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Abstract

We derive an analytical connection between kinetic relaxation rate and bulk viscosity of a rela-

tivistic fluid in d spatial dimensions, all the way from the ultra-relativistic down to the near non-

relativistic regime. Our derivation is based on both Chapman-Enskog asymptotic expansion and

Grad’s method of moments. We validate our theoretical results against a benchmark flow, provid-

ing further evidence of the correctness of the Chapman-Enskog approach; we define the range of

validity of this approach and provide evidence of mounting departures at increasing Knudsen num-

ber. Finally, we present numerical simulations of transport processes in quark gluon plasmas, with

special focus on the effects of bulk viscosity which might prove amenable to future experimental

verification.

1Corresponding author. E-mail address: d.simeoni@stimulate-ejd.eu

Preprint submitted to Elsevier July 13, 2020



1. Introduction

In the last decade, relativistic hydrodynamics has received renewed attention and interest

thanks to major breakthroughs in condensed matter, high-energy and gravitational physics [1].

In particular, experimental data from the Relativistic Heavy-Ion Collider (RHIC) and the Large

Hadron Collider (LHC), have triggered further developments in the study of viscous relativistic

fluid dynamics, both at the level of theoretical formulations and for the development of robust

numerical methods, to describe the collective behavior of quark gluon plasmas (QGP).

Several theoretical aspects related to a consistent formulation of dissipative relativistic hydro-

dynamics are still under debate in the literature [2–18], including the correct derivation of the

values of the transport coefficients as a function of the parameters defined at the level of kinetic

theory [19–27].

A proper understanding of transport properties is crucial for the study of the evolution and

equilibration process of the quark gluon plasma produced in heavy ion collisions. The effects of

shear viscosity on the elliptic flow parameters have been extensively studied by several authors

[28–32]. The relevance of bulk viscosity, mostly regarded as negligible in the earlier days, has

attracted significant attention in recent years [33–37]. For instance, it has been suggested that, near

the critical point, bulk effects might be dominant over shear viscosity [38, 39]. In this context, an

accurate derivation of all transport coefficients and the availability of numerical tools capable of

capturing the effects of bulk viscosity are desirable in a theoretical perspective and important also

for the simulation of QGP. As a side note, we remark that a complete analysis of the role of bulk

viscosity in relativistic hydrodynamics could also be beneficial to the theoretical understanding of

the accelerated expansion of the universe [40–44].

In this work, we perform the Chapman Enskog expansion to establish the analytic expression

of bulk viscosity of a relativistic gas obeying an ideal equation of state and working in the single

relaxation-time (SRT) approximation. The derivation is developed in a (d + 1) dimensional flat

space time. While d = 2, 3 are the most relevant physical cases, it is nevertheless interesting from

a theoretical point of view to consider the general d-dimensional case. Indeed, the dependence of

bulk viscosity on the relativistic parameter ζ = mc2

kBT
(defined as the ratio between the particles rest

energy and the thermal energy), is found to strongly depend on the dimensionality of the system.

Our analytical results are then compared and validated against numerical simulations, per-

formed using a recently developed relativistic lattice kinetic scheme. We consider first a simple

synthetic flow that we would like to suggest as a benchmark for the measurement and calibration

of bulk viscosity and then a more complex flow with several features typical of QGP flows. This

paper builds on previous work presented in [45], enriched with an extended set of new numerical

results.

This paper is organized as follows: in section 2, we briefly summarize the procedure followed

to derive the analytic form of bulk viscosity working in the single relaxation time approximation.

In section 3, we present a numerical validation of the analytical results, also providing an example

of application for which these results are relevant and of practical interest. Finally, conclusions

and future developments are summarized in section 4.
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2. Relativistic Boltzmann Equation and Chapman Enskog expansion

We consider a (d + 1) dimensional flat spacetime, in which a statistical description of a rel-

ativistic fluid is given in terms of the particle distribution function f ((xα), (pα)), depending on

coordinates (xα) = (ct, x), with c the light speed, and momenta (pα) =
(

p0, p
)

, with x, p ∈ Rd.

