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ABSTRACT

We present a new method for the numerical solution of the radiative-transfer equation (RTE)
in multidimensional scenarios commonly encountered in computational astrophysics. The
method is based on the direct solution of the Boltzmann equation via an extension of the
Lattice Boltzmann (LB) methods and allows to model the evolution of the radiation field
as it interacts with a background fluid, via absorption, emission, and scattering. As a first
application of this method, we restrict our attention to a frequency independent (“grey”)
formulation within a special-relativistic framework, which can be employed also for classical
computational astrophysics. For a number of standard tests that consider the performance of the
method in optically thin, optically thick and intermediate regimes with a static fluid, we show
the ability of the LB method to produce accurate and convergent results matching the analytic
solutions. We also contrast the LB method with commonly employed moment-based schemes
for the solution of the RTE, such as the M1 scheme. In this way, we are able to highlight
that the LB method provides the correct solution for both non-trivial free-streaming scenarios
and the intermediate optical-depth regime, for which the M1 method either fails or provides
inaccurate solutions. When coupling to a dynamical fluid, on the other hand, we present the
first self-consistent solution of the RTE with LB methods within a relativistic-hydrodynamic
scenario. Finally, we show that besides providing more accurate results in all regimes, the LB
method features smaller or comparable computational costs compared to the M1 scheme. We
conclude that LB methods represent a competitive and promising avenue to the solution of
radiative transport, one of the most common and yet important problems in computational
astrophysics.

Key words: radiative transfer – radiation: dynamics – neutrinos – scattering – methods:
numerical

1 INTRODUCTION

The proper treatment of the dynamics of radiation, as it interacts
with a matter fluid, is a fundamental problem in essentially all
astrophysical phenomena and requires the solution of the radiative-
transport equation (RTE). Given the complexity of the RTE and the
nonlinear regimes normally encountered in astrophysical scenarios,
the inclusion of radiative effects inevitably commands the use of
advanced numerical methods to solve the RTE.

⋆ weih@itp.uni-frankfurt.de

An important and representative example is a binary system of
merging neutron stars (see Baiotti & Rezzolla (2017); Paschalidis
(2017) for an overview), where the radiative transport of neutri-
nos can alter significantly the chemical composition of the ejected
matter, the efficiency of its ejection, as well as the stability of the
post-merger object. Furthermore, radiative-transport effects are ex-
pected to play a fundamental role in the produced kilonova signal
(Rosswog et al. 2014; Dietrich & Ujevic 2017; Siegel & Ciolfi
2016; Bovard et al. 2017; Perego et al. 2017; Fujibayashi et al.
2018; Siegel & Metzger 2017; Fernández et al. 2019) and might
even be relevant for producing a short gamma-ray burst associated
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with such a merger. An equally important astrophysical scenario
where radiation transport plays a fundamental role is the one ex-
plored in simulations of neutrino-driven core-collapse supernovae
(Mezzacappa et al. 2001; O’Connor 2015; Just et al. 2015; Kuroda
et al. 2016), where the radiation in form of neutrinos is essential for
the explosion mechanism, which may require a fine balance, of the
order of a few percent, between the energy deposited in the stalled
accretion shock and the release of potential gravitational energy
by the collapsing matter (see Janka et al. (2007) for an overview).
Finally, one more classical astrophysical scenario where radiative-
transfer effects cannot be ignored is the study of accretion flows
around black holes (Zanotti et al. 2011; Fragile et al. 2012; Roedig
et al. 2012; Sa̧dowski et al. 2013; McKinney et al. 2014), for which a
broad array of techniques has been developed over the years to com-
pare with the observations (Event Horizon Telescope Collaboration
et al. 2019).

Unfortunately, the computational cost associated with the so-
lution of the RTE in numerical astrophysics also represents a sig-
nificant obstacle to the inclusion of radiative effects in numerical
simulations. This is due to the properties of the fundamental equa-
tion behind the RTE, i.e., the Boltzmann equation for massless
particles, which lives in a seven-dimensional space of time (one
dimension), configuration space (three dimensions) and momen-
tum space (three more dimensions). As a result, the solution of
the RTE for typical astrophysical scenarios as the ones mentioned
above exceeds the current capacities of supercomputers and thus
approximate methods have to be used1.

A low-order approximation commonly employed in binary
neutron-star simulations is the leakage scheme (Ruffert et al. 1996;
Rosswog & Liebendörfer 2003; Galeazzi et al. 2013; Perego et al.
2014; Most et al. 2019), which only allows for cooling via the
emission of neutrinos and is therefore not useful for core-collapse
supernovae simulations, where heating is essential for reviving the
shock. These effects can be included by an approximation of simi-
lar simplicity, the flux-limited diffusion approximation (Pomraning
1981; Levermore & Pomraning 1981); a recent implementation of
this scheme has been presented by Rahman et al. (2019). In this
method, the zeroth moment of the radiation distribution function,
i.e., the radiation energy-density, is evolved together with the fluid
quantities. Since the zeroth moment does not provide any informa-
tion about the direction of the radiation fluxes, its implementation
is useful only for systems with clear underlying symmetries. These
symmetries are not present in the case of binary neutron-star sim-
ulations, so the flux-limited diffusion does not offer but a crude
approximation of the radiative effects. This is also true for the M0
scheme developed by Radice et al. (2016), which also evolves the
lowest moment of the distribution function, but in the free-streaming
limit.

A considerably better approximation is the so-called truncated
moment-based scheme developed by Thorne (1981) and first im-
plemented in general relativity by Rezzolla & Miller (1994) in one
dimension and by Shibata et al. (2011); Cardall et al. (2013) in
three dimensions. Within these schemes, the lowest moments up
to order N of the distribution function are evolved, and the flux-
limited diffusion method is then the limiting case for N = 0 of
the general set of moment-based schemes. Increasing the order of
the hierarchy to the case with N = 1 implies that the momentum-

1 In some cases the direct solution of the Boltzmann equation is indeed
feasible by exploiting symmetries and reducing the spatial dimensionality
of the problem.

density vector is evolved together with the radiation energy density.
Such a scheme is known in the literature as “M1 scheme” and is in-
deed one of the most commonly used methods for radiative transport
throughout many different applications of computational relativistic
astrophysics (Rezzolla & Miller 1994; Roedig et al. 2012; Sa̧dowski
et al. 2013; Fragile et al. 2014; McKinney et al. 2014; O’Connor
2015; Foucart et al. 2015; Skinner et al. 2019; Melon Fuksman &
Mignone 2019; Weih et al. 2020). With this method, it is possible to
track the average direction of the radiation momentum, providing
a significant improvement over the previously mentioned schemes,
but can still lead to rather unphysical results such as those that
emerge when radiation beams interact and cross (see e.g., Fragile
et al. (2014); Foucart et al. (2015); Weih et al. (2020). Furthermore,
as is typical in moment-based schemes, in the M1 approach the
set of evolution equations for the zeroth and first moment depend
on the second moment, which is not known within this hierarchy
scheme and has to be approximated in the form of a closure relation.
This results in the M1 scheme only being exact in the limits of high
and/or low optical depths, but not in the intermediate regime. The
situation does not improve when going to methods with N > 1,
which suffer from increased computational costs and also need to
specify a closure relation that expresses the N + 1 moment in terms
of the lower-order ones.

A more accurate solution of the RTE is offered by a com-
pletely different class of methods employing Monte-Carlo tech-
niques for the handling of the radiation field (Foucart 2018; Miller
et al. 2019), which, however, suffer from low-statistics numerical
noise and a comparatively high computational cost. To summarise,
state-of-the-art numerical solutions of the RTE in computational rel-
ativistic astrophysics revolve around two main classes of methods:
i) approximate methods based on the laws of hydrodynamics (such
as leakage, flux-limited diffusion, M1) or ii) direct solutions for spe-
cific cases where symmetries can be exploited (such as Monte-Carlo
approaches to the solution of the Boltzmann equation).

The scope of this paper is to introduce a new method for the
solution of the RTE and hence for the treatment of radiative effects
in computational astrophysics that promises to be more precise
than the M1 scheme, providing a correct treatment of intersecting
radiation beams and an accurate treatment of regimes of high, low,
and intermediate optical depths. At the same time, it comes with
an algorithmic complexity and an associated computational cost
comparable to that of M1 schemes, thus making it well suited for
multi-dimensional astrophysical simulations.

In essence, this new radiative-transport scheme stems from the
Lattice Boltzmann method (LB method) (Krüger et al. 2017; Succi
2018), which is commonly used in computational fluid dynamics as
an alternate scheme to direct hydrodynamic solvers.

The application of the LB method as a solver for radiation
transfer problems is relatively new (Asinari et al. 2010), and most
models proposed so far apply only to the analysis of steady-state
radiation-transport problems in one and two dimensions (Bindra
& Patil 2012; Mishra et al. 2014; McCulloch & Bindra 2016; Yi
et al. 2016), with very few studies carried out in three dimensions
(McHardy et al. 2016; Wang et al. 2019). More recent develop-
ments (Mink et al. 2020) have shown in detail that LB offers an
accurate and efficient tool in the diffusive regime of radiation trans-
port, though struggling in the transition towards ballistic conditions.
Finally, we should stress that all these previous studies deal with
radiative transfer in non-relativistic regimes.

We introduce a new LB solver for studying the time dependent
evolution of radiation that interacts via emission, absorption and
scattering with a (dynamic) background fluid. We make use of
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high-order spherical quadrature rules, which, thanks to their high-
order isotropy, allow to significantly extend the applicability of the
method to a wider range of kinetic regimes. We work in a special-
relativistic framework and present, to the best of our knowledge, the
first self-consistent coupled simulation of an LB solver for radiative
transport with a dynamically evolving fluid background.

Our paper is structured as follows: in Sec. 2 we present a short
summary and introduction of the classical LB method and discuss
its advantages, which make it ideal for radiative-transport problems
in computational astrophysics. In Sec. 3 we illustrate the details of
the new LB method for radiative transport in special relativity and
within a “grey” (i.e., energy averaged) approximation and show how
to implement such a scheme suitably for simulations. We verify this
implementation by a number of standard tests in Sec. 4. In Sec. 5
we couple our new LB-code to a hydrodynamics code, which is
representative of the many relativistic-hydrodynamics codes used
in the field of numerical astrophysics, and present a simulation of a
relativistic jet; we show that its dynamics changes qualitatively due
to the back-reaction of the produced radiation. Finally, we compare
its accuracy and computational cost to the commonly used M1
scheme in Sec. 6. We conclude and discuss future prospects of our
new method in Sec. 7.

Throughout this paper, we use units with c = 1 and only write
the speed of light explicitly in equations where it is necessary for
clarity. We write three-vectors in boldface while unit-vectors carry
a hat.

2 A SHORT INTRODUCTION TO LATTICE

BOLTZMANN

In this section we provide a brief overview of the LB method.
The reader already familiar with the topic may safely jump directly
to Sec. 3. We should stress that, for ease of presentation, in this
section we will summarise the conceptual steps of the derivation
and algorithmic structure of LB in a non-relativistic framework.
For details on the derivation of the method in special-relativity, the
interested reader is refereed to a recent review (Gabbana et al. 2020).

The LB method has emerged in the past decades as a compu-
tationally efficient numerical tool for the simulation of the dynamic
of fluids in classical hydrodynamics. Its origin can be traced back to
the pioneering work on discrete velocity models (Broadwell 1964)
in the 1960s and later on to the work done on Lattice Gas Cellular
Automata (Hardy et al. 1973; Frisch et al. 1986) in the late 1980s.
Since then, the method has evolved as an independent and efficient
alternative to direct Navier-Stokes solvers in the field of classical
computational fluid dynamics (McNamara & Zanetti 1988; Higuera
et al. 1989) and allied disciplines, primarily soft matter (Succi 2015;
Dünweg & Ladd 2009).

