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AN ANALYTICAL STUDY IN MULTI PHYSICS AND MULTI
CRITERIA SHAPE OPTIMIZATION

HANNO GOTTSCHALK AND MARCO REESE˚

Abstract. A simple multi-physical system for the potential flow of a fluid through a shroud in
which a mechanical component, like a turbine vane, is placed, is modeled mathematically. We then
consider a multi criteria shape optimization problem, when the shape of the component is allowed to
vary under a certain set of 2nd order Hölder continuous differentiable transformations of a baseline
shape with boundary of the same continuity class. As objective functions, we consider a simple
loss model for the fluid dynamical efficiency and the probability of failure of the component due
to repeated application of loads that stem from the fluid’s static pressure. For this multi-physical
system, it is shown that under certain conditions the Pareto front is maximal in the sense that the
Pareto front of the feasible set coincides with Pareto front of its closure. We also show that the set
of all optimal forms with respect to scalarization techniques deforms continuously (in the Hausdorff
metric) with respect to preference parameters.

Key words. Shape optimization, multi criteria optimization, multi physics
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1. Introduction. The design of a mechanical component requires choosing a
material and a shape. Often, a component serves a primary objective, but also requires
a certain level of endurance. Material damage is caused by the loads that are imposed
during service. The quest for an optimal design in the majority of cases therefore is
at least a bi-criteria optimization problem and in many cases a multi criteria one [19].

In mechanical engineering, multi criteria optimization often comes along with
coupled multi physics simulations. If we take the design of turbine blades as an
example, the simulation of external flows and cooling air flows inside a blade have to
be combined with a thermal and a mechanical simulation inside the blade [48].

Mathematical optimization is widely used in mechanical engineering, see e.g. [40,
35]. On the other hand, some directions of contemporary mathematical research –
like topology optimization (we refer, e.g., to [3, 7]) – were initiated by mechanical
engineers [21]. While the given field is interdisciplinary, from the mathematical point
of view one would not only like to propose and analyse new optimization algorithms,
but also to understand the existence and the properties of optimal solutions. While
for mono-criteria optimization such a framework has been established [14, 23, 30, 3,
17], a general framework for multi criteria optimization is still missing, see however
[30, 18, 15] for numerical studies addressing the topic.

Component life models from materials science are used to judge the mechanical
integrity of a component after a certain number of load cycles, see e.g. [5]. In recent
times, such models have been extended by a probabilistic component [22, 31, 27, 42, 28,
44, 34, 4], which makes it possible to compute shape derivatives and gradients [12, 45,
26, 8] and therefore place component reliability in the context of shape optimization.
However, as remarked in [27], the probability of failure as a objective functional
requires more regular solutions as provided by the usual weak theory based on H1

Sobolev spaces [20]. As we find here, this is also the case for simplistic models of fluid
dynamical efficiency. As in previous works [27, 9], we therefore apply a framework
based on Hölder continuous classical solution spaces and extend it to multi criteria
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2 HANNO GOTTSCHALK AND MARCO REESE

optimization.
Within this general framework, we prove existence of Pareto optimal designs,

see also [18] for a related result in a different setting requiring less regularity. Here,
however, we show how to use the graph compactness property [30] along with the lower
semi-continuity of all objective functionals to prove certain maximality properties of
the non dominated feasible points: Namely that the Pareto front in the set of feasible
points [19] coincides with the Pareto front of the closure of the feasible points. Put in
other words, each dominated design is also dominated by at least one Pareto optimal
design.

We give a simplistic multi physical system as an example that fits the general
framework. This mathematical model couples a potential flow with structural me-
chanics and is motivated from gas turbine engineering. We define two (rather singular)
objective functionals, namely a aerodynamic loss based on the theory boundary layers
[41] and furthermore the probability of failure after a certain number of load cycles
[27, 34]. Each of these models includes nonlinear functions that depend on second
derivatives of the solution after restiction to the boundary of the underlying PDE’s
domains. For this system, we prove that the assumptions of the general framework
are fulfilled and we conclude that a maximal Pareto front exists in this case.

