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This paper presents numerical cross-comparisons and benchmark results for two different kinetic
numerical methods, capable of describing relativistic dissipative fluid dynamics in a wide range of
kinematic regimes, typical of relevant physics applications, such as transport phenomena in quark-
gluon plasmas. We refer to relativistic lattice Boltzmann versus Montecarlo Test-Particle methods.
Lacking any realistic option for accurate validation vis-a-vis experimental data, we check the con-
sistency of our results against established simulation packages available in the literature. We suc-
cessfully cross-compare the results of the two aforementioned numerical approaches for momentum
integrated quantities like the hydrostatic and dynamical pressure profiles, the collective flow and
the heat flux. These results corroborate the confidence on the robustness and correctness of these
computational methods and on the accurate calibration of their numerical parameters with respect
to the physical transport coefficients. Our numerical results are made available as supplemental
material, with the aim of establishing a reference benchmark for other numerical approaches.

I. INTRODUCTION

In its broadest and most general sense, hydrodynamics
is the science of collective behaviour, i.e. the description
of the dynamics emerging on top of the rules which gov-
ern the microscopic world. As a result, hydrodynamic
behavior is expected to settle in the presence of a clearcut
separation between the collective degrees of freedom and
the microscopic ones from which they emerge. A safe
margin in this respect is about two orders of magnitude,
but the specific threshold at which such emergence takes
place may vary from system to system and in some cases
much less stringent thresholds may be present. Although
usually associated with macroscopic motion, distinct hy-
drodynamic signatures can be found way deep into the
microscopic world, down to the nanometric scale. In the
last two decades relativistic hydrodynamics has also cap-
tured major interest from the apparently widely sepa-
rate discipline of high-energy physics, the main driver
being provided by the famous AdS/CFT theory, which
sets an equivalence between d-dimensional field theory
and (d+1) dimensional gravity [1]. This fascinating con-
nection has opened an active field of modern research
on so-called holographic fluids, i.e. strongly interacting
quantum-relativistic fluids supporting the AdS/CFT du-
ality. Among others, spectacular realizations of hydrody-
namic holography have been reported for electron flows in
graphene and quark-gluon plasmas [2–4]. Perhaps, most
spectacular of all, recent experiments of the PHENIX
collaboration [5], have reported evidence of the ”smallest
droplet ever”, namely a droplet of quark-gluon plasma of
the size of a few femtometers!

These manifestations of hydrodynamic behaviour at
truly short scales have spurred a major activity on the

experimental, theoretical and, to a lesser extent, com-
putational side. With specific reference to quark-gluon
droplets, a major question pertains to the departures
from strict hydrodynamic regimes which take place in
small systems due to partial lack of ”thermalization” of
the initial strongly non-equilibrium configuration.

The quantitative description of such departures is be-
yond analytics, and raises major computational chal-
lenges, since a kinetic-theory treatment is not only com-
putationally very demanding, but also theoretically ques-
tionable since strong-interactions imply supershort-lived
quasi-particles, thus undermining the very premise of ki-
netic theory.

On the other hand, a macroscopic description of dis-
sipative hydrodynamics poses further conceptual prob-
lems, since it has long been recognized that a naive rela-
tivistic extension of the Navier-Stokes equations is incon-
sistent with relativistic invariance, implying superlumi-
nal propagation, hence non-causal and unstable behavior.
This can be corrected by resorting to fully-hyperbolic for-
mulations of relativistic hydrodynamics. However, while
various frameworks have been proposed, the definition of
second-order relativistic viscous hydrodynamic equations
is still debated, with a lot of ongoing research [6–18].