Contrary to direct hydrodynamic solvers, the LB method relies
on the underlying microscopic dynamics of the fluid constituents –
be them molecules or photons – and therefore the natural theoretical
framework to start approaching the method is kinetic theory and
its mathematical cornerstone, the Boltzmann equation (here taken
without source terms):
(
∂

∂t
+ 3 · ∇

)
f (r, 3, t) = C(r, 3, t) . (1)

The distribution function f (r, 3, t) refers to the number of parti-
cles with velocity 3 at position r at time t, while the collision
operator C(r, 3, t) accounts for collisions between point-particles
in the fluid and in Boltzmann’s theory takes the form of a non

local integral in momentum space. It is customary to replace the
full collisional operator with a simplified model, such as the well-
known Bhatnagar-Gross-Krook (BGK) relaxation time approxima-
tion (Bhatnagar et al. 1954), encompassing the natural tendency of
the system to relax towards an equilibrium, i.e., the tendency of f

to reach a distribution function f eq describing a local equilibrium
state

C(r, 3, t) = −1

τ
( f (r, 3, t) − f eq(r, 3, t)) . (2)

In the above, τ represents the typical timescale needed to reach the
equilibrium, a parameter which controls the hydrodynamic transport
coefficients, hence dissipative phenomena within the fluid.

For a classical fluid with massive constituents, the equilibrium
function is represented by the Maxwell-Boltzmann distribution (see,
e.g., Rezzolla & Zanotti 2013)

f eq(r, 3, t) = ρ(r, t)
(

m

2πkBT

) d

2

exp

[
− m

kBT
(3 − u(r, t))2

]
, (3)

where m is the mass of constituent particles and kB is the Boltzmann
constant. The rest-mass density ρ(r, t) and the velocity field u(r, t)
can be computed as the zeroth and first moment of the distribution
function, respectively,

ρ(r, t) := m

∫
f (r, 3, t)d3 , u(r, t) :=

m

ρ(r, t)

∫
3 f (r, 3, t)d3 .

(4)

Historically, the LB method was devised as a noise-free (pre-
averaged) version of its lattice-gas cellular automaton (LGCA) an-
cestor (McNamara & Zanetti 1988). This represented a major con-
ceptual leap, but left all other LGCA shortcomings untouched, pri-
marily the exponential complexity barrier associated with Boolean
collision operators and the ensuing low collisional rates which pre-
vented LGCA from accessing high-Reynolds regimes (turbulent
flows). All of the above barriers were lifted just months later in a
short sequence of papers (Higuera et al. 1989; Higuera & Jiménez
1989; Higuera & Succi 1989), which placed LB on the map of
computational fluid dynamics.

For the sake of simplicity and continuity with continuum ki-
netic theory, it proves expedient to derive LB from the expansion of
the equilibrium distribution in a series of orthogonal Hermite poly-
nomials H (k)(3); the advantage of using Hermite as the expansion
basis is that the expansion coefficients a(k) coincide with the mo-
ments of the distribution function (Grad 1949a,b). The expansion
is then truncated to the desired order S, high enough to recover the
macroscopic observables of interest (Shan & He 1998; Shan et al.
2006).

In d dimensions, this results in the following local equilibrium
distribution function:

f eq
=

(
1

2π

) d

2

exp

(
− 3

2

2

) S∑

k=0

a(k)(ρ, u)H (k)(3) , (5)

where all physical quantities have been made dimensionless by
appropriate scaling with respect to a characteristic velocity c̃ :=√

kBT0/m0, a characteristic temperature T0, a mass unit m0, and a
length scale L0. Furthermore, the (microscopic) velocity vector of
phase-space is discretized using a set of Npop distinct populations
3i with i ∈ [1; Npop]. As a consequence, the distribution f itself be-
comes a set of Npop functions fi(r, t) = f (r, 3i, t), each accounting
for the particles moving along the discrete direction 3i .

The choice of the discrete velocities lies at the heart of the LB
method, the informing criterion being of reproducing exactly the set
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of kinetic moments which describe the low-Knudsen hydrodynamic
regime, namely the mass density (scalar), the flow current (vector)
and the momentum flux tensor (second-order tensor). In the above,
"exactly" means that no error altogether is incurred by replacing the
integrals in continuum velocity space with the corresponding sum-
mations over the discrete velocities which characterise the LB rep-
resentation. Formally, this can be linked to a Gauss-Hermite quadra-
ture rule, where one defines 3i , and the corresponding weights wi ,
and requires exact preservation of the relevant hydrodynamic fields.
In equations:

ρ(r, t) =
Npop∑

i=1

fi(r, t) , u(r, t) = 1

ρ(r, t)

Npop∑

i=1

3i fi(r, t) , (6)

with the truncated equilibrium distribution Eq. (5) given by

f
eq
i
= wi

S∑

k=0

a(k)(ρ, u)H (k)(3i) . (7)

The combination of the velocity discretization with explicit time-
marching finally delivers the lattice Boltzmann equation:

fi(r + 3i∆t, t + ∆t) = fi(r, t) + ∆tCi(r, t) , (8)

with ∆t the time-step, ∆x = 3i∆t the characteristic mesh spacing,
and

Ci =
1

τ
( fi − f

eq
i

). (9)

The evolution of Eq. (8) follows the so-called “stream-and-collide”
paradigm, where in the “collide step” each population fi(r, t) is
updated by receiving a local collisional contribution:

f ∗i (r, t) = fi(r, t) + ∆tCi(r, t) . (10)

In the streaming step, instead, the post collision populations f ∗
i
(r, t)

stream along their associated direction 3i , landing on the corre-
sponding neighbouring lattice site (no particle can fly off-grid):

fi(r + 3i∆t, t + ∆t) = f ∗i (r, t) . (11)

Two major assets associated to the stream-collide paradigm
are worth highlighting. First, the non-local operator (streaming) is
linear and the nonlinear one (collision) is local, meaning that, at
variance with the hydrodynamic representation, non-linearity and
non-locality are disentangled. This is because information always
travels along constant characteristics, the discrete velocities, regard-
less of the spacetime complexity of the emergent hydrodynamics. By
contrast, in the fluid representation, information travels along space-
time dependent material lines, defined by the local flow speed. This
is a major advantage also for the handling of complex boundary
conditions and parallel computing.

Second, since dissipation emerges from enslaving of the Boltz-
mann distribution to local equilibrium, there is no need for second
order spatial derivatives. This is a significant advantage for the cal-
culation of the stress tensor, especially near solid boundaries. In
addition, since the collision operator is conservative to machine-
accuracy, the LB method usually offers better accuracy than most
grid-based discretisations of the Laplace operator.

The standard LB method described so far is suitable for the
description of hydrodynamic systems, where the molecular mean
free path is much shorter than the shortest hydrodynamic length
scale, the ratio of the two being the Knudsen number of the fluid.
On the other hand, for a fluid of radiation particles, e.g., photons or
neutrinos, one should bear in mind that the radiation constituents

do not interact among themselves, but only with the background
fluid, which effectively produces, destroys, and scatters the radia-
tion particles. Hence, when applying the LB method to radiation
local conservation laws must be revisited and complemented with
suitable source (sink) terms, accounting for the above processes.
In particular, energy and momentum are conserved only over the
combined system of radiation and fluid.

This still fits within the LB framework, which has been used for
decades to study transport phenomena, such as advection-diffusion-
reaction equations, (Massaioli et al. 1993; He et al. 1998; Peng
et al. 2003; Karlin et al. 2013). Based on this idea, several LB
models have been proposed to study radiative transport. Initially
most of these efforts have focused on studying steady-state problems
in one and two spatial dimensions (Asinari et al. 2010; Bindra
& Patil 2012; Mishra et al. 2014; McCulloch & Bindra 2016; Yi
et al. 2016), considering isotropic as well as anisotropic scattering
(Vernekar & Mishra 2014). So far, however, only very few authors
have considered the three-dimensional case (McHardy et al. 2016;
Mink et al. 2020).

All the models mentioned above discretize the velocity space
by means of standard space-filling lattices, typically used in LB
methods. As a consequence, information travels in a single timestep
to nodes located at different distances, corresponding to a differ-
ent magnitude of the discrete velocities, a typical example being
the two-dimensional nine-velocity lattice comprising a rest particle
with zero speed, four particles connecting to the nearest neighbours
(speed 1) and four connecting the diagonals (speed

√
2). The lat-

ter are mandatory to the correct recovery of the two-dimensional
Navier-Stokes equations, but not necessary (albeit recommended for
matters of accuracy) for the case of advection-diffusion equations,
a property which can be transferred to radiative LBEs (Gairola &
Bindra 2017; Wang et al. 2019). The obvious drawback is that such
models are appropriate only for collision-dominated, low-diffusive,
regimes, while higher-order models based on extended velocity sets
are required to describe the transition from low to high diffusivity
and finally towards the free-streaming (ballistic) regimes.

In the following, we introduce a new LB method which is
precisely meant to address this important issue. In particular, we
employ high-order spherical quadratures to provide a unified nu-
merical RTE solver, capable of handling both low and high diffusive
regimes, up to the free-streaming scenario.

This major extension comes at a price: since the discrete veloc-
ities lie on a sphere, they no longer end on the nodes of a space-filling
Cartesian grid. Hence interpolation is required to supplement the
standard stream-and-collide algorithm, leading to the loss of exact
streaming. Actual simulations show that in all cases inspected in this
paper, the lack of exact streaming does not lead to any appreciable
loss of accuracy of the method, thus identifying the radiative LB
developed here as a viable and competitive numerical RTE solver.

3 THE LATTICE BOLTZMANN SCHEME FOR

RADIATIVE TRANSPORT

3.1 Mathematical setup

The RTE is the master equation describing how radiation propa-
gates through a medium that scatters, absorbs and emits radiation
particles. As such, the RTE follows from the Boltzmann equation as-
suming massless particles (i.e., photons or neutrinos). All radiative
fields are expressed in terms of the distribution function fν(x, n̂, ν)
of neutrinos or photons within a given frequency band dν at position
x and velocity within a solid angle dΩ in the direction n̂.

MNRAS 000, 000–000 (2020)
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The subscript ν highlights the dependency on frequency, to
distinguish from the corresponding frequency-independent quanti-
ties to be introduced later on. The RTE describes the evolution of
the radiation distribution function in the direction n̂

1

c

∂ fν

∂t
+ n̂ · ∇ fν = −κa,ν fν + ην + Cscat =: Crad . (12)

This expression is equivalent to Eq. (1), but for massless particles
and with an explicit expression for the collisional operator Crad
on the right-hand side. This operator splits into three terms: the
absorption, the emission, and the scattering term, respectively. The
absorption term is proportional to the absorption coefficient κa,ν ,
the emission term to the emissivity ην , and the scattering term Cscat
is written in its most general form as (Bruenn 1985; Rampp 1997)

Cscat =

∫ ∞

0
ν′2 dν′

∫

4π
f ′ν′(1 − fν)Rin − fν(1 − f ′ν′)R

out dΩ′ ,

(13)

where Rin(ν, ν′) and Rout(ν, ν′) are the incoming and outgoing scat-
tering kernels, respectively.

These kernels depend on the underlying physical process and
generally do not allow for an analytic solution of the scattering
integral. In order to simplify the above integral, the incoming and
outgoing scattering kernels are typically expanded as a Legendre
series and truncated to the first two terms (Bruenn 1985; Rampp
1997; Shibata et al. 2011). This leads to

Rin/out(ν, ν′) ≈ 1

2
Φ

in/out
0 (ν, ν′) + 3

2
Φ

in/out
1 (ν, ν′) cos θ , (14)

where Φin/out
ℓ=0,1 are the ℓ-th coefficients of the Legendre expansion

and θ is the angle between the incoming and outgoing particle,
cos θ = n̂ · n̂′.

Hereafter, we will consider only iso-energetic scatterings,
i.e., we assume that the energy of the radiation particles is left
unchanged by the scattering with the constituents of the underlying
fluid.

It follows that: Φin
ℓ
(ν, ν′) ≡ Φout

ℓ
(ν, ν′) ≕ Φℓ(ν)δ(ν − ν′).

