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LINEARLY IMPLICIT GARK SCHEMES*

ADRIAN SANDU', MICHAEL GUNTHER!, AND STEVEN ROBERTSS

Abstract. Systems driven by multiple physical processes are central to many areas of science and
engineering. Time discretization of multiphysics systems is challenging, since different processes have
different levels of stiffness and characteristic time scales. The multimethod approach discretizes each
physical process with an appropriate numerical method; the methods are coupled appropriately such
that the overall solution has the desired accuracy and stability properties. The authors developed the
general-structure additive Runge-Kutta (GARK) framework, which constructs multimethods based
on Runge—Kutta schemes.

This paper constructs the new GARK-ROS/GARK-ROW families of multimethods based on
linearly implicit Rosenbrock/Rosenbrock-W schemes. For ordinary differential equation models, we
develop a general order condition theory for linearly implicit methods with any number of parti-
tions, using exact or approximate Jacobians. We generalize the order condition theory to two-way
partitioned index-1 differential-algebraic equations. Applications of the framework include decou-
pled linearly implicit, linearly implicit/explicit, and linearly implicit/implicit methods. Practical
GARK-ROS and GARK-ROW schemes of order up to four are constructed.

Key words. Multiphysics systems, GARK methods, linear implicitness
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1. Introduction. We are concerned with the numerical solution of differential
equations arising in the simulation of multiphysics systems. Such equations are of
great practical importance as they model diverse phenomena that appear in mechan-
ical and chemical engineering, aeronautics, astrophysics, plasma physics, meteorology
and oceanography, finance, environmental sciences, and urban modeling. A general
representation of multiphysics dynamical systems has the form:

N
1) Wk = Yy, m<t<te y)=yo e R,
t
m=1

where (1.1) is driven by multiple physical processes fi"} : R — R¢ with different
dynamical characteristics, and acting simultaneously.

Time discretization of complex systems (1.1) is challenging, since different processes
have different levels of stiffness and characteristic time scales. Explicit schemes [14]
advance the solution using only information from previous steps at a low computa-
tional cost per-timestep; however, in addition to step size limitations due to stability
considerations, explicit timesteps can be only as large as the fastest time scale in the
system. Implicit schemes that advance solutions using past and future information [15]
remove the stability restrictions on timestep size; however their computational cost
per-timestep is large, as they solve one or more systems of nonlinear equations. Stiff-
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2 A. SANDU AND M. GUNTHER AND S. ROBERTS

ness in any individual process requires the use of an implicit solver for the entire
multiphysics system (1.1).

Linearly implicit methods seek to preserve the good stability properties of implicit
schemes, but avoid solving large nonlinear systems of equations; instead, they only
require solutions of linear systems at each step. In his seminal 1963 paper [20] Rosen-
brock proposed linearly implicit Runge-Kutta type methods. An s-stage Rosenbrock
method solves the autonomous system (1.1) in its aggregated form (i.e., treating all
individual components in the same way) as follows [15, Section IV.7]

i—1 i
(1.2&) k; =hf yn—l—Zai,jkj +hJ, Z/}/i’jkj’ t1=1,...,s,
j=1 =1
(1.2b) Y41 =Yn+ > biki,
1=1

where the matrix J,, == £, (y,) € R4*? is the Jacobian of the aggregated right hand
side function (1.1). Each stage vector k; is the solution of a linear system with matrix
I —h~vidn, and if 7, ; = 7 for all ¢ then the same LU factorization can be reused
for all stages. We consider the following matrices of method coefficients:

(1.3) b =[bicics, a=[aijlhi<ij<s, Y= ijh<ij<s, B=a+7,

where in (1.2a) « is strictly lower triangular, and - is lower triangular. Let ® denote
the Kronecker product. We also introduce the following notation which will be used
frequently throughout the paper:

adk=(axl;)k
The Rosenbrock method (1.2) is written in compact matrix notation as follows:

(1.4&) k:hf(la ®Yn+a®k)+(]:s®h*]n)(’7®k)v
(1.4b) Ynt1 =Yn + b’ @k,

where 1, € R® is a vector of ones, I, € R**® is the identity matrix, and

ky flyn + 22, 01,5 k;)
(l4c) k= |:|eR® f(l,@y,+ank) = :
ks flyn + 22, s, kj)

The Rosenbrock formula (1.4) makes explicit use of the exact Jacobian, and con-
sequently the accuracy of the method depends on the availability of the exact J,.
In many practical cases an exact Jacobian is difficult to compute, however approxi-
mate Jacobians may be available at reasonable computational cost. Rosenbrock-W
methods [25] maintain the accuracy of the solution when any approximation of the
Jacobian is used. Specifically, an s-stage Rosenbrock-W method has the form (1.4)
but with the exact Jacobian J, replaced by an arbitrary, solution-independent matrix
L [15, Section IV.7]:

c ]Rds

(1.5a) k=hf(l,@y, +a@k)+ (I, ®hL) (v k),
(1.5b) Yot1 =yn + b @k
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LINEARLY IMPLICIT GARK 3

Rosenbrock methods have received considerable attention over the years [5]. Rosen-
brock-W methods of high order have been constructed in [18,19]. In contrast to
classical interpolation/extrapolation-based multirate Rosenbrock methods [11], gen-
eralized multirate Rosenbrock-Wanner schemes have been introduced in [6] as a special
instance of partitioned Rosenbrock-W schemes. Matrix-free Rosenbrock-W methods
were proposed in [22,33], and Rosenbrock-Krylov methods that approximate the Ja-
cobian in an Arnoldi space in [9,17,28-31]. Application of Rosenbrock methods to
parabolic partial differential equations, and the avoidance of order reduction, have
been discussed in [3,8,16,23]. Linearly implicit linear multistep methods have been
developed in [1,2,10,24,34,35].

Here we consider multimethods for solving multiphysics partitioned systems (1.1).
Roughly speaking, multimethods allow to discretize each physical process in (1.1)
with an appropriate numerical method; the methods are coupled appropriately such
that the overall solution has the desired accuracy and stability properties. An example
of multimethods is offered by the general-structure additive Runge-Kutta (GARK)
framework, proposed in [12,21], which extends Runge-Kutta schemes to solve parti-
tioned systems (1.1). One step of a GARK method applied to the additively parti-
tioned initial value problem (1.1) reads:

N
(1.6a) VI =1 @yn+h ) Al a ey, g=1,..N,
m=1
N
(1.6b) Yni1=Yn+h Z plaT g f{fI}(Y{fI})_
g=1

Each component fi™} is solved with a Runge—Kutta method with si™} stages and
coefficients (A{m’m}, b{m}). The coefficients A9} ¢ % m, realize the coupling
among subsystems. The method (1.6) builds separate stage vectors Y{™} for each
component.

In this paper we construct linearly implicit multimethods that apply a possibly dif-
ferent Rosenbrock or Rosenbrock-W method to each component in (1.1). The new
family of methods, called GARK-Rosenbrock(-W), extends linearly implicit methods
to solve partitioned systems in the same way that the GARK approach (1.6) extends
Runge-Kutta schemes. Very early work on partitioned Rosenbrock methods can be
found in [32].

The remainder of this paper is organized as follows. Section 2 defines the new families
of GARK-Rosenbrock and GARK-Rosenbrock-W methods in the ordinary differential
equation (ODE) setting. The order conditions theory for the new schemes is developed
in section 3 using Butcher series over special sets of trees, and linear stability is
discussed in section 4.

Section 5 constructs decoupled GARK-ROW schemes that are implicit in only one
process at a time. We use the GARK-ROW framework to develop multimethods
where each process in (1.1) can be solved with either an explicit Runge-Kutta, an
implicit Runge-Kutta, or a Rosenbrock-W method. Order conditions for GARK-
ROS schemes applied to index-1 differential-algebraic systems are studied in section 6.
New GARK-ROW methods for practical use are proposed in section 7 and used for
numerical experiments in section 8. A discussion of the results in section 9 concludes
the paper.

2. Partitioned Rosenbrock methods.
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4 A. SANDU AND M. GUNTHER AND S. ROBERTS

2.1. Additively partitioned systems. GARK methods (1.6) extend Runge-
Kutta schemes to solve partitioned systems (1.1). In a similar approach, we now
extend Rosenbrock methods (1.2) to solve partitioned systems (1.1). Just like Rosen-
brock methods are obtained by a linearization of diagonally implicit Runge-Kutta
schemes, GARK-ROS methods are obtained by a linearization of diagonally implicit
GARK schemes.

