k) + (Is ⊗ hJn) (γ⊗d k),(1.4a)68

yn+1 = yn + bT ⊗d k,(1.4b)6970

where 11s ∈ Rs is a vector of ones, Is ∈ Rs×s is the identity matrix, and71

(1.4c) k =

k1...
ks

 ∈ Rds, f (11s ⊗ yn +α⊗d k) =

f(yn +
∑
j α1,j kj)

...
f(yn +

∑
j αs,j kj)

 ∈ Rds.72

The Rosenbrock formula (1.4) makes explicit use of the exact Jacobian, and con-73

sequently the accuracy of the method depends on the availability of the exact Jn.74

In many practical cases an exact Jacobian is difficult to compute, however approxi-75

mate Jacobians may be available at reasonable computational cost. Rosenbrock-W76

methods [25] maintain the accuracy of the solution when any approximation of the77

Jacobian is used. Specifically, an s-stage Rosenbrock-W method has the form (1.4)78

but with the exact Jacobian Jn replaced by an arbitrary, solution-independent matrix79

L [15, Section IV.7]:80

k = h f (11s ⊗ yn +α⊗d k) + (Is ⊗ hL) (γ⊗d k),(1.5a)81

yn+1 = yn + bT ⊗d k.(1.5b)8283
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LINEARLY IMPLICIT GARK 3

Rosenbrock methods have received considerable attention over the years [5]. Rosen-84

brock-W methods of high order have been constructed in [18, 19]. In contrast to85

classical interpolation/extrapolation-based multirate Rosenbrock methods [11], gen-86

eralized multirate Rosenbrock-Wanner schemes have been introduced in [6] as a special87

instance of partitioned Rosenbrock-W schemes. Matrix-free Rosenbrock-W methods88

were proposed in [22, 33], and Rosenbrock-Krylov methods that approximate the Ja-89

cobian in an Arnoldi space in [9, 17, 28–31]. Application of Rosenbrock methods to90

parabolic partial differential equations, and the avoidance of order reduction, have91

been discussed in [3, 8, 16, 23]. Linearly implicit linear multistep methods have been92

developed in [1, 2, 10,24,34,35].93

Here we consider multimethods for solving multiphysics partitioned systems (1.1).94

Roughly speaking, multimethods allow to discretize each physical process in (1.1)95

with an appropriate numerical method; the methods are coupled appropriately such96

that the overall solution has the desired accuracy and stability properties. An example97

of multimethods is offered by the general-structure additive Runge–Kutta (GARK)98

framework, proposed in [12, 21], which extends Runge–Kutta schemes to solve parti-99

tioned systems (1.1). One step of a GARK method applied to the additively parti-100

tioned initial value problem (1.1) reads:101

Y {q} = 11s{q} ⊗ yn + h

N∑
m=1

A{q,m}⊗d f{m}(Y {m}), q = 1, . . .N,(1.6a)102

yn+1 = yn + h

N∑
q=1

b{q}T ⊗d f{q}(Y {q}).(1.6b)103

104

Each component f{m} is solved with a Runge–Kutta method with s{m} stages and105

coefficients (A{m,m}, b{m}). The coefficients A{q,m}, q 6= m, realize the coupling106

among subsystems. The method (1.6) builds separate stage vectors Y {m} for each107

component.108

In this paper we construct linearly implicit multimethods that apply a possibly dif-109

ferent Rosenbrock or Rosenbrock-W method to each component in (1.1). The new110

family of methods, called GARK-Rosenbrock(-W), extends linearly implicit methods111

to solve partitioned systems in the same way that the GARK approach (1.6) extends112

Runge–Kutta schemes. Very early work on partitioned Rosenbrock methods can be113

found in [32].114

The remainder of this paper is organized as follows. Section 2 defines the new families115

of GARK-Rosenbrock and GARK-Rosenbrock-W methods in the ordinary differential116

equation (ODE) setting. The order conditions theory for the new schemes is developed117

in section 3 using Butcher series over special sets of trees, and linear stability is118

discussed in section 4.119

Section 5 constructs decoupled GARK-ROW schemes that are implicit in only one120

process at a time. We use the GARK-ROW framework to develop multimethods121

where each process in (1.1) can be solved with either an explicit Runge–Kutta, an122

implicit Runge–Kutta, or a Rosenbrock-W method. Order conditions for GARK-123

ROS schemes applied to index-1 differential-algebraic systems are studied in section 6.124

New GARK-ROW methods for practical use are proposed in section 7 and used for125

numerical experiments in section 8. A discussion of the results in section 9 concludes126

the paper.127

2. Partitioned Rosenbrock methods.128

This manuscript is for review purposes only.
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4 A. SANDU AND M. GÜNTHER AND S. ROBERTS

2.1. Additively partitioned systems. GARK methods (1.6) extend Runge–129

Kutta schemes to solve partitioned systems (1.1). In a similar approach, we now130

extend Rosenbrock methods (1.2) to solve partitioned systems (1.1). Just like Rosen-131

brock methods are obtained by a linearization of diagonally implicit Runge–Kutta132

schemes, GARK-ROS methods are obtained by a linearization of diagonally implicit133

GARK schemes.134

Definition 2.1 (GARK-ROS method). One step of a GARK Rosenbrock (for short,135

GARK-ROS) method applied to solve the additively partitioned system (1.1) advances136

the numerical solution as follows:137

k
{q}
i = h f{q}

yn +

N∑
m=1

i−1∑
j=1

α
{q,m}
i,j k

{m}
j

+ hJ{q}n

N∑
m=1

i∑
j=1

γ
{q,m}
i,j k

{m}
j(2.1a)138

for i = 1, . . . , s{q}, q = 1, . . . ,N,139

yn+1 = yn +

N∑
q=1

s{q}∑
i=1

b
{q}
i k

{q}
i .(2.1b)140

141

The GARK-ROS scheme (2.1) is written compactly in matrix notation as follows:142

k{q} = h f{q}

(
11{q} ⊗ yn +

N∑
m=1

α{q,m}⊗d k{m}

)
(2.2a)143

+ (Is{q} ⊗ hJ{q}n )

N∑
m=1

γ{q,m}⊗d k{m}, q = 1, . . . ,N,144

yn+1 = yn +

N∑
m=1

b{m}T ⊗d k{m},(2.2b)145

146

where we used the matrix notation (1.4). The coefficients α{q,m} are strictly lower147

triangular and γ{q,m} lower triangular for all 1 ≤ q,m ≤ N. The matrices J
{q}
n =148

f
{q}
y (yn) are the Jacobians of the component functions f{q}, evaluated at current so-149

lution yn, for each q = 1, . . . ,N.150

The GARK-ROS scheme (2.2) is characterized by the extended Butcher tableau:151

(2.3)
A G

bT
=

α{1,1} · · · α{1,N} γ{1,1} . . . γ{1,N}

...
. . .

...
...

. . .
...

α{N,1} · · · α{N,N} γ{N,1} . . . γ{N,N}

b{1}T · · · b{N}T
.152

Remark 2.1 (GARK-ROS scheme structure). The GARK-ROS scheme (2.2) has the153

following characteristics:154

• A different increment vector k{q} ∈ Rds is constructed for each component155

q = 1, . . . ,N.156

• Computation of the increment k{q} uses only evaluations of the corresponding157

component function f{q}. The argument at which f{q} is evaluated is construc-158

ted using a linear combination of all increments k{m} for m = 1, . . . ,N.159

This manuscript is for review purposes only.



P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t

LINEARLY IMPLICIT GARK 5

• Computation of the increment k{q} involves linear combinations of increments160

k{m} for m = 1, . . . ,N, multiplied by the Jacobian J{q} of the corresponding161

component function. Therefore the calculation of increments involves the so-162

lution of linear systems.163

• For all γ
{q,m}
i,j = 0, the scheme (2.2) reduces to an explicit GARK method.164

• If γ
{q,m}
i,j = 0 for all m > q holds, all increments can be computed recursively:165

k
{1}
1 , . . . , k

{N}
1 , k

{1}
2 , . . . , k

{N}
s{N} .166

Definition 2.2 (GARK-ROW method). One step of a GARK Rosenbrock-W (for167

short, GARK-ROW) method applied to solve the additively partitioned system (1.1)168

advances the numerical solution as follows:169

k{q} = h f{q}

(
11{q} ⊗ yn +

N∑
m=1

α{q,m}⊗d k{m}

)
(2.4a)170

+ (Is{q} ⊗ hL{q})

N∑
m=1

γ{q,m}⊗d k{m}, q = 1, . . . ,N,171

yn+1 = yn +

N∑
m=1

b{m}T ⊗d k{m}.(2.4b)172

173

where L{q} are arbitrary matrix approximations to component function Jacobians174

f
{q}
y (yn), for each q = 1, . . . ,N.175

2.2. Component partitioned systems. Consider the partitioned system:176

(2.5)
dy{q}

dt
= f{q}

(
y{1}, · · · ,y{N}

)
, y{q} ∈ Rd

{q}
, q = 1, . . . ,N,

N∑
q=1

d{q} = d.177

The Jacobian of each component function f{q} with respect to each component vector178

is approximated by:179

∂ f{q}

∂ y{m}
= (fy){q,m} ≈ L{q,m} ∈ Rd

{q}×d{m}
.180

The GARK-ROW scheme (2.4) applied to a component split system (2.5) reads:181

Y{q,m} = 11s{q} ⊗ y{m}n + (α{q,m} ⊗ Id{m}) k{m} ∈ Rd
{m}s{q} ,(2.6a)182

k{q} = h f{q}
(
Y{q,1}, · · · ,Y{q,N}

)
+ h

N∑
m=1

(
γ{q,m} ⊗ L{q,m}

)
k{m},(2.6b)183

y
{q}
n+1 = y{q}n + (b{q}T ⊗ Id{q}) k{q}, q = 1, . . . ,N.(2.6c)184185

Remark 2.2. The GARK-ROS scheme (2.2) applied to a component split system186

(2.5) has the form (2.6), where each matrix equals the corresponding sub-Jacobian187