The time evolution of the system is governed by the relativistic Boltzmann equation, that we

take in the Anderson-Witting [46, 47] SRT approximation:

pα
∂ f

∂xα
= −

pµUµ

τc2
( f − f eq) , (1)

with τ the relaxation (proper-) time, Uµ the macroscopic fluid velocity, and f eq the equilibrium

distribution function, for which we take the normalized Maxwell-Jüttner distribution:

f eq =

(

c

kBT

)d
n

2
d+1

2 π
d−1

2 ζ
d+1

2 K d+1
2

(ζ)
exp

(

−
Uαpα

kBT

)

. (2)

In the above n is the particle number density, T the temperature, ζ (already referred to in the

Introduction) is the ratio between the rest mass of the particles m and the temperature ( ζ =

mc2/kBT ), Ki(x) the modified Bessel function of the second kind of order i, and kB the Boltzmann

constant.

The Anderson-Witting collisional operator ensures the local conservation of particle number,

energy and momentum. Dissipative effects are described by the energy momentum tensor, which

in the Landau-Lifshitz frame admits the following decomposition:

Tαβ = c

∫

f pαpβ
dd p

p0

=
ǫ

c2
UαUβ − (P +̟)∆αβ + π<αβ> , (3)

with ǫ the energy density, P the hydrostatic pressure, and ∆αβ the Minkowski-orthogonal projector

with respect to the fluid velocity Uα:

∆αβ = ηαβ −
1

c2
UαUβ ; (4)

ηαβ is the metric tensor, that we define as ηαβ = diag(1,−1), 1 = (1, . . . , 1) ∈ N
d. Finally,

and most importantly in this treatment, the pressure deviator π<αβ> (here the < .. > parentheses

represent the traceless symmetric contribution to Tαβ) and dynamic pressure ̟ represent the non-

equilibrium contribution to the energy momentum tensor, proportional to shear viscosity η and

bulk viscosity µ, respectively. It can be shown [48] that bulk viscosity connects dynamic pressure

and the divergence of the velocity via the relation:

̟ = −µ∇αβ∂βUα . (5)

Asymptotic expansions are generally employed in order to establish a link between macro-

scopic equations and the kinetic description. In the following, we perform the Chapman-Enskog

expansion [49] to determine an analytic expression putting in relation the bulk viscosity with the
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kinetic relaxation time parameter. Here we confine ourselves to a summary of the main conceptual

steps, while full details on the analytic procedure can be found in [45].

The starting point is an expansion of the particle distribution function f around equilibrium

f ∼ f eq(1 + φ) , (6)

with φ of the order of the Knudsen number Kn, defined as the ratio between the mean free path and

a typical macroscopic lenght scale. Next, we plug Eq. 6 into Eq. 1, and retain only terms O(Kn):

pα
∂ f eq

∂xα
= −

pαUα

c2τ
f eqφ . (7)

By combining the above with Eq. 2 lengthy but straightforward calculations allow to derive an

analytic expression for φ:

φ = −
c2τ

pµUµ
pα

[

∂αn

n
+ (1 −Gd)

∂αT

T
+ pβ

Uβ∂αT

kBT 2
−

pβ∂αUβ

kBT

]

, (8)

where

Gd =
ǫ + P

P
= ζ

K d+3
2

(ζ)

K d+1
2

(ζ)
. (9)

At this point it is possible to use Eq. 6 to compute the energy-momentum tensor Tαβ through

its integral definition. Moreover, from Eq. 3 one can single out the dynamic pressure by applying

the projector ∆αβ, giving:

̟ = −P −
1

d
∆αβT

αβ . (10)

By comparing Eq. 5 with Eq. 10, and matching term by term we identify the following analytic

expression for bulk viscosity:

µ = Pτ

[

Gd − ζ
2K

d
−
ζ2 −G2

d
+ (d + 2)Gd

ζ2 −G2
d
+ (d + 2)Gd − 1

]

with K =

∫

pi pi f eq

pµUµ

dd p

p0

. (11)

Following a similar procedure it is possible to extract a value also for the shear viscosity η, that

we show here for completeness (further details on the derivation can be found in [45]):

η = Pτ

[

Gd − ζ
2K

d + 2

]

(12)

Grad’s method of moments [50] provides an alternate procedure to connect kinetic parameters

with hydrodynamics coefficients. Although there is a growing consensus on CE providing more

accurate results with respect to Grad’s method [10, 11, 13, 18, 23, 24, 45, 51, 52] it is nevertheless
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Figure 1: On the left, bulk viscosity is plotted against the parameter ζ with a dependence given by the CE analysis

(thick lines) and Grad’s method (dashed lines). The discrepancy between the two asymptotic expansions in more

prominent in the mildly relativistic regime. The black dashed line represent the viscosity in the limit of infinite spatial

dimensions, common to both CE and Grad’s method, where the transport coefficient is independent of ζ. On the right,

the ratio between the bulk and the shear viscosity (η) is plotted as a function of ζ.

interesting to compare the two. Following the procedure described in [48] we obtain the following

expressions for the bulk and shear viscosity of a relativistic fluid in (d + 1) dimensions:

µ = Pτ

(

ζ2(d − 2Gd) +Gd(−d +Gd − 1)(−d + 2Gd − 2)
)2

d
(

Gd(d −Gd + 2) + ζ2 − 1
) × (13)

1

G2
d

(

d2 + 8d − 2ζ2 + 12
)

−Gd

(

d2 + d
(

5 − 3ζ2
)

− 10ζ2 + 6
)

+ ζ2
(

−d + 2ζ2 − 2
)

− (d + 6)G3
d

.

η = Pτ
G2

d

(d + 3)Gd + ζ2
(14)

We compare the behavior of µ obtained using CE and Grad’s method of moments in 1, 2 and

3 space dimensions in Fig 1(a) . Both methods correctly reproduce the expected limiting behavior

for which bulk viscosity vanishes in the ultra-relativistic (ζ → 0) and non-relativistic (ζ → ∞)

limit. However there is an intermediate region for which a non-zero bulk viscosity is predicted

and for which the two derivations yield different values for both the amplitude and the location of

the peak. Despite the bulky analytical expressions, the position of the maximum, ζmax, is found

to have a very simple linear dependence on the dimension of the system: ζmax = α1d + α0, with

α1 consistent with 1 in both cases, and α0 ≈ 0.744 for CE, α0 ≈ 1.235 for Grad. As an amusing

theoretical remark, we also observe that, in the limit of infinite spatial dimensions, bulk viscosity

vanishes for all values of ζ.

Finally, we conclude our analysis pointing out one important limitation of the Anderson-

Witting collisional operator: since this model depends on one single mesoscopic parameter it
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follows that the relaxation rate will be the same for all the transport coefficients. As a consequence

one cannot tune independently shear and bulk viscosity; their ratio is shown in Fig. 1(b).

3. Numerical Simulations

In this section, we make use of a recently developed lattice kinetic solver [24, 53] and present

results of numerical tests which aim at i) cross-checking and validating the analytical results pre-

sented in the previous section and ii) providing an example of a realistic application to the physics

of quark gluon plasmas. We first give a short overview of the lattice kinetic algorithm that we have

used (a detailed derivation can be found in [45]) and then proceed to present the numerical tests.

3.1. I: Numerical Scheme

The relativistic lattice Boltzmann method (RLBM) is a computationally efficient approach to

dissipative relativistic hydrodynamics. It is based on a mesoscale approach, and therefore it has the

advantage, with respect to other relativistic hydrodynamic solvers, that the emergence of viscous

effects does not break relativistic invariance and causality, since space and time are treated on the

same footing, i.e. both via first order derivatives.