DEFINITION 2.1 (GARK-ROS method). One step of a GARK Rosenbrock (for short,
GARK-ROS) method applied to solve the additively partitioned system (1.1) advances
the numerical solution as follows:

N i—1 N 7
(21a) KD =hfld |y, + 37 S altm i) opgfa 37N femd i)

m=1 j=1 m=1 j=1
for i=1,...,s1% ¢=1,... )N,
N sfa}
(21b)  yarr=ya+ Y > 0K

q=1 i=1

The GARK-ROS scheme (2.1) is written compactly in matriz notation as follows:

N
(2.2a) kla = pelad <1{q} R yn + Z afemt ¢ k{m}>
m=1
N
+ (Is{‘l} ® hJ’I{Lq}) Z ’y{q”m} ® k{m}i q = 17 sy N7
m=1
N
(2.2b) Yni1 =yn+ Y_ b T @kim,
m=1

where we used the matriz notation (1.4). The coefficients al®™} are strictly lower
triangular and y1¢™} lower triangular for all 1 < g,m < N. The matrices J;{ﬂ} =
f;q} (yn) are the Jacobians of the component functions fla} | evaluated at current so-
lution y,, for each gq=1,... ,N.

The GARK-ROS scheme (2.2) is characterized by the extended Butcher tableau:

QL QN |y N
) A \G QN1 L QNN [N NN
(2:3) bT \ T pT L T \ '

REMARK 2.1 (GARK-ROS scheme structure). The GARK-ROS scheme (2.2) has the
following characteristics:
o A different increment vector k1% € R% is constructed for each component
qg=1,...,N.
o Computation of the increment k19 uses only evaluations of the corresponding
component function £19. The argument at which £19} is evaluated is construc-
ted using a linear combination of all increments k"™ form =1,...,N.

This manuscript is for review purposes only.
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LINEARLY IMPLICIT GARK 5

e Computation of the increment k9 involves linear combinations of increments
ki form =1,...,N, multiplied by the Jacobian J1© of the corresponding
component function. Therefore the calculation of increments involves the so-
lution of linear systems.

e For all %{g’m} =0, the scheme (2.2) reduces to an explicit GARK method.

o If 'yi{g’M} =0 for allm > q holds, all increments can be computed recursively:
A IO At S N e

s{N} -
DEFINITION 2.2 (GARK-ROW method). One step of a GARK Rosenbrock-W (for
short, GARK-ROW) method applied to solve the additively partitioned system (1.1)
advances the numerical solution as follows:

N
(2.4a) Kkl — pelad <1{q} ® yn + Z afomt g k{m}>

m=1

N
+ (Lo @ WL S ylemb g bl =1 N,

m=1

N
(2.4b) Yni1 =¥n+ »_ b T@kim

m=1

where L9 are arbitrary matriz approzimations to component function Jacobians
£ (y,), for each g =1,...,N.

2.2. Component partitioned systems. Consider the partitioned system:
on Dy (i o)) glad ¢ gat? LN - g g
() 7* (y y Y )a y € y g=1,..., I\, ; = .

The Jacobian of each component function f1} with respect to each component vector
is approximated by:

o flad

Sy = @) s Ll e T
y m

The GARK-ROW scheme (2.4) applied to a component split system (2.5) reads:

(2.6a) ylomt = 1y ® yilm} + (a{q’m} ® Lyimy) kimh e ]Rd{m}s(q},

N
(2.6b) K@ — plad (Y{q,l}’ ... 7Y{q,N}) +h S (7{q’m} ® L{q,m}) Klmh
m=1
(260) ¥ =yl + BT @ L)k g=1,. N

REMARK 2.2. The GARK-ROS scheme (2.2) applied to a component split system
(2.5) has the form (2.6), where each matrix equals the corresponding sub-Jacobian
Lizm} = 8f{q}/8y{m}(yn). Thus component partitioned systems are a special case
of additively partitioned systems.

3. Order conditions. We develop the order conditions theory for additively
partitioned systems (1.1). These order conditions remain valid for component parti-
tioned systems (2.5) as well.
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6 A. SANDU AND M. GUNTHER AND S. ROBERTS

3.1. Multicolored trees and NB-series. We recall the set of Ty trees [4]
which provide a generalization of Butcher trees for partitioned systems.

DEFINITION 3.1. The set Tx consists of rooted trees with round (@) vertices, each
colored in one of the distinct m = 1,...,N colors. Here nodes of color m correspond
to derivatives of the component function £U™ of the partitioned system (1.1).

We now introduce the set of trees that represent the GARK-ROW numerical solution.

DEFINITION 3.2. The set TWy consists of rooted trees with both square (@) and round
(®) vertices, each colored in one of the distinctm = 1,...,N colors. Square nodes have
a single child, and there are no square leaves. Each color corresponds to a different
component of the partitioned system. For our purpose, round nodes (@) represent
derivatives of the component function £1} | and square nodes () to the action of the
partition’s approzimate Jacobian matriz LU}

REMARK 3.1. Clearly Ty C TWy. The following properties discussed for TWy are
applicable to Ty as well.

The empty TWy tree is denoted by ). The TWy tree with a single vertex of color
m is denoted by 7. We denote by t = [t;...t1]e € TWy the new tree obtained
by joining t,...,t, € TWy with a root of color m (i.e., attaching each of the trees
directly to the root, which will have L children). We denote by t = [t;]; € TWy the
new tree obtained by appending to t; € Tx a square root of color m.

Similar to regular Butcher trees, the order p(t) is the number of nodes of t € TWy.
The density v(t) and the number of symmetries o(t) are defined recursively by

p(t)Y(t) - y(tr), fort=lts,... . tL]e,
p(t) y(t1), for t = [t1]m,

TTe, mi o(t)™, for t=[t", ... €',
O'(fl)7 for t = [fl],

Y0 =1; ~v(re)=1; () = {

oc@)=1; o(rg)=1; ot) = {

with tlml meaning that the tree t; has been attached m; times to the root @.

DEFINITION 3.3 (Elementary differentials over TWy). An elementary differential
F(t)() : RT — R? is associated to each tree t € TWy. Using tensorial notation, the
elementary differentials are defined recursively as follows:
(3.1)
0, for t = 0;
flmd(y,), for t = 7¢;
PO = { e =
€ (y*)(F(tl)(y*), . .,F(tL)(y*)), for t=[t1 ... t,]o;

L™} . F(t)(y.) for t = [t1]m, p(t1) > 1.

The second argument of the elementary differential is a vector y, € R which repre-
sents the argument at which all the function derivatives are evaluated.

We extend the Butcher series (B-series) to the sets Ty and TWy.

DEFINITION 3.4. An NB-series is a formal expansion in powers of the step size h

hP®

(3.2) NB(c,y.) = Y () F(t)(y.)

teTWy U(t)

This manuscript is for review purposes only.



239

LINEARLY IMPLICIT GARK 7

where the summation is carried out over elements of a set of rooted trees. Each term
consists of a weighted elementary differential (3.1). Here we consider summation
over TWy, with ¢ : TWyx — R a mapping that assigns a real number to each tree.
Per Remark 3.1 an NB-series over Tn has the form (3.2) with ¢(t) = 0 for any
te ’]NNN\TN.

LEMMA 3.5. The ezact solution of (1.1) is represented by the NB-series [4]
L forte Ty

3.3 t+h)=NB(c,y(t)) with c(t) =<’ ’

33)  ylt+h) (¢, y(1) (®) {0, for t € TWy\Ty.

We next provide several results that will prove useful to derive the order conditions
of partitioned Rosenbrock methods.

THEOREM 3.6 (Function of NB-series [21]). A component function applied to an
NB-series (3.2) with a(()) =1 is also an NB-series,

hE0" (NB(a,y,)) = NB((D"™}a), ),

characterized by the coefficients:

0, for t = 0,
1 for t =7

3.4 Dimta)(t) = { o

( ) ( )( ) HeL:1 Cl(tg) for t = [tl,...,’qj}@, L>1,
0, otherwise.

THEOREM 3.7 (Jacobian times NB-series). A Jacobian matriz times an NB-series
(3.2) with a(@) = 0 4s also an NB-series,

hIT™ - (NB(a,yn)) = NB((J"a), ya),

characterized by the coefficients:

(3.5) (Jtmda)(t) = {a(u), for t = [u]g,

0, otherwise.