L{q,m} = ∂ f{q}/∂ y{m}(yn). Thus component partitioned systems are a special case188

of additively partitioned systems.189

3. Order conditions. We develop the order conditions theory for additively190

partitioned systems (1.1). These order conditions remain valid for component parti-191

tioned systems (2.5) as well.192

This manuscript is for review purposes only.
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6 A. SANDU AND M. GÜNTHER AND S. ROBERTS

3.1. Multicolored trees and NB-series. We recall the set of TN trees [4]193

which provide a generalization of Butcher trees for partitioned systems.194

Definition 3.1. The set TN consists of rooted trees with round ( m©) vertices, each195

colored in one of the distinct m = 1, . . . ,N colors. Here nodes of color m correspond196

to derivatives of the component function f{m} of the partitioned system (1.1).197

We now introduce the set of trees that represent the GARK-ROW numerical solution.198

Definition 3.2. The set TWN consists of rooted trees with both square ( m ) and round199

( m©) vertices, each colored in one of the distinct m = 1, . . . ,N colors. Square nodes have200

a single child, and there are no square leaves. Each color corresponds to a different201

component of the partitioned system. For our purpose, round nodes ( m©) represent202

derivatives of the component function f{m}, and square nodes ( m ) to the action of the203

partition’s approximate Jacobian matrix L{m}.204

Remark 3.1. Clearly TN ⊂ TWN. The following properties discussed for TWN are205

applicable to TN as well.206

The empty TWN tree is denoted by ∅. The TWN tree with a single vertex of color207

m is denoted by τ m©. We denote by t = [t1 . . . tL] m© ∈ TWN the new tree obtained208

by joining t1, . . . , tL ∈ TWN with a root of color m (i.e., attaching each of the trees209

directly to the root, which will have L children). We denote by t = [t1] m ∈ TWN the210

new tree obtained by appending to t1 ∈ TN a square root of color m.211

Similar to regular Butcher trees, the order ρ(t) is the number of nodes of t ∈ TWN.212

The density γ(t) and the number of symmetries σ(t) are defined recursively by213

γ(∅) = 1; γ (τ m©) = 1; γ(t) =

{
ρ(t) γ(t1) · · · γ(tL), for t = [t1, . . . , tL] m©,

ρ(t) γ(t1), for t = [t1] m ,
214

σ(∅) = 1; σ (τ m©) = 1; σ(t) =

{∏L
i=1mi! σ(ti)

mi , for t = [tm1
1 , . . . , tmL

L ] m©,

σ(t1), for t = [t1] m ,
215

216

with tml

l meaning that the tree tl has been attached ml times to the root m©.217

Definition 3.3 (Elementary differentials over TWN). An elementary differential218

F (t)(·) : Rd → Rd is associated to each tree t ∈ TWN. Using tensorial notation, the219

elementary differentials are defined recursively as follows:220

(3.1)

F (t)(y∗) =


0, for t = ∅;
f{m}(y∗), for t = τ m©;
dLf{m}

dyL (y∗)
(
F (t1)(y∗), . . . , F (tL)(y∗)

)
, for t = [t1 . . . tL] m©;

L{m} · F (t1)(y∗) for t = [t1] m , ρ(t1) ≥ 1.

221

The second argument of the elementary differential is a vector y∗ ∈ Rd which repre-222

sents the argument at which all the function derivatives are evaluated.223

We extend the Butcher series (B-series) to the sets TN and TWN.224

Definition 3.4. An NB-series is a formal expansion in powers of the step size h225

(3.2) NB(c,y∗) :=
∑

t∈TWN

hρ(t)

σ(t)
c(t)F (t)(y∗) ,226

This manuscript is for review purposes only.
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LINEARLY IMPLICIT GARK 7

where the summation is carried out over elements of a set of rooted trees. Each term227

consists of a weighted elementary differential (3.1). Here we consider summation228

over TWN, with c : TWN → R a mapping that assigns a real number to each tree.229

Per Remark 3.1 an NB-series over TN has the form (3.2) with c(t) = 0 for any230

t ∈ TWN\TN.231

Lemma 3.5. The exact solution of (1.1) is represented by the NB-series [4]232

(3.3) y(t+ h) = NB(c,y(t)) with c(t) =

{
1
γ(t) , for t ∈ TN,

0, for t ∈ TWN\TN.
233

We next provide several results that will prove useful to derive the order conditions234

of partitioned Rosenbrock methods.235

Theorem 3.6 (Function of NB-series [21]). A component function applied to an236

NB-series (3.2) with a(∅) = 1 is also an NB-series,237

h f{m}(NB(a,yn)) = NB((D{m}a),yn),238

characterized by the coefficients:239

(3.4) (D{m}a)(t) =


0, for t = ∅,
1, for t = τ m©,∏L
`=1 a(t`) for t = [t1, . . . , tL] m©, L ≥ 1,

0, otherwise.

240

Theorem 3.7 (Jacobian times NB-series). A Jacobian matrix times an NB-series241

(3.2) with a(∅) = 0 is also an NB-series,242

hJ{m}n · (NB(a,yn)) = NB((J{m}a),yn),243

characterized by the coefficients:244

(3.5) (J{m}a)(t) =

{
a(u), for t = [u] m©,

0, otherwise.
245

Proof. We consider the Jacobian matrix times the series:246

hJ{m}n · (NB(a,yn)) =
∑

t∈TWN

a(t)
hρ(t)+1

σ(t)
f{m}y (yn)F (t)(yn).247

This expression involves elementary differentials fy · F (t), and we note that:248

f{m}y (yn) · F (t)(yn) = F ([t] m©)(yn),249

and that ρ([t] m©) = ρ(t) + 1 and σ([t] m©) = σ(t), which leads to (3.5).250

Theorem 3.8 (Jacobian approximation times NB-series). A Jacobian approximation251

matrix times an NB-series (3.2) with a(∅) = 0 is also an NB-series,252

hL{m}n · (NB(a,yn)) = NB((L{m}a),yn),253

characterized by the coefficients:254

(3.6) (L{m}a)(t) =

{
a(u), for t = [u] m ,

0, otherwise.
255

Proof. Similar to the proof of Theorem 3.7.256

This manuscript is for review purposes only.
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8 A. SANDU AND M. GÜNTHER AND S. ROBERTS

3.2. GARK-ROS order conditions. We represent the stage vectors and nu-257

merical solutions of GARK-ROS methods (2.2) as NB-series (3.2) over TWN:258

(3.7) k{q} = NB
(
θ{q},yn

)
∈ Rs

{q}
, yn+1 = NB (φ,yn) ∈ R.259

Insert (3.7) into the stage equations (2.2a) and apply Theorem 3.6 and Theorem 3.7260

to obtain:261

θ{q}(t) =

(
D{q}

N∑
m=1

α{q,m} θ{m}

)
(t) +

N∑
m=1

γ{q,m}
(

J{q}θ{m}
)

(t).262

This leads to the following recurrence on stage vectors NB-series coefficients (3.7):263

(3.8) θ{q}(t) =



0, t = ∅,
1, t = τ q©,

×L

`=1

(∑N
m=1α

{q,m} θ{m}(t`)
)
, for t = [t1, . . . , tL] q©, L ≥ 2,∑N

m=1 β
{q,m} θ{m}(t1), for t = [t1] q©,

0, when root(t) 6= q©.

264

We denote by× the element-by-element product of s-dimensional vectors. Note that265

in sums of the form
∑N
m=1α

{q,m} θ{m}(t) and
∑N
m=1 β

{q,m} θ{m}(t) at most a single266

term is nonzero, namely, the one with m = n when root(t) = n©. The recurrence267

(3.8) only builds terms corresponding to trees in TN; consequently, θ{q}(t) = 0 for268

t ∈ TWN\TN.269

Inserting (3.7) into the solution equations (2.2b) leads to the following B-series coef-270

ficients of the numerical solution:271

φ(t) =


1, t = ∅,∑N
m=1 b{m}Tθ{m}(t), t ∈ TN\{∅},

0, t ∈ TWN\TN.

