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Abstract

This research work is based on the concept of the one-factor copula model together with
the discrete Fourier transform, which is applied to reduce the dimensionality problems as-
sociated with the basket default swap pricing. We employ the Gaussian, the student-t and
the Clayton one-factor copula to estimate the conditional probability of default. Incorpo-
rating the Fourier transform together with the distribution function of a counting process,
we derive the quasi-analytical expression for the computation of the swap payment legs.
We compute the conditional characteristic function for the corresponding portfolio loss
distribution using the fast Fourier transform. Then, employ numerical integration with
the aid of the inverse fast Fourier transform to retrieve the distribution function or the
unconditional characteristic function. Our results show that in the absence of the trending
simulation method, a semi-analytic method which involves the applications of the discrete
Fourier transform can be utilized to price the basket credit default swaps.

Keywords: Discrete Fourier Transform, Fast Fourier Transform, Copulas, Convolution,
Basket default swaps, Characteristics Function, Probability Distributions.

1 Introduction

Originally, the credit default swaps (CDS) market was created to equip financial institutions,
such as banks, with the avenue of allocating, reducing, diversifying their credit risk expo-
sure beyond customer base, as well as freeing up regulatory capital efficiently and affectively.
Nowadays, CDS trading have become an indispensable tool which propels the market of credit
derivatives, and as such, its market has been described as one of the most significant innovations
in the financial markets over the past two decades. The banks, with their tremendous trading
activities are seen to be the largest dealer in the market of credit derivatives. They provide
liquidity by their willingness to assume the risk responsibility on their trading booklets, which
they in turn, seek to hedge. The CDS have been in existence as early as 1990s, and its usage
climaxed in the early 2000s prior to the 2007-2008 financial crises. Despite the huge difference
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between its gross notional amount before and after the crises, the CDS trade continues to as-
sume a crucial avenue and platform for trading credit risk. CDS are contracts that allow the
seller to pay a compensation fee to the buyer in the event of a default or other stipulated credit
events in the contract such as bankruptcy, payment failure, restructuring, obligation default,
repudiation or obligation acceleration.

Rule (2001) defined a CDS as “‘state-dependent’ but ‘outcome-independent’” contract, im-
plying that, CDS is fully dependent on whether or not a credit event has occurred and not
necessarily on whether the buyer suffers loss or not. The common reference entities which exist
in a CDS market ranges from single firms, to a portfolio of firms, or even to a large collection
of firms which comprises an index. The CDS focus on a single entity’s credit risk, and basket
default swaps, on the other hand, are bilateral financial contracts that payoff upon default or
multiple defaults amongst a portfolio of entities. These multi-name derivatives contracts are
advantageous because they offer the investors some appealing opportunities of leveraging the
spread premium, and of using one single contract to hedge a portfolio of contingent claims,
such as bonds or loans. Thus, the need for obtaining a series of contracts for single securities
has been averted, and also, the improvement of the relative risk-return account as compared to
other equivalent credit investment tools will be made viable. They are aimed at transferring
credit risk of multiple reference entities, and are generally classified into first-to-default (F2D),
n2D, n-out-of-m-to-default and all-to-default.

Generally, valuing the nth-to-default (n2D) basket swaps involves computing the probability
of default associated with the default times. This approach can be done in two folds: First,
the Monte-Carlo simulations of random scenarios from the corresponding joint probability dis-
tribution functions. Our recent paper focused on this concept, and we were able to model the
default times using copula models such as Clayton, Gumbel, Frank, Gaussian and the student-t
copulas, in connection with the Monte-Carlo simulation techniques [30]. These simulated values
were in turn used in the valuation of the n2D basket swaps. The next fold is the quasi-analytic
techniques, which is the main highlight of this article. As an objective of this research, we will
use the concept of the discrete Fourier transform (DFT) to obtain the probability distribution
of default times analytically. Thus, we will utilize the one-factor model, in conjunction with
the concept of DFT to obtain semi-analytic computation, and in turn, directly applied to value
the swaps. Most of research works which deal with semi-tractable methods of pricing PCDs
have been channelled to the CDO tranches and fewer attentions for the n2D basket swaps [21].
Thus, the contributions of this research are presented as follows:

• Empirical and statistical analysis of CDS spread data of some selected highly rated firms.

• Estimating the dependent defaults without simulations and pricing BCDS under the
Gaussian and Clayton copula via the FFT and DFT.

This research is structured as follows: Section 1 introduces the topic and in section 2, we offer
some literary studies on the financial applications of the Fourier transform, as well as in the
valuation of basket default swaps. Section 3 explains the idea of pricing BDS and the concept
of dependency on the use of copula models. Section 4 investigates the notion of the discrete and
fast Fourier transform and then links the applications of the discrete Fourier transform (DFT)
to the evaluation of the premium legs and the default legs of the BDS valuation. Section
5 discusses the numerical results obtained in the course of the valuation, whereas, section 6
concludes the study.
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2 Literature study

In the field of quantitative risk analysis, insurance and financial engineering, one of the sig-
nificant challenges lies in how dependent default events can be modelled and analysed over a
specified period of time. Factor models are often used to describe correlated and dependent
defaults, arising from some common systematic factors, which exist among a set of financial
entities. However, when the dependence is conditioned on these latent factors, the correspond-
ing defaults are independent. The factor model, in connection with the copula function, is fully
utilized in the analytical formulation of the joint distribution function of the default times.
This is because the copula function allows for statistical inference to be decoupled into infer-
ence from their dependence and inference from their marginals owing to the scanty information
which exist on dependence in the area of credit risk [7].

The copula models have been used extensively in finance, especially in contingent claims pricing
owing to their indispensable applications. For instance, Li (2000) focused on the issue relat-
ing to default correlation and introduced the copula function to model the joint distribution
functions of the survival times. He equally proved the equivalence of the typical normal Cred-
itMetrics methods to the use of the copula function and then illustrated numerically with the
pricing of credit default swaps, as well as the first-to-default contingent claims. Using the US
market as a case study, Das and Geng (2003) were able to utilise the copula models in the simu-
lation of correlated default risk and to assess the corresponding joint distribution. Schönbucher
and Schubert (2001) incorporated the dynamic default dependency in the context of default
risk models which are intensity-based in order to obtain the survival probabilities and thus, the
price values of credit spreads. These concepts were connected to the copula models such as the
Gumbel, the Clayton and the Gaussian models.