In this way, inserting Eq. (14) in Eq. (13), the scattering term
in Eq. (12) reads as:

Cscat ≈ −κ0,ν fν + κ0,νEν + 3κ1,ν n̂ · Fν , (15)

where we have used the definition of the zeroth and first moment of
the distribution function

Eν ≔
1

4π

∫

4π
fν dΩ , Fν ≔

1

4π

∫

4π
n̂ fν dΩ , (16)

and defined the energy-dependent opacities κℓ,ν = 2πν2Φℓ . Note
that the explicit form of these opacities depends on the type of
radiation, namely, whether one is considering photons or neutrinos
(see e.g., Eqs. (A.47) and (A.48) in Rampp (1997) for the case of
neutrinos or Rybicki & Lightman (1986) for photons).

The frequency-integrated version of the RTE – often referred
to as “grey” approximation – is obtained via multiplication by ν3

and integration over ν, i.e.,

1

c

∂I

∂t
+ n̂ · ∇I = −κa I + η + κ0(E − I) + 3κ1 n̂ · F , (17)

where we used the definition of the frequency-integrated specific
intensity

I ≔

∫ ∞

0
Iν dν ≔

∫ ∞

0
ν3 fν dν , (18)

and the frequency-integrated moments

E ≔

∫ ∞

0
ν3Eν dν =

1

4π

∫

4π
I dΩ , (19)

F ≔

∫ ∞

0
ν3Fν dν =

1

4π

∫

4π
n̂I dΩ . (20)

These moments can be interpreted as the radiation energy density
and momentum density, respectively, and arguably represent the
most important properties of the radiation field.

Finally, the energy-averaged opacities κa , κ0, κ1 are given by

κ∗ ≔

∫ ∞
0 κ∗,ν Iν dν
∫ ∞
0 Iν dν

, (21)

where ∗ = a, 0, 1 and the frequency-integrated emissivity η is given
by

η ≔

∫ ∞

0
ν3ην dν . (22)

3.2 LB discretization of the RTE

We next describe the steps needed to derive a LB-inspired dis-
cretization of the RTE within the grey approximation. We start by
recasting Eq. (17) in a BGK-like form:

1

c

∂I

∂t
+ n̂ · ∇I = −κ0

(
I − Ieq)

+ S , (23)

where the source term S, accounting for emission and absorption,
is given by

S = −κa I + η , (24)

while the scattering term has been rearranged by introducing the
equilibrium radiation intensity

Ieq := E + λn̂ · F, λ = 3
κ1

κ0
. (25)

We then perform a discretization of the velocity space, namely,
the directions n̂ along which radiation propagates at the speed of
light. In essence, we replace n̂ with a discrete set of Npop di-
rections n̂i , which define the corresponding discrete intensities
Ii(x, t) = I(x, n̂i, t) and their associated weights wi (a more de-
tailed description on how to choose the Npop directions is given in
Sec 3.2.1). Consequently, Eq. (23) splits into a set of Npop equa-
tions, each describing the evolution of a specific intensity Ii via the
i-th expression of the RTE

1

c

∂Ii

∂t
+ n̂i · ∇Ii = −κ0

(
Ii − I

eq
i

)
+ Si . (26)

The discrete counterparts of the integrals in Eq. (19) and Eq. (20)
then take the following form:

E ≈
Npop∑

i=1

Ii , F ≈
Npop∑

i=1

n̂i Ii , (27)

while higher moments can be computed accordingly as

M j1... jm ≈
Npop∑

i=1

n
j1
i
. . . n

jm
i

Ii . (28)

Finally, a first-order discretization in time with a time-step ∆t

leads to the radiative Lattice Boltzmann equation:

Ii(r + cn̂i∆t, t + ∆t) = Ii(r, t) − cκ0∆t
(
Ii(r, t) − I

eq
i
(r, t)

)

+ c∆tSi(r, t) , (29)
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where

I
eq
i

:= wi (E(r, t) + λn̂ · F(r, t)) , Si := wiη − κa Ii(r, t) . (30)

3.2.1 Velocity Discretization

The key of the LB method lies within the velocity discretization,
that is, the mapping of the continuum velocity space in terms of a
finite set of discrete velocities {vi}, the so-called discrete velocity
stencil.

Indeed, the definition of the discrete velocity set, and its asso-
ciated weights, plays a crucial role in the LB method, and several
approaches have been developed over the years. The one based on
the Gauss-Hermite quadrature is arguably the most systematic (Shan
et al. 2006; Philippi et al. 2006; Shan 2016). Another way to go,
which has been used in the early days of LB, is to construct velocity
sets as d-dimensional projections from known (d + 1) velocity sets
d'Humières et al. (1986).

Yet, another possible approach consists in defining general
conditions that should be satisfied by the velocity set, in terms of
symmetry and conservation, typically mass, momentum and mo-
mentum flux (isotropy).

As mentioned above, since we cannot rely on conservation
laws that would allow us to derive quadrature rules in a systematic
way, we need to define the velocity stencil on the basis of symmetry
considerations and isotropy conditions, privileging those stencils
that exhibit a sufficiently high order of isotropy, so as to handle
the different kinematic regimes that are typically encountered in
astrophysical scenarios.

Formally, we define k-rank tensors Tα1...αk , that are con-
structed by combining all the products between the different direc-
tions ni forming the velocity stencil (appropriately weighted with
the weights wi)

Tα1...αk ≔

∑

i

win
α1
i
. . . n

αk

i
. (31)

The microscopic relations that have to be satisfied by the lattice
in order to ensure n-th order isotropy are given by (Rivet & Boon
2001)

Tα1...αk




= 0 k odd ,

∝ ∑
perm

(
δα1α2 . . . δαk−1αk

)
k even , (32)

which need to be satisfied for all k ≤ n.
One additional condition on the definition of the velocity sten-

cil is that all the (pseudo)-particles travel at the same speed, i.e., the
speed of light, so vi = c n̂i . It follows that the discrete directions n̂i
must have the same magnitude, hence span the surface of a sphere
in three dimensions (3D), or a circle in two dimensions (2D).

The adoption of spherical velocity stencils is not new to LB: it
has been used, for example, in LB models for the simulation of ultra-
relativistic hydrodynamics. In such frameworks, since the interest
is restricted to the hydrodynamic picture, it is still possible to define
stencils which live on the intersection between a Cartesian grid and
a sphere of fixed radius (Mendoza et al. 2013; Gabbana et al. 2018),
thus preserving a very desirable property of LB: exact-streaming.
On the other hand, going beyond hydrodynamics generally requires
a much larger number of discrete directions, making the definition
of on-lattice quadratures impractical. In these cases, it is therefore
necessary to take into consideration off-lattice schemes (Coelho
et al. 2018; Ambruş & Blaga 2018). Since we need to properly
model free-streaming regimes, we adopt this latter approach and
work with off-lattice stencils spanning a unit sphere.

Moreover, the choice of the velocity set should be such to
maximise the accuracy in the calculation of the moments of the
specific intensity I(x, n̂, t), such as the energy density E(x̂, t) and
the momentum density F(x̂, t).

In practice, we request the discrete sums in Eq. (27) to correctly
reproduce their continuous counterparts, i.e., Eq. (19) and Eq. (20).
These are spherical integrals of the form

Q(h) = 1

4π

∫

4π
h(n̂)dΩ ≈

Npop∑

i=1

wih(n̂i) , (33)

where h(n̂) represents a generic function of the direction n̂. To begin
with, we recall that any square integrable function can be expanded
on the unit sphere as a series of orthogonal spherical harmonics
(Atkinson & Han 2012)

h(n̂) = h(θ, φ) =
+∞∑

ℓ=0

ℓ∑

m=−ℓ
cℓmYm

ℓ
(θ, φ) , (34)

where the convergence rate depends on the coefficients cℓm. The
spherical quadrature rule determining the weights wi and discrete
directions n̂i = (θi, φi) is then said to be of order p if it integrates
exactly all the spherical harmonics Ym

ℓ
(θ, φ) up to the degree ℓ = p

1

4π

∫

4π
Ym
ℓ
(θ, φ)dΩ =

Npop−1∑

k=0

wkYm
ℓ
(θk, φk ) ∀ ℓ ≤ p . (35)

It follows that a spherical quadrature of order p integrates exactly all
integrals Q(h) of functions h(θ, φ) described by linear combinations
of the first p harmonics. On the other hand, functions h(θ, φ) that
contain in their series harmonics of higher order are only approxi-
mated by the quadrature, with errors that depend on the smoothness
of the function itself. Note that it is possible to prove that quadra-
tures of order p satisfy Eq. (32) up to the level p, enabling in this
way to evaluate the quality of the stencils with the use of a single
parameter, i.e., p that we call the quadrature order.

Determining the quadrature satisfying the conditions discussed
above is trivial in the case of two dimensions: the integral in Eq.
(33) simply has to be computed on the unit circle. Furthermore, the
expansion in Eq. (34) reduces to a Fourier series since the three-
dimensional spherical harmonics reduces to circular functions (sine
and cosines of the only angular coordinate φ)

h(n̂) = h(φ) =
∞∑

m=−∞
cmeimφ , (36)

and one has to satisfy exactly the relations

1

2π

∫ 2π

0
eimφdφ =

Npop−1∑

k=0

wkeimφk ∀ |m| ≤ p . (37)

As a result, to obtain a 2D quadrature of order p, i.e., in order
to satisfy Eq. (37), it is sufficient to consider Npop = p + 1 uni-
formly spaced points on the unit circle, displaced by the angles
φi = 2π k/Npop, thus n̂i = [cos(φi), sin(φi)]T , all having equal
weights wk = 1/Npop. A representation of such a velocity stencil
with its discrete directions n̂i is presented in Fig. 1.

The problem becomes considerably more involved for the
three-dimensional case, which is clearly the most relevant one in
terms of astrophysical applications. Indeed, the definition of quadra-
ture rules on the surface of a sphere (i.e., a 2-sphere) is still an ac-
tive area of research, with several different approaches coming with
corresponding advantages and drawbacks, depending on the target
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∆t = ∆x

n̂0

n̂1

n̂2

n̂3

n̂4

n̂5

n̂6

n̂7

n̂8

n̂9

n̂10

n̂11

Figure 1. Example of two-dimensional velocity stencils showing Npop = 12
discrete velocity directions (purple dots), in which the radiation is allowed
to propagate. Green squares indicate the grid’s cell-centres. The arrows end
on a circle with radius c∆t, where ∆t is assumed to be in units of the
grid-spacing.

application (Beentjes 2015; Gamba et al. 2017; Gross & Atzberger
2018; Lutsko & Lam 2018; Stepán, Jirí et al. 2020).

Here, we consider three different types of spherical quadrature
schemes:

(i) Gauss-Legendre quadrature
(ii) Lebedev quadrature
(iii) Spherical design

The application of the Gauss-Legendre quadrature to a 2-
sphere can be obtained by making use of the product quadrature
rule. Exploiting the separability of spherical harmonics, the inte-
grals in Eq. (35) can be expressed as the product of a circular
function eimφ and Legendre polynomials:
∫

4π
Ym
ℓ
(θ, φ)dΩ ∝

(∫ π

0
Pm
ℓ
(cos θ) sin θdθ

) (∫ 2π

0
eimφdφ

)
,

(38)

where Pm
ℓ
(cos(θ)) are the associated Legendre polynomials. At this

point, the two integrals can be evaluated using two one-dimensional
quadrature rules, where the integral in the direction θ is performed
with a one-dimensional Gauss-Legendre quadrature (Hildebrand
1956), while the integral in φ can be evaluated, for example, with
the trapezoidal rule. As it is apparent from the left panel of Fig.
2, the Gaussian-Legendre approach generates an accumulation of
points near the north and south poles of the sphere, and it is less
efficient than the other two quadratures, in the sense that it requires
a larger number of points to achieve the same order of precision.