This numerical method solves a minimal version of Eq. 1, in which the discretization of the

microscopic momentum vector on a Cartesian grid is coupled with a Gauss-type quadrature (see

[24] and [45] for the formal analytic derivation) which ensures the preservation of the lower (hy-

drodynamics) moments of the particle distribution:

fi(x + vi∆t, t + ∆t) = fi(x, t) − ∆t
p
µ

i
Uµ

cp0
i
τ

(

fi(x, t) − f
eq

i
(x, t)

)

i = 1, 2, . . .M . (15)

In the above vi = pi/p
0
i

are the microscopic velocities, chosen in such a way to i) preserve exact

streaming (meaning that (pseudo)-particles travel in one time step along constant streamlines x +

vi∆t from a point of the grid to another point of the grid) ii) together with an appropriate set of

weights wi reproduce correctly the moments of the particle distribution up to order N. Given

this two conditions, f
eq

i
can be defined as the discrete version of a polynomial expansion of the

equilibrium distribution:

f
eq

i
= wi

N
∑

k=1

a(k)(U
µ,T )J(k)(p

µ

i
) ; (16)

refer to Appendix F and G in [45] for the definition of the polynomials and the projection coef-

ficients used in the expansion. The numerical analysis presented in the coming section is based

on numerical simulations making use of third order quadratures (N = 3), which are listed in Ap-

pendix H in [45].

The time evolution of Eq. 15 follows the collide-streaming paradigm typical of classic Lattice

Boltzmann schemes. At each time step, and for each grid cell, we need to compute the macroscopic

fields associated to the particle distribution. In order to do so we start by computing the first and

second moment of distribution:

Nα =
∑

i

fi p
α
i , Tαβ =

∑

i

fi p
α
i p
β

i
.
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From the definition of the energy-momentum tensor in the Landau frame (Eq. 3) we compute the

energy density ǫ and the four velocity Uα by solving the eigenvalue problem

ǫUα = TαβUβ ,

where ǫ corresponds to the largest eigenvalue of Tαβ. The particle density n comes from the

definition of the first order moment, while temperature and pressure follow from the ideal equation

of state:

P = nkBT (17)

ǫ = P(Gd − 1) .

At this stage it is possible to compute the polynomial expansion of the equilibrium distribution,

defined in Eq. 16, and use it to evolve Eq. 15.

3.2. II: Validation and Calibration

Following the same approach used in previous works on the analysis of shear viscosity and

thermal conductivity [24, 25, 52], we compare our analytical predictions for bulk viscosity with

data from numerical simulations.

We consider a simple synthetic flow describing a time-decaying sinusoidal wave in a d di-

mensional periodic domain; this flow is characterized by sizeable velocity gradients, allowing

the detection of physical effects due to a non zero bulk viscosity. The initial conditions for the

benchmark are as follows:

ux = v0 sin

(

2π

L
x

)

x ∈ [0, L] , (18)

ui = 0 ∀i , x ,

with v0 a given initial velocity, and with constant initial values for both particle density and tem-

perature.

In order to numerically evaluate the dynamic pressure, we introduce the definition of the

energy-momentum tensor at the equilibrium T
αβ

E
, which follows from Eq. 3:

T
αβ

E
= c

∫

f eq pαpβ
dd p

p0

=
ǫ

c2
UαUβ − P∆αβ . (19)

The dynamic pressure can then be expressed as the trace of the difference between the energy

momentum tensor and its equilibrium counterpart:

̟ = −
1

d
(T µµ − TE

µ
µ) . (20)

When considering flows at sufficiently low speeds (v0 << c), it is reasonable to approximate

the relativistic divergence ∇αβ∂βUα with its non-relativistic counterpart. It follows that we can
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Figure 2: Numerical estimate of the (non-dimensional) bulk viscosity for a relativistic gas in (1 + 1), (2 + 1) and (3 +

1) dimensions, shown respectively in panel (a), (b) and (c). The results are in agreement with CE analysis. In panel