(3.9)272

A comparison of the numerical solution (3.9) with the exact solution (3.3) leads to273

the following result.274

Theorem 3.9 (GARK-ROS order conditions). The GARK-ROS method (2.2) has275

order of consistency p iff276

N∑
m=1

b{m}Tθ{m}(t) =
1

γ(t)
for t ∈ TN with 1 ≤ ρ(t) ≤ p.277

The procedure to generate the order conditions for GARK-ROS methods using the278

recurrence (3.8) is illustrated in Table 1. The process is as follows:279

• The root of color m is labelled b{m}T .280

• A single sibling of color m (its parent of color q has one child) is labelled281

β{q,m}.282

• A node of color m with multiple siblings (its parent of color q has multiple283

children) is labelled α{q,m}.284

• The result of each subtree is an s-dimensional vector of NB-series coefficients.285

• The leaves build their vector by multiplying their label by a vector of ones.286
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LINEARLY IMPLICIT GARK 9

t Labels F (t) φ(t) γ(t)

t1 m b{m}T f{m} b{m}T 11{m} 1

t2
m b{m}T

n β{m,n}

f
{m}
y f{n} b{m}T β{m,n} 11{n} 2

t3,1
m b{m}T

n α{m,n} p α{m,p}

f
{m}
y,y (f{n}, f{p}) b{m}T ((α{m,n} 11{n})

×(α{m,p} 11{p}))
3

t3,2

m b{m}T

n β{m,n}

p β{n,p}

f
{m}
y f

{n}
y f{p} b{m}T β{m,n}

·β{n,p} 11{p}
6

Table 1
TN trees of orders 1 to 3 for the GARK-ROS numerical solution. The root of color m is labelled

b{m}T . Single siblings are labelled β, vertices that have multiple siblings are labelled α, and each
node label is superscripted by a pair of indices {q,m}, where m is the color of the node and q the
color of its parent.

• A node (except the leaves) takes the element-wise product of the vectors of287

its children, then multiplies the result by its label.288

We note that each node (except the roots) carries a label with two indices, first the289

color of its parent, followed by its own color. Moreover, if all the nodes have the same290

color then TN is the set of T-trees, and the GARK-ROS order conditions give the291

Rosenbrock order conditions. These observations lead to the following result.292

Theorem 3.10 (GARK-ROS order conditions). The GARK-ROS order conditions293

(2.2) are the same as the Rosenbrock order conditions (1.2), except that the method294

coefficients are labelled according to node colors. In the order conditions, in each295

sequence of matrix multiplies, the color indices are compatible according to matrix296

multiplication rules.297

Let 11{n} ∈ Rs{n}
be a vector of ones. For brevity we also define the vectors:298

c{m,n} := α{m,n} 11{n}, g{m,n} := γ{m,n} 11{n},

e{m,n} := β{m,n} 11{n} = c{m,n} + g{m,n}.
(3.10)299

The GARK-ROS order four conditions read:300

order 1:
{

b{m}T 11{m} = 1, for m = 1, . . . ,N;(3.11a)301

order 2:
{

b{m}T e{m,n} = 1
2 , for m,n = 1, . . . ,N;(3.11b)302

order 3:

{
b{m}T (c{m,n} × c{m,p}) = 1

3 ,

b{m}T β{m,n} e{n,p} = 1
6 ,

for m,n, p = 1, . . . ,N;(3.11c)303

order 4:



b{m}T
(
c{m,n} × c{m,p} × c{m,q}

)
= 1

4 ,

b{m}T ((α{m,n} e{n,p})× c{m,p}) = 1
8 ,

b{m}T β{m,n}
(
c{n,p} × c{n,q}

)
= 1

12 ,

b{m}T β{m,n} β{n,p} e{p,q} = 1
24 ,

for m,n, p, q = 1, . . . ,N.

(3.11d)304

305
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10 A. SANDU AND M. GÜNTHER AND S. ROBERTS

3.3. GARK-ROW order conditions. We represent the stage vectors and nu-306

merical solutions of GARK-ROW methods (2.4) as NB-series (3.2) over TWN:307

(3.12) k{q} = NB
(
θ{q},yn

)
∈ Rs, yn+1 = NB (φ,yn) ∈ R.308

Insert (3.12) into the stage equations (2.4a), and apply Theorem 3.6 and Theorem 3.8309

to obtain:310

θ{q}(t) =

(
D{q}

N∑
m=1

α{q,m} θ{m}

)
(t) +

N∑
m=1

γ{q,m}
(

L{q}θ{m}
)

(t).311

This leads to the following recurrence on NB-series coefficients:312

θ{q}(t) =



0, t = ∅,
1, t = τ q©,

×L

`=1

(∑N
m=1α

{q,m} θ{m}(t`)
)
, for t = [t1, . . . , tL] q©, L ≥ 1,∑N

m=1 γ
{q,m} θ{m}(t1), for t = [t1] q ,

0, when root(t) 6∈ { q©, q }.

313

Note that in sums of the form
∑N
m=1 γ

{q,m} θ{m}(t1) a single term is nonzero, namely,314

the one with m equal the color of the root of t1.315

Inserting (3.12) into the solution equations (2.4b) leads to an NB-series representation316

of the numerical solution given by (3.9). Equating the terms of the numerical solution317

NB-series with those of the exact solution (3.3) leads to the following order conditions318

theorem.319

Theorem 3.11 (GARK-ROW order conditions). The GARK-ROW method (2.4) has320

order p iff:321

φ(t) =

{
1
γ(t) , for t ∈ TN,

0, for t ∈ TWN\TN,
for t ∈ TWN with 1 ≤ ρ(t) ≤ p.322

The procedure to generate the order conditions for GARK-ROS methods using the323

recurrence (3.8) is illustrated in Table 2. The process is as follows:324

• Roots of color q are labelled b{q};325

• Nodes of color m with a round parent of color q are labelled α{q,m};326

• Nodes of color m with a square parent of color q are labelled γ{q,m};327

• The result of each subtree is an s-dimensional vector of NB-series coefficients.328

Obtaining these coefficients is done starting from the leaves and working329

toward the root, as discussed for GARK-ROS methods.330

We note that each node (except the roots) carries a label with two indices, first the331

color of its parent, followed by its own color. Moreover, if all the nodes have the same332

color then TWN is the set of TW-trees, and the GARK-ROW order conditions give333

the Rosenbrock-W order conditions. We have the following result.334

Theorem 3.12 (GARK-ROW order conditions). The GARK-ROW order conditions335

(2.4) are the same as the Rosenbrock-W order conditions (1.5), except that the method336

coefficients are labelled according to node colors. In the order conditions, in each337

sequence of matrix multiplies, the color indices are compatible according to matrix338

multiplication rules.339
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LINEARLY IMPLICIT GARK 11

The GARK-ROW order four conditions read:340

order 1:
{

b{m}T 11{m} = 1, for m = 1, . . . ,N;(3.13a)341

order 2:

{
b{m}T c{m,n} =

1

2
,

b{m}T g{m,n} = 0, for m,n = 1, . . . ,N;
(3.13b)342

order 3:


b{m}T (c{m,n} × c{m,p}) =

1

3
, b{m}T α{m,n} c{n,p} =

1

6
,

b{m}T γ{m,n} c{n,p} = 0, b{m}T α{m,n} g{n,p} = 0,

b{m}T γ{m,n} g{n,p} = 0, for m,n, p = 1, . . . ,N;

(3.13c)343

344
345

order 4:(3.13d)346 

b{m}T
(
c{m,n} × c{m,p} × c{m,q}

)
=

1

4
, b{m}T ((α{m,n} c{n,p})× c{m,q}) =

1

8
,

b{m}T α{m,n} (c{n,p} × c{n,q}) =
1

12
, b{m}T α{m,n}α{n,p} c{p,q} =

1

24
,

b{m}T ((α{m,n} g{n,p})× c{m,q}) = 0, b{m}T γ{m,n} (c{n,p} × c{n,q}) = 0,

b{m}T γ{m,n}α{n,p} c{p,q} = 0, b{m}T α{m,n} γ{n,p} c{p,q} = 0,

b{m}T α{m,n}α{n,p} g{p,q} = 0, b{m}T γ{m,n}α{n,p} g{p,q} = 0,

b{m}T α{m,n} γ{n,p} g{p,q} = 0, b{m}T γ{m,n} γ{n,p} c{p,q} = 0,

b{m}T γ{m,n} γ{n,p} g{p,q} = 0, for m,n, p, q = 1, . . . ,N.

347

348

3.4. Internal consistency.349

Definition 3.13 (Internal consistency). A partitioned ROW method is internally350

consistent if:351

c{m,n} = α{m,n} 11{n} = c{m}, for m,n = 1, . . . ,N,(3.14a)352

g{m,n} = γ{m,n} 11{n} = g{m}, for m,n = 1, . . . ,N.(3.14b)353354

The order conditions simplify considerably for internally consistent partitioned ROW355

methods.356

Consider a non-autonomous additively partitioned system (1.1) where each component357

f{m}(t,y) depends explicitly on time. Transform it to autonomous form by adding t358

to the state, and appending the additively partitioned equation for the time variable359

t′ =
∑N
m=1 τ

{m} = 1. The stage computation of the GARK-ROS method (2.2a)360

applied to non-autonomous system (1.1) reads:361

k{q} = h f{q}

(
11{q} tn + h

N∑
m=1

c{q,m} τ{m}, 11{q} ⊗ yn +

N∑
m=1

α{q,m}⊗d k{m}

)

+ (Is{q} ⊗ hJ{q}n )

N∑
m=1

γ{q,m}⊗d k{m}

+ (11{q} ⊗ h2 f
{q}
t (tn,yn))

N∑
m=1

g{q,m}τ{m}, q = 1, . . . ,N.