The Lebedev quadrature (central panel of Fig. 2), on the other
hand, follows a different approach: instead of considering the prod-
uct of two single quadratures, the integrals in Eq. (35) are used to
build a system of nonlinear equations in the variables {wk, θk, φk }.
The central intuition (due to Sobolev (1962)) is that the number of
nonlinear equations can be greatly reduced by considering only the
spherical harmonics of degree ≤ p that exhibit invariance under

all transformations that belong to a pre-determined group G. This
procedure generates quadratures that are invariant under G, that is,
these stencils evaluate exactly both Q(h) and Q(g(h)) for all ele-
ments g ∈ G,and still retain the same order of integration p. In its
original definition Lebedev’s quadrature is by construction invariant
under the octahedral group (Lebedev 1975, 1976, 1977), although
quadratures based on different symmetry groups are also present in
the literature (see, e.g., (Ahrens & Beylkin 2009) for a quadrature
based on the icosahedral group). From the central panel of Fig. 2
one appreciates that points in Lebedev’s quadratures offer a more
homogeneous distribution over the sphere with respect to the Gauss
product rule. Nevertheless, a few points can be seen to be almost
overlapping.

Lastly, we consider the spherical-design quadrature rules, first
introduced by Delsarte et al. (1977). This type of quadrature requires
that the weights associated to all nodes be equal. The task is then
to define a minimum set of points which integrates correctly all
the spherical harmonics up to order p. There is no known rule for
the definition of a generic order p spherical-design quadrature, and
the topic is indeed still object of ongoing research. Nevertheless,
numerical results leading to the definition of quadrature rules up to
very high order are available online. In this work we refer to the set
of stencils presented by Womersley (2018), for which we provide
an example in the right panel of Fig. 2.

3.3 Numerical procedure

Having presented the equations to be solved and their discretiza-
tion, we proceed to summarise the steps required to evolve the
LB-discretized RTE.

More specifically, Eq. (29) can be solved following the standard
stream-and-collide approach, where the streaming step is performed
first, yielding provisional values of the Npop intensities, i.e.,

I∗i (r, t) = Ii(r − n̂i∆t, t) . (39)

However, since the discrete velocities fall off-grid for the above
discussed stencils, an interpolation is required. For simplicity we
consider a trilinear interpolation scheme, from which follows

I∗i (r − n̂i∆t, t) = 1

∆x ∆y ∆z
×

{

Ii(r − x̂ − ŷ − ẑ, t)
(

∆t
��n̂xi

��
) (

∆t
��n̂y
i

��
) (

∆t
��n̂z
i

��
)

Ii(r − ŷ − ẑ, t)
(
∆x − ∆t

��n̂xi
��
) (

∆t
��n̂y
i

��
) (

∆t
��n̂z
i

��
)

Ii(r − x̂ − ẑ, t)
(

∆t
��n̂xi

��
) (
∆y − ∆t

��n̂y
i

��
) (

∆t
��n̂z
i

��
)

Ii(r − x̂ − ŷ , t)
(

∆t
��n̂xi

��
) (

∆t
��n̂y
i

��
) (
∆z − ∆t

��n̂z
i

��
)

Ii(r − ẑ, t)
(
∆x − ∆t

��n̂xi
��
) (
∆y − ∆t

��n̂y
i

��
) (

∆t
��n̂z
i

��
)

Ii(r − ŷ , t)
(
∆x − ∆t

��n̂xi
��
) (

∆t
��n̂y
i

��
) (
∆z − ∆t

��n̂z
i

��
)

Ii(r − x̂ , t)
(

∆t
��n̂xi

��
) (
∆y − ∆t

��n̂y
i

��
) (
∆z − ∆t

��n̂z
i

��
)

Ii(r , t)
(
∆x − ∆t

��n̂xi
��
) (
∆y − ∆t

��n̂y
i

��
) (
∆z − ∆t

��n̂z
i

��
)}
,

(40)

with

x̂ =
[
sgn

(
n̂xi

)
∆x, 0, 0

]T
(41)

ŷ =
[
0, sgn

(
n̂
y

i

)
∆y, 0

]T
(42)

ẑ =
[
0, 0, sgn

(
n̂z
i

)
∆z

]T
. (43)
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Figure 2. Examples of three-dimensional velocity stencils, comparing the distribution of the velocity directions (purple dots) for three different quadrature
typologies; from left to right we respectively show an example for Gauss-Legendre, Lebedev, and spherical design. Analogous to Fig. 1 the purple dots are
located on a sphere of radius c∆t and the green squares denote the cell centres.

For the two dimensional case a bilinear interpolation is used equiv-
alently.

Next, the macroscopic moments are computed according to
Eq. (27), from which the source term and the collisional operator
are computed using Eq. (30).

The collision step is then performed as follows:

Ii(r, t + ∆t) = I∗i (r, t) − κ0∆t
[
I∗i (r, t) − I

eq
i
(r, t)

]

+ ∆tSi(r, t) . (44)

Note that since in most astrophysical applications the emissivities
and opacities vary over several orders of magnitude, these source
terms may take values much larger than the evolved variable Ii , thus
making the RTE a stiff equation that requires special treatment to
be solved efficiently (see, e.g., Weih et al. 2020).

Thus, rather than solving the explicit Eq. (44), we solve the
implicit form, i.e.,

Ii(r + n̂i∆t, t + ∆t) = I∗i (r, t)
− κ0∆t

[
Ii(r, t + ∆t) − I

eq
i
(r, t + ∆t)

]

+ ∆tSi(r, t + ∆t) , (45)

Because of the presence of the first two moments in the definition
of the source term, we obtain a system of Npop linear equations with
Npop unknowns. This could be solved via the inversion of an Npop ×
Npop-matrix at every grid-point, which is, however, computationally
unfeasible, especially in 3D, when a large number Npop of discrete
velocity directions is required. An alternate and computationally
much more viable method is known as Lambda iteration (Rampp
1997), which works as follows:

1. Take as initial guess for E(r, t + ∆t) and F(r, t + ∆t) the
moments computed from Ii at time t.

2. Eq. (45) constitutes a system of Npop linear decoupled equa-
tions that can be solved analytically and independently, to obtain a
first estimate of Ii at time t + ∆t.

3. Use this estimate of Ii(r, t + ∆t) to formulate an improved
guess for E(r, t + ∆t) and F(r, t + ∆t).

4. Cycle back to step 2. and repeat until all Ii(r, t +∆t) converge,
with an error below a prescribed threshold.

To summarise, our scheme consists of two steps; first the streaming-
step according to Eq. (40) and then the collision-step according to

Eq. (44), which is solved following the iterative procedure described
above. If the radiation is coupled to a fluid, the radiative four-force
that enters the standard equations of relativistic (magneto-) hydro-
dynamics (RMHD) can be computed after every timestep from the
moments E and F, which themselves are computed approximately
from Ii according to Eq. (27). At the beginning of the next timestep,
the coefficients η, κa , κ0 and κ1 can then be computed from the
updated fluid variables.

As a result, the coupling to a standard RMHD code is exactly2

the same as for the commonly used M1 scheme (see Weih et al.
2020, for a detailed description of this coupling). Finally, we note
that while we restrict ourselves for simplicity to a first-order time-
stepper, it is conceptually straightforward to extend the evolution to
higher orders using for example implicit-explicit (IMEX) schemes
(Pareschi & Russo 2005), where the streaming-step is treated ex-
plicitly and the collision-step implicitly.

4 NUMERICAL TESTS: STATIC FLUID

In astrophysical simulations, the ordinary fluid interacting with the
radiation features optical depths that vary considerably, ranging
from the optically thin regime – where radiation is in free streaming
– to the optically thick regime – where radiation is coupled with the
fluid and propagates by diffusion. While in several studies only one
of these regimes is considered, (see e.g., Fragile et al. 2012; Roedig
et al. 2012), it is our aim to provide a numerical method that can
handle both limits, as well as the intermediate regime. The latter
is particularly difficult to be described accurately by moment-based
schemes, mostly because the closure relation – which is essential
and inevitable in this schemes – is normally defined in either the
optically thin or the optically thick regime and is then interpolated
between these two limits (Weih et al. 2020).

In the series of tests presented below, we discuss the perfor-
mance of the LB method in these different limits, starting in Sec.
4.1 with the optically thin one – which represents the most difficult
challenge. The optically thick regime is tested in Sec. 4.2 – where
the LB method performs extremely well. Finally, in Sec. 4.2.2, we

2 Special attention has to be paid to the case of a moving background fluid
(see Sec. 5 and appendix B).
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Figure 3. Left: Straight beam of radiation with a CFL-number of 1.0 (top)
and a CFL-number of 0.2 (bottom). Colour coded is the energy-density,
while the momentum density is shown by red arrows. The cyan line indicates,
how far the beam should have propagated until t = 0.7. Right: The same
as the left panel, but for a beam propagating diagonally. The region with
x, y < −0.25 is frozen via a boundary condition in order to continuously
shoot the beam into the grid from the bottom left.

present an example of the intermediate regime, where LB is shown
to provide very accurate results, at variance with the commonly
used M1 scheme.

4.1 Optically thin limit

Since the LB method is designed for collisional fluids, we begin
the verification of the LB method and its implementation with a
number of code tests in the most difficult regime, namely, the one in
which the radiation is actually freely streaming, as is the case when
η = κa = κ0 = κ1 = 0.

In other words, in a radiative-transport application, the LB
method works best when the emission, absorption and scattering of
the radiation with an underlying fluid is actually taking place, which
obviously is not the case in the free-streaming regime. Nevertheless,
since free-streaming is ultimately taking place in any astrophysical
scenario of interest, such as supernova explosions and neutron-star
mergers – where the radiation is composed of neutrinos – it is clear
that testing the LB method in this regime is most important.

4.1.1 Beam tests

We start with a “classical” beam test, namely, the propagation of
a well defined beam of radiation injected from the boundary of
the computational domain. Having set η = κa = κ0 = κ1 = 0,
Eq. (45) clearly states that free-streaming is trivially achieved when
each of the intensities Ii is propagated from one grid-cell to the
next following the underlying stencil. The top-left panel of Fig. 3
shows an example of a freely streaming beam on a grid of size
−0.5 < x < 0.5, −0.5 < y < 0.5, which we cover with 1002 equal-
size grid cells. This test is performed in 2D using the stencil shown
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LB

−0.4 −0.2 0.0 0.2 0.4
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Figure 4. Comparison of the performance for the beam-crossing problem
between LB (top) and M1 (bottom).

in Fig. 1 with Npop = 8 discrete velocity directions. Throughout the
simulation we constantly inject a radiation beam from the grid’s left
boundary. To do so, at all times we enforce the following condition:

Ii =

{
1 i = 0

0 i , 0 ,
(46)

at x = −0.5 and |y | < 0.25.
As expected, the beam propagates parallel to the x-axis from

left to right at the speed of light. In Fig. 3 we show with a colorcode
the radiation energy density and with arrows the momentum density,
as computed according to Eq. (27) at time t = 0.7, and where we
have used a timestep ∆t = ∆x = ∆y. This timestep is a standard
choice in classical LB methods and leads to perfect streaming,
i.e., no diffusion along the beam’s direction of propagation. This
is due to the fact that the streaming step, i.e., Eqs. (39) and (40),
reduces to

I∗i (r, t + ∆t) = Ii(r − n̂i∆t, t) =
|n̂x
i
|

∆x
× Ii(r − x̂, t) . (47)

Considering that |n̂x
i
|/∆x = 1, where |n̂x

i
| is the x-th component of

the i-th velocity vector, we find that the intensity is simply propa-
gated from one cell to its right neighbour during each iteration.

Most of the astrophysical codes solving the equations of
RMHD employ either finite-volume or finite-differencing schemes
and require a timestep ∆t = CFL∆x for numerical stability, where
CFL ≤ 1 is the Courant-Friedrichs-Lewy coefficient (Rezzolla &
Zanotti 2013). Keeping in mind that for simulations of astrophysi-
cal systems, the LB method needs to be coupled to such a RMHD
code, we also perform the above beam tests with ∆t = 0.2∆x, where
CFL = 0.2 is a typical value chosen in multidimensional relativistic
hydrodynamics. This amounts to squeezing the stencil and requires
the complete evaluation of Eq. (40) during the streaming step.

The result of this simulation is reported in the bottom left panel
of Fig. 3. In contrast to the case of perfect streaming reported in
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the top panel, the bottom panel shows that there is some diffusion
of radiation ahead of the beam (see, for comparison, Fig. 1 of Weih
et al. (2020) for the same behaviour in an M1 code). Note that even
though the previous test is a physically trivial one, it is nonetheless
very useful to verify the correct implementation of the streaming
step and the interpolation, according to Eq. (40).