Proof. We consider the Jacobian matrix times the series:

RIE (NBla,ya)) = Y. a(t) h
teTWn (t)

fém} (yn) F()(yn)-
This expression involves elementary differentials fy, - F'(t), and we note that:

£ (yn) - F()(yn) = (o) (7).
and that p([|g) = p(t) + 1 and o([t]g) = o(t), which leads to (3.5). O

THEOREM 3.8 (Jacobian approximation times NB-series). A Jacobian approzimation
matriz times an NB-series (3.2) with a(()) = 0 is also an NB-series,

hL{™ - (NB(a,yn)) = NB((L"™a),y,),

characterized by the coefficients:

for t =
(3.6) (L{m}a)(t) _ a(u), for .[u]u
0, otherwise.
Proof. Similar to the proof of Theorem 3.7. 0

This manuscript is for review purposes only.
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8 A. SANDU AND M. GUNTHER AND S. ROBERTS

3.2. GARK-ROS order conditions. We represent the stage vectors and nu-
merical solutions of GARK-ROS methods (2.2) as NB-series (3.2) over TWy:

(3.7) k7 = NB (0{(1}’3%) € ]Rs{q}v Yn+1 = NB(d,y,) € R.

Insert (3.7) into the stage equations (2.2a) and apply Theorem 3.6 and Theorem 3.7
to obtain:

N N
01} (1) = (D{q} 3 atem 9{m}> () + > ylom <J{q}9{m}) (t).
m=1 m=1

This leads to the following recurrence on stage vectors NB-series coefficients (3.7):

0, t=20,
1, t=1p,
(3.8)  @olad(y) = szl (Zizl alem} 0{’"}(@)) , fort=[t,...,t]e, L>2,
S ey Blem O (), for t = [t1],
0, when root(t) # @.

We denote by X the element-by-element product of s-dimensional vectors. Note that
in sums of the form 22:1 atemt gimt(4) and 22:1 Blamt glml (t) at most a single
term is nonzero, namely, the one with m = n when root(t) = @. The recurrence
(3.8) only builds terms corresponding to trees in Ty; consequently, 812 (t) =0 for
te TWN\TN.

Inserting (3.7) into the solution equations (2.2b) leads to the following B-series coef-
ficients of the numerical solution:

1, t= (Z),
(3.9) B(t) = S _ bIMTelm () te T\ {0},
0, te rII‘WVN\TN.

A comparison of the numerical solution (3.9) with the exact solution (3.3) leads to
the following result.

THEOREM 3.9 (GARK-ROS order conditions). The GARK-ROS method (2.2) has
order of consistency p iff

N

Z p{miTg{m} ) = —

for t € Ty with 1 < p(t) < p.
v(t

m=1

The procedure to generate the order conditions for GARK-ROS methods using the
recurrence (3.8) is illustrated in Table 1. The process is as follows:
e The root of color m is labelled b{™7.
e A single sibling of color m (its parent of color ¢ has one child) is labelled
Blom},
e A node of color m with multiple siblings (its parent of color ¢ has multiple
children) is labelled a4},
e The result of each subtree is an s-dimensional vector of NB-series coefficients.
e The leaves build their vector by multiplying their label by a vector of ones.

This manuscript is for review purposes only.
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LINEARLY IMPLICIT GARK 9

[t [|  Tabels | F(t) | 0 [ 2(® ]
Lo || ©ver ] e ] ptTatd ] 1|
@ glmn
to LmiT f}m} fin} p{m}T g{m.mn} 1{n} 2
@ aimnt @) qim»}
t {m} (e{n} ¢{p} b{imIT ((tmnd ginty 3
o T fyy” (£, £177) x (a{m»} 1{p}))
©®) glnr}
¢ @ pimn} {m} e{n} e(p} p{m}iT I@{m,n}
v O bt by A B{nr} 1{p} 0
TABLE 1

TN trees of orders 1 to 3 for the GARK-ROS numerical solution. The root of color m is labelled
p{miT, Single siblings are labelled (3, vertices that have multiple siblings are labelled o, and each
node label is superscripted by a pair of indices {q,m}, where m is the color of the node and q the
color of its parent.

e A node (except the leaves) takes the element-wise product of the vectors of
its children, then multiplies the result by its label.
We note that each node (except the roots) carries a label with two indices, first the
color of its parent, followed by its own color. Moreover, if all the nodes have the same
color then Ty is the set of T-trees, and the GARK-ROS order conditions give the
Rosenbrock order conditions. These observations lead to the following result.

THEOREM 3.10 (GARK-ROS order conditions). The GARK-ROS order conditions
(2.2) are the same as the Rosenbrock order conditions (1.2), except that the method
coefficients are labelled according to node colors. In the order conditions, in each
sequence of matrixz multiplies, the color indices are compatible according to matrix
multiplication rules.

Let 1{"} € R*" be a vector of ones. For brevity we also define the vectors:

clmn} . gmn} gn}  glmn} . o (mn} g{n}

(3-10) e{mﬂ],} = 6{771,,71} Il.{n} — c{m,n} + g{m,n}'

The GARK-ROS order four conditions read:

(3.11a) order 1: b T1im} =1 form=1,...,N;

N;

(3.11b) order 2: {b{m}T elmnt =1 formmn=1,..

)

pim} T (clmn} 5 cim. p}) 1

w

(3.11¢) order 3: for m,n,p=1,...,N;

{b{m} T gim.n} glnr} —
{b{m}T ( {m,n} X C{m)p} X C{m7q}) -1

47
b{m}T ((a{m n} e{n,p}) C{m,p}) — %

(3.11d) order 4: { bimT glmn} (elnph 5 el q})

bim}T gim.n} g{n.p} elr.at =

127

for m,n,p,q=1,...,N.
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10 A. SANDU AND M. GUNTHER AND S. ROBERTS

3.3. GARK-ROW order conditions. We represent the stage vectors and nu-
merical solutions of GARK-ROW methods (2.4) as NB-series (3.2) over TWy:

(3.12) k{2 = NB (a{q},yn) €R", yn+1=NB(¢,y,) €R.

Insert (3.12) into the stage equations (2.4a), and apply Theorem 3.6 and Theorem 3.8
to obtain:

N N
Q{Q} (t) - (D{Q} Z a{q,m} 0{m}> (t) + Z ,y{q,m} (L{q}e{m}) (t)

m=1 m=1

This leads to the following recurrence on NB-series coefficients:

0, t=10,
1, t=1p,
otal(t) = ijl (ZLI alem} gim} (tg)) , fort=[t,...,t]g, L>1,
Y et ~lemt gimd (¢, for t = [t1]g,
0, when root(t)  {@,@}-

Note that in sums of the form 22:1 ~tomt 9lmt (1)) a single term is nonzero, namely,
the one with m equal the color of the root of t;.

Inserting (3.12) into the solution equations (2.4b) leads to an NB-series representation
of the numerical solution given by (3.9). Equating the terms of the numerical solution
NB-series with those of the exact solution (3.3) leads to the following order conditions
theorem.

THEOREM 3.11 (GARK-ROW order conditions). The GARK-ROW method (2.4) has
order p iff:

L. for te Ty,
ot) =0 N for t € TWy with 1 < p(t) < p.
0, for t € TWn\Tn,

The procedure to generate the order conditions for GARK-ROS methods using the
recurrence (3.8) is illustrated in Table 2. The process is as follows:

e Roots of color ¢ are labelled bla};

e Nodes of color m with a round parent of color g are labelled al?™};

e Nodes of color m with a square parent of color ¢ are labelled 4™},

e The result of each subtree is an s-dimensional vector of NB-series coeflicients.
Obtaining these coefficients is done starting from the leaves and working
toward the root, as discussed for GARK-ROS methods.

We note that each node (except the roots) carries a label with two indices, first the
color of its parent, followed by its own color. Moreover, if all the nodes have the same
color then TWYy is the set of TW-trees, and the GARK-ROW order conditions give
the Rosenbrock-W order conditions. We have the following result.