In this context, approaches based on a mesoscopic
description help overcoming some of these problems.
This approach is useful as, eventually, one may want to
study ”beyond-hydrodynamics” phenomenology; on the
other hand, a consistent description of the hydrodynamic
regime requires establishing a link between the meso-
scale and the macroscopic parameters [10, 12, 14, 19–31].
More in general, there is a strong need for reliable numer-
ical tools, as well as numerical benchmarks to compare
accuracy, stability and performance of these solvers.
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Typical benchmarks used in the validation of relativis-
tic hydrodynamics codes are the Bjorken flow [32], Gub-
ser flow [33], and the Riemann problem [34, 35]. The
latter is particularly useful to investigate the robustness
of a numerical method due to the presence of strong dis-
continuities that give origin to the formation of shock
waves. While the benchmark has an analytic solution
only for two limiting cases, namely for the inviscid and
the ballistic regimes, in the recent past several studies
have analyzed the formation of relativistic shock waves
in viscous QGP matter [36–39].
To the best of our knowledge, all previous works

have been restricted solely to the study of the ultra-
relativistic regime, for which the appropriate equation
of state (EOS) writes as ǫ = 3P . In this work we con-
sider instead a more general EOS, accounting for massive
particles:

ǫ = P
(

3 + ζK1(ζ)
K2(ζ)

)

,

P = nkBT ,
(1)

where the relativistic parameter ζ = mc2/kBT , defined
as the ratio between the rest mass energy mc2 and the
thermal energy kBT , physically characterizes the kine-
matic regime of the macroscopic fluid, with ζ → 0 in
the ultra-relativistic regime and ζ → ∞ in the non-
relativistic one. This approach allows to test EOS quite
similar to the one coming from lattice QCD calculations,
even if a very precise description of the most recent EoS
requires to consider a temperature dependent mass as
shown in Ref. [40]. Such an approach has been already
implemented within the relativistic Boltzmann approach
in [41] and discussed also to derive relativistic viscous
hydrodynamics [42].
We apply this benchmark with constant mass and com-

pare two different computational methods, and present
numerical results exploring a wide range of parameters.
We start by replicating results available in the liter-
ature in the ultra-relativistic limit and then move on
to the study of fluids of massive particles, relevant to
the QGP framework. The methods we consider both
share a kinetic approach at the mesoscale level, but dif-
fer significantly in their numerical formulation, namely
i) a Relativistic Lattice Boltzmann (RLBM) approach,
based on the relaxation time approximation, and ii) a
Monte Carlo-enabled solution of the full kernel of the
Boltzmann equation based on the Test-Particle-Method
(RBM-TP). They are cross-validated for small values of
the ratio between shear viscosity and the entropy density
(η/s < 0.2 ), corresponding to a hydrodynamic regime
where the Knudsen number is Kn ≪ 1. We show that
the two solvers provide results in very good agreement,
by analysing the profile of momentum integrated macro-
scopic quantities, as well as the non-equilibrium contribu-
tions to the moments of the particle distribution function
[43, 44].
We also show that, as expected, the RLBM approach

fails when η/s is significantly large (ballistic limit) while

successfully captures the physics features of flows at very
low shear viscosity. The Monte Carlo approach, RBM-
TP, is able to get solutions in agreement with RLBM even
at very low viscosity, η/s ≃ 0.05, being able to naturally
describe the evolution also for systems at large viscosity
up to the ballistic limit η/s → ∞.
The numerical results presented in this work are made

available as supplementary material with the aim of pro-
moting further future comparisons [45].
In what follows we adopt natural units, for which ~ =

c = kB = 1, and a flat space-time described by the metric
tensor η = (1,−1,−1,−1).

II. MODEL EQUATIONS

The kinetic description of a relativistic gas is based on
the particle distribution function f((xα), (pα)), depend-
ing on space-time coordinates (xα) = (t,x) and momenta

(pα) =
(

p0,p
)

=
(

√

p2 +m2,p
)

, with α = 0, 1, 2, 3.