A more challenging setup is that of a beam propagating along a
direction not parallel to any coordinate axis. To model this case, we
choose the same setup as above, but enforcing I1, which corresponds
to n̂1 = [cos(π/4), sin(π/4)], rather than I0 to a nonzero value; of
course Ii,1 = 0.

Results are presented in the right panels of Fig. 3, where we
show again the cases ∆t = ∆x (top panel) and ∆t = 0.2∆x (bot-
tom panel). In both cases, the beam now diffuses much more, an
effect that can also be observed for the commonly used moment-
schemes (Weih et al. 2020). It is worth remarking that in all of
the above tests, the beams propagate along one of the discrete ve-
locity directions. However, radiation beams can propagate in any
direction in the continuum, not necessarily along a discretized ve-
locity direction. In this case, the LB scheme would inevitably incur
increasing errors as we approach the optically thin regime. These
can be tamed by developing high-order phase-space interpolators,
possibly involving non-local neighbours both in configuration and
velocity space. Clearly, this exposes a tension between accuracy and
efficiency which still needs to be explored and resolved in full. In this
paper, we rely upon trilinear and nearest-neighbour interpolation in
configuration and velocity space, respectively.

Next, we consider the performance of our code for another
“classical” and yet fundamental free-streaming test: two crossing
beams. Assuming the radiation to consist of photons or neutrinos
of the same flavour, one would expect the two beams to cross each
other without interacting. The M1 scheme is known to perform very
poorly under these conditions (Fragile et al. 2014; McKinney et al.
2014; Foucart et al. 2015; Rivera-Paleo & Guzmán 2019; Weih et al.
2020), due to the fact that it retains only the two lowest moments,
hence only the average direction of propagation.

This information could in principle be obtained by employing
higher moments, at the cost of increased computational costs. On the
other hand, in an LB method the various directions of propagation
are evolved separately and thus crossing beams can be correctly
evolved in time. This is shown in Fig. 4, where the results from an
LB simulation (top panel) are compared to the ones from an M1
code (bottom panel). In both cases, we perform the simulation on a
grid of size −0.5 < x < 0.5 and −0.25 < y < 0.25 with a resolution
of 200× 100 and choose again a CFL coefficient of 0.2. For the M1
solution, we initialise the momentum densities of the two beams
to point towards the center, while for LB we simply initialise the
intensities for the corresponding directions.

It can be seen clearly from Fig. 4 that in the LB simulation
the two radiation beams cross as expected, while they merge to
an averaged beam when using M1. The proper description of this
behaviour is of crucial importance in astrophysical simulations,
where beams of radiation – such as those emitted from the torus of
a binary neutron-star merger remnant or in a supernova explosion –
are expected to meet and interact. Hence, the successful outcome of
this test provides encouraging evidence that the present LB method
can be used in the place of moment-based schemes.

4.1.2 Radiation wave in free-streaming regime

In order to evaluate if radiation is propagated isotropically by the
numerical scheme, we show here the results obtained for the case of

a spherically symmetric propagation of a radiation wave. The wave
is expected to expand at the speed of light in all directions, with its
energy density decreasing over time following an inverse-square law
for the distance travelled by the wavefront. We run all simulations
on a 3D grid with 2003 uniform sized grid cells with ∆t = 0.2, and
initialise the intensities by setting Ii = 1 within a sphere of radius
R = 16∆x grid-cells and Ii = 0 everywhere else. Stencils based on
the three quadrature methods introduced in Sec. 3.2 are employed,
with different quadrature orders, so as to compare both the methods
and the various orders.

Figure 5 shows the results of these simulations in terms of
the radiation energy-density, after 200 iterations, in the (x, y) and
(y, z) planes. It is clear that a low number of discrete velocities Npop
in the stencils does not allow the radiation to stream isotropically.
However, upon increasing Npop, the isotropy of the system rapidly
improves up to very satisfactory levels. Also to be noted, none of
the three methods emerges as a neat winner, all yielding results of
similar quality. This is true even for the Lebedev quadrature, which
features a consistently higher quadrature order as the other two types
for the same Npop.

Finally, we show that the wave’s maximum energy decays pro-
portionally to r−2, which is expected for this 3D test, where the
energy is conserved and spreads over a spherical shell of area πr2

in time. Figure 6 shows this behaviour for the reference case of the
Lebedev quadrature of order p = 23 (middle panel in Fig. 5). The
figure reports the profile of the radiation energy density along a
diagonal cut at different times. Note that the maxima of these cuts
align well with an inverse square law (red-dashed line).

4.2 Optically thick limit

Having tested the LB method for the solution of the RTE in the
optically thin regime, we now focus on the optically thick regime.
We recall that an optically thick medium either absorbs (in the case
of a high value of the absorption opacity κa) or scatters radiation
(in the case of a high scattering opacities κ0 and κ1). As a result, we
present tests of the absorption scenario in Secs. 4.2.1 and 4.2.2 and
the scattering scenario, i.e., the diffusion limit, in Sec. 4.2.3.

4.2.1 Shadow test

We start again with a beam using a similar setup as for the straight
beam in Sec. 4.1.1, but we place an optically thick obstacle on
the beam path. “Thick obstacle” means that we set the absorption
opacity to a large value in the region occupied by the obstacle.
From a physical point of view, the obstacle can then be viewed as a
black-body absorbing the incoming radiation without re-emitting it
(η = 0).

More specifically, on a 3D grid of size −0.75 < x <

0.75, −0.25 < y, z < 0.25 and covered with 150 × 50 × 50 uni-
form sized grid cells, we set κa = 107 within a sphere of radius
R = 0.1, centred at the origin. The beam is again injected into the
grid from the left boundary. To this end, the 3D stencil must be
chosen so as to provide a discrete velocity direction parallel to the
x-axis. All other directions do not matter, since the radiation only
propagates parallel to the x-axis in this test. Figure 7 shows the
beam in the (x, y) plane after it has propagated across the whole
grid and passed the obstacle marked as a cyan-coloured circle.

It can be seen that, as expected, the beam is blocked by the
obstacle and only a negligible amount of radiation diffuses inside
the optically thick region. This is due to the finite resolution of the
grid and is progressively suppressed as the grid is refined.

MNRAS 000, 000–000 (2020)



Lattice-Boltzmann methods for radiative transport in computational astrophysics 11

−0.4

−0.2

0.0

0.2

0.4

y

Npop = 50

p = 9

G
au

ss
ia
n

Npop ≈ 50

Npop = 200

p = 17

Npop ≈ 200

Npop = 392

p = 27

Npop ≈ 400

−0.4

−0.2

0.0

0.2

0.4

y

Npop = 50

p = 11

L
eb

ed
ev

Npop = 194

p = 23

Npop = 434

p = 35

−0.25 0.00 0.25

x

−0.4

−0.2

0.0

0.2

0.4

y

Npop = 48

p = 9

S
p
h
er
ic
al

−0.25 0.00 0.25

z
−0.25 0.00 0.25

x

Npop = 192

p = 19

−0.25 0.00 0.25

z
−0.25 0.00 0.25

x

Npop = 393

p = 27

−0.25 0.00 0.25

z

0.0

0.2

0.4

0.6

0.8

1.0

E
/E

m
a
x

Figure 5. Spherical freely-streaming wave for different types of stencils. From top to bottom we show stencils derived from (i) Gaussian product quadrature,
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radiation wave test with the Lebedev quadrature of order p = 23. Bottom:

Diagonal profiles of the energy density at different times (blue to green) and
inverse square law (red-dashed) fitted to the maxima of each time (red dots).

We should note that, in contrast with all the tests performed
so far, the set of equations that we solve here is very stiff because
of the high numerical value of κa (as compared to the evolved
variables). Obtaining a numerically stable solution with a reasonable
timestep (we here use again∆t = 0.2∆x) is then only possible when
using an implicit solver in time. As described in Sec. 3.3, we have
implemented the Lambda iteration-method. It is found that, at least
for this simple test, it converges in at most three cycles at every
timestep, within a tolerance of ∆E/E = 10−14.
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Figure 7. Radiation beam hitting an optically thick obstacle (cyan circle)
with κa = 107. The colour encodes the radiation energy-density and the red
arrows show magnitude and direction of the energy momentum-density.

4.2.2 Radiating sphere

We next consider a test involving the emission of radiation as it
occurs for a background static fluid in thermodynamic equilibrium
with the radiation, that is, when the emissivity η is equal to the
absorption opacity κa . More specifically, we simulate a system in
which η = κa = const. within a sphere of radius R and zero outside
the sphere. This is known as the homogeneous-/radiative-/emitting-
sphere test, as first proposed by Smit et al. (1997). From a physical
point of view, this system can be thought of as a dense sphere
with a sharp boundary to vacuum, as is the case of a neutron star,
that constantly emits radiation from its surface to the surrounding
vacuum.

The system eventually finds a steady state, for which the analyt-
ical solution of the distribution function in terms of radial distance
r and azimuthal angle θ reads as follows:

f (r, µ) = b(1 − e−κa s(r,µ)) , (48)
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where µ ≔ cos θ, b = κa/η = 1 in our case, and

s :=

{
rµ + Rg(r, µ) r < R and − 1 < µ < 1 ,

2Rg(r, µ) r ≥ R and
√

1 − R2/r2 < µ < 1 ,
(49)

with

g(r, µ) :=

√

1 − r2

R2
(1 − µ2) . (50)

Since the final equilibrium is spherically symmetric, the zeroth
moment E can be obtained via the integration of the distribution
function over µ, i.e.,

E(r) = 1

2

∫ 1

−1
dµ f (r, µ) . (51)

Likewise, we obtain the first moment F as

F(r) = 1

2

∫ 1

−1
dµ µ f (r, µ) . (52)

We run this test using a 3D grid 3 with 1283 uniform sized grid
cells and a spherical-design stencil of order 20 (Npop = 222) for

three different values of κa , i.e., κa = R−1, 10R−1, 1010R−1, and
where R = 1/(8nx) is the sphere’s radius.

The discrete intensities are initialised as

Ii(r, t = 0) := wi

{
1 r < R ,

r−2 r ≥ R ,
(53)

where wi are the weights associated with the underlying velocity
stencil.

The results of these simulations are reported in Fig. 8 in terms
of the radiation energy-density (left panel) and of the momentum-
density (right panel).

As one can appreciate, the LB method works very well in all
of the three cases. As already discussed for the previous shadow
test, numerical stability in the case of κ = 1010/R is only possible
thanks to the implicit time-stepper.

Figure 8 also offers a comparison with the corresponding re-
sults obtained with an M1 scheme (these are shown in the right
portions of the two panels in Fig. 8). It is clear that for small values
of κa , the LB method performs significantly better than M1. As

3 As already remarked by Radice et al. (2013) and Weih et al. (2020),
this test requires three dimensions on a Cartesian grid, since fluxes also
propagate across grid-cells in the angular directions.

already reported by Weih et al. (2020), the M1 code fails in this
specific case due to the lack of the second moment, i.e., the correct
pressure tensor. While the pressure tensor is exact in the limit of
infinite optical depths (see red and blue curves in Fig. 8), it is not so
for the intermediate regime between optically thick and thin media.
Indeed, the case of κa = R−1 (green curves) falls exactly in this
regime, for which the pressure tensor is interpolated inaccurately
(see also Murchikova et al. (2017) for a detailed analysis of this
test for the M1 scheme with different closures). The failure of the
M1 scheme in this test is particularly evident upon looking at the
energy density, which is systematically above the correct analytical
solution inside the sphere (note that the tail, which is within the free-
streaming regime is reproduced correctly). The same – albeit less
visible – is true for the corresponding momentum density, which is
everywhere below the analytic solution.