THEOREM 3.12 (GARK-ROW order conditions). The GARK-ROW order conditions
(2.4) are the same as the Rosenbrock-W order conditions (1.5), except that the method
coefficients are labelled according to node colors. In the order conditions, in each
sequence of matrixz multiplies, the color indices are compatible according to matrix
multiplication rules.
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LINEARLY IMPLICIT GARK 11
The GARK-ROW order four conditions read:

(3.13a)  order 1: {b{m}T 10" =1, form=1,... N:

pimdT clmny — 1
(3.13b) order 2: 2

bl T glm.n} — form,n=1,...,N;
b{m} T (clmn} x clmphy = L plm} T glmn} elnpy = 1
6
(313C) Order 3: b{m} T fy{’mvn} C{nvp} = 0) b{m} T a{’mvn} g{nvp} =0,
bim} T yimn} ginp} — for myn,p=1,...,N;
(3.13d) order 4:
b{mT (clmn} x clmp} x clma}) — L T ((admnt clnrty x clmaby = 1)
bim}T qimn} (elnr} x elmady = L plm}T gdmin} glnp} clrat = L
24
p{m}T ((a{m,n} g{n,p}) % c{m,q}) =0, b{m}T,y{m,n} (c{n,p} % c{n,q}) =0,
bl T yimnt qinr} clrat = bt} T glmnt y{np} clrat =
bl T qlmnt ginp}t givat = bt} T ylmnt qinp} gipat — g,
b{m} T a{m7n} ,.y{n,p} g{p;Q} — 07 b{m} T Py{m’n} Py{nap} C{p:q} — O’
bim} T ydmnt y{np} giv.al — for m,n,p,q=1,...,N.

3.4. Internal consistency.

DEFINITION 3.13 (Internal consistency). A partitioned ROW method is internally
consistent if:

(3.14a) clmnt = glmnd g {n} = clm} for m,n=1,...,N,
(3.14b) glmnt = qlmnd gind — odmd  formn=1,...,N.

)

The order conditions simplify considerably for internally consistent partitioned ROW
methods.

Consider a non-autonomous additively partitioned system (1.1) where each component
£im}(t,y) depends explicitly on time. Transform it to autonomous form by adding ¢
to the state, and appending the additively partitioned equation for the time variable
t = 27Nn=1 rim} = 1. The stage computation of the GARK-ROS method (2.2a)
applied to non-autonomous system (1.1) reads:

(3.15)

N N
kit — pelad <l{q} t, +h Z clomt pimt 1l gy, + Z alemt @ k{m}>

m=1 m=1

N
+ (IS{Q} ® hJiq}) Z fy{q’m} ) k{m}

m=1

N
+ (l{q} ® h2 ft{q}(tn7Yn)) Z g{q,m.}»r{WL}7 q= 1, ey N.

m=1

If the internal consistency equation (3.14a) holds then the time argument of each
function evaluation is 119} ¢,,+h ¢17} and is independent of the (arbitrary) partitioning
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Lt Labels [ F(t) I o(t) € {1/~(1),0} |
[CT] o | | e
@ b
téw,l) b{m}T f;m} f{n} b{m}T a{m7n} ]l{n} = %
@) ~{mmn}
téw,Q) ’Y{ , L{m} f{n} b{m}T ,7{m,n} l{n} =0
m] pim
{m,p} {m.n}
’t<w’1) @ glm} (f{”} f{P}) p{m}T ((a{m,n} ][{n})
3,1 @ bimiT Y,y ) X(C\C{m’p} ]]_{p})) — %
® alrr)
m}T m,n
téqfé’l) @) qimn} fjm} f;n} £} pb{miT of{m.n} )
ol ey = 1
@ bimiT 6
©) ~in2}
téu;,Z) almn} fém} L{n} f{p} b{m}T a{mn}
' @ b ~lnr} {rt =
oz
(w,3) @) ~imn} {m} gln} e{p} b{m}T ,.y{m,n}
t 2l L fg ' f
> bi{m}T Y 'a{n)p} ]l{p} = O
®) {nr}
t:<;v2,4> o} L{m} {n} glp} bl T A {m.n}
7 m] ph{m}iT ’7{717[)} ]I{P} =0

TABLE 2
TWy trees of orders 1 to 8 for the GARK-ROW numerical solution. Square vertices of color v
correspond to L1V}, and round vertices to derivatives of £1¥}. A root of color m is labelled b{m}T
Nodes of color m with a round parent of color q are labelled a{9™} . Nodes of color m with a square
parent of color q are labelled 'y{q’m}.

of the time equation. Similarly, if the internal consistency equation (3.14b) holds then
the coefficient of the time derivative in the stage equation is g4} and is independent
of the partitioning of the time equation.

REMARK 3.2 (Non-autonomous formulation). For non-autonomous systems the GARKY
ROS method (2.2) computes the set of stages ki%} for process q using the formulation
(3.15) with 719 = 1 and 1™} = 0 for m # q. This is equivalent with consider-
ing a separate time variable for each process. The time argument of each function
evaluation in (3.15) is 119 t,, + hcl99 | and the coefficient of the time derivative
in the stage equation is gl®®. The same holds for GARK-ROW methods (2.4) on
non-autonomous systems.

4. Linear stability. Consider the scalar test problem

(4.1) y = )\{1}y+...+/\{N} y.
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Application of the GARK-ROS method (2.4) to (4.1) leads to the same stability
equation as the application of a GARK scheme. Using the notation (2.3) and defining
B=A+GeR** and

N
Amb = patmd = Z stmy 7= diag,,—; n {20 Ly } € RS,
m=1

we obtain y,11 = R(Z) y,, with
(4.2) RZ)=1+b" 1, —2zZB) ' Z1,=1+b"Z 1, -B2)"' 1,,

which equals the stability function of a GARK scheme with coefficients (B, b). The
following definition extends immediately from GARK to GARK-ROS schemes.

DEFINITION 4.1 (Stiff accuracy). Let e; € R® be a vector with the last entry equal to
one, and all other entries equal to zero. The GARK-ROS method (2.4) is called stiffly
accurate if

bT _ ez B RN b{‘I}T — eZ{N} ,B{N’q}, q= 17 . ,N.

For a stiffly accurate GARK-ROS scheme the stability function (4.2) becomes:

(4.3) R(Z)=z"el (z7'=B) ' 1,.

S

If diag(1/z1,...,1/2n—1,0) — B is nonsingular then R(Z) — 0 when 2y — oco. This
condition is automatically fulfilled for decoupled GARK-ROW schemes discussed in
subsection 5.1.

5. GARK-ROW multimethods. The GARK-ROS/GARK-ROW framework
allows to construct different types of multimethods. In the following we address
decoupled and linearly implicit-explicit (for short, LIMEX) GARK-ROW schemes,
as well as implicit/linearly implicit GARK methods arising from the GARK-ROS
framework.

5.1. Decoupled GARK-ROW schemes. Consider now an N-way additively
partitioned system (1.1). Application of a traditional ROW scheme solves a single
system with matrix I, —hy(L{} +. .. 4+ LIN}), The GARK-ROW scheme (2.4) applied
to the N-way partitioned system reads (2.4a):

(Isd — diag,{I,(p ® LI} . (G ® Id)) K= hF(]ls Ryn+A® K)

Yni1 =¥n +bT @ K,

k{1t £{1} (][{1} Qyn+ AT @ K)
: F = :

(5.1)
K =

k{N} £IN} (][{N} Ryn + AN @ K)
Equation (5.1) shows that the stage vectors are obtained by solving a linear system
of dimension sd that, in general, couples all components together. To increase com-

{a}

putational efficiency we look for schemes where each stage k}*’ is obtained by solving

a d-dimensional linear system with matrix I, — h*ng’q} Lie}. We call such methods
“decoupled.”
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14 A. SANDU AND M. GUNTHER AND S. ROBERTS

DEFINITION 5.1 (Decoupled schemes). GARK-ROW schemes (2.4) are decoupled if
they solve the stage equations implicitly in either one process or the other, but not in
both in the same time.

THEOREM 5.2. A method (2.4) is decoupled iff there is a permutation vector v (rep-
resenting the order of stage evaluations), and an associated permutation matriz V,
such that the matrices of coefficients (2.3) with reordered rows and columns have the
following structure: V is strictly lower triangular and G(v,v) =V GV is lower trian-
gular.

Proof. Stage reordering K — V@ K leads to linear systems (5.1) that are block lower
triangular; the argument of the right hand side function also involves a block strictly
lower triangular matrix of coefficients, and therefore (5.1) can be solved by forward
substitution. O

To illustrate how the property in Theorem 5.2 applies, consider the scalar formulation
of the stage computations (2.4a):

k{q} _ hf{q} yn + Z Za{%m} k{m} + Z Za{q ,m} k{m}

m=1j=1 m=q j=1
q %

FRL Y fem e Z Z%qm} m}
m=1 j=1 m=q+1 j=1

The stages are solved in the order ki{l}, . k{N} then k{_ﬂ, ey kffl}, etc. The com-
putation of stage ki{q} uses all kj{l},...,kj{ } for j < 7, as well as ki{l}, .. .,sz{qfl},
which have already been computed. Stage ka} is obtained by solving a linear sys-
tem with matrix I g — h’yig”} L{4}. Here we allow al®™} for m < ¢ to be lower
triangular and do not demand a strictly lower triangular structure.