Multi criteria optimization relates to preferences of a decision maker [19, 35].
Here, we are interested in continuity properties of Pareto optimal shapes, when the
preference is expressed by a parameter in a merit function, which, e.g., cloud be the
weights in a weighted sum approach. The stability of the optimal solutions to such
scalarization techniques in dependence of a parameter is already investigated in the
literature, see e.g. [6, 29, 46, 47], for finite dimensional and infinite dimensional spaces.
Here we show that our general framework is indeed suitable to prove certain continuity
properties of the arg min sets of scalarized multi criteria optimization problems in the
Hausdorff distance as a function of the scalarization – or preference – parameter. Such
structural properties of the Pareto front for the first time are applied in the context
of shape optimization.

Our paper is organised as follows: We introduce the physical systems which under-
lie the multi criteria shape optimization problem we consider in Section 2. Afterwards,
in Section 3 we describe our framework for multi criteria shape optimization. By de-
riving uniform bounds for the solution spaces of the physical systems in Section 4,
we prove the well posedness of the shape optimization problem. Up to here we con-
sidered optimality in terms Pareto optimality. In Section 5 we apply scalaraization
techniques to transform the problem into an univariate shape problem and investigate
the dependency of the optimal shapes on the specific used technique. In Section 6 we
give a resume and an outlook on future research direction. Some technical details on
Hölder functions and solutions of elliptic partial differential equations can be found
in Appendix 6.

2. A Simple Multi Physics System. We intend to optimize the shape of
some component, e.g. a turbine vane, in terms of reliability and efficiency. Reliability
depends on surface and volume forces acting on the component. In our setting, the
component lies in a shroud and within the shroud a fluid is flowing past the component.
Due to static pressure the fluid imposes a surface force on the component. Hence it is
indispensable to include the fluid flow field into the optimization process. At the same
time, the component leads to frictional loss in the fluid that diminishes the efficiency
of the design.

In the following we describe a simple model which approximates the fluid flow in
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MULTI CRITERIA SHAPE OPTIMIZATION 3

a simple way as potential flow and model frictional loss via a post processing step to
the solution that is based on a simple model for the boundary layer. We also consider
the effect of the fluid’s mechanical loads to the component. As the static pressure
takes the role of a boundary condition for the partial differential equation of linear
elasticity, the internal stress fields of the component depend on the flow field, too. The
component’s fatigue life that results in the probability of failure, i.e. the formation of
a fatigue crack, as a second objective functional.

2.1. Potential Flow Equation. As component we consider a compact domain
Ω Ă R3 with Ck,α boundary that is partially contained in some larger compact domain
D Ă R3 representing the shroud with Ck,α boundary as well. We assume that DzΩ̊
is simply connected and also has Ck,α boundary and that there exist a ball Bε with
ε ą 0 such that Bε Ă ΩzD. The shroud D has an inlet and outlet where the fluid
flows in and out, respectively. At the remaining boundary part the fluid cannot leak.
In this work we consider an incompressible and rotation free perfect fluid in a steady
state. The assumption of zero shearing stresses in a perfect fluid – or zero viscosity
– simplifies the equation of motion so that potential theory can be applied. The
resulting solution still provides reasonable approximations to many actual flows. The
viscous forces are limited to a thin layer of fluid adjacent to the surface and therefore
in favor of simplicity we leave these effects out since they have little effect on the
general flow pattern1.

A fundamental condition is that no fluid can be created or destroyed within
the shroud D. The equation of continuity express this condition. Consider a three
dimensional velocity field vpxq on D Ď R3, then the continuity equation is given by

∇ ¨ v “ 0.

If a velocity field v is rotation free, ∇ˆ v “ 0, then there exist a velocity potential or
flow potential φ such that

v “ ∇φ.

Hence our assumptions give us a velocity potential φ that satisfies the Laplace equation

∆φ “ ∇ ¨∇φ “ 0.

Let n be the the outward normal of the boundary BD. By applying suited Neumann
boundary conditions g that correspond with our assumptions for a conserved flow
through the inlet and outlet of the shroud, we get the potential flow equation

(2.1)

∇v “ ∆φ “ 0 in DzΩ

vn “
Bφ
Bn “ g on BDzBΩ

vn “
Bφ
Bn “ 0 on D X BΩ.

Here we assume that g is only non-zero in the inlet and outlet regions and is continued
to be zero on the upper and lower wall of the shroud. Therefore, no discontinuities
occur where BΩ meets BD.