Under interacting default intensities, the pricing and hedging of portfolio credit derivatives
(PCDs), such as the basket credit default swaps (BCDS) and the collateralized debt obliga-
tions (CDOs) were also considered by Frey and Backhaus (2008). Here, they explicitly modelled
the default contagion which are evident among interacting portfolios and thus, they analyzed
the corresponding models through the Markov processes. Ackerer and Vatter (2017) modelled
joint dependent defaults, joint dependent losses with the aid of factor copula models, and thus
fitted the models to the valuation of credit index tranches. To estimate the loss distribution
functions of these contingent claims, they computed the individual losses, discretely fitted on
some finite grids and then calibrated some specific models to the tranche prices [1]. The concept
of correlations and copula dependence modelling can be found further in the works of [6, 12, 13].

The Monte-Carlo simulations, on the other hand, have attracted much attention in the valua-
tions of the PCDs owing to the fact that they are easily implemented to model some dependent
and correlated default risks, as well as in the estimation of the expected loss. However, several
analytical approximation techniques like the Parametric approximations, Fast Fourier trans-
form (FFT), the recursion method and “probability bucketing”[18] have been introduced as
alternatives to this random simulations because the former thrives best when the tail risk is
being considered [23]. The Fourier transform method (FTM) has been described as a numerical
technique that offered high computational speed and accuracy in estimating the loss distribu-
tion functions of a specified PCDs over a certain period of time. The DFT and its natural
algorithm, the FFT, are essential tools employed in the computation of the characteristic func-
tions which are utilised in the pricing of such PCDs.

Fusai and Roncoroni (2007) conducted a comparative study on the BCDS pricing using the
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Monte-Carlo methods and two semi-analytic methods, that is, the Hull-White recursive algo-
rithm and the FFT. They found out that the Monte-Carlo method requires exceptionally high
number of simulations to ensure convergence, and the simulation method is equally not feasible
when modelling a basket of more than 100 entities. For a small heterogeneous set of portfolios,
the probability generating function and the FFT were equally utilised by Gregory and Laurent
to compute the distribution function of the cumulative defaults [16], [21]. Whereas, Zheng
(2006) employed a two-hybrid algorithm in the pricing of BCDS and CDOs by combining an
analytical estimation of the loss distribution function and Monte-Carlo simulation, with more
reference on large heterogeneous portfolios.

More numerical approaches are seen in the works of Bastide et al. (2008) where they conducted
a comparative analysis on the pricing of basket default swaps using the Stein method in con-
nection to the factor copula models. They further incorporated the Monte-Carlo techniques,
probability generating function method and the recursive-based method proposed by Hull and
White [18], to the valuation of the basket default swaps and the CDO tranches. Bielecki et al.
(2007) equally estimated the dependent defaults and credit migrations under the Markovian
model which describes the financial market, and thus were able to price the BCDS, together
with credits/loans portfolios. Debuysscher et al. (2003) employed the FTM to estimate the
default or the loss distribution function by first modelling the risk exposure and the default
correlation of the entities. Furthermore, the authors used a factor copula to obtain the Fourier
transform of the basket’s aggregate loss distribution, and then, inverting the corresponding
portfolio Fourier transform to obtain the needed distribution function [10]. Merino and Nyfeler
(2002) focused on the numerical computation of portfolio losses experienced by credit portfo-
lios like the CDOs. Here, they used the Poisson approximation techniques, the FFT, and the
numerical integrations of the quasi Monte-Carlo simulation methods to decrease the computa-
tional complexity, which is paramount in price estimations.

3 Basket Default Swaps

This section focuses on the concept of BDS pricing, with particular attention on the n2D swaps
because they are more liquid when compared to the other BDS types. BDS offers considerable
advantages to credit investors, even though their liquidity cannot be compared to the highly-
traded synthetic CDOs. The former permits the financial practitioners to select, manage and
easily monitor smaller credit portfolios (say about 5-10) than the broader portfolio of about
100-150 which are evident in synthetic CDOs. In this context, we shall consider a homogeneous
loss portfolio for ease on convenience since they are the framework of the BDS pricing. Such
portfolio implies that each entity incurs a similar amount of loss in the event of a credit default,
even though they might possess different values for their correlations and their default swaps
spread curves.

3.1 Pricing Basket default swap

Consider a portfolio with N reference entities or obligors, having A, as the face value of the
contract. Let T be the maturity of the contract, f(t) the instantaneous forward rate at time
t, and B(0, ti) as the discount factor supposing ti maturity. Define n as the seniority of the
basket, such that for n = 1, we have the F2D, and let the portfolio pay a spread of β at dates
{t1, · · · , tN}. These periodic payments made by the protection buyer to the seller are referred
to as the Premium Legs. The swap premium is paid at a frequency of ∆i = ti − ti−1, which
could be annually for ∆ = 1, quarter-annual for ∆ = 1

4
. On the other hand, suppose a default
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occurs before the maturity time T , the seller will pay A(1 − R) to the buyer at maturity, or
at the default time τn. Thus, the risk-neutral pricing measure for obtaining the value of the
spread, having zero accrued premium, is solved by equating the expected values of the premium
leg and the default leg. The theorem below gives the fair spread value:

Theorem 3.1. The risk-neutral pricing for the annualized equilibrium spread of n2D swap is
given below:

β =
(1−R)

[

B(0, T )F n(T ) +
∫ T

0
f(0, t)B(0, t)F n(t)dt

]

∑N

i=1 ∆B(0, ti)[1− F n(ti)]
,

where F n(t) is the probability distribution function of τn, and f(0, t) = r if the instantaneous
forward rate equals a constant interest rate.

For proof, see [15].

Furthermore, in the event of an accrued premium, the buyer pays off an amount of β∆(ti−1−ti)
to the seller, and this payment stream is made viable when a credit event occurs between two
premium time, that is, between (ti−1, ti).

3.2 Dependence structure via copula models

In this subsection, we focus on the one-factor Gaussian, Clayton and the Student-t Copula
models to estimate the joint probability of default based on the assumption of conditionally
independent default times.