REMARK 5.1. If the coefficient matrices v} are strictly lower triangular for all
£ # m then all implicit stages ky}, {=1,...,N, can be evaluated in parallel.

REMARK 5.2 (First special case). A first interesting special case arises when:

~ (lower triangular), m=1,...,q—1,

ylamy = ¢ 5 (lower triangular), m = q,
7 (strictly lower triangular), m=q¢g+1,...,N,
a (lower triangular), m=1,...,q—1,

alemt = (o (strictly lower triangular), m =g,
@ (strictly lower triangular), m =g+ 1,...,N.

The computations are carried out as follows:

i—1 N
K9 el [y, 4 ZO‘ (Z k{m}> + Zam K+ ( > kj{_m)
j=1

Jj=1 m=qg+1

i—1 N
AL ZV (Z K })+Z%,kaq}+2w,j< > ’%{-m})
j=1

m=q+1
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LINEARLY IMPLICIT GARK 15
REMARK 5.3 (Second special case). A second interesting case arises when:

(5.2a) a=a, =% (strictly lower triangular); blet=b vq, e=c.

The computations are carried out as follows:

i—1 i—1
j=1

j=1 m#q

7 1—1
+ h i Z%,j kg{q}JrZ%j <Zk}{M}> ;o og=1,....N,
1 j=1

= = m#q

s N
(5:20)  Yusr=yn+ 3 0 (Z kjm}).
i=1

m=1

Here (b, a,7) is a base Rosenbrock or Rosenbrock-W scheme, and (b,@,) are the
coupling coefficients.

The GARK-ROW order three conditions (3.13c) for methods (5.2) are as follows.
Both the base scheme (b, ¢, ) and coupling scheme (b, &,7) need to be order three
Rosenbrock-W schemes. The following third order coupling conditions are also needed:

(5.3) blag=bTag=bl~vg=bTFg=0.

Choosing 7 = 0 means that (b, @) is an explicit Runge—Kutta scheme, and only the
coupling equation b” &g = 0 needs to be imposed.

The GARK-ROS order four conditions (3.11) for methods (5.2) require that the base
and the coupling schemes are order four Rosenbrock methods. In addition, one needs
to satisfy the third order coupling conditions:

(5.4) b’ Be=b"Be=_,
as well as the fourth order coupling conditions:

b” ((a®) x ¢) = b ((@e) x c) = é
(5.5) _ _ _ _ _
b’ BBe=b"BBe=b"BBe=b" BBe=b" BBe=b"BRe= i
Choosing 7 = 0 further simplifies the coupling equations (5.4) and (5.5).

For decoupled GARK-ROS/ROW schemes the stability function (4.2) is rewritten
using the permutation matrix from Theorem 5.2:

(5.6) RZ)=1+Wb)T(VZV) 1, - VBY)(VZV) ' 1,.

The matrix VBV is lower triangular, with the diagonal entries equal to the diagonal
entries of G{™™}, The stability function (5.6) is a rational function of the form:

(p(z{l}’ ct Z{N})
I TS e iy

m=1 1=1 7,1

(5.7) R(Z)
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16 A. SANDU AND M. GUNTHER AND S. ROBERTS

5.2. IMEX GARK-ROW schemes. Consider now a two-way partitioned sys-
tem driven by a non-stiff component f1¥} and a stiff component f{1}:

(5.8) y =t (y) + £ ().

We consider a GARK-ROW scheme (2.4) applied to (5.8) that has the form:
(5.9) KB} — p £lE} (18 R yn +aBE @ kB 4 0Bl g k{I}),
(5.9Db) kD = p el (]13 @yn+ allB @ kB 4 ol g k{I})

+ (I, @ L) (V{IE} o kE 41D g k{I}) 7
(5.9¢) Ynil =¥n + b{ET @ Kk{E} + T ® k{I},

with alBFH B oL strictly lower triangular, and atbP} 4ALER A ALD Jower
triangular. The non-stiff component f{F} is solved with an explicit GARK scheme,
and the stiff component f{I} with a linearly implicit scheme.

For order three (b{E}, a{E’E}) needs to be a third order explicit Runge-Kutta scheme.
For arbitrary Jacobian approximations Lt} the scheme (b1}, a{l1} 4{L1}) has to be
a third order Rosenbrock-W method. In addition, assuming the internal consistency
(3.14a), the coupling order three conditions (3.13c) are:

BIE}T (B} {1} —

é BIEIT o (B} {1} _
(5.10) 6
6

)

BT G {LE} (B} _ bILT A {LE} o{E} _ (.

If the exact Jacobian is used, Lil} = J;{ZI}, then the implicit scheme needs to be a
third order Rosenbrock method, and the coupling conditions are:

(5.11) b{E}T (BT} o1} _ % b{UT GILE} o{E} _ é

When the exact Jacobian is used, for order four one needs (b{¥} afF:E}) to be a

fourth order explicit Runge—Kutta scheme, and (b{I},a{LI},'}/{LI}) to be a fourth
order Rosenbrock method. In this case the coupling order four conditions are:

b{EIT (@B} ell}) x ¢{BHy = 1 BT (LB} ¢{BH) ey = 1

8’ 8

)

bIEIT o (BI} (olhyx2 — L b7 GILE} (o{B}yx2 _ L

12’ 12’
(5.12) b{EIT o {EE} Q{EI} o{I} — i’ biEIT o {EI} 5{I,E} B} — §7
b{EIT o {E.I} ﬁ{I,I} el — i’ pi3T ﬁ{I,E} olBE} {E} i

1 1

b T 5{I,E} alBl oI} — o pi3T 5{1,1} 5{I,E} B} — o

REMARK 5.4. An interesting special case is when (5.9) uses:
Bl = BB} = (B} o {LE} — o {LI — {1}

(5.13) AALEY A 1 o g = a1 = alBh

In this case the method (5.9) couples an explicit Runge-Kutta scheme (b{F} aiF})
with a Rosenbrock (or Rosenbrock-W) scheme (b1} ot A1) For IMEX order p
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the explicit and the linearly implicit method need to have order at least p. For arbitrary
L} the p =3 GARK-ROW coupling conditions (3.13c) are:

(5.14) b{EIT B} gll} — g,
and the p = 4 the GARK-ROW coupling conditions (3.13d) simplify to
bEIT (alF} gll}) x ¢) =0, bEIT o {E} o {E} gl —

BT olE) ol g — L b{EIT o B} {1} ¢ _ g
(5.15) BT B} i1} g} — ¢ b{EIT B} 4 g} —

b7 ol P — L. b7 1) o {E} ¢ —

b o1} (B} g1} _ T {1} (B} {1} _

For LI} = J}{LI} the implicit part should be a Rosenbrock method of the desired order,
the third order coupling conditions read:

(5.16) b{EIT (B} g{l} — b7 g} g1} — o
and the fourth coupling conditions are:
bi{EIT ((a{E} g{l}) x¢) =0, b{ET q{E} q{E} g} —
{E}T ({E} gil} o — 1 {E}T o {E} g{I} o{I} _
(5.17) b at™ pe=_—, b at gt g 0,
b7 gl oiFl ¢ = 2714’ b7 gl oiE} I} —

REMARK 5.5. Another interesting special situation is when b1} = bl = b in (5.13),
in which case the scheme uses a single set of stages k = kil} + k{E},

The stability function (4.2) for an IMEX method (5.13) becomes:

(B} 17, _ o BE) _ o B T
_ E}T w{I}T] |# s — & * ’
(5.18) R=1+ [bIE}T p{17] { _B{LE) Z{I}_lIs—ﬁ{I’I}} []1]

where s = stE} = {1} In the limit of infinite stiffness 21} — —o0:

R— R{I}(OO) ey (b{E}T _p7rglLn-1 IB{I,E}> g1 <I _ a{E,I}IB{I,I}fl) 1.,
S — IS — z{E} (a{EvE} — a{Evl} ﬁ{lvl}_l ﬂ{LE})
The second term is zero for stiffly accurate methods. Also this favorable situation
arises when b{E} = b{l} and g{LE} = g{LI},

5.3. Implicit/linearly implicit GARK schemes. The GARK-ROS frame-
work allows to construct methods that are fully implicit in some partitions, and lin-
early implicit in other. For example, the explicit stage (5.9a) can be replaced by the

following diagonally implicit stage (note the upper bound of the oz;.{?’E} summation):
i i—1
E EE} , {E EI} {1
(5.19) O A P e el L A N bl
j=1 j=1

The order conditions discussed above for the overall scheme remain unmodified.
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18 A. SANDU AND M. GUNTHER AND S. ROBERTS

REMARK 5.6. By extension, one can construct GARK schemes that employ any com-
bination of explicit, diagonally implicit, and linearly implicit methods to compute the
stages associated with individual components.