The space-time evolution of f((xα), (pα)) is governed by
the relativistic Boltzmann equation which, in the absence
of external forces, writes as

pα
∂f

∂xα
= C[f ] , (2)

C[f ] being the collisional operator.
Macroscopic quantities are defined from the moments

of the distribution functions. The first moment is the
particle four-current:

Nα =

∫

fpα
d3p

p0
, (3)

while the second moment defines the energy-momentum
tensor:

Tαβ =

∫

fpαpβ
d3p

p0
. (4)

The balance equations of the particle four-current and of
the energy-momentum tensor deliver the following con-
servation equations:

∂αN
α = 0 ,

∂αT
αβ = 0 .

(5)

These equations are purely formal until a specific form
for Nα and Tαβ is specified. Following Landau and Lif-
shitz [46] one has

Nα = nUα − n

P + ǫ
qα , (6)

Tαβ = ǫUαUβ − (P +̟)∆αβ + π<αβ>, (7)

with ǫ the energy density, P the hydrostatic pressure,
qα the heat flux, π<αβ> the pressure deviator, ̟ the dy-
namic pressure, and ∆αβ = ηαβ−UαUβ the (Minkowski-
)orthogonal projector to the fluid velocity Uα; the latter,
in the Landau frame, is defined as TαβUβ = ǫUα.
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FIG. 1: Riemann problem for a gas of massless particles for various viscous regimes. The left panel shows the
pressure profile and the right one shows β = |U i|/U0, at t = 3.2 fm/c. Solid lines are analytic solutions, dotted lines
are numerical results obtained by BAMPS, dashed lines refer to RLBM, and dots to RBM-TP. Different colors (see
online version) represent different viscous regimes, with blue for the inviscid limit, orange for η/s = 0.1, green for

η/s = 0.5, and red for free-streaming.

III. NUMERICAL METHODS

In this section, we provide a brief account of the two
numerical methods used in this work, the Relativistic
Lattice Boltzmann Method and the Montecarlo Test-
Particle Method.

A. Relativistic Lattice Boltzmann Method

The first computational method used in this compar-
ison is a relativistic lattice Boltzmann method. This
method [47–49] is a computationally efficient approach to
dissipative relativistic hydrodynamics. One key advan-
tage over other relativistic hydrodynamic solvers is that,
being based on a mesoscale approach, the emergence of
viscous effects does not break relativistic invariance and
causality, since space and time are treated on the same
footing, i.e. both via first order derivatives (hyperbolic
formulation).

This numerical method solves a minimal version of
Eq. 2, where the microscopic momentum vector is dis-
cretized on a Cartesian grid, and with the collisional
operator replaced by the Anderson-Witting single relax-

ation time approximation [50, 51]:

C[f ] = −Uαpα
τ

(f − f eq) . (8)

In the above, τ is the relaxation proper-time and f eq is
the equilibrium distribution for which we consider the
Maxwell-Jüttner statistics:

f eq =
n

4πT 3ζ2K2(ζ)
exp

(

−Uαpα
T

)

; (9)

here and in the following Ki(ζ) is the modified Bessel
function of the second kind of order i. The connection
between the microscopic parameter τ and the macro-
scopic equations is given by the transport coefficients,
for which we take into account the analytic expressions
resulting from the first order Chapman-Enskog expansion
[52]. Relevant for the present study is the shear viscosity
η:

η = Pτ
ζ

15

(

3
K3(ζ)

K2(ζ)
− ζ + ζ2

K1(ζ)

K2(ζ)
− ζ2

Ki1
K2

)

, (10)

with Ki1 the Bickley-Naylor function

Kiα =

∫ ∞

0

e−ζ cosh(t) (cosh(t))
−α

dt .
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B. The Test Particle Method

The second computational approach considered in this
paper also belongs to the realm of kinetic transport the-
ory. We use a relativistic transport code developed to
perform studies of the dynamics of heavy-ion collisions
at both RHIC and LHC energies [21, 53–60].

Recently, the code has been extended to the solution
of equation Eq. 2 for massive particles, which allows to
simulate a fluid with an EOS that can be close to the
recent lQCD calculations [60]. In this work, Eq. 1 has
been used.