4.2.3 Radiation wave in scattering regime

As a final test of the solution of the RTE with the LB method, we
consider the effects of scattering by simulating a Gaussian distribu-
tion that diffuses over a static background fluid. The same test has
been used also in the validation of various M1 codes (see, e.g., Pons
et al. 2000; O’Connor 2015; Weih et al. 2020). The initial conditions
are given by:

E(r, t = 0) = A exp

(

−(r − r0)2

2σ2
0

)

, (54)

where A is the energy-density amplitude and σ0 the width of the
Gaussian at t = 0 centered at r0. By neglecting emission and ab-
sorption (η = κa = 0), the evolution of the system is governed by the
diffusive equation, which exhibits the following analytic solution:

E(r, t) = A
σ2

0

σ2
0 + σ

2
D

exp

(

− (r − r0)2

2(σ2
0 + σ

2
D
)

)

, (55)

where σD =
√

2Dt. The connection between the microscopic pa-
rameters κ0 and κ1 in Eq. (17) and the diffusion coefficient D is
discussed in Appendix A by an asymptotic analysis.

We perform two different simulations at different values of the
“Peclet number” (Pe := κ0∆x), tracking the history of the system at
different time intervals. In Fig. 9, we compare the analytical solution
(lines) with the numerical results (dots) obtained running in 2D, on a
1002 grid, with κ0∆x = 1 (left panel) and κ0∆x = 105 (right panel).
In both cases, we set λ ≔ 3κ1/κ0 = 0.5. The same test can be
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performed in three dimensions, leading to results of similarly good
quality. Finally, in Fig. 10 we show that, in stark contrast with the
results shown for the free-streaming regime (Fig. 5), the evolution
is well captured even by quadratures of comparatively low orders,
featuring a small number of discrete directions. This highlights the
fact that the LB method performs extremely well in the diffusion
limit, in fact the one it was born for. In general, we have observed
that in this regime quadratures with order p = 5 are sufficient to
correctly recover the correct diffusive dynamics.

5 NUMERICAL TESTS: DYNAMICAL FLUID

After having shown that the proposed radiative LB method performs
well in all the regimes of the solution of the RTE on a static fluid,
we next move on to test the method for a dynamical fluid, i.e.
one coupled to radiation via an RMHD simulation of a realistic
astrophysical scenario. As a result, the test presented here is of
great importance as it allows us to explore our novel approach
under conditions typical of the astrophysical scenarios for which it
has been developed in the first place.

We should also note that, strictly speaking, this is not a genuine
test, as the explored scenario does not have an analytic solution to
be compared with. Moreover, simulations of this type have been
performed before only by Rivera-Paleo & Guzmán (2019) using
an M1 scheme for evolving the radiation but with rather different
prescriptions for the properties of the radiation field.

Hence, to gain confidence on the reliability of our results and
contrast them with those obtained when the RTE is solved using
an M1 scheme, we carry out additional simulations of the identical
physical scenario but making use of the M1 code FRAC (Weih et al.
2020). While this does not prove the correctness of our results –
both codes could be incorrect despite the many tests passed – it
does provide us with the confidence necessary to implement the LB
method for even more realistic astrophysical scenarios.

More specifically, we simulate the evolution of a relativistic
jet as it propagates through the interstellar medium. Simulations of
this type have a long history since such jets are of major importance
in the study of active galactic nuclei (see Perucho 2019, for a recent
review), where they are produced through the accretion process
onto a supermassive black hole (see Porth et al. 2019, for a recent
comparative study).

Highly energetic relativistic jets are known to accompany the
phenomenology of short gamma-ray bursts and are associated with
the merger of two magnetised neutron stars (Rezzolla et al. 2011).

Here, we simulate this problem by coupling our LB code to
the Black hole accretion code (BHAC) (Porth et al. 2017). BHAC is a
finite-volume code that solves the equations of general-relativistic
MHD in a fixed and curved spacetime. The results presented here,
however, are restricted to a flat background spacetime.

In essence, we perform the coupling between BHAC and the LB
code following the strategy indicated below.

1. At every iteration, we pass the fluid rest-mass density ρ, tem-
perature T and three-velocity 3i to the LB code, from which we then
compute the emissivity and opacities (see also below).

2. While BHAC advances the conservative RMHD variables in
time, the LB code does the same for the Npop populations of the
radiation specific intensity, Ii .

3. After performing the streaming and collision step, the LB code
computes the zeroth (E), first (Fi) and second moment (Pi j ) of the
radiation distribution function according to Eqs. (27) and (28).

4. From these moments, we compute the radiative source terms
S0 = W(κ̃aJ − η̃) + κ̃H0 and Sj = W(κ̃aJ − η̃)vj + κ̃Hj , which we
return to BHAC. Here W is the Lorentz-factor, κ̃ ≔ κ̃a + κ̃s ≔ κ̃a +
(κ̃0 − 1/3κ̃1), and J and Hj are the radiation energy and momentum
density in the comoving fluid frame, to which we transform via

J = W2 (
E − 2Fi

3i + Pi j
3i3j

)
(56)

Hj = W3 (
Fi
3i − E

)
3j +W hjiF

i − W hji3kPik , (57)

where hi j = W2
3i3j + δi j is the projection operator orthogonal to

the fluid velocity. H0 can then be computed from Hµuµ = 0.
5. After BHAC has updated its variables and before cycling to 1),

we add the sourcesS0 andSj to the energy and momentum equation,
respectively, which are solved in conservative form within BHAC.

As it is the case in most simulations of high-energy astrophys-
ical phenomena, the fluid moves at relativistic speeds. Eq. (17), is
written in an Eulerian (lab) frame so that the opacities and emissiv-
ities η, κa , κ0, κ1 it employs are to be evaluated in the same Eulerian
frame. However, the microphysics used to derive such quantities is
well defined only in the fluid’s rest-frame (i.e., the frame co-moving
with the fluid) where the corresponding quantities η̃, κ̃a , κ̃0, κ̃1 are
isotropic and can be written in a compact way. Therefore, care needs
to be taken in transforming the opacities and emissivities between
the two frames, as we discuss in detail in Appendix B.

For the setup of our simulation, we follow Martí et al. (1997),
who have extensively analysed relativistic jets in a purely hydrody-
namical context. The jet is simply injected through a circular nozzle
at the lower edge of the computational domain and propagating par-
allel to the coordinate z-axis in a Cartesian grid. The simulation is
then characterized by four parameters: the Newtonian Mach num-
ber M := vjet/cs , with cs the local sound speed, the jet Lorentz

factor W := (1 − v
2
jet)

−1/2 with vjet the jet propagation velocity,

the ratio of the jet rest-mass density to that of the ambient medium
R := ρjet/ρamb and the pressure ratio K := pjet/pamb. We simulate
a pressure matched jet, i.e., K = 1, with R = 0.01, W = 7 and
M = 42 on a grid of size −7.5 < x, y < 7.5, 0 < z < 60 covered by
160×160×640 grid cells, where the jet is injected at z = 0 through
a nozzle with radius rjet = 1.

Since we are only interested in a proof-of-concept simulation,
we limit ourselves to this simple setup, but refer the reader to Fromm
et al. (2018) for an extension that also includes a non-homogeneous
background, as is to be expected near a gravitational source like a
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Figure 10. Scattering wave in 3D. The simulations are performed on a grid of size 1283, with ∆t = 0.1, κ0∆x = 1 and λ = −0.25. From top to bottom we show
the results obtained using stencils derived from (i) Gaussian product quadrature, (ii) Lebedev quadrature and (iii) spherical design. Each column compares
these three stencils for a comparable number of discrete velocities. Snapshots show the radiation energy-density in the (x, y) (left) and (y, z) (right) plane after
100/∆t iterations. Contour lines are used to compare the analytical solution (continuous red lines) with the numerical results (white dotted lines). In each panel,
we also report Npop and the quadrature order p.

black hole. However, we include a helical perturbation as in Aloy
et al. (1999), so that the jet deviates from axisymmetry, leading to
a truly three-dimensional structure that allows us to test all terms of
the LB code. In all cases, we consider the magnetic field to be zero.

For the solution of the RTE within our LB scheme we choose
a Lebedev stencil with Npop = 154 discrete velocity directions.
We initialise the populations at zero and let the radiation evolve
self-consistently during the simulation. To this purpose, we set
κ̃a = ρ

2T−3.5 and η̃ = σSB/πκ̃aT4, where the fluid temperature
T is computed from an ideal gas equation of state. This absorp-
tion opacity is motivated by the Rosseland mean opacity for ther-
mal bremsstrahlung (Rybicki & Lightman 1986) and the emissivity
simply follows from Kirchhoff’s law upon assuming black-body
radiation.

We should note that in contrast to the pure-RMHD simulation,
which is scale invariant, the coupled RMHD-radiation simulation
fixes the length scale via the value of the Stefan-Boltzmann constant
σSB and the density assumed for the ambient medium ρamb. Here,
we simply use ρamb = 1 and σSB = 0.1, which does not lead to
a physically realistic setup, but ensures that a moderate amount
of radiation is produced, that neither dominates the fluid nor is
dominated by it.

Finally, we also add scattering using κ̃0 = 10−3ρ and κ̃1 = 0.
This choice is motivated by the microphysical process of Thomson
scattering, which is proportional to the number of scatters in the
medium (hence, the choice for κ̃0) and has no preferred direction
(hence, the choice for κ̃1).

We compare the results of the pure-RMHD and the RTE-
coupled simulations in Fig. 11, whose left panel refers to the pure-
RMHD jet, the central panel to the RTE-coupled solution obtained
with the LB method, and the right panel to the corresponding evo-
lution when the RTE-coupled solution is obtained with the M1
scheme. A quick comparison of the pure-RMHD jet morphology

in the left panel shows that it is in good agreement with the one
presented by Martí et al. (1997) and Aloy et al. (1999), where this
type of jets has been studied extensively. On the other hand, the
solutions employing a coupling with the radiation are considerably
different. In particular, the RTE-coupled simulation with the LB
method shows that the jet propagates more slowly, i.e., the Lorentz
factor is∼ 15% smaller than for the pure-RMHD case. This is due to
the fact that the fluid making up the jet loses energy via the emission
of radiation. By stark contrast, the RTE-coupled solution obtained
with the M1 scheme shows that the jet propagates more rapidly.
While this behaviour is similar to the one reported by Rivera-Paleo
& Guzmán (2019) – who, in addition, continuously injected energy
in the radiation field – we believe it is actually incorrect.

The origin of this substantially different dynamical behaviour
is due to the poor handling by the M1 scheme of radiation interacting
with itself. We find this to cause significantly different distributions
of the energy-density. In the case of the M1-evolution, the radiation
energy density accumulates mostly in a narrow region along the
z-axis, while it is more evenly spread in the case of LB-evolution.
The actual cause of this radiation focussing is the same at the origin
of the poor performance of the M1 scheme in the beam-crossing
test reported in Fig. 4. Also in this case, in fact, different beams of
radiation originating from the recollimation shock produced near the
injection region of the jet (Mizuno et al. 2015), intersect along the
z-axis and lead to an inconsistent combination of radiation fluxes.

This is illustrated in the top panels of Fig. 12, which reports
a cut through the (x, z) plane of the radiation energy density E at
an early time during the jet evolution, namely at t = 30 rjet, using
either the LB method (left) or the M1 scheme (right). Note that
in both cases there is a triangular region of small E originating
from the recollimation shock, and ultimately due to the contact
discontinuity between propagating jet and ambient medium (see
Aloy & Rezzolla 2006, for a discussion of the role of the contact
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Figure 11. Cut through the (x, z) plane for the relativistic jet after t =

125 rjet. Shown is the rest-mass density for the pure-hydro (left) and the
coupled hydro-radiation using LB (middle) and M1 (right).

discontinuity in accelerating the jet). This region of small E is
surrounded on both sides by high-E streams, which appear as white
in the colorcode used. In the case of the M1-evolution (right panel),
these two streams merge at the top of the triangular low-E region
leading to the same pathology discussed in Sec. 4.1.1 (cf., Fig. 4)
and to the artificial accumulation of radiation along the z-axis. The
latter then provides additional momentum, pushing the jet forward
and overcompensating the linear momentum lost in the production
of the radiation. In the LB-evolution, on the other hand, the two
beams do not merge but cross correctly. As a result, the radiation
energy density is not artificially focused and E spreads out over a
larger region, leading to a broader bow shock ahead of the jet, which
is also propagating more slowly.