Moreover, one can formulate the stages (5.19) as follows:

i i—1
{E} _ E {E.E} , {E} {E,I} . {I}

,J
j=1 j=1
i—1 i—1
Fn® (Sofenger 5o

j=1 j=1
. . ... {E} {E,E} . T
The computation remains explicit in k;™" when a; ; = 0, and diagonally implicit
when a;-{)ZE’E} > (0. The scheme no longer corresponds to either an explicit, or a

diagonally implicit, GARK method. However, this formulation shows the power of
the GARK-ROS framework to construct multimethods.

6. Solution of index-1 differential-algebraic systems. Consider the singu-
lar perturbation problem [13,15,27]

(6.1) x' = f(x,z), 7 = 'g(x,2),

where ¢ < 1. The Jacobian g, is assumed to be invertible and with a negative
logarithmic norm p (g,(x,2)) < —1 in an e-independent neighborhood of the solution.
Consequently, in the limit & — 0 the system (6.1) becomes an index-1 DAE [13,15,27]:

(6.2) x' = f(x,2), 0=g(x,2).

The initial values [x,,2z,] are consistent if g(x,,z,) = 0. By the implicit function
theorem the algebraic equation can be locally solved uniquely to obtain z = G(x).
Replacing this in the differential equation (6.2) leads to the following reduced ODE:

(6.3) x' = f(x,G(x)) = £ (x).
Applying the GARK ROS scheme (2.6) to (6.1) gives:
(6.4a) k=hf (xn + a7, + a7} e) F B0y P K+ Ry e,
(64b) L= hz’;‘_l g(xn + a{z,x} k7 Z, + a{Z,Z} E)

+he  go "k he T gy e,
(6.4¢c)  Xpy1 =%, + b Tk,
(6.4d) zp41 =2z, + b= T g,
where, with a slight abuse of notation, we omit the explicit representation of the
Kronecker products. The zero subscript means that the Jacobians are evaluated at

the current step solution, e.g., 8,0 = 82 (Xn, Zn)-
Taking the limit € — 0 changes (6.4b) into:

(65 0= g(xn +a9k, 2, + ol E) + 8o Y ko v L.
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The ¢-th derivative of (6.4a) at h = 0 is:

k@ =o;
kM = f(xp,2,); and

Ko =g 3 ot

(6.6)

ox™mQz™

0
m—+n>2

+qfyo 5{x,x} k(=1 4 A Ig{x,z} g(qfl)7
ZHHFZW:Q*L for ¢ > 2.
i=1 j=1

Taking the ¢-th derivative of (6.5) at h = 0 gives:

0=g

(Xn7zn);

0= 81 gao k) + 87 g, £1); and

0:

am+ng
o0x™m™Oz"

m+n>2

+ Blexd 8x/0 k(@ 4 glzz} 8200 iGN

m n
i+ vi=gq, forg>2
i=1 j=1

19

(...,a{x,x} K0 L atxt g )

(...7a{z7x} RCOIIPM D WICHINS )
0

Using the notation w{## = B1#2 =1 the second equation (6.7) gives:

0D = 72} (_g=1)

am+ng
) ox™moz"

z|0
m—+n>

+wl gld (—g 2l g0) K@,

0(...’a{z,x} k(m)’...7a{z7z}g(vj)’...),

We represent numerical solutions of GARK-ROW methods as NB-series over the set
DAT of differential-algebraic trees [13,15]. Let:

k =NB (0{"}, [Xp, Zn]> , £=NB (H{Z}, [Xn, Zn]> ,

X1 = NB (qb{x}, [Xn, zn]> , Zpy1 = NB (d){z}, [Xn, zn]) .

We have the following recurrences on NB-series coefficients:

0% (w) =0,

6% (1) =

Vu € DAT,,
0,
I,
(X019 1) (X100 ).
t= [tla R atrrwuh R aun]xa
Blrxrotd (),
Bl etat (uy),
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20 A. SANDU AND M. GUNTHER AND S. ROBERTS

and

67 (t) =0, Vte DAT,,

0, w=0,
017} () — wizz} ((Xizla{z,x}a{x}(ti)) X (ijla{z,z}g{z} (uj))) :
u:[tl,...7tm,u17...7un]z7 m+n227
w{zvz} ’B{LX} B{X} (tl)? u = [tl]z.

The final solutions (6.4c) and (6.4d) are represented, respectively, by NB-series with
the following coefficients:

1 t=10 1 u=1>0
{x} ) = ) B} {z} — 9 )
A0 {b{X}T 01} (1), otherwise. ¢ (W) {b{Z}T 017} (u), otherwise.

Equating the numerical and the exact solutions leads to the following.

THEOREM 6.1 (GARK-ROS order conditions for index-1 DAEs). The numerical so-
lution of the differential variable x has order p iff:

1
dUI () = SO for t € DATy, p(t) <p.

The numerical solution of the algebraic variable z,, has order q iff:

1
¢{Z} u)=—— forue DAT,, pu) <g.
W= (W

We form the stiff order conditions as follows:
1. Meagre roots are labelled by b¥*}7" and fat roots by b{#} T w{#2},
2. A meagre node with a meagre parent is labelled o} if it has multiple
siblings, and by B4} if it is the only child.
3. A meagre node with a fat parent is labelled a{#*} if it has multiple siblings,
and by 8%} if it is the only child.
4. A fat node with a meagre parent is labelled a™%} wi#7} if it has multiple
siblings, and 812} w %2} if it is the only child.
5. A fat node with a fat parent is labelled al#?} w{##} since it has multiple
siblings.
Based on this labelling, we form the stiff order conditions starting from the leaves and
working toward the root:
1. Multiply the label of each leaf by 1 (of appropriate dimension).
2. Each node takes the component-wise product of its children’s coefficients, and
multiplies it by its label.

REMARK 6.1 (Simplifying assumptions). We make the simplifying assumption:
(6.7a) pglext = glear o lea) gl — 1

This assumption allows to simplify the order conditions as in [15, Lemma 4.9, Section
VI.4]. Order conditions for trees where a fat vertex is singly branched (by the structure
of DAT trees, the child has to be meagre) involves products wizzt glext - The order
conditions for such trees are redundant. For example, (6.7a) can be imposed when the
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scheme computes each ki{x} before ki{z}. In this case one can have ot**} and {7}
lower triangular (with non-zero diagonals), such that their sum matches Bz},

Note that when a singly branched meagre vertex is followed by a fat vertex we have
products B9 w2} These trees are redundant when the following simplifying as-
sumption holds:

(6.7b) Bt = glesh = gl — 1

For example, (6.7b) can be imposed when the scheme computes each kz{z} before ki{x}.
In this case one can have o and v} lower triangular (with non-zero diagonals),
such that their sum matches 3%},

However, imposing both conditions (6.7a) and (6.7b) leads to the requirement that ki{z}

and kl{x} are computed together, therefore the resulting scheme is no longer decoupled.

Stiff order conditions for Rosenbrock methods, which compute a single set of stages,
benefit from both conditions (6.7) [15].

Following [15, Table 4.1, Section VI.4], the first DAT trees are shown in Table 3. Only
the trees remaining after the simplifying assumption (6.7a) is imposed are shown. We
have the following result.

THEOREM 6.2 (Algebraic order conditions for index-1 DAE solution). The algebraic
order conditions are as follows.