(3.15)

362

If the internal consistency equation (3.14a) holds then the time argument of each363

function evaluation is 11{q} tn+h c{q} and is independent of the (arbitrary) partitioning364
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12 A. SANDU AND M. GÜNTHER AND S. ROBERTS

t Labels F (t) φ(t) ∈ {1/γ(t), 0}

t
〈w,1〉
1

m b{m}T f{m} b{m}T 11{m} = 1

t
〈w,1〉
2 m b{m}T

n α{m,n}

f
{m}
y f{n} b{m}T α{m,n} 11{n} = 1

2

t
〈w,2〉
2 m b{m}T

n γ{m,n}

L{m} f{n} b{m}T γ{m,n} 11{n} = 0

t
〈w,1〉
3,1 m b{m}T

p α{m,p} n α{m.n}

f
{m}
y,y (f{n}, f{p}) b{m}T ((α{m,n} 11{n})

×(α{m,p} 11{p})) = 1
3

t
〈w,1〉
3,2

m b{m}T

n α{m,n}

p α{n,p}

f
{m}
y f

{n}
y f{p} b{m}T α{m,n}

·α{n,p} 11{p} = 1
6

t
〈w,2〉
3,2

m b{m}T

n α{m,n}

p γ{n,p}

f
{m}
y L{n} f{p} b{m}T α{m,n}

·γ{n,p} 11{p} = 0

t
〈w,3〉
3,2

m b{m}T

n γ{m,n}

p α{n,p}

L{m} f
{n}
y f{p} b{m}T γ{m,n}

·α{n,p} 11{p} = 0

t
〈w,4〉
3,2

m b{m}T

n γ{m,n}

p γ{n,p}

L{m} L{n} f{p} b{m}T γ{m,n}

·γ{n,p} 11{p} = 0

Table 2
TWN trees of orders 1 to 3 for the GARK-ROW numerical solution. Square vertices of color ν

correspond to L{ν}, and round vertices to derivatives of f{ν}. A root of color m is labelled b{m}T .
Nodes of color m with a round parent of color q are labelled α{q,m}. Nodes of color m with a square
parent of color q are labelled γ{q,m}.

of the time equation. Similarly, if the internal consistency equation (3.14b) holds then365

the coefficient of the time derivative in the stage equation is g{q} and is independent366

of the partitioning of the time equation.367

Remark 3.2 (Non-autonomous formulation). For non-autonomous systems the GARK-368

ROS method (2.2) computes the set of stages k{q} for process q using the formulation369

(3.15) with τ{q} = 1 and τ{m} = 0 for m 6= q. This is equivalent with consider-370

ing a separate time variable for each process. The time argument of each function371

evaluation in (3.15) is 11{q} tn + h c{q,q}, and the coefficient of the time derivative372

in the stage equation is g{q,q}. The same holds for GARK-ROW methods (2.4) on373

non-autonomous systems.374

4. Linear stability. Consider the scalar test problem375

(4.1) y′ = λ{1} y + · · ·+ λ{N} y.376
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LINEARLY IMPLICIT GARK 13

Application of the GARK-ROS method (2.4) to (4.1) leads to the same stability377

equation as the application of a GARK scheme. Using the notation (2.3) and defining378

B = A + G ∈ Rs×s, and379

z{m} := hλ{m}, s :=

N∑
m=1

s{m}, Z := diagm=1,...,N {z{m} Is{m}} ∈ Rs×s,380

we obtain yn+1 = R(Z) yn, with381

(4.2) R(Z) = 1 + bT (Is − ZB)
−1

Z 11s = 1 + bT Z (Is −BZ)
−1

11s,382

which equals the stability function of a GARK scheme with coefficients (B,b). The383

following definition extends immediately from GARK to GARK-ROS schemes.384

Definition 4.1 (Stiff accuracy). Let es ∈ Rs be a vector with the last entry equal to385

one, and all other entries equal to zero. The GARK-ROS method (2.4) is called stiffly386

accurate if387

bT = eTs B ⇔ b{q}T = eTs{N} β
{N,q}, q = 1, . . . ,N.388

For a stiffly accurate GARK-ROS scheme the stability function (4.2) becomes:389

R(Z) = z−1N eTs
(
Z−1 −B

)−1
11s.(4.3)390

If diag(1/z1, . . . , 1/zn−1, 0) −B is nonsingular then R(Z) → 0 when zN → ∞. This391

condition is automatically fulfilled for decoupled GARK-ROW schemes discussed in392

subsection 5.1.393

5. GARK-ROW multimethods. The GARK-ROS/GARK-ROW framework394

allows to construct different types of multimethods. In the following we address395

decoupled and linearly implicit-explicit (for short, LIMEX) GARK-ROW schemes,396

as well as implicit/linearly implicit GARK methods arising from the GARK-ROS397

framework.398

5.1. Decoupled GARK-ROW schemes. Consider now an N-way additively399

partitioned system (1.1). Application of a traditional ROW scheme solves a single400

system with matrix Id−hγ(L{1}+· · ·+L{N}). The GARK-ROW scheme (2.4) applied401

to the N-way partitioned system reads (2.4a):402 (
Isd − diagq{Is{q} ⊗ hL{q}} · (G⊗ Id)

)
·K = hF

(
11s ⊗ yn + A⊗d K

)
,

yn+1 = yn + bT ⊗d K,

K :=

k{1}...
k{N}

 , F :=

 f{1}
(
11{1} ⊗ yn + A{1,:}⊗d K

)
...

f{N}
(
11{N} ⊗ yn + A{N,:}⊗d K

)
 .

(5.1)403

Equation (5.1) shows that the stage vectors are obtained by solving a linear system404

of dimension sd that, in general, couples all components together. To increase com-405

putational efficiency we look for schemes where each stage k
{q}
i is obtained by solving406

a d-dimensional linear system with matrix Id − h γ{q,q}i,i L{q}. We call such methods407

“decoupled.”408
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14 A. SANDU AND M. GÜNTHER AND S. ROBERTS

Definition 5.1 (Decoupled schemes). GARK-ROW schemes (2.4) are decoupled if409

they solve the stage equations implicitly in either one process or the other, but not in410

both in the same time.411

Theorem 5.2. A method (2.4) is decoupled iff there is a permutation vector v (rep-412

resenting the order of stage evaluations), and an associated permutation matrix V,413

such that the matrices of coefficients (2.3) with reordered rows and columns have the414

following structure: V is strictly lower triangular and G(v, v) = VGV is lower trian-415

gular.416

Proof. Stage reordering K→ V ⊗d K leads to linear systems (5.1) that are block lower417

triangular; the argument of the right hand side function also involves a block strictly418

lower triangular matrix of coefficients, and therefore (5.1) can be solved by forward419

substitution.420

To illustrate how the property in Theorem 5.2 applies, consider the scalar formulation421

of the stage computations (2.4a):422

k
{q}
i = h f{q}

yn +

q−1∑
m=1

i∑
j=1

α
{q,m}
i,j k

{m}
j +

N∑
m=q

i−1∑
j=1

α
{q,m}
i,j k

{m}
j

423

+ hL{q}
q∑

m=1

i∑
j=1

γ
{q,m}
i,j k

{m}
j + hL{q}

N∑
m=q+1

i−1∑
j=1

γ
{q,m}
i,j k

{m}
j .424

425

The stages are solved in the order k
{1}
i , . . . , k

{N}
i , then k

{1}
i+1, . . . , k

{N}
i+1 , etc. The com-426

putation of stage k
{q}
i uses all k

{1}
j , . . . , k

{N}
j for j < i, as well as k

{1}
i , . . . , k

{q−1}
i ,427

which have already been computed. Stage k
{q}
i is obtained by solving a linear sys-428

tem with matrix Is{q} − h γ
{q,q}
i,i L{q}. Here we allow α{q,m} for m < q to be lower429

triangular and do not demand a strictly lower triangular structure.430

Remark 5.1. If the coefficient matrices γ{`,m} are strictly lower triangular for all431

` 6= m then all implicit stages k
{`}
i , ` = 1, . . . ,N, can be evaluated in parallel.432

Remark 5.2 (First special case). A first interesting special case arises when:433

γ{q,m} =


γ (lower triangular), m = 1, . . . , q − 1,

γ (lower triangular), m = q,

γ (strictly lower triangular), m = q + 1, . . . ,N,

α{q,m} =


α (lower triangular), m = 1, . . . , q − 1,

α (strictly lower triangular), m = q,

α (strictly lower triangular), m = q + 1, . . . ,N.