Note that these problems in the M1-evolution affect the dy-
namics of the jet only downstream of the first recollimation shock.
This is very clearly illustrated in the bottom panels of Fig. 12, which
refer instead to the rest-mass densities in the two cases and to the
same time as the top panels, i.e., t = 30 rjet. As one would expect,
the differences are in this case very small since the radiative effects
have not yet been able to play a role, which they will instead do for
t & 30 rjet.

In summary, these results go well-beyond our intention of pro-
viding a proof-of-principle evidence for a correct implementation
of the LB method in a fully coupled relativistic-fluid configuration.
In particular, they clearly show the ability of the LB method to han-
dle correctly scenarios with physical conditions that are very close
to those encountered in relativistic astrophysical phenomena. More
importantly, they highlight that under these very same conditions,
the M1 approach commonly employed – even by us (Weih et al.
2019) – may suffer from artefacts that may affect the dynamics of
relativistic jets, such as those expected to be generated in a binary
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Figure 12. Top panel: Cut through the (x, z) plane of the radiation energy
density at t = 30 rjet for the coupled RMHD-radiation simulations using the
LB method (left) and the M1 scheme (right). Bottom panel: The same as in
the top panel, but for the rest-mass density.

system of merging neutron stars, and whose accurate description is
essential to gain insight in the launching of relativistic jets in short
gamma-ray bursts.

6 PERFORMANCE AND SCALABILITY

Novel computational methods are expected to i) feature good scal-
ability on parallel computers, ii) perform better than existing ones
in accuracy, efficiency or both.

In what follows we show that the LB method proposed here
possesses both these qualities, i.e. parallel scalability and efficiency.

Indeed, one key ingredient in the success and widespread adop-
tion of LB is parallel efficiency. Thanks to the synchronous algorith-
mic flow stemming from the stream-collide paradigm, LB schemes
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exhibit high amenability to parallel coding, making them natural
targets for efficient implementations on modern computer architec-
tures (Godenschwager et al. 2013; Bernaschi et al. 2009; Mazzeo &
Coveney 2008; Bernaschi et al. 2010; Succi et al. 2019).

In this section, we provide a brief performance evaluation of the
numerical scheme designed in this paper. With respect to classical
LB models, our scheme presents two main differences: i) we employ
off-lattice quadratures, which require interpolation to implement the
streaming phase; ii) the number of velocity components forming the
stencil is significantly larger with respect to standard LB schemes.

We have implemented our numerical scheme using directive-
based programming environments, such as OpenMP and OpenACC,
to expose parallelism (Calore et al. 2016a). The advantage of this
approach is that the code is portable and can therefore be compiled
and executed on diverse architectures, from commodity CPU-based
processors to GPU accelerators. We test the code on an Intel Sky-
lake 20-cores processor, a commonly adopted architecture in the
HPC-market. We measure performances in terms of Million Lattice
Updates per Second (MLUPS):

MLUPS = 106 L3 Niter

texe
, (58)

where texe measures the execution time (in seconds) required to
simulate Niter timesteps on a grid of L3 points. In essence, for a
problem of fixed size and iterations L and Niter, a parallel imple-
mentation should lead to an execution time that decreases linearly
with the number of cores and hence a linearly growing MLUPS.
This is shown in Fig. 13, where we assess the scalability of the code
on a single Intel Skylake board. We solve the emitting-sphere bench-
mark with an explicit Euler stepper, on an L = 1283 grid, and with
a spherical-design quadrature of order p = 20 with Npop = 200 dis-
crete components. The code scales up to 20 threads with a parallel
efficiency above 70%.

These figures are already quite good, but could be further im-
proved. A limiting performance factor is given by inefficient mem-
ory accesses, which in turn leads to a sub-optimal use of the cache
and of the vector unit of the processor. Omitting details, we simply
mention here that a careful optimisation of the data-layout used to
store the grid in memory should be taken into consideration. The
two most common data layouts used in several stencil applications
are the so-called array of structures (AoS) and structure of arrays
(SoA) schemes; in the AoS layout, all populations associated to one
lattice site are stored in contiguous memory locations. Conversely,
in the SoA scheme all the populations having the same index i are
stored contiguously, while populations belonging to the same lattice
site are stored far from each other at non unit-stride addresses. Re-
cently, more sophisticated data-layouts have been designed explic-
itly for LB applications (Shet et al. 2013) yielding strong benefits,
especially when targeting multi-core architectures with wide vector
units and large cache memories (Calore et al. 2019). The application
of these optimisation and a more in-depth analysis will be reported
elsewhere.

In Fig. 14, we show the performance obtained on a dual-
Skylake processor as a function of Npop. We show results for an
explicit and also for the implicit stepper described in Sec. 3.3, which
extends the stability of the method also to the case of very stiff terms.
To simplify the comparison, we have executed the Lambda iteration

loop exactly 5 times at each grid-cell. Since the execution time of
the current implementation is completely bounded by memory ac-
cesses, the difference between the implicit and the explicit scheme
is almost negligible.

The figure also presents a comparison with the performance
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Figure 13. Analysis of performance scalability on a single Intel Skylake
board. The results refer to simulations of the emitting-sphere benchmark
with an explicit Euler stepper, on an L = 1283 grid, using a stencil with
Npop = 200 components. The figures reported correspond to the best out of
10 trials for each set of parameters.

of the special-relativistic version of the M1 code FRAC (Weih et al.
2020), featuring a similar level of optimisation. For M1 the major
bottleneck is the closure relation, which requires a complex root-
finding algorithm for obtaining the pressure tensor. In principle, the
performance of FRAC can be arbitrarily good or bad depending on
the desired accuracy of the root-finding step. Here we consider a
standard setup (i.e., a relative accuracy of 10−9 for root-finding and
computing the closure on cell-centres as well as cell-faces). As can
be seen from the dashed line in Fig. 14, the LB method outperforms
the M1 code for Npop . 400, the latter being a rather generous
number of discretized directions to solve most astrophysical prob-
lems. We also consider somewhat higher (10−14) and lower (10−4)
relative accuracy for the root-finding, which is shown as a blue band
in Fig. 14.

Finally, we comment that the LB method is particularly well
suited for GPU implementations (Bernaschi et al. 2010; Calore et al.
2016b). For this reason we also test a GPU-optimized version of our
code on an NVIDIA V100 GPU. We observe the performances to
be systematically one order of magnitude higher than those reported
on the CPU, both for stencils with 10 − 100 components, suitable
for simulations in which scattering terms are relevant, as well as for
stencils with > 200 components, which instead allow to extend the
applicability of the solver to free-streaming regimes. The present
version of the code allows for efficient memory accesses on GPUs
architectures, in turn exposing the higher costs of the implicit solver,
which for large values of Npop is found to be 2 − 2.5× slower than
the explicit Euler method.

7 CONCLUSIONS AND OUTLOOK

We have presented an extension of the LB method, which is com-
monly used in classical fluid dynamics, to the solution of the RTE
in special relativity, thus making it applicable to three-dimensional
simulations of high-energy astrophysical phenomena.

After implementing the new method in flat spacetime and under
the grey approximation, we analysed its performance in a number
of code tests. In this way, we have shown that while the LB method
performs extremely well in the diffusion limit, the free-streaming
regime represents the most difficult one to treat accurately. In this
regime, a large number of discrete velocity directions is required
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Figure 14. Comparison of the performance (measured MLUPS) achieved on
a dual-Skylake processor (40 threads) as a function of Npop, the number of
the discrete components forming the stencil. The results refer to simulations
of the emitting-sphere benchmark, on an L = 1283 grid. Dots correspond to
simulations based on an explicit Euler stepper, while squares correspond to
simulations using an implicit stepper. The dashed line shows the performance
of the M1 code FRAC with the blue-shaded band corresponding to different
accuracies for the M1 closure. The figures reported are the best out of 10
trials for each set of parameters.

since the propagation of radiation is restricted to these directions
only. Nevertheless, even in this optically thin limit, the LB method
proves superior to the commonly used M1 method, as witnessed by
the fact that radiation beams cross correctly.

This feature is important for astrophysical systems with an
accretion disk and torus, from which radiation is expected to cross
and lead to the phenomenology observed in short gamma-ray bursts.
Besides this important advantage, the new LB method also outper-
forms the M1 method in the intermediate regime, between diffusion
and free-streaming, mostly because it does not need to rely on a
closure relation to compute higher moments, as it is the case for the
M1 scheme, where the pressure tensor is simply interpolated via the
closure.

The accuracy in the calculation of the moments also depends
on the underlying quadrature, for which we have compared three
possibilities. While in our code tests only minor differences could
be seen among these quadratures, it is mathematically clear that the
Lebedev and spherical-design quadratures are more accurate than
the Gauss-Legendre quadrature commonly used in direct Boltzmann
solvers (see e.g., Nagakura et al. 2018).

We have also coupled our new radiation code to the GRMHD-
code BHAC and simulated a relativistic jet, where the radiation back-
reacts dynamically onto the fluid. Not only does this represent the
first such simulation using an LB scheme, but also proves that
our new method is indeed applicable to high-energy astrophysics.
Furthermore, when comparing the corresponding results obtained
with the more standard M1 code FRAC, that employs a moment-
based scheme, we have shown that the LB-method solution does
not suffer from the inaccuracies that plague the M1 method.

Finally, we have also shown that the LB method is faster than
the M1 method for a number of discrete directions Npop . 400,
which has been shown to be more than enough for accurately sim-
ulating the diffusion limit and gives reasonable results also in the
free-streaming regime.

Depending on the system, one might need higher accuracy
in the latter and thus Npop ≈ 600 − 800 might be necessary. In

this case the LB method is slightly more expensive than the M1
scheme. Considering, however, the high amenability of LB to GPU
implementations, a major speed-up can certainly be achieved along
this line.

While this paper is meant to provide a presentation of the LB
method for the solution of the radiative-transfer equation in com-
putational astrophysics, a number of improvements are possible,
both in terms of astrophysical applications, and in terms of mathe-
matical and numerical developments. The former involves a more
detailed and realistic investigation of the role played by radiation
in impacting the dynamics and imaging of astrophysical relativistic
jets. The latter necessarily involves the extension of the method to a
general-relativistic framework, which requires the extension of the
streaming-step to curved spacetimes.

Finally, the numerical developments will include the possibility
of using numerical grids with various form of static and dynamic
mesh-refinements. Also in this case, an adjustment of the streaming-
step will be needed to allow for the streaming from coarse to fine
grid cells and vice-versa. Work along these lines is in progress.
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APPENDIX A: LINK BETWEEN MICROSCOPIC AND

MACROSCOPIC PARAMETERS

In this section of the appendix we perform an asymptotic analysis
to link the microscopic parameters with the macroscopic ones. In
particular we consider the specific limit of zero emission and ab-
sorption (κa = η = 0), for which the radiative Lattice Boltzmann
equation is shown to recover the diffusion equation

∂tE = D∆E . (A1)

In Appendix A1 the link between the diffusive coefficient D

and the scattering parameters (κ0, κ1) is established analytically
through a Chapman-Enskog expansion (Chapman & Cowling 1970).
In Appendix A2 the analytic expressions are extended to account
for extra numerical corrections by fitting results from numerical
simulations.

A1 Chapman-Enskog Analysis

We start from Eq. (29) assuming zero absorption and emission, i.e.,

Ii(r + cn̂i∆t, t +∆t) − Ii(r, t) = −cκ0∆t
(
Ii(r, t) − I

eq
i
(r, t)

)
. (A2)

with I
eq
i
(r, t) given by Eq. (30). Note that throughout this section we

will write c explicitly and write vector components with Greek in-
dices rather than using boldface vectors. We also adopt the Einstein
convention of summing over repeated indices.