(d) we consider the specific case ζ = 4 in three dimensions and show how the estimate for µ varies as a function of

the Knudsen number. We estimate the Knudsen number using Kn =< v > τ/L, where < v > is an estimate of the

mean velocity of the particles of the relativistic fluid [48], and L the typical lenght scale of the system, for which we

consider the wavelength of the sine wave. One can see that as Kn increases the first order approximation given by

both CE and Grad is no longer valid.

numerically measure ∇αβ∂βUα to good accuracy at each time step of the simulations, thus allowing

an estimate of µ directly from Eq. 5:

µ = −
̟

∇αβ∂βUα
. (21)

We have performed several simulations varying the mesoscopic parameters τ and ζ and ex-

tracted the expression for µ as a function of ζ in various spatial dimensions. Our results, see

Fig. 2, confirm that the CE analysis is in excellent agreement with numerical results.

We point out that the choice of the relaxation time τ is key to obtain accurate results. The linear

relationship between µ and τ holds as long as the assumptions made in the Chapman Enskog anal-

ysis remain valid, in particular the assumption of small Knudsen numbers. Conversely, for large

values of τ, that is for regimes where a purely hydrodynamic treatment becomes questionable,

the relation between the transport coefficients and the relaxation time is expected to depart from

linearity [23]. This behavior is measured in Fig. 2(d), for a specific case in three-dimensions at

ζ = 4: we plot the fitted value for µ/τP against the Knudsen number Kn, clearly showing that for
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Kn ' 0.01 numerical data start to diverge from the CE prediction. One can expect better agree-

ment when including higher order terms in the ansatz in Eq. 6, although this topic is still under

debate in the literature since gradient-expansions are notoriously divergent [54, 55].

3.3. III: Application
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Figure 3: Dynamic evolution of a fireball of QGP at three different time steps: t = 1 fm/c on the left panels, t = 4 fm/c

on the central panels, t = 8 fm/c on the right panels. In the top plots is shown the evolution of both the temperature

(color map) and the velocity (gray arrows) fields, on a slice of the system. The two bottom lines of plots show the time

evolution of respectively the hydrostatic pressure (normalized respect to the initial pressure value at center) and ratio

of dynamic to hydrostatic pressure, for three different values of the particle mass m. While for m = 0 the dynamic

pressure is always zero, it is not the case when m , 0. This shows that in this kind of dynamic the bulk viscosity plays

a subtle, but still relevant role.

In this section, we present a second simulation example where we consider a qualitative de-

scription of a relativistic elliptic flow, thus mimicking the evolution of the initial stages of heavy-

ion collisions.
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We adopt the same numerical setup used in a series of studies on spin-polarized relativistic

flows [56–58], neglecting however quantum effects. The equation of state used in these simulation

is the ideal one showed in Eq 17. Simulations of elliptic flows with different equation of state

implementations can be found for example in [59].

The initial conditions are given by a Gaussian distribution for both the temperature and density

profiles

T = T0 g(x, y, z), n = n0 g(x, y, z), g(x, y, z) = exp (−
x2

2σ2
x

−
y2

2σ2
y

−
z2

2σ2
z

) , (22)

with σx = 1 fm, σy = 2.6 fm and σz = 2 fm. The resulting ellipsoid represents the overlapping

zone in the collision between two heavy nuclei, with the fluid representing the product of such a

collision, a hot, dense and strongly anisotropic “fireball” of QGP. The initial temperature at the

origin of the axis is T0 = 200 MeV, with n0 = 4·10−3 fm−3. In order to avoid numerical instabilities

we include a background temperature of T = 80 MeV and density of n = 1 · 10−3 fm−3.