(6.8a) order 2 (z) : {b{Z}Tw{Z»Z} clexdx2 — 1.

b{Z}Tw{Z’Z} C{Z,X}XS =1,

(6.8b) order 3 (z) : { b1 Tw!=a ((al®) ety x clod) = 1
b{z}Tw{z,z} ((a{z,z} w{z,z} C{Z,X}XZ) X C{Z’X}) — 17

(6.8¢) order 3 (x) : {b{x}Tﬁ{x’Z} wlzzh clexd <2 = L

bixIT ((a{x,z} wlzeh cloxtx2) C{x,x}) =1
b{x}T I@{x,z} UJ{Z’Z} C{z,x}x3 — i’
BT glxa) gzl (clex}  (qlmx} glxady) —

b{X}T ﬁ{x,x} ﬁ{x’z}w{Z’Z}C{Z’X}X2 _ 1712

(6.8d) order 4 (x) : )
]

REMARK 6.2 (Special case IMEX method). For the IMEX GARK scheme with the
special structure discussed in Remark 5.4 the order conditions are as follows. The
algebraic order conditions for z are the ones of the implicit component. Thus, if the
implicit component has index-1 DAE order q for z then the IMEX GARK component
inherits this property. The index-1 DAE conditions for y are, for order three:

(6.9) bUIT oxh i ¢x2 = é,

and for order four:

b7 ((a{x} wlz} c*?) x c) = 1, bT ox} {7} X3 = 17

(6.10) 4 4
b=T o=} iz} (c x (a{z} c)) = 1 biIT o ix} o et ex2 = L
8’ 12

They are solved together with the classical order conditions (5.14) and (5.15).
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Lt Labels [ oY) [IRICH|
{z,x} {z,x}
(84 (0%
{z}T, {z,2} ~{z,x}%x2 1
Ug g vb{Z}Tw{sz} b w c
{z,x} a{z,x} a{z,x}
{z}T, {z,2} ~{z,x}%x3
Uz DT ) b w c 1
Bt
b{z}T {z,z} {z,x} o{x,x} %
uz,2 alzxt e gizx} @ c({("?f‘}) © ) 2
BT 2}
{z,x} {z,x}
< * bz} T {22}
us s a{é’x} . ((a{z,z} wizz} C{Z,X}X2) 1
BT (2.2}
Xc{z,x})
t371 b{x}T ﬁ{x,z} w{z,z} C{z,x}><2 3
o bixIT (C{x,x} % 4
(a{x,z} w{z,z} C{z,x} ><2)>
t472 b{x}T IB{X,Z} w{z,z} C{Z’X} X3 4
. bOIT Blxa} (s} (clon) .
4,3 (a{z7x} e{xtx}))
¢ ﬁ{&Z}w{Z’Z} b{x}T ﬁ{x,x} B{X’Z}‘ 19
44 ﬁ{x,x} 'w{Z7Z}C{Z’X}X2
b{xT

TABLE 3

DAT trees and order conditions for GARK-ROS numerical solution using the simplifying as-
sumption (6.7a). Follows [15, Table 4.1, Section VI.4].
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REMARK 6.3 (Order conditions for inconsistent initial values). Inconsistent initial
conditions g(Xn, zn) 7 0 lead to additional error terms in the numerical solution [15,
Table 4.2, Section VI.4]. These error terms correspond to solution derivatives that
contain —g;l(l) g(xn, 2zn) terms, and therefore to DAT trees that have fat leaves. Assume
that the inconsistency satisfies:

g5 g% 7)<

FEach tree corresponds to an error term due to the initial value inconsistency; the
number of fat leaves gives the power of § , and the number of meagre nodes the power
of h in the corresponding error term.

Let ol% == wl»2t 112} The first order conditions for z read:

(6.11a) 0(6) : b T ozt =1
6.11b O(hd) : b Tulzzh . (cloxd y qlz2d ol7h) =1
(6.11b) (hd) ,

and the first ones for x are:

(6.12a) O(hé) : bEIT glesd ole} —
(6.12b) O(h25) : bIT (clxxd x qixa} play = L

(6.12¢) O(h%5) : bPIT glxxd glesd ola) = %’

(6.12d) O(h%6) : bEIT ghosd gy lne) | (C{z,x} y a{z,z}o{z}) _ %

If the numerical solution satisfies all the additional order conditions (6.11) and (6.12)
then the (additional) local error in x due to inconsistent initial conditions is O(h35 +
hé?), and the local error in z is O(h?§ + 62).

7. Practical GARK-ROS methods. In this section we develop new linearly
implicit GARK methods up to order four.

7.1. Second order implicit/linearly implicit/explicit multimethod. Con-J]
sider the system (1.1) with N = 3 partitions where the first partition is nonstiff and
the other two are stiff. To showcase the flexibility of the linearly implicit GARK
framework, we develop a second order multimethod that combines an explicit Runge—
Kutta method, an implicit Runge-Kutta method, with a Rosenbrock method. In
particular, we use the implicit and explicit trapezoidal rules:

olo o olo o
c't ‘ AT 1 % % cPT ‘ AFT 111 o
T 1 1 E\T 1 1
‘ (b™) ‘ 3 3 ‘ (b"T) ‘ 3 3

as well as the stiffly accurate, L-stable Rosenbrock scheme with coefficients

“l%

0O 0 3 0 . T
aR082:|:1 0:|, ,7R052:|:1 ’y:|7 bRosQZ[l_,y ’Y] L oy=1-—

There are six « coupling matrices and two ~ coupling matrices to be determined for
this multimethod, which offers numerous degrees of freedom. We use the simplifying
assumptions of Remark 5.4 with a slight modification to ensure the fully implicit and
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linearly implicit stages are decoupled. The linearly implicit GARK scheme defined
by the tableau

AET AET AET 0 0 0

AT AT AET 0 0 0
A ‘G B QROS2Z o ROS2 QROS2 AROS2 AROS2 yROS2
bl ‘ o (bET)T (bIT)T (bR,OSZ)T ‘

maintains the second order of the base methods and is suitable for index 1 DAEs in
which the algebraic constraint is treated by the Rosenbrock partition. The implicit
and explicit trapezoidal rules share the same b, which allows us to use the combined
stage kl{Hz} = kl{l} + kZ{Q} as discussed in Remark 5.5. Note that when f{2}(y) =0,
the method degenerates into a two-way partitioned IMEX GARK-ROS scheme which
we refer to as IMEX-ROS22.

7.2. Third order IMEX GARK-ROW schemes. We explore IMEX GARK-
Rosenbrock-W methods that are suitable for index-1 DAEs and are equipped with an
embedded method for error estimation and control. The special cases described in
Remarks 5.4 and 5.5 are used to reduce the number of coefficients and order conditions.
We first consider the case when s{E} = s{I} = 4. For the base Rosenbrock method, we
enforce traditional ROW and DAE order conditions up to order three. Similarly, the
explicit base method must satisfy Runge-Kutta order conditions up to order three.
These base methods share the embedded coefficients b, which must give a solution of
order two. To form an IMEX pair, the coupling condition (5.14) and DAE coupling
condition (6.9) are imposed. There are still several free parameters left after solving
these order conditions, and in our method derivation procedure, they are used to
optimize the stability and principal error. Our method, IMEX-ROW3(2)4, pairs the
explicit Runge-Kutta scheme

0 0 0 0 0
2y 2y 0 0 0
y+1 157 103y 5 15~ 87~/
(7‘13‘) : 817 +1117 220 o +o 442 1067 22 ’
1 272+130+544 16+7_372 7 17 17 0
_527%+12(]79;+156 %_&+E 407 _;,_M_ﬁ _%—F%_%G

with an L-stable Rosenbrock-W method with coefficients

0 0 0 0
2y 0 0 0
- _972 1157_@ 9% 99y | 35 )
+ 32 8 3 +353 ) 0 0
97 _ 197 31 _ 9> 13y _ 3 49 _ 16y | 22
34 + &8 st3 1 17 1w Ti o
(7.1b)
y 0 0 0
—2v ¥ 0 0
7 3 P
'y _ 1077 33 3y 57y _ 21
2 +3 + 32 v 0
97 9 T 2 427 1007 27
7t 1 37" =8y +2 + w7

where v & 0.44 is the middle root of 643 —18v2+9y—1 = 0. The b and b coefficients
n (7.1b) are the same as in (7.1a). Thanks to the stiff accuracy of the Rosenbrock
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691
692
693
694
695
696
697
698
699
700
701

method, (6.11a) is satisfied as well; however, we were unable to cancel higher order
error terms for inconsistent initial conditions.