434

The computations are carried out as follows:435

k
{q}
i = h f{q}

yn +

i∑
j=1

αi,j

( q−1∑
m=1

k
{m}
j

)
+

i−1∑
j=1

αi,j k
{q}
j +

i−1∑
j=1

αi,j

( N∑
m=q+1

k
{m}
j

)436

+ hL{q}

 i∑
j=1

γ
i,j

( q−1∑
m=1

k
{m}
j

)
+

i∑
j=1

γi,j k
{q}
j +

i−1∑
j=1

γi,j

( N∑
m=q+1

k
{m}
j

) .437

438
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Remark 5.3 (Second special case). A second interesting case arises when:439

(5.2a) α = α, γ = γ (strictly lower triangular); b{q} = b ∀ q, c = c.440

The computations are carried out as follows:441

k
{q}
i = h f{q}

yn +

i−1∑
j=1

αi,j k
{q}
j +

i−1∑
j=1

αi,j

(∑
m 6=q

k
{m}
j

)(5.2b)442

+ hL{q}

 i∑
j=1

γi,j k
{q}
j +

i−1∑
j=1

γi,j

(∑
m6=q

k
{m}
j

) , q = 1, . . . ,N,443

yn+1 = yn +

s∑
i=1

bTi

( N∑
m=1

k
{m}
i

)
.(5.2c)444

445

Here (b,α,γ) is a base Rosenbrock or Rosenbrock-W scheme, and (b,α,γ) are the446

coupling coefficients.447

The GARK-ROW order three conditions (3.13c) for methods (5.2) are as follows.448

Both the base scheme (b,α,γ) and coupling scheme (b,α,γ) need to be order three449

Rosenbrock-W schemes. The following third order coupling conditions are also needed:450

(5.3) bT αg = bT αg = bT γ g = bT γ g = 0.451

Choosing γ = 0 means that (b,α) is an explicit Runge–Kutta scheme, and only the452

coupling equation bT αg = 0 needs to be imposed.453

The GARK-ROS order four conditions (3.11) for methods (5.2) require that the base454

and the coupling schemes are order four Rosenbrock methods. In addition, one needs455

to satisfy the third order coupling conditions:456

(5.4) bT β e = bT β e =
1

6
,457

as well as the fourth order coupling conditions:458

bT ((α e)× c) = bT ((α e)× c) =
1

8
,

bT β β e = bT β β e = bT β β e = bT β β e = bT β β e = bT β β e =
1

24
.

(5.5)459

Choosing γ = 0 further simplifies the coupling equations (5.4) and (5.5).460

For decoupled GARK-ROS/ROW schemes the stability function (4.2) is rewritten461

using the permutation matrix from Theorem 5.2:462

R(Z) = 1 + (V b)T (V Z V) (Is − (V BV) (V Z V))
−1

11s.(5.6)463

The matrix V BV is lower triangular, with the diagonal entries equal to the diagonal464

entries of G{m,m}. The stability function (5.6) is a rational function of the form:465

R(Z) =
ϕ(z{1}, . . . , z{N})∏N

m=1

∏s{m}

i=1 (1− γ{m,m}i,i z{m})
.(5.7)466
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16 A. SANDU AND M. GÜNTHER AND S. ROBERTS

5.2. IMEX GARK-ROW schemes. Consider now a two-way partitioned sys-467

tem driven by a non-stiff component f{e} and a stiff component f{i}:468

(5.8) y′ = f{e} (y) + f{i} (y) .469

We consider a GARK-ROW scheme (2.4) applied to (5.8) that has the form:470

k{e} = h f{e}
(

11s ⊗ yn +α{e,e}⊗d k{e} +α{e,i}⊗d k{i}
)
,(5.9a)471

k{i} = h f{i}
(

11s ⊗ yn +α{i,e}⊗d k{e} +α{i,i}⊗d k{i}
)

(5.9b)472

+ (Is ⊗ hL{i})
(
γ{i,e}⊗d k{e} + γ{i,i}⊗d k{i}

)
,473

yn+1 = yn + b{e}T ⊗d k{e} + b{i}T ⊗d k{i},(5.9c)474475

with α{e,e}, α{e,i}, α{i,i} strictly lower triangular, and α{i,e}, γ{i,e}, γ{i,i} lower476

triangular. The non-stiff component f{e} is solved with an explicit GARK scheme,477

and the stiff component f{i} with a linearly implicit scheme.478

For order three (b{e},α{e,e}) needs to be a third order explicit Runge–Kutta scheme.479

For arbitrary Jacobian approximations L{i} the scheme (b{i},α{i,i},γ{i,i}) has to be480

a third order Rosenbrock-W method. In addition, assuming the internal consistency481

(3.14a), the coupling order three conditions (3.13c) are:482

(5.10)
b{e}T α{e,i} c{i} =

1

6
, b{e}T α{e,i} g{i} = 0,

b{i}T α{i,e} c{e} =
1

6
, b{i}T γ{i,e} c{e} = 0.

483

If the exact Jacobian is used, L{i} = J
{i}
n , then the implicit scheme needs to be a484

third order Rosenbrock method, and the coupling conditions are:485

(5.11) b{e}T α{e,i} e{i} =
1

6
, b{i}T β{i,e} c{e} =

1

6
.486

When the exact Jacobian is used, for order four one needs (b{e},α{e,e}) to be a487

fourth order explicit Runge–Kutta scheme, and (b{i},α{i,i},γ{i,i}) to be a fourth488

order Rosenbrock method. In this case the coupling order four conditions are:489

(5.12)

b{e}T ((α{e,i} e{i})× c{e}) =
1

8
, b{i}T ((α{i,e} c{e})× c{i}) =

1

8
,

b{e}T α{e,i} (c{i})×2 =
1

12
, b{i}T β{i,e} (c{e})×2 =

1

12
,

b{e}T α{e,e}α{e,i} e{i} =
1

24
, b{e}T α{e,i} β{i,e} c{e} =

1

24
,

b{e}T α{e,i} β{i,i} e{i} =
1

24
, b{i}T β{i,e}α{e,e} c{e} =

1

24
,

b{i}T β{i,e}α{e,i} e{i} =
1

24
, b{i}T β{i,i} β{i,e} c{e} =

1

24
.

490

Remark 5.4. An interesting special case is when (5.9) uses:491

α{e,i} = α{e,e} = α{e}, α{i,e} = α{i,i} = α{i},

γ{i,e} = γ{i,i} = γ{i}, g{i} = γ{i} 11, c = α{i} 11 = α{e} 11.
(5.13)492

In this case the method (5.9) couples an explicit Runge–Kutta scheme (b{e},α{e})493

with a Rosenbrock (or Rosenbrock-W) scheme (b{i},α{i},γ{i}). For IMEX order p494
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LINEARLY IMPLICIT GARK 17

the explicit and the linearly implicit method need to have order at least p. For arbitrary495

L{i} the p = 3 GARK-ROW coupling conditions (3.13c) are:496

(5.14) b{e}T α{e} g{i} = 0,497

and the p = 4 the GARK-ROW coupling conditions (3.13d) simplify to498

(5.15)

b{e}T ((α{e} g{i})× c) = 0, b{e}T α{e}α{e} g{i} = 0,

b{e}T α{e}α{i} c =
1

24
, b{e}T α{e} γ{i} c = 0,

b{e}T α{e}α{i} g{i} = 0, b{e}T α{e} γ{i} g{i} = 0,

b{i}T α{i}α{e} c =
1

24
, b{i}T γ{i}α{e} c = 0,

b{i}T α{i}α{e} g{i} = 0, b{i}T γ{i}α{e} g{i} = 0.

499

For L{i} = J
{i}
n the implicit part should be a Rosenbrock method of the desired order,500

the third order coupling conditions read:501

(5.16) b{e}T α{e} g{i} = 0, b{i}T β{i} g{i} = 0,502

and the fourth coupling conditions are:503

(5.17)

b{e}T ((α{e} g{i})× c) = 0, b{e}T α{e}α{e} g{i} = 0,

b{e}T α{e} β{i} c =
1

24
, b{e}T α{e} β{i} g{i} = 0,

b{i}T β{i}α{e} c =
1

24
, b{i}T β{i}α{e} g{i} = 0.

504

Remark 5.5. Another interesting special situation is when b{e} = b{i} = b in (5.13),505

in which case the scheme uses a single set of stages k = k{i} + k{e}.506

The stability function (4.2) for an IMEX method (5.13) becomes:507

(5.18) R = 1 +
[
b{e}T b{i}T

] [z{e}−1 Is −α{e,e} −α{e,i}
−β{i,e} z{i}−1 Is − β{i,i}

]−1 [
11s
11s

]
,508

where s = s{e} = s{i}. In the limit of infinite stiffness z{i} → −∞:509

R = R{i}(∞) + z{e}
(
b{e}T − b{i}Tβ{i,i}−1 β{i,e}

)
S−1

(
I−α{e,i}β{i,i}−1

)
11s,

S = Is − z{e} (α{e,e} −α{e,i} β{i,i}−1 β{i,e}).
510

The second term is zero for stiffly accurate methods. Also this favorable situation511

arises when b{e} = b{i} and β{i,e} = β{i,i}.512

5.3. Implicit/linearly implicit GARK schemes. The GARK-ROS frame-513

work allows to construct methods that are fully implicit in some partitions, and lin-514

early implicit in other. For example, the explicit stage (5.9a) can be replaced by the515

following diagonally implicit stage (note the upper bound of the α
{e,e}
i,j summation):516

(5.19) k
{e}
i = h f{e}

yn +

i∑
j=1

α
{e,e}
i,j k

{e}
j +

i−1∑
j=1

α
{e,i}
i,j k

{i}
j

.517

The order conditions discussed above for the overall scheme remain unmodified.518
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18 A. SANDU AND M. GÜNTHER AND S. ROBERTS

Remark 5.6. By extension, one can construct GARK schemes that employ any com-519

bination of explicit, diagonally implicit, and linearly implicit methods to compute the520

stages associated with individual components.521

Moreover, one can formulate the stages (5.19) as follows:522

k
{e}
i = h f{e}

yn +

i∑
j=1

α
{e,e}
i,j k

{e}
j +

i−1∑
j=1

α
{e,i}
i,j k

{i}
j

,
+ hL{e}

i−1∑
j=1

γ
{e,e}
i,j k

{e}
j +

i−1∑
j=1

γ
{e,i}
i,j k

{i}
j

 .