In this work we consider only 2 ↔ 2 collision processes,
which give rise to a collisional operator C[f ] of the form:

C[f ] =

∫

d3p2
E2

dΩ
1

2

√

s(s− 4m2)
dσ(s,Θ)

dΩ
(f ′

1f
′
2−ff2) ;

fi = f(pi) (f ′
i = f(p′i)) are the distribution functions

of the outgoing (ingoing) particles, s = (p1 + p2)
2 and

σ(s,Θ) is the differential cross section which is related

to the total cross section by σtot =
∫

dΩ dσ(s,Θ)
dΩ . The

numerical solution of the transport equation is obtained
by using the test particle method, a popular option in
many transport calculations [61–63]. In this method, the
phase-space distribution function is sampled by mean of
a large number of so-called test particles. In fact, it
can be shown, that the phase space distribution given
by a collection of point-like test particles is a solution of
the Boltzmann equation, provided the positions and mo-
menta of the test particles obey the relativistic Hamilton
equations [64, 65].

The numerical implementation of the collision integral
is based on the so-called stochastic method [66] that has
proven capable of describing efficiently also the ultra-
relativistic limit, avoiding the issue of causality induced
by a geometrical interpretation of the collision integral.

The transport code permits to study the dependence
of physical observables on microscopical processes fixed
by matrix elements or cross section. A novel approach
is based on the idea of gauging the collision kernel C[f ]
to a desired η/s ratio by an effective cross section σtot

[21, 55, 67] . Such an approach was inspired by the suc-
cess of the hydrodynamical approach to describe experi-
mental data [68–70] and permits to employ a Boltzmann
transport equation in regimes where η/s (or equivalently
the scattering relaxation time τ ∼ 1/σρ) is very low
[57, 71, 72].

The expression given by the first order Chapman-
Enskog expansion (Eq. 10), is used for the shear viscosity,
with the relaxation time defined as τ = R−1 = 1

n〈σtrvrel〉 ,

with σtr the transport cross section, vrel is the relative
velocity of the two incoming particles. In Ref. [21] it has
been checked through the Green-Kubo correlator that
employing Eq. 10 generates a fluid with the desired value
of η/s.

For the massive case R is given by the following ex-
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FIG. 2: Riemann problem for a gas of particles with
rest mass m = 0.8 GeV, at η/s = 0.1. The top panel
shows the pressure profile and the bottom one shows
β = |U i|/U0, at t = 0.8, 1.6, 2.4 and 3.2 fm/c. The

initial conditions are represented by black dotted lines.
Continuous lines are results obtained by RLBM, while

dots are results by RBM-TP.

pression:

R = n〈σtrvrel〉 = n
β

4

∫∞√
s0

d
√
s λ(s)σtr(s)K1(β

√
s)

[m2K2(βm)]2
,

(11)
where

√
s0 = 2m and λ(s) = s[s− (2m)2]. Note that for

massless particles and constant isotropic cross-section the
above formula reduces to R → n 2

3σtot. Finally, Eq. 10
and Eq. 11 provide the formula for the normalization of
the cross section in each cell in order to keep fixed η/s.

IV. NUMERICAL RESULTS

For our numerical analysis, we begin by considering the
relativistic Riemann problem. This problem describes a
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FIG. 3: Riemann problem for a gas of particles with
rest mass m = 0.8 GeV, for various viscous regimes.
The top panel shows the pressure profile and the

bottom one shows β = |U i|/U0, at t = 3.2 fm/c. Lines
are results obtained by RLBM, while dots are results

provided by the RBM-TP.

tube filled with a gas which initially is in two different
states on the two sides of a membrane placed at x = 0.
As a result, the macroscopic quantities describing the
fluid present a discontinuity at the membrane. Once
the membrane is removed, the discontinuities decay pro-
ducing shock/rarefaction waves, depending on the initial
configuration chosen for the two different chambers. For
simplicity we assume the flow to be homogeneous in the
transverse directions.