Taking a Taylor expansion of the left-hand side of Eq. (A2),
and including terms up to the second order, gives:

Ii(x + ni∆t, t + ∆t) − Ii(x, t) = ∆t
(
∂t + cnαi ∂α

)
Ii

+

1

2
∆t2

(
∂t + cnαi ∂α

)2
Ii + O(∆t3) . (A3)

We also expand the differential operator with respect to time

∂t = ǫ∂
(1)
t + ǫ

2∂
(2)
t + O(ǫ3) , (A4)

and space:

∂α = ǫ∂
(1)
α + O(ǫ2) , (A5)

where ǫ ≪ 1.
Next, we expand the specific intensity around its equilibrium:

Ii = I
(0)
i
+ ǫ I

(1)
i
+ ǫ2I

(2)
i
+ O(ǫ3) , (A6)

where I
(0)
i

≡ I
eq
i

. We also recall the definition of the first and second
moment of the distribution:

E =
∑

i

Ii , (A7)

Fα
=

∑

i

nαi Ii . (A8)

Assuming the most basic level of isotropy for the stencil used in the
numerical method we have
∑

i

wi = 1 ,
∑

i

win
α
i = 0 ,

∑

i

win
α
i n

β

i
=

1

d
δαβ ,

∑

i

win
α
i n

β

i
n
γ

i
= 0 , (A9)

where α, β, and γ run over the spatial indexes in d dimensions.
By integrating Eq. (30), in combination with Eq. (A9), we

get the following definitions for the moments of the equilibrium
distribution:
∑

i

I
eq
i
= E , (A10)

∑

i

I
eq
i

n
β

i
=

λ

d
Fβ , (A11)

∑

i

I
eq
i

n
β

i
n
γ

i
=

1

d
δβγE . (A12)
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Since we are neglecting absorption and emission and consider the
diffusion limit, where the radiation is in thermodynamic equilibrium
with the underlying fluid, we find due to conservation
∫

(I − Ieq)dΩ = 0 ⇒
∫

IdΩ =

∫
IeqdΩ , (A13)

which in the discretized form leads to the condition
∑

i

Ii =
∑

i

I
eq
i
= E ,

∑

i

I
(k)
i
= 0 ∀k ≥ 1 . (A14)

We do not write down any condition for the first moment, since its
preservation depends on the choice of λ.

Replacing the left-hand side of Eq. (A2) with its second order
Taylor expansion, i.e., Eq. (A3), we get

∆t
(
∂t + cnαi ∂α

)
Ii(x, t) +

1

2
∆t2

(
∂t + cnαi ∂α

)2
Ii(x, t)

= −c∆tκ0

(
Ii(x, t) − I

eq
i
(x, t)

)
. (A15)

We now plug in the above Eqs. (A4), (A5), and (A6) and perform
a multi-scale expansion in which we keep track separately of terms
up to order ǫ and ǫ2. The resulting equations are

O(ǫ) :
(
∂
(1)
t + cnαi ∂

(1)
α

)
I
(0)
i

≈ −cκ0I
(1)
i
, (A16)

O(ǫ2) :

(
1 − ∆t

2
cκ0

) (
∂
(1)
t + cnαi ∂

(1)
α

)
I
(1)
i
+ ∂

(2)
t I

(0)
i

≈ −cκ0I
(2)
i
.

(A17)

We then take into consideration Eq. (A16) and integrate (i.e.
sum over all Npop populations), getting
∑

i

(
∂
(1)
t I

(0)
i
+ cnαi ∂

(1)
α I

(0)
i

)
≈ −cκ0

∑

i

I
(1)
i
, (A18)

which using Eq. (A14) and the definition of the first order moment
leads to

∂
(1)
t E + c

λ

d
∂
(1)
α Fα = 0 . (A19)

Next, starting again from Eq. (A16), we multiply by n
β

i
and

integrate, which yields

λ

d
∂
(1)
t Fβ

+

1

d
c∂βE = −cκ0

∑

i

n
β

i
I
(1)
i
. (A20)

Note that the RHS of the above equation vanishes when the conser-
vation of the first moment is ensured; for the moment we leave it in
a general form and evaluate this term later on.

We now integrate Eq. (A17) and obtain

∑

i

(
1 − ∆t

2
cκ0

) (
∂
(1)
t + cnαi ∂

(1)
α

)
I
(1)
i
+

∑

i

∂
(2)
t I

(0)
i

≈ −κ0
∑

i

I
(2)
i
,

(A21)
(
1 − ∆t

2
cκ0

)
c∂

(1)
α

∑

i

nαi I
(1)
i
+ ∂

(2)
t E = 0 , (A22)

∂
(2)
t E = −

(
1 − ∆t

2
cκ0

)
c∂

(1)
α

∑

i

nαi I
(1)
i
. (A23)

The RHS can be derived from Eq. (A20), leading to

∂
(2)
t E =

1

cκ0

(
1 − ∆t

2
cκ0

)
c∂

(1)
α

(
λ

d
∂
(1)
t Fα

+

1

d
c∂αE

)
, (A24)

which can be re-arranged as

∂
(2)
t E = D

(
∆
(1)E + λ

1

c
∂
(1)
α ∂

(1)
t Fα

)
(A25)
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Figure A1. Effect of the parameter λ on the diffusion speed of a Gaussian
pulse. The simulations are performed in a bidimensional grid of size L =

100, with ∆t = 1 and k0∆x = 1.

with

D =
c2

dcκ0

(
1 − ∆t

2
cκ0

)
. (A26)

We note that Eq. (A25) is the diffusion equation with D its diffusion
coefficient plus an extra error term. This error term is the same one
that arises for the equations of the M1 system, when considering the
optically thick limit and neglecting absorption and emission. It is
remarkable that despite the M1 system being a set of macroscopic
equations, where the connection between D and the system’s scat-
tering coefficient is directly evident, in contrast to the microscopic
equation of our LB method, we arrive at the exact same macroscopic
equation for the diffusion limit.

A2 Numerical Fit

In the previous section we have established a link between the mi-
croscopic parameters and the diffusion coefficient by performing
the Chapman-Enskog expansion. In principle one would need to
extend the expansion to include corrections coming from higher
order terms. Besides, one should also account for extra dissipa-
tive effects coming from the fact that the LB method described in
the present work is not based on a space-filling Cartesian lattice
and consequently requires interpolation. Since the overall analysis
would become rather tedious from an analytical point of view, in
this section we numerically evaluate the corrections to Eq. (A26)
that so far have been neglected.

We start by taking into consideration the effect of varying the
parameter λ. We consider the same numerical setup discussed in
Sec. 4.2.3, working in 2D, on a 100 × 100 grid, with ∆t = ∆x and
κ0∆x = 1. In Fig. A1 we show the results of numerical simulations
for a few selected values of λ; the results clearly show how λ impacts
the diffusion speed. Since Eq. (A26) does not depend on λ, but only
on κ0, we extend it by assuming a dependency on the parameter

χ = κ0

(
1 + α1

1

d
λ

)
, (A27)

i.e., a linear combination of κ0 and κ1, with α1 a coefficient left to
be determined.
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Figure A2. Example of the numerical analysis performed to fit the expression
for the diffusion coefficient as in Eq. (A28). The results are shown for
the specific case λ = 0.25. Crosses represent estimates of the numerical
diffusion coefficient which ensures that the L2-norm of the relative error
is within 1% with respect to the analytic solution. Dashed lines show the
predicted diffusion coefficient using Eq. (A28) with α1 = 3/4, α2 = 0.48
and α3 = 0.65.

In Sec. 4.1 we have discussed the artificial diffusivity intro-
duced by the interpolation scheme used to implement the propa-
gation step. In order to try to capture these effects we propose the
following extension for Eq. (A26):

D =
c

dχ

[
1 −

(
1

2
+ α2

)
∆tcχ

]
+

∆x2

∆t
α3 . (A28)

In the above, α2 introduces a correction to the leading term of the
Taylor expansion of the propagation step, which is also present in
other off-grid LB schemes (see e.g. Coelho et al. (2018)). This cor-
rection becomes vanishingly small as one takes smaller timesteps.
We attribute this correction to the specific interpolation scheme
employed. Besides, we also introduce an extra coefficient α3 which
introduces a background diffusivity which depends on the specific
stencil taken into consideration.

Our task consists now in determining α1, α2, α3. To this aim
we perform several numerical simulations, in which we once again
reproduce the benchmark described in Sec. 4.2.3, varying κ0∆x,
∆t and λ. We follow the evolution of each simulation up to t =

200∆t. Next, we estimate the numerical diffusion coefficient of
each simulation. To do so we compare the numerical results with
the analytic solution (Eq. (55) ), and fit a numerical value of the
diffusion coefficient which leaves the L2-norm of the relative error
below 1% over several finite time-steps (t/∆t = 5, 10, 20, . . . 200).
The crosses in Fig A2 provide an example of the results obtained
following this procedure, for the specific case λ = 0.25.

Finally, we attempt to fit the dataset with Eq. (A28). We find
that to good accuracy α1 ≈ − 4

3 in both 2 and 3 dimensions. The
parameters α2 and α3, however, depend both on the dimensionality
and on the specific stencil taken into consideration, although both
tend to stabilise when considering stencils formed by a sufficiently
large number of components. To give an example, conducting the
analysis in 2D with Npop = 120 we get α2 ≈ 0.48, α3 ≈ 0.65. In
3D, instead, using a spherical-design quadrature with order p = 20
and Npop = 222, we obtain α2 ≈ 0.58, α3 ≈ 0.77.

APPENDIX B: EMISSIVITY AND OPACITIES IN THE

LAB FRAME

For radiative transfer simulations on a moving fluid background it is
simpler to express the microscopic quantities describing emission,
absorption and scattering processes in the comoving fluid-frame,
in which the fluid is at rest. Since our LB scheme is designed in
the lab frame, it is then necessary to transform these fluid-frame
quantities to their lab-frame counterparts. For doing so we follow
the derivation in Mihalas & Auer (2001), which for completeness
we summarise here for the grey approximation.

For a fluid moving with three-velocity 3i and Lorentz factor W ,
the frequency ν in the lab frame of a radiation particle propagating
in direction n̂i is transformed to the comoving fluid frame via

ν̃ = Wν(1 − 3i n̂i) . (B1)

It was then shown that the frequency-dependent quantities, which
are isotropic in the fluid frame, transform like

ην =
ν2

ν̃2
η̃ν̃ =

η̃ν̃

W2(1 − 3i n̂i)2
(B2)

κa,ν =
ν̃

ν
κ̃a,ν̃ = W(1 − 3i n̂i)κ̃a,ν̃ . (B3)

The frequency-averaged absorption opacity defined by Eq. (21) then
simply follows as

κa =

∫ ∞
0 W(1 − 3i n̂i)κ̃a,ν̃ Iν dν

∫ ∞
0 Iν dν

= W(1 − 3i n̂i)κ̃a , (B4)

where κ̃a is the frequency-integrated fluid-frame absorption opacity.
The transformation of the frequency-integrated emissivity is

η =

∫ ∞

0
ν3ην dν =

∫ ∞
0 ν̃

3η̃ν̃ dν

W2(1 − 3i n̂i)2
=

∫ ∞
0 ν̃

3η̃ν̃ d ν̃

W3(1 − 3i n̂i)3
(B5)

=

η̃

W3(1 − 3i n̂i)3
,

where η̃ is the frequency-integrated fluid-frame emissivity.
The scattering opacities are more complicated to transform

and we here only consider iso-energetic isotropic scattering like
the Thomson scattering process, which we use in Sec. 5. We then
recognize that for κ0 we have two terms on the RHS of Eq. (17). The
one proportional to I acts like the absorption term and transforms
correspondingly, i.e.,

κ0I = W(1 − 3i n̂i)κ̃0I . (B6)

The second term proportional to E acts like an emission term, for
which we use the same transformation that we used in Eq. (B5). We
then find

κ0E =
κ̃0J

W3(1 − 3i n̂i)3
, (B7)

where J is the radiation energy density in the fluid frame, which can
be computed from the lab-frame moments according to Eq. (56).

Taking all of the above transformations together means that for
the simulation of the relativistic jet in Sec. 5, we solve the mixed-
frame equation

1

c

∂I

∂t
+ n̂ · ∇I = −W(1 − 3i n̂i)(κ̃a + κ̃0)I +

η̃ + κ̃0J

W3(1 − 3i n̂i)3
(B8)

instead Eq. (17).
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