Gaussian copula:

Let the dynamics of an entity value i, for i = 1, · · · , N be denoted by

Vi = ρiX +
√

1− ρ2i ǫi , (3.1)

where ρi ∈ [0, 1] and Cov(ǫi, ǫj) = ρiρj. Here, ǫi denote the idiosyncratic factors and X the
latent factor, with bothX and ǫi from a standard normal distribution. Let τ1, · · · , τN denote the
default times, such that τi = F−1

i (Vi) and let F1(t1), · · · , FN(tN) = P(τ1 ≤ t1), · · · ,P(τN ≤ tN)
be defined as the marginal distribution of default times. Then, we can have the function
Fi(ti) = P(Vi ≤ ui) and F (t1, · · · , tN) = P(V1 ≤ u1, · · · , VN ≤ uN), where the parameter ui
refers to certain threshold at which the creditworthiness of the entity i falls below, supposing the
i-th asset defaults. Suppose the value of X is known, then the (risk-neutral) joint conditional
probability, P(Vi ≤ ui|X) that the ith entity defaults before the given time t can be computed
as:

P(Vi ≤ ui|X) = P

(

ǫi <
Φ−1(Fi(ti))− ρiX

√

1− ρ2i

∣

∣

∣

∣

∣

X

)

, (3.2)

and since ǫi are standard normally distributed, the joint conditional probability of default is
finally given below as:

p
i|X
ti

= Φ

(

Φ−1(Fi(ti))− ρiX
√

1− ρ2i

)

. (3.3)
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Integrating out the dependency structure evident on the conditional variable X gives the un-
conditional probability of default, which can be denoted by F (t1, · · · , tN). Thus, the joint
probability distribution is given below as:

F (t1, · · · , tN) =
∫ ∞

−∞

[

N
∏

i=1

Φ

(

Φ−1(Fi(ti))− ρix
√

1− ρ2i

)]

φ(x)dx , (3.4)

where φ(x) = 1√
2π
e

−x2

2 is the standard normal density function.

Clayton copula:

Suppose the single factor X follows a Gamma distribution with parameter 1
θ
, for θ > 0. The

conditional probability of default can be defined as follows:

P(Vi ≤ ui|X) = exp
[

−xψ−1(Fi(ti))
]

for all t1, · · · , tN , (3.5)

where ψ defined as the generator function of the Clayton copula with ψ−1(k) = k−θ − 1 and

ψ(k) = (1 + k)
−1
θ . Integrating out the dependency structure over the Gamma distributed

random variable x yields the unconditional probability of default, and thus, the joint probability
distribution is given below as [21]:

F (t1, · · · , tN) =
∫ ∞

0

[

N
∏

i=1

exp
(

−xψ−1(Fi(ti))
)

]

φ(x)dx , (3.6)

where φ(x) = 1

Γ( 1
θ )
e−xx

(1−θ)
θ is the probability density function of the Gamma function.

Student-t copula:

The student-t copula has a non-zero structure of tail dependence, and thus, it is more efficient
in capturing the extreme joint events which might likely occur, especially in equity data [24].
Let R denote a χ2 distribution random variable with η degrees of freedom. Also, let X and ǫi
be standard normally distributed random variables such that R,X and ǫi are all independent.
Then, we can define the latent variable to be given by:

Vi =

√

η

R

(

ρiX +
√

1− ρ2i ǫi

)

. (3.7)

Furthermore, let ui = t−1
η (Fi(ti)) be the same threshold in which the default occurs before time

t. The joint conditional probability of default p
i|X,R
ti

of the ith entity prior to time ti is given
below as

P(Vi ≤ ui|X,R) = P



ǫi ≤
ui
√

R
η
− ρiX

√

1− ρ2i

∣

∣

∣

∣

∣

X,R



 .

Thus, we have that

p
i|X,R
ti

= Φ





√

R
η
t−1
η (Fi(ti))− ρiX
√

1− ρ2i



 . (3.8)

Obtaining the unconditional probability of default using the student-t copula involves a double
integration of the conditional loss distribution over two distributions, that is, the Gaussian and
the Chi-square1. Thus, the joint probability distribution can be written below as [24]:

1The χ2 distribution function is only valid for r ≥ 0, having first and second moments as E[r] = η and
E[r2] = 2η
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F (t1, · · · , tN) =
∫ ∞

0

∫ ∞

−∞





N
∏

i=1

Φ





√

r
η
t−1
η (Fi(ti))− ρiX
√

1− ρ2i







φ(x)φη(r)dxdr , (3.9)

where φη(r) =
r
η
2−1e

−r
2

2
η
2 Γ( η

2 )
is the density function of the χ2 distribution.

This double integral is quite computationally intensive and this posses a notable disadvantage
of using the student-t copula over the Gaussian copula. Thus, pricing problems and risk
management of large baskets are quite impractical when the student-t copula is being utilized.

4 Discrete and Fast Fourier Transform

The Fourier transform approach or the spectral method is another technique, apart from the
usual recursion method, employed in the generation of the conditional and the unconditional loss
distribution functions. According to Parodi (2014), the FTM works by mapping the original
distribution function into another space in which the convolution operation becomes more
analytically tractable, and then transferred back to its original space after the problem has been
solved. In a nutshell, the FTM approach is entirely dependent on the successful implementation
of the FFT.

Definition 4.1. Characteristic Function [17]: Let X be a continuous random variable, the
characteristic function Ψ of X refereed to as the expected value eitX where i =

√
−1 and t ∈ R

(the argument of Ψ), is defined as

ΨX(t) = E
[

eitX
]

=

∫ ∞

−∞
eitXfX(x)dx ,

where fX(x) is the cumulative density function of X.

Note that if X has a probability density fX , the characteristic function is equivalent to its
Fourier transform having a sign reversal in its complex exponential.

Definition 4.2. Convolution [15]: Let f and g be measurable functions, the convolution of both
functions is defined as

(f ⊗ g)(x) ,

∫ ∞

−∞
f(s)g(x− s)ds ≡

∫ ∞

−∞
f(x− s)g(s)ds .

Definition 4.3. Fourier and Inverse Fourier Transform [17]: Let X be a continuous random
variable, f , an integrable function such that f̂ : R → C and i =

√
−1, the FT and the IFT are

defined respectively as

f̂(t) =

∫ ∞

−∞
eitXf(x)dx and f(x) =

1√
2π

∫ ∞

−∞
e−itkf̂(k)dk .

Definition 4.4. Discrete Fourier and inverse discrete Fourier Transform [10]: Let f be a
discrete function such that f : {xn} → {Xk} for n, k = 0, 1, · · · , N − 1, the DFT and the IDFT
are defined respectively as:

Xk =
N−1
∑

n=0

xne
−2πink

N and xn =
1

N

N−1
∑

k=0

Xke
2πink

N ,
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The Fast Fourier transform, however, is the algorithm for executing the DFT of a sequence
of variables. The FFT reduces the computational complexity of the DFT from O(N2) to
O(N log2N), and this is so noticeable when computing a vast dataset. With regards to the
immense difference between the two order of complexity, Press et al. (2002) stated that for an
N = 106 points, it is roughly the difference between 30 seconds (CPU time) and about two
weeks of CPU time measured on a microsecond cycle time computer.