Analytical solutions for this problem are available only
for the massless case, and for extreme values of the ratio
η/s, i.e. in the inviscid limit (η/s → 0) [34], and in the
free-streaming limit (η/s → ∞) [73].

We use the same initial conditions as in [37], with a
pressure jump defined as P0 = 5.43 GeV fm−3 for x < 0
and P1 = 0.33 GeV fm−3 for x > 0. Initial values for the
temperature are respectively T0 = 400 MeV and T1 =

200 MeV.
We perform simulations at constant values of η/s. The

calculation of η follows from the discussion in the previ-
ous section, while the entropy density is approximated
using [52]

s = n

(

ζ
K3(ζ)

K2(ζ)
− ln (

n

neq
)

)

; (12)

we use the following expression for the equilibrium den-
sity

neq = dG
T 3

2π2
ζ2K2(ζ) , (13)

with dG = 16 the degeneracy factor of gluons.
Combining Eq. 10, 12 and 13 it is then possible to

define the relaxation time required to keep the ratio η/s
constant to a desired value k. As an example, the ex-
pression in the ultra-relativistic limit reads as:

τ = k
5

4T

[

4− log

(

π2n

dGT 3

)]

. (14)

In RLBM simulations, the above equation is used to lo-
cally adjust the relaxation time, while in RBM-TP simu-
lations it is used in combination with Eq. 11 to calculate
the corresponding value of the transport cross-section.
Table I lists the values of the relaxation time at the ini-
tial step of the simulation corresponding to η/s = 0.1,
for all values of the particle rest-mass m considered in
this work.

η/s = 0.1

m [GeV] τ0 [fm/c] τ1 [fm/c]

0 0.246 0.496

0.8 0.258 0.551

2 0.281 0.621

4 0.309 0.692

TABLE I: Values of the relaxation times corresponding
to η/s = 0.1. For all values of the particle rest-mass m,
we list the relaxation times corresponding to the initial
conditions on the left (τ0) and on the right hand side

(τ1) of the discontinuity.

As a warm-up exercise, we start by reproducing
the results of previous studies in the ultra-relativistic
regime. In particular, we compare against the Parton
cascade Boltzmann Approach to Multi-Parton Scatter-
ings (BAMPS) [74], which numerically solves the Boltz-
mann equation using a Monte-Carlo approach. In Fig. 1,
we show that both the methods correctly reproduce the
results provided by BAMPS at η/s = 0.1. RLBM also
gives a good approximation to the analytical solution in
the inviscid limit; in this case the test-particle methods
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cannot be applied since for η/s → 0 the cross section be-
comes unphysically large leading to numerical instabili-
ties. On the other hand for large values of η/s, the hydro-
dynamic approach becomes questionable, as we transit
towards a ballistic regime. Although at η/s = 0.5 RLBM
still manages to capture the qualitative behaviour of the
flow, in this regime the results provided by the RBM-TP
are more reliable and in better agreement with BAMPS.
It is however important to note that even at the very low
η/s = 0.05, the RBM-TP is able to describe the dynami-
cal evolution in excellent agreement with RLBM. Finally,
in the free-streaming limit, the test-particle method re-
produces correctly the analytic solution, while an un-
physical “staircase” effect is observed in the profiles pro-
duced by RLBM; it has been shown that higher order
schemes can cure this issue [75]. We remark that the
RLBM simulations carry a systematic error due to the
truncation of the higher order moments of the particle
distribution (see [49] for details), whereas a statistical
error is inherently associated with RBM-TP. However in
this and in all other figures in this paper, error bars are
not shown, since we average over a sufficiently large num-
ber of events in order to keep statistical errors well below
1% for the macroscopic observables.
In the following, we take into consideration fluids con-

sisting of massive particles and restrict our analysis to
values of η/s < 0.2, corresponding to a hydrodynamic
regime for which we have observed a good agreement be-
tween the two methods. We recall that such a regime is
also the one of interest for the study of the quark-gluon
plasma (QGP) in ultra-relativistic collisions [76, 77].
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0.2
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0.7

τ
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m
/c
]

m = 0 GeV
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FIG. 4: Local viscous relaxation time τ for the case of
η/s = 0.1 at time t = 0 (dashed lines) and t = 3.2 fm/c
for m=0 and m=2 GeV. The solid lines are the values

for the RLBM and the dots are the values of the
RBM-TP.