523

The computation remains explicit in k
{e}
i when α

{e,e}
i,i = 0, and diagonally implicit524

when α
{e,e}
i,i > 0. The scheme no longer corresponds to either an explicit, or a525

diagonally implicit, GARK method. However, this formulation shows the power of526

the GARK-ROS framework to construct multimethods.527

6. Solution of index-1 differential-algebraic systems. Consider the singu-528

lar perturbation problem [13,15,27]529

(6.1) x′ = f(x, z), z′ = ε−1 g(x, z),530

where ε � 1. The Jacobian gz is assumed to be invertible and with a negative531

logarithmic norm µ (gz(x, z)) ≤ −1 in an ε-independent neighborhood of the solution.532

Consequently, in the limit ε→ 0 the system (6.1) becomes an index-1 DAE [13,15,27]:533

(6.2) x′ = f(x, z), 0 = g(x, z).534

The initial values [xn, zn] are consistent if g(xn, zn) = 0. By the implicit function535

theorem the algebraic equation can be locally solved uniquely to obtain z = G(x).536

Replacing this in the differential equation (6.2) leads to the following reduced ODE:537

(6.3) x′ = f(x,G(x)) =: fred(x).538

Applying the GARK ROS scheme (2.6) to (6.1) gives:539

k = h f
(
xn +α{x,x} k, zn +α{x,z} `

)
+ h fx|0 γ

{x,x} k + h fz|0 γ
{x,z} `,(6.4a)540

` = h ε−1 g
(
xn +α{z,x} k, zn +α{z,z} `

)
(6.4b)541

+ h ε−1 gx|0 γ
{z,x} k + h ε−1 gz|0 γ

{z,z} `,542

xn+1 = xn + b{x}T k,(6.4c)543

zn+1 = zn + b{z}T `.(6.4d)544545

where, with a slight abuse of notation, we omit the explicit representation of the546

Kronecker products. The zero subscript means that the Jacobians are evaluated at547

the current step solution, e.g., gz|0 = gz(xn, zn).548

Taking the limit ε→ 0 changes (6.4b) into:549

(6.5) 0 = g
(
xn +α{z,x} k, zn +α{z,z} `

)
+ gx|0 γ

{z,x} k + gz|0 γ
{z,z} `.550

This manuscript is for review purposes only.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

LINEARLY IMPLICIT GARK 19

The q-th derivative of (6.4a) at h = 0 is:551

k(0) = 0;

k(1) = f(xn, zn); and

k(q) = q
∑

m+n≥2

∂m+nf

∂xm∂zn

∣∣∣
0

(
· · · ,α{x,x} k(µi), · · · ,α{x,z} `(νj), · · ·

)
+ q fx|0 β

{x,x} k(q−1) + q fz|0 β
{x,z} `(q−1),

m∑
i=1

µi +

n∑
j=1

νi = q − 1, for q ≥ 2.

(6.6)552

Taking the q-th derivative of (6.5) at h = 0 gives:553

0 = g(xn, zn);

0 = β{z,x} gx|0 k(1) + β{z,z} gz|0 `
(1); and

0 =
∑

m+n≥2

∂m+ng

∂xm∂zn

∣∣∣
0

(
· · · ,α{z,x} k(µi), · · · ,α{z,z} `(νj), · · ·

)
+ β{z,x} gx|0 k(q) + β{z,z} gz|0 `

(q),
m∑
i=1

µi +

n∑
j=1

νi = q, for q ≥ 2.

554

Using the notation ω{z,z} = β{z,z}−1 the second equation (6.7) gives:555

`(q) = ω{z,z} (−g−1z|0)
∑

m+n≥2

∂m+ng

∂xm∂zn

∣∣∣
0

(
· · · ,α{z,x} k(µi), · · · ,α{z,z} `(νj), · · ·

)
,556

+ ω{z,z} β{z,x} (−g−1z|0 gx|0) k(q).557
558

We represent numerical solutions of GARK-ROW methods as NB-series over the set559

DAT of differential-algebraic trees [13,15]. Let:560

k = NB
(
θ{x}, [xn, zn]

)
, ` = NB

(
θ{z}, [xn, zn]

)
,

xn+1 = NB
(
φ{x}, [xn, zn]

)
, zn+1 = NB

(
φ{z}, [xn, zn]

)
.

561

We have the following recurrences on NB-series coefficients:562

θ{x}(u) = 0, ∀ u ∈ DATz,

θ{x}(t) =



0, t = ∅,
11, t = τx,(×m

i=1α
{x,x}θ{x}(ti)

)
×
(×n

j=1α
{x,z}θ{z}(uj)

)
,

t = [t1, . . . , tm, u1, . . . , un]x, m+ n ≥ 2,

β{x,x}θ{x}(t1), t = [t1]x,

β{x,z}θ{z}(u1), t = [u1]x,

563
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20 A. SANDU AND M. GÜNTHER AND S. ROBERTS

and564

θ{z}(t) = 0, ∀ t ∈ DATx,

θ{z}(u) =


0, u = ∅,
ω{z,z}

(
(×m

i=1α
{z,x}θ{x}(ti))× (×n

j=1α
{z,z}θ{z}(uj))

)
,

u = [t1, . . . , tm, u1, . . . , un]z, m+ n ≥ 2,

ω{z,z} β{z,x} θ{x}(t1), u = [t1]z.

565

The final solutions (6.4c) and (6.4d) are represented, respectively, by NB-series with566

the following coefficients:567

φ{x}(t) =

{
1, t = ∅,
b{x}T θ{x}(t), otherwise.

φ{z}(u) =

{
1, u = ∅,
b{z}T θ{z}(u), otherwise.

568

Equating the numerical and the exact solutions leads to the following.569

Theorem 6.1 (GARK-ROS order conditions for index-1 DAEs). The numerical so-570

lution of the differential variable x has order p iff:571

φ{x}(t) =
1

γ(t)
for t ∈ DATx, ρ(t) ≤ p.572

The numerical solution of the algebraic variable zn has order q iff:573

φ{z}(u) =
1

γ(u)
for u ∈ DATz, ρ(u) ≤ q.574

We form the stiff order conditions as follows:575

1. Meagre roots are labelled by b{x}T and fat roots by b{z}Tω{z,z}.576

2. A meagre node with a meagre parent is labelled α{x,x} if it has multiple577

siblings, and by β{x,x} if it is the only child.578

3. A meagre node with a fat parent is labelled α{z,x} if it has multiple siblings,579

and by β{z,x} if it is the only child.580

4. A fat node with a meagre parent is labelled α{x,z} ω{z,z} if it has multiple581

siblings, and β{x,z} ω{z,z} if it is the only child.582

5. A fat node with a fat parent is labelled α{z,z} ω{z,z} since it has multiple583

siblings.584

Based on this labelling, we form the stiff order conditions starting from the leaves and585

working toward the root:586

1. Multiply the label of each leaf by 11 (of appropriate dimension).587

2. Each node takes the component-wise product of its children’s coefficients, and588

multiplies it by its label.589

Remark 6.1 (Simplifying assumptions). We make the simplifying assumption:590

(6.7a) β{z,x} = β{z,z} ⇒ ω{z,z} β{z,x} = Is.591

This assumption allows to simplify the order conditions as in [15, Lemma 4.9, Section592

VI.4]. Order conditions for trees where a fat vertex is singly branched (by the structure593

of DAT trees, the child has to be meagre) involves products ω{z,z} β{z,x}. The order594

conditions for such trees are redundant. For example, (6.7a) can be imposed when the595
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scheme computes each k
{x}
i before k

{z}
i . In this case one can have α{z,x} and γ{z,x}596

lower triangular (with non-zero diagonals), such that their sum matches β{z,z}.597

Note that when a singly branched meagre vertex is followed by a fat vertex we have598

products β{x,z} ω{z,z}. These trees are redundant when the following simplifying as-599

sumption holds:600

(6.7b) β{x,z} = β{z,z} ⇒ β{x,z} ω{z,z} = Is.601

For example, (6.7b) can be imposed when the scheme computes each k
{z}
i before k

{x}
i .602

In this case one can have α{x,z} and γ{x,z} lower triangular (with non-zero diagonals),603

such that their sum matches β{z,z}.604

However, imposing both conditions (6.7a) and (6.7b) leads to the requirement that k
{z}
i605

and k
{x}
i are computed together, therefore the resulting scheme is no longer decoupled.606

Stiff order conditions for Rosenbrock methods, which compute a single set of stages,607

benefit from both conditions (6.7) [15].608

Following [15, Table 4.1, Section VI.4], the first DAT trees are shown in Table 3. Only609

the trees remaining after the simplifying assumption (6.7a) is imposed are shown. We610

have the following result.611

Theorem 6.2 (Algebraic order conditions for index-1 DAE solution). The algebraic612

order conditions are as follows.613

order 2 (z) :
{

b{z}Tω{z,z} c{z,x}×2 = 1;(6.8a)614

order 3 (z) :


b{z}Tω{z,z} c{z,x}×3 = 1,

b{z}Tω{z,z} ((α{z,x} e{x,x})× c{z,x}) = 1
2 ,

b{z}Tω{z,z}
(

(α{z,z} ω{z,z} c{z,x}×2)× c{z,x}
)

= 1;

(6.8b)615

order 3 (x) :
{

b{x}T β{x,z} ω{z,z} c{z,x}×2 = 1
3 ;(6.8c)616

order 4 (x) :


b{x}T

(
(α{x,z} ω{z,z} c{z,x}×2)× c{x,x}

)
= 1

4 ,

b{x}T β{x,z} ω{z,z} c{z,x}×3 = 1
4 ,

b{x}T β{x,z} ω{z,z} (c{z,x} × (α{z,x} e{x,x})) = 1
8 ,

b{x}T β{x,x} β{x,z}ω{z,z}c{z,x}×2 = 1
12 .