4.1 Portfolio Loss Distribution

For simplicity, we link this subsection to the one-factor Gaussian copula model and the cor-
responding default probabilities can be used if another copula is being used. Let Z(t) be the
cumulative loss on the portfolio at a specified time t with a discrete distribution, and Mi the
notional on each of the entity i = 1, · · · , N . The conditional probability of default p

j|x
t for the

jth name up to time t, which we have conditioned on a specified Gaussian random variable
X = x follows from equation (3.3). For the Clayton and the student-t copula models, the con-
ditional probabilities are given in equations (3.5) and (3.8) respectively. Define the indicator
function of the default time counting process for each ith entity as Qi(t) = I{τi≤t}, and let Ri

be the ith recovery rate, then

Z(t) =
N
∑

i=1

(1−Ri)MiQi(t) .

For the valuation of multi-name PCDs likes the CDOs and n2D basket swaps, it is pertinent
to either simulate the default times or perform an estimate for the loss distribution over a
time range [0, T ]. To calculate the distribution function of Z(t), we need to compute the
characteristic function ΨZ(t)(s) of the portfolio loss, and a natural choice to this would be the
implementation of the FFT.

Furthermore, suppose the σ-algebras σ(R) and σ(X, τ1, · · · , τN) are independent functions, we
calculate the characteristic function of the aggregate loss as follows:

ΨZ(t)(s) = E[eisZ(t)] .

Proposition 4.5. Let (Ft)t≥0 be a given filtration. If Y is a stochastic random variable and
s < t, then the law of iterated expectation states that:

E[E[Y |Ft]|Fs] = E[Y |Fs] .

For proof, see [5].

Conditioning on the common factor X, and from the properties of iterated expectations in
Proposition (4.5), we have that

ΨZ(t)(s) = E[E[eisZ(t)|X = x]] = E

[

E

[

N
∏

j=1

exp{is(1−Rj)MjI{τi≤t}}
∣

∣

∣

∣

∣

X = x

]]

.

Since τj is conditionally independent on X and from the assumption of independent Rj recovery
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rates2, the inner expected value can be written in the form

ΨZ(t)(s) =E

[

N
∏

j=1

exp{is(1−R)I{τj≤t}}
∣

∣

∣

∣

∣

X = x

]

=
N
∏

j=1

E

[

exp{is(1−R)I{τj≤t}}
∣

∣

∣

∣

∣

X = x

]

=
N
∏

j=1

[

(1− p
j|X
t ) + p

j|X
t eis(1−R)

]

=
N
∏

j=1

[

1 + p
j|X
t

(

eis(1−R) − 1
)

]

.

The unconditional FT can thus be computed by integrating out the common factor over the
Gaussian density as shown below:

ΨZ(t)(s) = E

[

N
∏

j=1

[

1 + p
j|X
t

(

eis(1−R) − 1
)

]

]

=

∫ ∞

−∞

N
∏

j=1

[

1 + p
j|X
t

(

eis(1−R) − 1
)

]

φ(x)dx .

Finally, the actual portfolio loss distribution of Z(t) can be obtained by inverting the char-
acteristic function with the use of a more suitable Fourier transform function, such as the
inverse form of the FFT 3, and this is more efficient when non-homogeneous portfolios are
being considered [26].

4.2 Derivation of main theorem

This section will give the main highlight of this research work, which involves the derivation
of the basket swap premium legs, thereby presenting the quasi-analytic expression for the
computation of the swap pricing premium.

Theorem 4.6. The fair value for the n2D swap, with zero accrued premium, is given as:

β =
(1−R)

[

B(0, tN)
∑N

j=n P(Z(t) = j) +
∑N

i=1 f(0, ti)B(0, ti)
(

∑N

j=n P(Z(ti) = j)
)]

∑N

i=1 ∆iB(0, ti)
∑n−1

j=0 P(Z(t) = j)
.

Proof :

Let λi(t), also known as hazard rates or the default intensity, be the intensity of the Poisson
process. Then the marginal density function Fi of default times τi is given below as

Fi(t) = P(τi < t) = 1− exp

(

−
∫ t

0

λi(s)ds

)

, where i = 1, · · · , N.

For τn been the time of the nth default, the survival and the default probability distribution
functions for the nth default are given respectively as:

Sn(t) = P(τn > t) = P(Z(t) < n) =
n−1
∑

j=0

P(Z(t) = j) (4.1)

F n(t) = P(τn ≤ t) = P(Z(t) ≥ n) =
N
∑

j=n

P(Z(t) = j) . (4.2)

The value for the premium leg (PL) for the n2D basket swap can be defined as:

PL = A
N
∑

i=1

β∆iB(0, ti)I{τn>ti} .

2The rate Rj is considered constant here and further assumption of a constant unit notional, i.e.,
∑

Mi = 1
3From jupyter notebook, ifft imported from scipy.fftpack package
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Taking the expectation values, we have

PL = Aβ

N
∑

i=1

∆iB(0, ti)E[I{τn>ti}] = Aβ

N
∑

i=1

∆iB(0, ti)P[Z(ti) < n] ,

where P[Z(ti) < n] is the probability of having less than n defaults.

Thus, the final discounted expected value for the PL is given below as

PL = Aβ

N
∑

i=1

∆iB(0, ti)
n−1
∑

j=0

P(Z(t) = j) . (4.3)

Suppose there exists one or multiple credit events before maturity T , then the protection seller
will be obligated to offset the difference between the nominal value and the value for the recovery
rate R for the defaulted reference entity. The value for the default leg (DL) can be given as:

DL = A(1−R)B(0, τn)I{τn≤T} .

Taking the expectation values, we have

DL = A(1−R)B(0, τn)E[I{τn≤T}] = A(1−R)

∫ T

0

B(0, t)dF n(t) .

Integration by parts yields

DL = A(1−R)

[

F n(T )B(0, T ) +

∫ T

0

f(0, t)B(0, t)F n(t)dt

]

.

Next, we convert the functions to discrete functions by replacing the distribution functions
F n(t) by the probabilities of the counting processes as shown in equation (4.2), and thus we
have

DL = A(1−R)

[

B(0, tN)P(Z(T ) ≥ n) +
N
∑

i=1

f(0, ti)B(0, ti)P(Z(ti) ≥ n)

]

.