In Fig. 2, we show the time evolution of the pressure
and velocity profiles for a specific case with m = 0.8 GeV

and η/s = 0.1. We observe an excellent agreement in the
dynamics predicted by the two solvers; in particular, we
remark that the two cases compare well not only at times
t much longer than the relaxation time τ , but also in the
short-term regime, t ∼ τ .
In Fig. 4 we also show the space distribution of the

relaxation time τ(x) in the two approaches for the case
of η/s = 0.1. It is seen that, even if the initial values,
dashed lines, are the same according to Eq. (10), the local
evolution in the region of the shock wave exhibits differ-
ent values for RLBM (solid lines) and RBM-TP (dots) for
the massless case, a discrepancy that nearly disappears
for the massive case m=2 GeV. This can be attributed to
the different collision kernels: the Anderson-Witting in
RLBM and the full Boltzmann in RBM-TP; however, as
shown in all other results, such difference does not lead
to any appreciable difference of macroscopic quantities,
like the hydrostatic pressure or the collective flow. Some
difference is observed instead in Fig. 6, which reports
non-equilibrium quantities, such as the dynamical pres-
sure or heat flux. Such differences also tend to vanish for
the very massive case, as we are going to discuss at the
end of this section.
In Fig. 3, we show the results obtained considering

again a rest mass m = 0.8 GeV but for different viscous
regimes. The two methods are in good agreement, with
only slight differences observed in the proximity of the
shock-wave front. The curves for RBM-TP at η/s = 0.01
are not shown since, at such low viscosity, the methods
becomes numerically unstable as the cross section and
hence the computational time diverges as η/s → 0. How-
ever it has been shown in Ref. [57] that a linear extrap-
olation in 1/σ for σ → ∞ provides the correct pattern
even for ideal hydrodynamics.
In Fig. 5 we fix η/s = 0.1 and compare the results ob-

tained for fluids of particles with rest mass of 0, 0.8, 2 and
4 GeV. Once again, both computational methods yield
the same numerical results, which is remarkable given
that no parameter fitting is performed in this analysis
(apart from requirement to keep η/s constant).
Furthermore, it is interesting to analyse the non-

equilibrium contributions to the four-flow tensor Nα and
to the energy-momentum tensor Tαβ .
In the top panel in Fig. 6, we report the time and the

spatial component of the heat flux, calculated via

qα =
P + ǫ

n
(nUα −Nα) . (15)

The time component of qα is expected to vanish for non-
relativistic flows. We can observe that as the rest mass is
increased, the fluid moves at slower speeds and the cor-
respondent peak in q0 reduces accordingly. We observe
significant discrepancies at the peak values of both the
time and spatial components of the heat flux in the mass-
less case. RBM-TP closely follows the results of BAMPS,
while RLBM seems to be in better agreement with other
hydrodynamic codes, like vSHASTA [38] or other lattice
Boltzmann approaches (see e.g. Fig. 6 in [75]). On the
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FIG. 5: Riemann problem for a gas of particles with
rest mass respectively 0, 0.8, 2 and 4 GeV. All

simulations are at η/s = 0.1. The top panel shows the
pressure profile and the bottom one shows β = |U i|/U0,
at t = 3.2 fm/c. Lines are results obtained by RLBM,

dots are results provided by RBM-TP.

other hand, when considering massive particles the re-
sults seem to be in good agreement. We remark that
although calibrated to reproduce the same first order co-
efficient for the shear viscosity, the two methods approx-
imate higher orders in a different way. It has been shown
[38] that higher order terms in Knudsen number play a
relevant role in the heat flow.
Next, we take into consideration the non-equilibrium

part of energy-momentum tensor, in particular the pres-
sure deviator, defined as

π<αβ> = η

(

∆α
γ∆

β
δ +∆α

δ∆
β
γ − 1

3
∆αβ∆γδ

)

∇γU δ (16)

with the shorthand notation

∇α = ∆αβ∂β ,

∆α
β = ∆αγ∆γβ .