The existence of a solution to the potential flow equation is secured by the fol-
lowing lemma. It also gives a Schauder estimate that leads to a uniform bound for
the solution space we investigate in subsection 4.1. This uniform bound is crucial for

1unless the local effects make the flow separate from the surface
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4 HANNO GOTTSCHALK AND MARCO REESE

∂D
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∂ΩD∂D

Fig. 1. A turbine blade Ω within a shroud D.

the existences of solutions to the multi criteria optimization problem we consider in
this work and which we introduce in section 3.

Lemma 2.1 (Schauder Estimate for Flow Potentials). Consider us to be in the
situation described above. I.e. we consider the potential flow equation (2.1). Let
Ω Ă D Ă R3 be compact domains with Ck,α-boundaries and g P C1,αpD̄,R3q with
k P N. Then if k ě 2 and

ş

BD
g dA “ 0, the potential flow problem given by

∆φ “ 0 in DzΩ
Bφ
Bn “ g on BDzBΩ
Bφ
Bn “ 0 on D X BΩ.

possess a solution φ P C2,αpDzΩ,R3q. To obtain uniqueness we fix u “ 0 at some
point x0 P DzΩ. This solution verifies

(2.2) ‖φ‖C2,αpDzΩq ď C
`

‖φ‖C0,αpDzΩq ` ‖g‖C1,αpBDzBΩq

˘

,

with constant C “ CpΩq.

Proof. [37] proves the existence of the solution and [25] provides the Schauder
Estimate.

2.2. Elasticity Equation. One of the most crucial demands on the component
Ω is the reliability. Fatique failure is the most appearing type of failure for e.g. gas
turbines where the event of failure for a component as e.g. a blade or vain is the
appearance of the first crack. For this purpose, we consider the elasticity equation
which models the deformation of a component under given surface and volume forces
and allows us to calculate the stress fields that drive crack formation.

Let n be the outward normal of the boundary BΩ and let BΩ “ BΩD Y BΩN
be a partition where BΩD is clamped, and on BΩN a force surface density g|BΩN is
imposed. Then according to [20] the mixed problem of linear isotropic elasticity, or
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MULTI CRITERIA SHAPE OPTIMIZATION 5

the elasticity equation, is described by

(2.3)

∇ ¨ σpuq ` f “ 0 in Ω
σpuq “ λp∇ ¨ uqI ` µp∇u`∇uT q in Ω
u “ 0 on BΩD
σpuq ¨ n “ gs on BΩN

Here λ ą 0 and µ ą 0 are the Lamé coefficients and u : Ω Ñ R3 is the displacement
field on Ω. I is the identity on R3. The linearized strain rate tensor εpuq : Ω Ñ R3ˆ3

is defined as εpuq “ 1
2 p∇u`∇uJq. Approximate numerical solutions can be computed

by a finite element approach (see e.g. [20] or [32]).
We set BΩD “ BBε and BΩN “ BΩ. The potential equation (2.1) gives the velocity

field at the component’s boundary BΩ. Assuming that the total energy density, also
denoted stagnation pressure pst is constant at the inlet, we can calculate the static
pressure ps from Bernoulli’s law

(2.4) pst “
1

2
ρ|∇φ|2 ` ps.

We consider the static pressure pst as surface load on the component Ω. Therefore
the surface load gst is given by

gs “ ´ps “

ˆ

1

2
ρ|∇φ|2 ´ pst

˙

n.

This yields as boundary condition on ΩN for (2.3)

(2.5) σpuq ¨ n “ gst ô σpuq ¨ n “

ˆ

1

2
ρ|∇φ|2 ´ ps

˙

n.

Hence, the displacement vector u to the elasticity equation not only depends on the
shape Ω but also on the solution φ to the potential equation (2.1).

The following lemma provides existence and uniqueness of solutions u along with
a Schauder estimate.

Lemma 2.2 (Schauder estimate for displacement fields, [8]). Consider the elas-
ticity equation (2.3). Let Ω Ă R3 be a compact domain with Ck,α-boundaries. As
volume load we consider f P Ck,αpΩ,R3q and as surface load gs P C

k`1,αpBΩN ,R3q,
k P N0. Then, the disjoint displacement-traction problem given by

∇ ¨ σpuq ` f “ 0 in Ω
σpuq “ λp∇ ¨ uqI ` µp∇u`∇uT q in Ω
u “ 0 on BΩD
σpuq ¨ n “ gs on BΩN

has a unique solution u P Ck`2,αpΩ,R3q which satisfies

(2.6) ‖u‖Ck`2,αpΩq ď C
`

‖f‖Ck,αpΩq ` ‖gst‖Ck`1,αpBΩN q ` ‖u‖C0,αpΩq

˘

,

with constant CpΩq ą 0.