Hence, the value of the DL reduces to

DL = A(1−R)

[

B(0, tN)
N
∑

j=n

P(Z(t) = j) +
N
∑

i=1

f(0, ti)B(0, ti)

(

N
∑

j=n

P(Z(ti) = j)

)]

. (4.4)

Equations 4.3 and 4.4 give the discrete forms of the premium legs and the default legs respec-
tively. Hence, the fair spread value (in the absence of the accrued premium) for the n2D swap
is such that β =⇒ E[PL] = E[DL] = 0, so that we have

β =
(1−R)

[

B(0, tN)
∑N

j=n P(Z(t) = j) +
∑N

i=1 f(0, ti)B(0, ti)
(

∑N

j=n P(Z(ti) = j)
)]

∑N

i=1 ∆iB(0, ti)
∑n−1

j=0 P(Z(t) = j)
. (4.5)

Equation (4.5) gives the equilibrium price (quasi-analytic expression) of the fair n2D swap
spread, and the calculation is straightforward following from the estimation of the probabilities
P(Z(t) = j). Our approach in this technique first uses the convolution concept to output vectors
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of probabilities which are conditioned on the given X as a common latent variable4. Next, we
import the fft function from the scipy.stats library in jupyter notebook to obtain the
product of the probability vectors, and the corresponding values are finally inverted back using
the ifft function. Section 4.3 further describes the methodology of obtaining the distribution
function using the FT method.

4.3 Probability of at least n defaults

Let Zi(T ) denote the indicator function that an ith entity defaults before maturity T , that is,
Zi(T ) = I{τi≤T}, and let qi = (1 − pi) = P(τi ≤ T ) be the corresponding probability. If the
number of defaults existing before T or the counting process in connection with the number of
default is denoted by L(T ) =

∑N

i=1 Zi(t), then the probability of having at least n defaults can
be written as

P(Z(T ) ≥ n) =
N
∑

k=n

P(Z(T ) = k) .

The distribution function of Z(T ) can be regarded as a convolution of the distribution functions
of the Zi(T ), which can be solved via the Fourier approach[15]. Let the probability vectors of
Bernoulli random variables Zi(T ) be defined as follows:

γij =











1− qi if j = 0

qi if j = 1

0 otherwise ,

as well as its DFT as

ηij =
M−1
∑

k=0

γij exp

(

2π
√
−1kj

M

)

for j = 1, · · · ,M .

Then the corresponding P(Z(T ) = j) is obtained by taking the inverse of the DFT of the
product of the FFT values ηij. That is

P(Z(T ) = j) =
1

M

M−1
∑

k=0

[

exp

(−2π
√
−1kj

M

) N
∏

i=1

γij

]

.

After this step, it suffices to calculate the unconditional loss distribution and this can be done
by integrating the results over the Gaussian factor distribution. Finally, this value is fixed into
the n2D basket credit analytics to solve for the premium legs, the default legs and then the
corresponding break-even spread.

5 Results and Discussions

This section focuses on the numerical experiments obtained in the course of the BDS valuation.
First, we consider some empirical and statistical analysis of some selected CDS spread data and
then secondly, we employed the concept of the Gaussian and the Clayton copula, in conjunction
with the DFT to out the fair spread values.

4For now, we only consider the Gaussian copula. This approach is equally obtainable when the distribution
functions are changed to reflect the copula model been considered.
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Data Analysis

Our dataset consists of a 5-year monthly CDS spread quotes emanating from the following ten
companies: Xerox, Coca Cola, Boeing, IBM, Johnson & Johnson, Oracle, Pepsi, McDonald,
Walmart and AT & T, and these shall be denoted by Xe, Co, Bo, IB, JJ, Or, Pe, Mc, Wa,
and AT respectively. We conduct some empirical and statistical analysis based on these spread
values, with values in the units of basis points (bp). The sample comprises of 132 monthly
observations from January 31, 2008, till December 31, 2018, which spans across different credit
ratings (from triple AAA to BB rating) and tailored around the Corporate Sector. In Figure
1 below, we made a plot of the corresponding time series, and each of the line in this plot
represents the spread of different entities.

Figure 1: Time series for the 5-Year monthly CDS spreads for ten entities

For each of the monthly CDS spread spanning through 11 year time period, we output the
yearly observances by calculating the average combined quotes in each year. Based on this,
we obtain the mean, standard deviation, skewness and kurtosis for each of the reference en-
tities, and this is shown in Table 1 below. Consider the lower rate firm, the Xerox Holdings
Corporation for instance; it is observed that both it’s mean and the corresponding standard
deviation spreads are significantly higher when compared to other less-risky firms in this paper.
Throughout the time period for this CDS swap analysis, the Xerox firm achieved high swap
spread in October 2008, November 2008, December 2008 and March 2009, with values 499 bp,
503 bp, 420 bp and 473 bp, respectively. This increment in spread values might be the after
effect of the global financial crises of 2007-2008 which rendered many entities downgraded as a
result of some perceived credit risks. Furthermore, the firm was able to recuperate during the
last eight months of 2014 till the first-quarter of 2015, where it became accountable for smaller
spread values having the lowest in December 2014 at 69 bp.

As for the skewness and kurtosis, the values are generally small for all the reference entities.
Skewness ascertains the symmetric structure of the distribution about its mean. From Table 1,
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we observed that fewer reference entities like the Xerox, Coca-Cola, Boeing and AT & T had a
majority of their dataset to be positively skewed, whereas the other reference entities had many
of their data to be skewed to the left. Thus, negatively skewed datasets are mostly associated
with lower credit spreads, and this was in line with the explanations reported by Cremers et al.
(2008). Kurtosis, on the other hand, measures how light-tailed or heavy-tailed a distribution
is in connection to the normal distribution. As can be observed from Table 1, we noticed that
the majority of the entities dataset had lighter tails in comparison to their normal distribution
tails, especially the Pepsi Corporation which assumed the highest. Whereas, the distribution
functions for firms such as Oracle and McDonald had much heavier tails.
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Under the risk-neutral pricing measure Q, consider a model of exponential default which have
intensity λ. The CDS spread is directly proportional to (1 − R), with λ as constant and we
further assume a standard recovery rate R = 40%. The survival probability of the set of data
frames can be obtained using the expression exp(−s ∗ t/(1−R)). In Figures 2a and 2b below,
we made plots for the probability of survival of the first five and last five entities.