The initial velocity profile is given by:

Uα = γ (1,−Ω(r)y,Ω(r)x, 0) , Ω(r) =
1

r
tanh (

r

r0

) . (23)

with r =
√

x2 + y2 the distance from the center of the vortex in the transverse plane, and r0 a

parameter controlling the strength of the flow. This initial condition, due to the limit posed by

the speed of light, is physically meaningful only inside a maximum radius R < 1/Ω; in what

follows we use R = 3 fm and r0 = 6 fm. We consider a viscous regime where the ratio between

the shear viscosity η and the entropy density s is kept fixed at 2/(4π), comparing simulations for

different values of the rest mass of the particles in the fluid, with respectively mc2 = 0, 1, 2 GeV.

All simulations pertain to a cubic domain of size 20 fm, using 1283 grid points.

The top-panel in Fig. 3 shows the temperature profile of the system in the x−y plane at z = 0 fm

at three different time steps, from left to right t = 1, 4, 8 fm/c. In the QGP framework one is

interested in measuring the translation of the initial spatial anisotropy into a momentum space

anisotropy (which can be measured in experiments). The discretization of the momentum space,

upon which our numerical scheme relies upon, does not allow to perform direct measurements

of the elliptic flow coefficients; therefore here we will only show that bulk viscosity effects can

indeed be detected and measured, leaving a more detailed analysis to future works. With this aim,

we perform measurements of macroscopic observables spatially averaged at fixed radial distance

from the center of the ellipsoid. Fig. 3-center and lower panel- show respectively the hydrostatic

pressure and the ratio between dynamic and hydrostatic pressure. Vertical bars, representing the

variance, are larger at radial distances where the flow still exhibits a significant spatial anisotropy.

The effect of the rest mass of the particles in the fluid is evident: the dynamic slows down when

heavier particles are taken in consideration. For massless particles, the ratio between the dynamic

pressure is zero up to numerical accuracy, independently of the radial distance, as expected from

the analytical and numerical analysis presented in the previous sections. On the other hand, for

massive particles, non-equilibrium contributions due to bulk viscosity become noticeable. In these

cases̟ strongly varies across the domain, taking values larger than 1% of the hydrostatic pressure.
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We stress here that although the dissipative dynamic in the system is inherently connected to

both shear and bulk effects (and due to the single relaxation time nature of the numerical scheme a

separate tuning of the two effects is not possible) the specific effects of bulk viscosity are singled

out by the behavior of the dynamic pressure ̟ via Eq 5, since this quantity is affected only by the

value of µ.

4. Conclusions

Summarizing, in this work we have highlighted the role of bulk viscosity µ on the dynamics of

a relativistic monoatomic gas. Using the Chapman Enskog expansion and Grad’s method of mo-

ments, we have presented an analytical formulation in (d+1) dimensions, showing the dependence

of bulk viscosity on the kinetic relaxation time τ and the relativistic parameter ζ = mc2/kBT .

Our analysis shows that, at variance with both the ultra-relativistic and non-relativistic regimes,

there is a region in ζ space where bulk viscosity is non zero, whose location and extension depend

on the dimensionality of the system. Next, in order to discern between the two expansion methods,

a numerical validation has been presented. Once more, the correctness of the Chapman Enskog

analysis over Grad’s method has been proved, in analogy with what happens for shear viscosity

and thermal conductivity; this result paves the way to the correct reproduction of viscous effects

in relativistic simulations. In the same context, the measure of µ at different values of τ has al-

lowed testing the first order approximations in both CE and Grad’s theory, clearly identifying the

kinematic range where a hydrodynamic description is appropriate. Finally, a more realistic bench-

mark has been presented in the framework of QGP physics. In detail, a strongly anisotropic hot

dense plasma, resulting from the Lorentz contraction of heavy-ion collisions, has been simulated,

highlighting the presence of bulk-related viscous effects on the transport properties of the QGP.

One limit of SRT models is that they link multiple hydrodynamic coefficients to a single relax-

ation time, thus preventing the independent tuning of two viscosities. For this reason, the devel-

opment of a multi-relaxation time (MRT) numerical scheme, and the corresponding derivation of

transport coefficients, is highly desirable for future studies of relativistic transport phenomena.
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