(6.8d)617

618

Remark 6.2 (Special case IMEX method). For the IMEX GARK scheme with the619

special structure discussed in Remark 5.4 the order conditions are as follows. The620

algebraic order conditions for z are the ones of the implicit component. Thus, if the621

implicit component has index-1 DAE order q for z then the IMEX GARK component622

inherits this property. The index-1 DAE conditions for y are, for order three:623

(6.9) b{x}T α{x} ω{z} c×2 =
1

3
,624

and for order four:625

b{x}T
(

(α{x} ω{z} c×2)× c
)

=
1

4
, b{x}T α{x} ω{z} c×3 =

1

4
,

b{x}T α{x} ω{z} (c× (α{z} c)) =
1

8
, b{x}T α{x}α{x}ω{z}c×2 =

1

12
.

(6.10)626

They are solved together with the classical order conditions (5.14) and (5.15).627
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22 A. SANDU AND M. GÜNTHER AND S. ROBERTS

t Labels φ(t) γ(t)

u2,1
b{z}Tω{z,z}

α{z,x} α{z,x}
b{z}Tω{z,z} c{z,x}×2 1

u3,1
b{z}Tω{z,z}

α{z,x} α{z,x} α{z,x}
b{z}Tω{z,z} c{z,x}×3 1

u3,2

b{z}Tω{z,z}

α{z,x}

β{x,x}

α{z,x}
b{z}Tω{z,z} ((α{z,x} e{x,x})×

c{z,x})
2

u3,3

b{z}Tω{z,z}

α{z,z} ω{z,z}

α{z,x} α{z,x}

α{z,x}
b{z}Tω{z,z}·

·
(

(α{z,z} ω{z,z} c{z,x}×2)

×c{z,x}
) 1

t3,1

b{x}T

β{x,z} ω{z,z}
α{z,x} α{z,x}

b{x}T β{x,z} ω{z,z} c{z,x}×2 3

t4,1

b{x}T

α{x,z} ω{z,z}

α{z,x} α{z,x}

α{x,x} b{x}T
(
c{x,x}×

(α{x,z} ω{z,z} c{z,x}×2)
) 4

t4,2

b{x}T

β{x,z} ω{z,z}
α{z,x} α{z,x} α{z,x}

b{x}T β{x,z} ω{z,z} c{z,x}×3 4

t4,3

b{x}T

β{x,z}ω{z,z}
α{z,x}

β{x,x}

α{z,x} b{x}T β{x,z} ω{z,z} (c{z,x} ×
(α{z,x} e{x,x}))

8

t4,4

b{x}T

β{x,x}

β{x,z}ω{z,z}
α{z,x} α{z,x}

b{x}T β{x,x} β{x,z}·
·ω{z,z}c{z,x}×2

12

Table 3
DAT trees and order conditions for GARK-ROS numerical solution using the simplifying as-

sumption (6.7a). Follows [15, Table 4.1, Section VI.4].
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LINEARLY IMPLICIT GARK 23

Remark 6.3 (Order conditions for inconsistent initial values). Inconsistent initial628

conditions g(xn, zn) 6= 0 lead to additional error terms in the numerical solution [15,629

Table 4.2, Section VI.4]. These error terms correspond to solution derivatives that630

contain −g−1z|0 g(xn, zn) terms, and therefore to DAT trees that have fat leaves. Assume631

that the inconsistency satisfies:632

‖−g−1z|0 g(xn, zn)‖≤ δ.633

Each tree corresponds to an error term due to the initial value inconsistency; the634

number of fat leaves gives the power of δ , and the number of meagre nodes the power635

of h in the corresponding error term.636

Let o{z} := ω{z,z} 11{z}. The first order conditions for z read:637

O(δ) : b{z}T o{z} = 1,(6.11a)638

O(hδ) : b{z}Tω{z,z} ·
(
c{z,x} ×α{z,z} o{z}

)
= 1,(6.11b)639

640

and the first ones for x are:641

O(hδ) : b{x}T β{x,z} o{z} = 1,(6.12a)642

O(h2δ) : b{x}T (c{x,x} ×α{x,z} o{z}) =
1

2
,(6.12b)643

O(h2δ) : b{x}T β{x,x} β{x,z} o{z} =
1

2
,(6.12c)644

O(h2δ) : b{x}T β{x,z} ω{z,z} ·
(
c{z,x} ×α{z,z}o{z}

)
=

1

2
.(6.12d)645

646

If the numerical solution satisfies all the additional order conditions (6.11) and (6.12)647

then the (additional) local error in x due to inconsistent initial conditions is O(h3δ+648

hδ2), and the local error in z is O(h2δ + δ2).649

7. Practical GARK-ROS methods. In this section we develop new linearly650

implicit GARK methods up to order four.651

7.1. Second order implicit/linearly implicit/explicit multimethod. Con-652

sider the system (1.1) with N = 3 partitions where the first partition is nonstiff and653

the other two are stiff. To showcase the flexibility of the linearly implicit GARK654

framework, we develop a second order multimethod that combines an explicit Runge–655

Kutta method, an implicit Runge–Kutta method, with a Rosenbrock method. In656

particular, we use the implicit and explicit trapezoidal rules:657

cit Ait

(bit)T
=

0 0 0

1
1
2

1
2

1
2

1
2

,
cet Aet

(bet)T
=

0 0 0

1 1 0

1
2

1
2

,658

as well as the stiffly accurate, L-stable Rosenbrock scheme with coefficients659

αros2 =

[
0 0

1 0

]
, γros2 =

[
γ 0

−γ γ

]
, bros2 =

[
1− γ γ

]T
, γ = 1−

√
2

2
.660

There are six α coupling matrices and two γ coupling matrices to be determined for661

this multimethod, which offers numerous degrees of freedom. We use the simplifying662

assumptions of Remark 5.4 with a slight modification to ensure the fully implicit and663
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24 A. SANDU AND M. GÜNTHER AND S. ROBERTS

linearly implicit stages are decoupled. The linearly implicit GARK scheme defined664

by the tableau665

A G

bT
=

Aet Aet Aet 0 0 0

Ait Ait Aet 0 0 0

αros2 αros2 αros2 γros2 γros2 γros2

(bet)T (bit)T (bros2)T
666

maintains the second order of the base methods and is suitable for index 1 DAEs in667

which the algebraic constraint is treated by the Rosenbrock partition. The implicit668

and explicit trapezoidal rules share the same b, which allows us to use the combined669

stage k
{1+2}
i = k

{1}
i + k

{2}
i as discussed in Remark 5.5. Note that when f{2}(y) = 0,670

the method degenerates into a two-way partitioned IMEX GARK-ROS scheme which671

we refer to as IMEX-ROS22.672

7.2. Third order IMEX GARK-ROW schemes. We explore IMEX GARK-673

Rosenbrock-W methods that are suitable for index-1 DAEs and are equipped with an674

embedded method for error estimation and control. The special cases described in675

Remarks 5.4 and 5.5 are used to reduce the number of coefficients and order conditions.676

We first consider the case when s{e} = s{i} = 4. For the base Rosenbrock method, we677

enforce traditional ROW and DAE order conditions up to order three. Similarly, the678

explicit base method must satisfy Runge–Kutta order conditions up to order three.679

These base methods share the embedded coefficients b̂, which must give a solution of680

order two. To form an IMEX pair, the coupling condition (5.14) and DAE coupling681

condition (6.9) are imposed. There are still several free parameters left after solving682

these order conditions, and in our method derivation procedure, they are used to683

optimize the stability and principal error. Our method, IMEX-ROW3(2)4, pairs the684

explicit Runge–Kutta scheme685

(7.1a)

0 0 0 0 0

2γ 2γ 0 0 0

γ+1
2 − 15γ2

16 + 103γ
32 −

5
8

15γ2

16 −
87γ
32 + 9

8 0 0

1 − 81γ2

272 + 111γ
136 + 265

544
γ2

16 + γ
8 −

25
32

4γ2

17 −
16γ
17 + 22

17 0

− 9γ2

34 + 19γ
34 + 3

68
5γ2

2 −
13γ
2 + 5

4 − 38γ2

17 + 84γ
17 −

5
17 γ

− 57γ2

272 + 109γ
272 + 9

136
47γ2

16 −
31γ
4 + 23

16 − 40γ2

17 + 201γ
34 −

15
34 − 3γ2

8 + 23γ
16 −

1
16

686

with an L-stable Rosenbrock-W method with coefficients687

α =


0 0 0 0

2γ 0 0 0

− 9γ2

8 + 115γ
32 −

19
32

9γ2

8 −
99γ
32 + 35

32 0 0

9γ2

34 −
19γ
34 + 31

68 −γ
2

2 + 3γ
2 −

3
4

4γ2

17 −
16γ
17 + 22

17 0

 ,

γ =


γ 0 0 0

−2γ γ 0 0

3γ2

2 −
157γ
32 + 33

32 − 3γ2

4 + 57γ
32 −

21
32 γ 0

− 9γ2

17 + 19γ
17 −

7
17 3γ2 − 8γ + 2 − 42γ2

17 + 100γ
17 −

27
17 γ

 ,
(7.1b)688

where γ ≈ 0.44 is the middle root of 6γ3−18γ2 +9γ−1 = 0. The b and b̂ coefficients689

in (7.1b) are the same as in (7.1a). Thanks to the stiff accuracy of the Rosenbrock690
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LINEARLY IMPLICIT GARK 25

method, (6.11a) is satisfied as well; however, we were unable to cancel higher order691

error terms for inconsistent initial conditions.692

We also derive a third order scheme with s{e} = s{i} = 5 as it affords a smaller693