(a) Survival Probabilities of First 5 Entities (b) Survival Probabilities of Last 5 Entities

Figure 2: Probability of Survival

As time increased, the probability of survival declined as observed in the plots above. Gener-
ally, the firms considered in this research are highly-rated entities by the credit agencies, and
as such, the probability that each of them survive still remained high. However, this was in
contrast to the Xerox firm, denoted by Xe, as a sharp descent was seen in its tendency to
survive as time goes beyond 2018.

Next, we output the correlation matrix for the reference entity pairs on our dataset using
Kendall’s τ, a rank correlation measure which is based on the concept of concordance and
discordance. For B = (x− x̃)(y− ỹ) and according to Agresti (2010), Kendall’s τ is defined by

τ = P(B > 0)− P(B < 0) ,

where the pairs (x, x̃) and (y, ỹ) following from the joint distribution function F (x, y) are
concordant supposing x > x̃ and y > ỹ. Furthermore, for each pairs (xi, yi) and (xj, yj), let
xij = sgn(xi − xj) and yij = sgn(yi − yj), then the Kendall’s τ is5

τ =
2

N(N − 1)

N
∑

i=1

N
∑

i<j

i 6=j

xijyij .

We thus implemented data.corr(method =‘kendall’) in ipython notebook, where data is
the file, in order to output the correlations with respect to any two data sets. Using Kendall’s
τ, we presented the summary of the Kendall’s τ for our reference entities in Table 2 below:

5The sign or the signum function, also referred to as sgn(x) is defined as

sgn(x) =
d

dx
|x|, x 6= 0 OR sgn(x) =











1 if x > 0

−1 if x < 1

0 if x = 0 .
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Table 2: Kendall’s τ correlation matrices for pairs of entities

Kendall’s
Tau (τ)

Xe Co Bo IB JJ Or Pe Mc Wa AT

Xe 1.0000 0.4237 0.3986 0.2284 0.3680 0.4428 0.1793 0.1522 0.4645 0.2738
Co 0.4237 1.0000 0.6193 0.1047 0.6395 0.4772 0.4641 0.2490 0.5742 0.0407
Bo 0.3986 0.6193 1.0000 0.0862 0.6430 0.4867 0.4756 0.1760 0.6026 -0.0703
IB 0.2284 0.1047 0.0862 1.0000 0.0780 0.1411 0.2625 0.3698 0.1466 0.2466
JJ 0.3680 0.6395 0.6430 0.0780 1.0000 0.3569 0.3764 0.2766 0.6460 0.0322
Or 0.4428 0.4772 0.4867 0.1411 0.3568 1.0000 0.3322 0.0708 0.4147 0.2160
Pe 0.1793 0.4641 0.4756 0.2625 0.3764 0.3322 1.0000 0.2530 0.4046 -0.0466
Mc 0.1522 0.2490 0.1760 0.3698 0.2766 0.0708 0.2530 1.0000 0.3135 0.1788
Wa 0.4645 0.5742 0.6026 0.1466 0.6460 0.41470 0.4046 0.3135 1.0000 0.1257
AT 0.2738 0.0407 -0.0703 0.2466 0.0322 0.2160 -0.0466 0.1788 0.1257 1.0000

As can be observed, there are strong positive correlations which exist between firms Co, Bo, JJ
and Wa. There also exist weak negative correlations between firms Bo, Pe versus AT, whereas
the remaining are mostly weak positive correlations.

Gaussian Copula and DFT: In the computation of the n2D basket swap, we first compute
the convolution of the corresponding vectors using the DFT techniques, the unconditional
probabilities of default, the probabilities of having at least n defaults, and finally, the estimated
swap prices. The following parameters λ = 0.01, ρ = 0.35, N = 10, T = 1, · · · , 5 are utilised for
Tables 3, 4 and Figure 3. Also, additional parameters of R = 0.4,∆t = 1 (that is, the frequency
of the swap premium payment and ∆t = 1 implies annual payment), r = 0.06 for Table 5, and
the following results were obtained:

Table 3: Gaussian - Convolution of probabilities with varying time

t = 1 t = 2 t = 3 t = 4 t = 5

5.3660E−2 5.3122E−2 5.2460E−2 5.1704E−2 5.0871E−2

3.2922E−4 8.6175E−4 1.5108E−3 2.2430E−3 3.0368E−3

9.0895E−7 6.2907E−6 1.9580E−5 4.3789E−5 8.1580E−5

1.4897E−9 2.7212E−8 1.5037E−7 5.0658E−7 1.2987E−6

1.5967E−12 7.7251E−11 2.6191E−10 3.8459E−9 1.3567E−8

1.1866E−15 1.5038E−13 2.6191E−12 2.0021E−11 9.7188E−11

1.1686E−17 2.0605E−16 6.2899E−15 7.2382E−14 4.8348E−13

−6.2582E−18 −6.4455E−18 1.0328E−17 1.8424E−16 1.6484E−15

−1.8498E−18 7.8333E−19 3.0567E−18 −3.0652E−18 9.5703E−18

−8.7018E−18 −6.0027E−19 8.2505E−18 −7.3395E−18 −4.6489E−18

5.3130E−18 −3.8145E−18 −5.1768E−18 9.8087E−18 8.1739E−19

Table 3 outputs the probability vectors of obtaining α-defaults, such that α = 0, 1, · · · , N ,
which were conditioned on the latent variable X. Note that AE−a = A × 10−a. The FT
approach played a unique role in this result outputs, as both the FFT and the IFFT were
employed in the solution of the DFT problem set. Generally, on the positive probability scale,
we observed from the table that the conditional probability vectors reduced as N increased
and this monotone decrease was altered when the negative scale was reached. For instance,
the conditional probability of one default is normally larger when compared to having more
than one defaults. With respect to time, the conditional probability vectors decreased with an
increase in time if no default was considered, whereas, for defaults greater than 0 and up to 7,
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the probability values increased steadily with respect to time. For defaults greater than 7, we
observed a haphazard movement of the probability vectors which could be as a result of the
Gaussian model and from the fact that the latent variable was drawn from the whole real line R.