2.3. Optimal Reliability and Efficiency. Low cycle fatigue (LCF) driven
surface crack initiation is particularly important for the reliability of highly loaded
engineering parts as turbine components[33, 43]. The design of such engineering
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6 HANNO GOTTSCHALK AND MARCO REESE

parts therefore requires a model that is capable of accurately quantify risk levels for
LCF crack initiation, crack growth and ultimate failure. Here we refer to the model
introduced in [34] that models the statistical size effect but also includes the notch
support factor by using stress gradients arising from the elasticity equation (2.3):

(2.7) JRpΩ, uΩq :“

ż

BΩXD̄

ˆ

1

Ndetp∇u,∇2uΩpxqq

˙m

dA.

Ω represents the shape of the component, uΩ is the displacement field and the solution
to the elasticity equation on Ω, Ndet is the deterministic number of life cycles at each
point of the surface of Ω and m is the Weibull shape parameter. The proability of fail-
ure (PoF) after t load cycles is then given as PoF ptq “ 1´ e´t

mJRpΩ,uΩq. Minimizing
the probability of failure thus clearly is equivalent to minimizing JRpΩ, uΩq.

For a detailed discussion including experimental validation we refer to [36]. We
can apply this model as cost functional in order to optimize the component Ω w.r.t
reliability.

An another condition for the component is the efficiency that is connected with
the viscosity of the fluid flowing through the shroud. Viscosity is a measure which
describes the internal friction of a moving fluid. In a laminar fluid the effect of
viscosity is limited to a thin layer near the surface of the component. The fluid does
not slip along the surface, but adheres to it. In the case of potential flow, there is
a transition from zero velocity at the surface to the full velocity which is present at
a certain distance from the surface. The layer where this transition takes place is
called the boundary layer or frictional layer. The thickness of the boundary layer is
not constant but (roughly) proportional to the square root of the kinematic viscosity
ν and is growing from the leading edge, the location where the fluid first impinge
on the surface of the component. Friction of the fluid on the surface leads to energy
dissipation. A coefficient for the inflicted local wall shear stress is given by

(2.8) τwpxq “
0.322 ¨ µ|v| 3

2

a

ν ¨ distLEpxq

where µ is the viscosity and distLE the distance to the leading edge along the compo-
nent’s surface BΩ. For a detailed introduction to boundary layer theory one can see
e.g. [13, 41]. With this coefficient one can derive an estimate for the loss of power
due to friction given by

(2.9) JEpΩ, φΩq :“

ż

BΩXD̄

|v|τw dA.

If we want to use this measure as cost functional in the setting for shape optimization
we introduce in the next chapter, we have to apply additional assumptions on our
shapes, i.e. a fixed and unique leading edge for all shapes in the shape space. This
however changes very little in our general analysis.

For the multi physics and multi criteria shape optimization we have presented, we
realize that objective functionals contain boundary integrals of second order deriva-
tives of the solutions of second order elliptic BVPs. This can only be realised if one
considers regular shapes and strong solutions.

3. A Multi Criteria Optimization Problem. We are interested in shapes
with sufficiently smooth boundary given by hemisphere transformations from Hölder
spaces. In the first subsection we outline this approach including conditions for ex-
istence of optimal shapes. Then we show that the above multi physics optimization
fits in this general framework.
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MULTI CRITERIA SHAPE OPTIMIZATION 7

3.1. General Definitions. We denote a family of admissible shapes with Õ and
for every shape Ω P Õ we denote with V1pΩq, . . . , VnpΩq, n P N state spaces of real
valued functions on Ω. Consider a sequence of shapes pΩnqnPN in Õ and let Ω P Õ. The

convergence of Ωm against Ω is denoted with Ωm
Õ
ÝÑ Ω as mÑ8. For a sequence of

functions pymqmPN with ym P
Śn

i“1 VipΩmq for all m P N we denote the convergence
against some y P

Śn
i“1 VipΩq with ym ù y as m Ñ 8. We assume that for every

Ω P Õ one can solve uniquely a given set of state problems, eg. PDEs or a variational
inequalities. By associating the corresponding unique solutions vi,Ω P VipΩq with