(17)

In the bottom left panel of Fig. 6 we show π<xx>,
the spatial component of the pressure deviator. The
two methods provide results in good agreement, both re-
producing the results of BAMPS in the ultra-relativistic
case, with slight differences in the massive case at the
discontinuity point.
Particularly relevant to the study of QGP is the anal-

ysis of effects related to the bulk viscosity, with potential
implications for dark matter [78–81].
The bulk viscosity enters the non-equilibrium contri-

bution to the energy-momentum tensor, and in particular
is proportional to the dynamic pressure:

̟ = −µ∇αU
α . (18)

We calculate the dynamic pressure from simulations by
applying the projector ∆αβ to Eq. 4, which yields:

̟ =
1

3
(ǫ− Tα

α )− P. (19)

Measurements of ̟ are shown in the bottom right panel
of Fig. 6. This quantity is exactly zero for the massless
case, consistent with the fact that a ultra-relativistic gas
has no bulk viscosity. Bulk effects are more prominent
for the case m = 2 GeV, which corresponds to ζ ≈ 5,
consistently with analytical calculations [52]. Differences
in the dynamical pressure can have some relevance for the
phenomenology of the QGP physics because they moder-
ately affect the average momentum of the spectra and the
build-up of azimuthal anisotropic collective flows [81, 82].
In general, we can see that for the heat flux, qα , and

for the dynamical pressure ̟ larger differences between
the two methods, mainly in the region of the peak. This
is not surprising, because such quantities focus on the de-
tails of the non-equilibrium dynamics and the simplified
collisional kernel in RLBM may induce a slightly differ-
ent non-equilibrium dynamics with respect to RBM-TP.
However, this does not lead to any significant difference
in the dynamic evolution of global quantities, like the
pressure and the collective flow, as shown in all the pre-
vious section. It is also worth of note that the differences
decrease with increasing mass, corresponding to a less
rapid dynamics, and that the differences are larger in the
same region where the τ(x), shown in Fig. 4, exhibits
the largest departure between the two approaches. In
any case, it should be observed that the differences be-
tween the two methods in ̟ are anyway smaller than
0.5%, with respect to the hydrostatic pressure.
We end this section by stressing again that our results,

while conceptually based on a Boltzmann mesoscopic de-
scription, result from two fully different computational
approaches; each computational method has its own pa-
rameters describing the mesoscale dynamics, but in both
cases, these values can be derived from transport coef-
ficients at the macroscopic scale. The two algorithms
provide correct results in different ranges of the trans-
port coefficients: RLBM works correctly in the range
η/s → 0 to η/s ≃ 0.5, while RBM-TP works correctly
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FIG. 6: Analysis of quantities related to the four-flow and the energy-momentum tensors for the same simulation
setup of Fig. 5. Top left: time component of the heat-flux. Top right: spatial component of the heat-flux. Bottom
left: spatial component of the pressure deviator. Bottom right: dynamic pressure. Lines are results obtained by
RLBM, while dashed points are the results provided by RBM-TP. Black dashed lines are results provided by

BAMPS in the ultra-relativistic limit.

for η/s ≥ 0.05 up to the ballistic limit of η/s → ∞.
This suggests that the two methods could be used to-
gether to cover virtually the full range η/s parameter.
However for the phenomenological study of the QGP dy-
namics in ultra-relativistic collisions both methods cover
the relevant range usually explored, 0.08 ≤ η/s ≤ 0.2.
The RBM-TP would be also the most suitable approach
to study systems where the physical conditions are such
that one evolves from the low viscosity to the ballistic
regime, as can occur in electron fluids in graphene con-
strictions [83].