Next, we seek to compute the corresponding unconditional probabilities of default or the
marginal probabilities, and these are obtained by numerical integration over the factors distri-
bution, thereby integrating out the dependency property on the conditional variable. In this
instance, we truncate the domain of the normal distribution to be [−7, 7], and the following
values give the probabilities:

Table 4: Gaussian - Unconditional probabilities of defaults with varying time

t = 1 t = 2 t = 3 t = 4 t = 5

9.0940E−1 8.3114E−1 7.6194E−1 7.0009E−1 6.4445E−1

8.2542E−2 1.4388E−1 1.9103E−1 2.2750E−1 2.5560E−1

7.3046E−3 2.1390E−2 3.8378E−2 5.6549E−2 7.4922E−2

6.8320E−4 3.0885E−3 7.1520E−3 1.2642E−2 1.9307E−2

6.6161E−5 4.3551E−4 1.2609E−3 2.6173E−3 4.5344E−3

6.3904E−6 5.8752E−5 2.0788E−4 4.9902E−4 9.6970E−4

5.8942E−7 7.3413E−6 3.1224E−5 8.5716E−5 1.8529E−4

4.9250E−8 8.1241E−7 4.1028E−6 1.2776E−5 3.0535E−5

3.4646E−9 7.4428E−8 4.4232E−7 1.5530E−6 4.0864E−6

1.8130E−10 5.0100E−9 3.4811E−8 1.3724E−7 3.9641E−7

5.2713E−12 1.8581E−10 1.5029E−9 6.6358E−9 2.1003E−8

Table 4 outputs the unconditional probability of having n defaults using numerical integration,
and we used the integrate.quad function found in the scipy library to execute the integral.
The probabilities became more uniform upon the removal of the dependency structure. For zero
defaults, the unconditional probabilities decreased with an increase in time and increased with
an increase in time when the defaults were bigger than zero. Also, a negative correlation was
observed between the number of defaults and the probabilities, notwithstanding the time value.

Furthermore, we applied the concept of the counting process to estimate the probabilities of
having less than n entities defaulting at a specified time ti in a given portfolio. This is denoted
by P(Z(ti) < n) and the following Figure 3 showed the probabilities when the n = 1, 2, 3, 4, 5, 6
out of 10 entities. We observed that the probability of having at least n defaults was generally
greater than that of the n + 1 defaults. This was due to the fact that it took more time for
n+1 reference entities to default in comparison to n entity defaulting. The default probability
equally increased with an increase in time since there was a greater likelihood of credit events
amongst the entities in a given basket.
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(a) P(Z(t) = 1) (b) P(Z(t) = 2) (c) P(Z(t) = 3)

(d) P(Z(t) = 4) (e) P(Z(t) = 5) (f) P(Z(t) = 6)

Figure 3: Gaussian - Probability of n defaults against time T and number of entities N

Having computed the above steps, that is, the conditional probabilities of default with respect to
the Gaussian density function, the unconditional probabilities of default, and the probabilities
of having at least n entities defaulting, it suffices to incorporate all these in the valuation of
the n2D basket swaps.

Table 5: Comparison of n2D BDS prices using FT under the one-factor Gaussian copula

Rank n2D swap premium via Fourier Transform

λ = 0.01 λ = 0.015 λ = 0.02 λ = 0.025 λ = 0.03 λ = 0.035 λ = 0.04
1 553.1536 826.3604 1105.7815 1393.6095 1691.2408 1999.6699 2319.6655
2 164.6480 285.4171 415.1819 550.7922 690.7409 834.2651 980.9814
3 54.3331 112.7715 183.2751 262.0463 346.6463 435.4700 527.4395
4 17.0634 42.9693 79.2484 123.9775 175.4164 232.1254 292.9536
5 4.8727 14.9355 31.5276 54.5161 83.3601 117.3604 155.7923
6 1.2279 4.5737 11.0928 21.3393 35.5340 53.6560 75.5247
7 0.2632 1.1874 3.3139 7.1201 12.9823 21.1591 31.7966
8 0.0452 0.2466 0.7921 1.9056 3.8195 6.7525 10.8946
9 0.0056 0.0367 0.1357 0.3663 0.8079 1.5590 2.7135
10 0.0004 0.0030 0.0126 0.0383 0.0937 0.1972 0.3719

In Table 5, we output the fair spread values under the Gaussian copula model solved via the
DFT approach, and we varied both the default intensity and the seniority of the portfolio. The
hazard rates or the intensity defaults are indispensable variables in the valuation of n2D basket
swap, as they measure the conditional probabilities of having no earlier default in any given
year. The hazard rate increase led to a corresponding decrease in the probability of survival,
and when the survival probability was significantly low, the chances of the portfolio having
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no default became extremely low. Hence this behaviour accounted for the presence of larger
spread values and thus, both the spreads and the hazard rates were directly proportional in
confirmation with the results of Jabbour et al. (2008). The rank, on the other hand, measures
the seniority of the defaulting entity, as rank = 1 means the first entity to default in a portfolio
of N = 10 entities. Thus, as the rank increased, the likelihood of experiencing a default became
slimmer and thus giving rise to smaller swap spread.

Clayton Copula and DFT: We compared results using the Clayton copula in connection
with the DFT techniques. This copula model arises from an asymmetric Archimedean family,
with much dependence clustered in its negative tail than in their positive tail, and very useful
for modelling correlated defaults. We employ the same techniques as in the Gaussian copula
model, but we now use the main probability distribution (Gamma Distribution) which describes
the Clayton copula model. In contrast to the Gaussian correlation structure, here, we use the
Clayton copula parameter θ ∈ (0,∞) which measures the dependency level between the given
variables. Using a parameter of θ = 0.193, we output the probability vectors defined under the
Clayton copula and the following results are given in Table 6:

Table 6: Clayton - Convolution of probabilities with varying time

t = 1 t = 2 t = 3 t = 4 t = 5

6.4801E−3 3.8768E−3 2.4990E−3 1.6756E−3 1.1661E−3

3.8987E−3 4.4991E−3 4.1476E−3 3.5809E−3 3.0145E−3

1.0555E−3 2.3496E−3 3.1090E−3 3.4437E−3 3.5068E−3

1.6935E−4 7.2712E−4 1.3810E−3 1.9625E−3 2.4175E−3

1.7830E−5 1.4767E−4 4.0257E−4 7.3396E−4 1.0937E−3

1.2873E−6 2.0565E−5 8.0469E−5 1.8822E−4 3.3927E−4

6.4541E−8 1.9888E−6 1.1170E−5 3.3520E−5 7.3088E−5

2.2189E−9 1.3189E−7 1.0632E−6 4.0935E−6 1.0797E−5

5.0062E−11 5.7398E−9 6.6414E−8 3.2805E−7 1.0467E−6

6.6932E−13 1.4803E−10 2.4584E−9 1.5579E−8 6.0128E−8

4.0270E−15 1.7179E−12 4.0951E−11 3.3294E−10 1.5544E−9

From Table 6, when there was no default, we observed a steady decrease in the values of the con-
ditional probability vectors across time. This monotone decrease was altered when the default
increased to one, and for 2 defaults up till 10, the probability vectors increased monotonically.
These altered movements were as a result of the random component in the Gamma distribution
function of the Clayton copula model. Additionally, the convolution of vectors reduced at time
= 1 for all the number of defaults. From time = 2 till 5, we observed that the probability
vectors increased at n = 1, and then reduced gradually when the number of defaults became
greater than one.