We also derive a third order scheme with stF} = s{I} = 5 as it affords a smaller
7vi,; and sufficient degrees of freedom to satisfy (6.11b) and (6.12a), thus eliminating
errors associated with inconsistent initial values up to O(hd). On top of the simplifying
assumptions and order conditions used with four stages, we take alF} = all}, such
that the method looks like an unpartitioned Rosenbrock-W method with L = f){,l}.
For DAEs however, one cannot expect a general Rosenbrock-W method to attain full
order when the Jacobian of f{#} is used; the order condition (6.9) is required for this.
Based on the aforementioned constraints, our five-stage method, named IMEX-ROW3(2)5,Jj
has the coefficients

0

1

2
!B} — i1} — | 5062

13725
173067

4088
13725
495828

24705

636265
30859

636265 127253

5225
21024
_ 407

2190
6039
1672

_ 127253

210240

1

183

262800 21900 146 0 L 1
1 9095
0 0 0 539616
27387
56210
421083
359744
812861
770830
117
308

=
o

_ 4762 o
13725 13725
156792  _ 685353 82350 1
636265 636265 127253 i
22969 _ 3523 183 _ 18179

175200 21900 1672 70080

1]

IS4

=
S|ee
N -
(=]

[N -]

When viewed as an unpartitioned Rosenbrock-W method, IMEX-ROW3(2)5 is stiffly
accurate and L-stable.

7.3. Fourth order IMEX GARK-ROS scheme. Order four introduces sig-
nificantly more order conditions, and it appears six stages is the minimum required
for an IMEX GARK-ROS scheme that is suitable for index-1 DAEs and includes an
embedded method. For the base ROS method, classical and DAE order conditions
up to order four are necessary, but we include ROW order conditions up to order
three as well. The base Runge-Kutta method uses Butcher’s first column simplifying
assumption D(1) [7], which leaves fives order conditions to achieve order four. With
Remarks 5.4 and 5.5, the IMEX coupling conditions are (5.14) and (5.15), and the
DAE coupling conditions are (6.9) and (6.10). The embedded method, with coeffi-
cients B, must satisfy all these order conditions to one order lower. We solve the order
conditions and use remaining free coefficients for tuning stability and principal error.
The final method, IMEX-ROS4(3)6, pairs the explicit Runge-Kutta scheme

705
706
707
708
709
710
711
712
713
714
715

716

0 0 0 0 0 0 0
1 1
5 3 0 0 0 0 0
9 4761 2592
10 11050 5525 0 0 0 0
2 3779 12931 5 0 0 0
717 5 99450 44200 72
5 _ 9468553 18193697 _ 92843 1352 0 0
6 45647550 30431700 413100 2025
1 5613193 261179 18091 _ 13609 153 0
5967000 884000 108000 19500 520
113 37 125 125 459 1
720 96 288 624 1040 4
433321 121913 _ 25667 6024 965889 1531
3204900 569760 1025568 15431 6172400 11870
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with the stiffly accurate, L-stable Rosenbrock scheme with coefficients

0 0 0 0 0o o0 1 0 0 0 0o o0
1 1 1
i 0 0 0 0o o0 -3 1 0 0 o o0
87 39 _ 183 57 1
o= | 1O 140 0 0 o0 y= 700 700 1 0 o0
_ 331 17 1 0 o ol 257 _ 731 _ 1 1 o 0
1260 28 is 700 1400 8 1
84025 _ 755 _ 425 4225 33925 45835 2725 1300 1
231336 9639 1944 5508 231336 77112 16524 1377 4
1091 29 145 545 153 _ A7 25 _ 65 335 153 1
L 2160 32 864 624 520 O L ~135 1s 108 312 1040 4

8. Numerical Experiments. In this section, we present the results from two
numerical experiments that verify the linearly-implicit GARK order condition theory
and the convergence properties of the methods derived in section 7.

8.1. Brusselator reaction-diffusion PDE. The problem BRUSS from [15, pg
148], is a one-dimensional reaction-diffusion problem governed by the equations

ou 0*u o 0%
8.1 — = 2y — - - = — 2 Z -
(8.1) T A+uv (BJrl)quO‘axQ’ 5 Bu qurozaxQ,

with A =1, B = 3, and o = 1/50. The spatial domain is « € [0,1] and the time
domain ¢t € [0, 10] (units). The boundary and initial conditions are

u(lx =0,t) =u(z=1,t) =1, v(z =0,t) =v(z=1,t) = 3;
u(z,t =0) =1+sin(27x), v(z,t =0) =3.

Second order central finite differences are applied to discrete the spatial dimension on
a uniform grid with N = 500 interior points.

The stiffness in (8.1) primarily comes from the diffusion terms. Therefore, we treat
them linearly implicitly and the remaining reaction terms explicitly. For each of the
four IMEX scheme of section 7, we compute the numerical error for a range of ten step
sizes. Error is measured as the two-norm of the difference of the numerical solution
and a highly accurate reference solution at t = 10. The converge plots are shown in
Figure 1. In all cases, the numerical orders of convergence match the theoretical ones.

8.2. ZLA-kinetics problem. The ZLA-kinetics problem is a nonlinear index-
1 DAE modelling the reaction of two chemicals as carbon dioxide is added to the
system. A detailed description of this problem and its origin is provided in [26]. It is
governed by the following five differential equations and one algebraic constraint:

Y1 = —27r1+ 712 — 13— T4, yé=—%h—r4—%7"5+Fim
(8.2) ys =11 — 719 + 13, Yy = —ro+1r3—2ry4,
Ys =12 — 13+ 15, 0=Ksy191 — ¥Ye-

The auxiliary variables and parameters are defined as:

1=k yfy;/z, T = k2 Y3 Y, r3 = (k2/K) y1 ys,

ra = ks y1 v, rs=kiydyy, P = kA (p(CO)/H — y2),
ki = 18.7, ko = 0.58, ks = 0.09,

ks = 0.42, K =344, kiA = 3.3,

K, = 115.83, p(COy) = 0.9, H = 1737.
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—e— IMEX-ROS22 —m— IMEX-ROW3(2)4

—e— IMEX-ROW3(2)5 —+— IMEX-ROS4(3)6
T 17T T T T T T T T T T T T T E
107" ¢ ]
5 107}
g i 2 §
SRUNE E
107} ]
:\ | L1 \ Lo Lo i

102 10* 10°
Steps

Fic. 1. IMEX convergence results on the Brusselator problem (8.1).

752 The system is integrated from ¢ = 0 to ¢t = 180 starting from the initial value
753 y(t=0)= [0.444 0.00123 0 0.007 0 Ksyo. y074]T,
which is consistent with the algebraic constraint.

ot
Tt

We use the ZLA-kinetics problem to verify DAE convergence properties of the IMEX
methods proposed in section 7. In the numerical experiment, the differential vari-
ables are treated explicitly, while the algebraic variable is treated linearly implicitly.
Figure 2 plots the error versus the number of steps taken to solve the DAE. Like the
Brusselator experiment, error is measured in the two-norm with respect to a reference
760 solution. All methods achieve their theoretical orders of convergence.

© o

‘I b B B B B e |
ol Ot Ul gt Ot C
N

—e— IMEX-ROS22 —m— IMEX-ROW3(2)4

—eo— IMEX-ROW3(2)5 —*— IMEX-ROS4(3)6
r T T T T T T T T T I —
1079 £
10710 | .
.| é
—11 | -
SR \ K X
1012 4 |
10713 |
£ | | | L1l \E

104 10° 10°
Steps

F1G. 2. IMEX convergence results on the ZLA-kinetics problem (8.2).
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9. Discussion. This paper constructs new families of linearly implicit multi-

methods. The authors’ GARK framework extends traditional Runge-Kutta schemes
to multimethods suitable for the discretization of multiphysics systems. In a similar
vein, the GARK-ROS/GARK-ROW framework extends traditional Rosenbrock/Ro-
senbrock-W schemes to multimethods.
A general order conditions theory for linearly implicit methods with any number of
partitions, using exact or approximate Jacobians, is developed using B-series over the
sets of T trees (for exact Jacobian) and TWy trees (for inexact Jacobians). Order
conditions for the solution of two-way partitioned index-1 differential-algebraic equa-
tions are developed using B-series over the set of DAT trees. We use the framework
to develop decoupled linearly implicit schemes, which treat implicitly one process at a
time; linearly implicit /explicit methods, which treat one process explicitly and one im-
plicitly; and linearly implicit/explicit/implicit methods that discretize some processes
with Rosenbrock schemes, other with diagonally implicit Runge-Kutta schemes, and
other with explicit Runge-Kutta schemes. Practical GARK-ROS and GARK-ROW
schemes of orders two, three, and four are constructed.
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