We finally mention that the RBM-TP provides a so-
lution of the Boltzmann equation for the one-body dis-
tribution function f((xα), (pα)), allowing to evaluate not
only the Tµν components, but several physical quanti-
ties, like the transverse momentum spectrum, the az-
imuthal anisotropies vn as a function of the momentum,
opening to a comparison with the wealth of experimental
data. However this requires to employ the output of the
RBM-TP with a Cooper-Frye hypersurface and a statis-

tical hadronization as a source for the multicomponent
hadronic transport like SMASH [84] or uRQMD, as done
already within hydrodynamical approach [85, 86].
Furthermore in Ref. [57] it has been show that is pos-

sible to evaluate the viscous correction to the distribu-
tion function δf(p), an essential quantity for the solution
of the Israel-Stewart viscous hydrodynamics. Of course,
the access to such a wider class of observables comes at
a price in computational time, that is currently more
than two orders of magnitudes larger for RBM-TP w.r.t.
RLBM.

V. CONCLUSIONS

Summarizing, in this paper we have compared two dif-
ferent microscopic approaches, namely the RLBM, based
on the simplified Anderson-Witting relaxation time ap-
proximation, and RBM-TP, that by test particles method
solves the full Boltzmann collision kernel. While these
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two models build on different methodologies, it is quite
remarkable that they yield to comparable results in the
framework of relativistic hydrodynamics. In particular, a
comparison of the two methods on a benchmark problem
(the relativistic Riemann problem) shows matching re-
sults. The simulations have been performed at different
values of the relativistic parameter ζ, and under different
viscous regimes (i.e with different values of the parameter
η/s).
In the ultra-relativistic case, we have correctly com-

pared our results against the analytical solutions that
are available in the inviscid and free-streaming regimes,
as well as against data from a third numerical method,
BAMPS, for all values of η/s between these two limits.
It is worth noting that the test particle method is not
suitable to simulate fluid flows in the limit η/s → 0,
since in this region, numerical instabilities arise, due to
unphysical values of the particles cross sections. How-
ever the comparison with RLBM shows that it is al-
ready very reliable even at very low viscosity such as
η/s ≃ 0.05, smaller than the conjectured AdS/CFT lower
bound. On the other hand, RLBM begins to struggle at
values η/s > 0.5, where the hydrodynamic description
starts to become questionable, although still capable of
reproducing the general behaviour of the dynamics.
This suggests that the two methods could be applied

in different zones of the parameter space, still featuring a
window of cross-compatibility which permits their hand-

shaking in prospective multiscale simulations of quark-

gluon plasmas. The specific case of the phenomenology of
QGP in ultra-relativistic collisions where η/s(T ) ranges
in 0.08 < η/s < 0.2, is indeed within the range of cross-
compatibility of the two methods.
After having established a firm connection to exter-

nal results in the ultra-relativistic limit, we have tested

the two numerical schemes on simulations at values of
η/s, typical of quark gluon plasmas produced in collid-
ers like RHIC and LHC and for several different values
of the rest mass of the particles. The two methods are
in excellent agreement when comparing the profiles of
macroscopic quantities of interest, such as the hydrostatic
pressure and the macroscopic velocity. Some limited
difference emerges when comparing the non-equilibrium
components of the particle four-current and the energy-
momentum tensor associated to heat-flux or dynamical
pressure. For the future, would be interesting to explore
whether the excellent agreement reported in this paper
still holds for initial profiles closer to the initial stage of
ultra-relativistic collisions, such as the Gubser [33] and
the Bjorken profiles [32]. The results presented in this
paper allow to benchmark the results of newly developed
numerical tools against two different numerical schemes;
this process of cross-validation would permit to test the
accuracy of such schemes, thus paving the way to reliable
and accurate simulations of real physical systems, such
as quark-gluon plasmas dynamics in current and future
high-energy experiments.
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