Next, the corresponding unconditional probabilities of default or the marginal probabilities were
obtained by numerical integration over the factors distribution (Gamma distribution), thereby
integrating out the dependency property on the conditional variable. From equation (3.6), the
joint probability distribution function which served as our unconditional probability of default
in this instance was obtained by integrating over the positive real line, that is, R>0 = (0,∞),
and the following values give the probabilities:
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Table 7: Clayton - Unconditional probabilities of defaults with varying time

t = 1 t = 2 t = 3 t = 4 t = 5

9.7835E−1 9.4475E−1 9.0761E−1 8.6921E−1 8.3062E−1

1.9830E−2 4.8995E−2 7.6774E−2 1.0440E−1 1.3019E−1

1.6222E−3 6.1101E−3 1.2613E−2 2.0569E−2 2.9577E−2

1.7854E−4 9.6272E−4 2.4317E−3 4.5705E−3 7.3400E−3

2.0347E−5 1.5406E−4 4.6942E−4 1.0050E−3 1.7839E−3

2.1372E−6 2.2716E−5 8.3362E−5 2.0285E−4 3.9715E−4

1.9194E−7 2.8810E−6 1.2777E−5 3.5414E−5 7.6567E−5

1.3785E−8 2.9456E−7 1.5869E−6 5.0285E−6 1.2040E−5

7.3106E−10 2.2416E−8 1.4751E−7 5.3669E−7 1.4281E−7

2.5210E−11 1.1175E−9 9.0305E−9 3.7882E−8 1.1241E−7

4.2145E−13 2.7192E−11 2.7113E−10 1.3164E−9 4.3706E−9

In Table 7, we output the unconditional probability of defaults. The observed values decreased
with an increase in time when there was no default, but increased steadily when defaults oc-
curred in the basket of the entities. Also, the values obtained for the Clayton copula were
generally lesser in comparison with the Gaussian copula, but only with the exception of the
zero default values.

Next, we apply the concept of counting process in connection with the Clayton copula, to
compute the probabilities of having less than n entities defaulting at a specified time ti in a
given portfolio. This is denoted by P(Z(ti) < n) and the following figures give the probabilities
when the n = 1, 2, 3, 4, 5, 6 out of 10 entities.

(a) P(Z(t) = 1) (b) P(Z(t) = 2) (c) P(Z(t) = 3)

(d) P(Z(t) = 4)
(e) P(Z(t) = 5) (f) P(Z(t) = 6)

Figure 4: Clayton - Probability of n defaults against time T and number of entities N

Figure 4 showed the results obtained, and we observed that the probabilities became extremely
small in comparison with the Gaussian probabilities. This further asserts that as the number
of at least n defaults goes up, the corresponding probabilities declines drastically.
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Table 8: Comparison of n2D BDS prices using FT under the one-factor Clayton copula

Rank n2D swap premium via Fourier Transform (θ = 0.1938)

λ = 0.01 λ = 0.015 λ = 0.02 λ = 0.025 λ = 0.03 λ = 0.035 λ = 0.04
1 256.9671 417.5711 587.0253 763.7078 946.7921 1135.8055 1330.4752
2 74.0353 143.4878 225.2093 315.9714 413.6235 516.6302 623.8508
3 23.6040 54.1627 95.1930 145.0698 202.3589 265.8131 334.3513
4 7.2595 19.6489 38.7389 64.4075 96.2804 133.8511 176.5486
5 2.0313 6.4822 14.3657 26.1523 42.0887 62.2469 86.5653
6 0.4933 1.8606 4.6480 9.2969 16.1731 25.5603 37.6588
7 0.0986 0.4416 1.2483 2.7534 5.1971 8.8124 13.8145
8 0.0151 0.0806 0.2591 0.6329 1.3012 2.3762 3.9787
9 0.0016 0.0100 0.0367 0.0998 0.2245 0.4432 0.7955
10 0.0001 0.0006 0.0027 0.0081 0.0200 0.0427 0.0824

Table 8 gives the corresponding swap values with regards to varying intensity default and the
rank of the portfolio default. The same characteristics were exhibited by the swap values in
comparison with the Gaussian copula, but we observed that the Clayton swap values were
significantly lesser than that of the Gaussian swap. This could be as a result of the choice of
the discrepancies between the θ-Clayton dependency and the ρ-Gaussian correlation structure.
Furthermore, it could result from the the fact that the Clayton aims at modelling the extreme
values for tail dependency which makes the values to be restricted in some sense, and finally
the varied distribution functions of both copula families could equally account for the different
spread values. However, the question still remains on which copula seems to be the best?, and
the answer lies in the category of default events we are modelling. For instance, the Clayton
copula remains the best in comparison to the Gaussian copula, especially the modelling of
some extreme joint events in systematic risk, in the joint tail or the fat-tailed functions. For
modelling events in the low tailed distributions or operational risk, or high-stress forecasting
under credit risk scenarios, the Gaussian copula model outperforms the Clayton [29, 11, 20].

6 Conclusion

The price estimation of the basket credit default swaps is directly linked to the computation of
the joint probability of default, and this research successfully obtained such probability without
simulation. Here, we employed the quasi-analytic techniques which involved a combination of
the copula modelling and discrete Fourier transform to compute the probabilities of default,
thereby connecting it to the price estimation of the swap payment stream. We introduced the
concept of one-factor Gaussian, student-t and the Clayton copula in describing the probability
distribution functions. This concept further led to some semi-analytic expressions for the
conditional and the unconditional portfolio loss distribution functions, and the corresponding
expressions were solved efficiently with numerical integration via the discrete Fourier transform
approach and its inverse. Data analysis with the inclusion of statistical and empirical analysis
were equally conducted on the CDS spread quotes of 10 entities in order to estimate the
correlation structures and the chances of survival of the basket entities.
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