γi,i and sufficient degrees of freedom to satisfy (6.11b) and (6.12a), thus eliminating694

errors associated with inconsistent initial values up toO(hδ). On top of the simplifying695

assumptions and order conditions used with four stages, we take α{e} = α{i}, such696

that the method looks like an unpartitioned Rosenbrock-W method with L = f
{i}
y .697

For DAEs however, one cannot expect a general Rosenbrock-W method to attain full698

order when the Jacobian of f{z} is used; the order condition (6.9) is required for this.699

Based on the aforementioned constraints, our five-stage method, named IMEX-ROW3(2)5,700

has the coefficients701

α{e} = α{i} =



0 0 0 0 0

1
2 0 0 0 0

5062
13725

4088
13725 0 0 0

173067
636265

495828
636265 − 24705

127253 0 0

30859
262800 − 547

21900
183
146 − 18179

52560 0


, b =



5225
21024

− 407
2190

6039
4672

− 127253
210240
1
4


,

γ =



1
4 0 0 0 0

− 1
2

1
4 0 0 0

− 4762
13725 − 2563

13725
1
4 0 0

− 156792
636265 − 685353

636265
82350
127253

1
4 0

22969
175200 − 3523

21900
183
4672 − 18179

70080
1
4


, b̂ =



9095
539616
27387
56210
421083
359744

− 812861
770880
117
308


.

(7.2)702

When viewed as an unpartitioned Rosenbrock-W method, IMEX-ROW3(2)5 is stiffly703

accurate and L-stable.704

7.3. Fourth order IMEX GARK-ROS scheme. Order four introduces sig-705

nificantly more order conditions, and it appears six stages is the minimum required706

for an IMEX GARK-ROS scheme that is suitable for index-1 DAEs and includes an707

embedded method. For the base ROS method, classical and DAE order conditions708

up to order four are necessary, but we include ROW order conditions up to order709

three as well. The base Runge–Kutta method uses Butcher’s first column simplifying710

assumption D(1) [7], which leaves fives order conditions to achieve order four. With711

Remarks 5.4 and 5.5, the IMEX coupling conditions are (5.14) and (5.15), and the712

DAE coupling conditions are (6.9) and (6.10). The embedded method, with coeffi-713

cients b̂, must satisfy all these order conditions to one order lower. We solve the order714

conditions and use remaining free coefficients for tuning stability and principal error.715

The final method, IMEX-ROS4(3)6, pairs the explicit Runge–Kutta scheme716

0 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0

9
10

4761
11050

2592
5525 0 0 0 0

2
5

3779
99450

12931
44200

5
72 0 0 0

5
6 − 9468553

45647550
18193697
30431700 − 92843

413100
1352
2025 0 0

1
5613193
5967000

261179
884000

18091
108000 − 13609

19500
153
520 0

113
720

37
96 − 125

288
125
624

459
1040

1
4

433321
3204900

121913
569760 − 25667

1025568
6024
15431

965889
6172400

1531
11870

717
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with the stiffly accurate, L-stable Rosenbrock scheme with coefficients718

α =



0 0 0 0 0 0

1
2 0 0 0 0 0

87
140

39
140 0 0 0 0

− 331
1260

17
28

1
18 0 0 0

84025
231336 − 755

9639 − 425
1944

4225
5508 0 0

1091
2160

29
32

145
864 − 545

624
153
520 0


, γ =



1
4 0 0 0 0 0

− 1
2

1
4 0 0 0 0

− 183
700

57
700

1
4 0 0 0

257
700 − 731

1400 − 1
8

1
4 0 0

33925
231336

45835
77112

2725
16524 − 1300

1377
1
4 0

− 47
135 − 25

48 − 65
108

335
312

153
1040

1
4


.719

720

8. Numerical Experiments. In this section, we present the results from two721

numerical experiments that verify the linearly-implicit GARK order condition theory722

and the convergence properties of the methods derived in section 7.723

8.1. Brusselator reaction-diffusion PDE. The problem BRUSS from [15, pg724

148], is a one-dimensional reaction-diffusion problem governed by the equations725

∂u

∂t
= A+ u2 v − (B + 1)u+ α

∂2u

∂x2
,

∂v

∂t
= B u− u2 v + α

∂2v

∂x2
,(8.1)726

with A = 1, B = 3, and α = 1/50. The spatial domain is x ∈ [0, 1] and the time727

domain t ∈ [0, 10] (units). The boundary and initial conditions are728

u(x = 0, t) = u(x = 1, t) = 1, v(x = 0, t) = v(x = 1, t) = 3;729

u(x, t = 0) = 1 + sin(2π x), v(x, t = 0) = 3.730731

Second order central finite differences are applied to discrete the spatial dimension on732

a uniform grid with N = 500 interior points.733

The stiffness in (8.1) primarily comes from the diffusion terms. Therefore, we treat734

them linearly implicitly and the remaining reaction terms explicitly. For each of the735

four IMEX scheme of section 7, we compute the numerical error for a range of ten step736

sizes. Error is measured as the two-norm of the difference of the numerical solution737

and a highly accurate reference solution at t = 10. The converge plots are shown in738

Figure 1. In all cases, the numerical orders of convergence match the theoretical ones.739

8.2. ZLA-kinetics problem. The ZLA-kinetics problem is a nonlinear index-740

1 DAE modelling the reaction of two chemicals as carbon dioxide is added to the741

system. A detailed description of this problem and its origin is provided in [26]. It is742

governed by the following five differential equations and one algebraic constraint:743

(8.2)
y′1 = −2 r1 + r2 − r3 − r4, y′2 = − 1

2 r1 − r4 −
1
2 r5 + Fin,

y′3 = r1 − r2 + r3, y′4 = −r2 + r3 − 2 r4,
y′5 = r2 − r3 + r5, 0 = Ks y1 y4 − y6.

744

The auxiliary variables and parameters are defined as:745

r1 = k1 y
4
1 y

1/2
2 , r2 = k2 y3 y4, r3 = (k2/K) y1 y5,746

r4 = k3 y1 y
2
4 , r5 = k4 y

2
6 y

1/2
2 , Fin = klA (p(CO2)/H − y2) ,747

k1 = 18.7, k2 = 0.58, k3 = 0.09,748

k4 = 0.42, K = 34.4, klA = 3.3,749

Ks = 115.83, p(CO2) = 0.9, H = 737.750751
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102 103 104 105

10−7

10−6

10−5

10−4

23

4

Steps

E
rr

or

IMEX-ROS22 IMEX-ROW3(2)4

IMEX-ROW3(2)5 IMEX-ROS4(3)6

Fig. 1. IMEX convergence results on the Brusselator problem (8.1).

The system is integrated from t = 0 to t = 180 starting from the initial value752

y(t = 0) =
[
0.444 0.00123 0 0.007 0 Ks y0,1 y0,4

]T
,753

which is consistent with the algebraic constraint.754

We use the ZLA-kinetics problem to verify DAE convergence properties of the IMEX755

methods proposed in section 7. In the numerical experiment, the differential vari-756

ables are treated explicitly, while the algebraic variable is treated linearly implicitly.757

Figure 2 plots the error versus the number of steps taken to solve the DAE. Like the758

Brusselator experiment, error is measured in the two-norm with respect to a reference759

solution. All methods achieve their theoretical orders of convergence.760

104 105 106

10−13

10−12

10−11

10−10

10−9

23

4

Steps

E
rr

or

IMEX-ROS22 IMEX-ROW3(2)4

IMEX-ROW3(2)5 IMEX-ROS4(3)6

Fig. 2. IMEX convergence results on the ZLA-kinetics problem (8.2).
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9. Discussion. This paper constructs new families of linearly implicit multi-761

methods. The authors’ GARK framework extends traditional Runge–Kutta schemes762

to multimethods suitable for the discretization of multiphysics systems. In a similar763

vein, the GARK-ROS/GARK-ROW framework extends traditional Rosenbrock/Ro-764

senbrock-W schemes to multimethods.765

A general order conditions theory for linearly implicit methods with any number of766

partitions, using exact or approximate Jacobians, is developed using B-series over the767

sets of TN trees (for exact Jacobian) and TWN trees (for inexact Jacobians). Order768

conditions for the solution of two-way partitioned index-1 differential-algebraic equa-769

tions are developed using B-series over the set of DAT trees. We use the framework770

to develop decoupled linearly implicit schemes, which treat implicitly one process at a771

time; linearly implicit/explicit methods, which treat one process explicitly and one im-772

plicitly; and linearly implicit/explicit/implicit methods that discretize some processes773

with Rosenbrock schemes, other with diagonally implicit Runge–Kutta schemes, and774

other with explicit Runge–Kutta schemes. Practical GARK-ROS and GARK-ROW775

schemes of orders two, three, and four are constructed.776
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