Ω P Õ, one obtains the map vi : Ω ÞÑ vi,Ω P VipΩq. Let O be a subfamily of Õ, then
G “ tpΩ,vΩq |Ω P Ou is called the graph of the mapping v :“ pv1, . . . , vnq. A cost
functional J on Õ is given by a map J : pΩ,yq ÞÑ JpΩ,yq P R, where Ω P Õ and
y P

Śn
i“1 VipΩq. Then a vector of l cost functionals is defined by J :“ pJ1, . . . , Jlq

and the image of O (or G) under J is denoted with Y Ă Rl.
Definition 3.1 (Pareto optimality). Consider a subfamily O of Õ with corre-

sponding Graph G to given state spaces V “ pV1, . . . , Vnq. A point pΩ˚,v˚q P G is
called Pareto optimal w.r.t. cost functionals J “ pJ1, . . . , Jlq if there is no pΩ,vq P G
such that JkpΩ,vq ď JkpΩ

˚,v˚q for 1 ď k ď l and JipΩ,vq ă JipΩ,vq for some
i P t1, . . . , lu. The associated value JpΩ˚,v˚q is called nondominated.

Now let Y :“ JpGq. With the concept of Pareto optimality described we can
define YN :“ tJpΩ,vq P Y |JpΩ,vq is nondominated in Yu, i.e. the corresponding
Pareto front by which obviously lies on the boundary of Y.

Definition 3.2 (Multi criteria shape optimization problem). Consider a subfam-
ily O of Õ and for every Ω P O let vΩ “ pv1,Ω, . . . , vn,Ωq be the unique solutions to
given state problems on Ω. Let J “ pJ1, . . . , Jlq be cost functionals. We define an
optimal shape design problem by

"

Find Ω˚ P O such that
pΩ˚,vΩ˚q is Pareto optimal w.r.t. J .

(3.1)

The next theorem gives us conditions for the existence of a solution to a optimal
shape design problem. In the next section we will define our shape optimization
problem and use this theorem to proof the existence of a solution to it.

Theorem 3.3. Let Õ be a family of admissible domains and O a subfamily. Con-
sider cost functionals J “ pJ1, . . . , Jlq on Õ and assume for each Ω P Õ we have state
problems with state spaces V pΩq “ pV1pΩ, . . . , VnpΩqq such that each state problem
has a unique solution vk,Ω P VkpΩq, 1 ď k ď n. When the following both assumptions
hold true

(i) Compactness of G “ tpΩ,vΩq |Ω P Ou:
Every sequence pΩm,vΩmqmPN has a subsequence pΩmk ,vΩmk

qkPN that satis-
fies

Ωmk
Õ
ÝÑ Ω, k Ñ8

vΩmk
ù vΩ, k Ñ8,

for some pΩ,vΩq P G,

(ii) Lower semicontinuity of Jk:
Let pΩmqmPN be a sequence in Õ and pymqmPN be a sequence such that ym P
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8 HANNO GOTTSCHALK AND MARCO REESE

V pΩmq for all m P N. Consider some elements Ω, y in Õ and V pΩq, respec-
tively. Then

Ωm
Õ
ÝÑ Ω, mÑ8

ym ù y, mÑ8

+

ùñ lim inf
nÑ8

JkpΩn,ynq ě JkpΩ,yq,

for all 1 ď k ď l.
Then the multi criteria shape design problem (3.1) possesses at least one solution and
the Pareto front covers all nondominated points in Ȳ, e.g. YN “ ȲN , the set of non
dominated points in the closure of Y.

Proof. First, we proof the existence of an optimal shape. In Theorem 2.10 in [30]
it is proven that in this setting a lower semicontinuous cost functional possesses at
least one minimal solution. We apply this without loss of generality on cost functional
J1 and minimize it on G. Due the compactness of G and the lower semicontinuity of
J1 the resulting set of arguments of the minimum arg minpΩ,vΩqPG J1 is also compact.
Hence we can apply Theorem 2.10 on the next cost functional J2 and minimize it
on arg minpΩ,vΩqPG J1. We continue this procedure until we minimized every cost
functional and obtain by this at least one Pareto optimal solution.

For the second assertion, we recall that YN lies on the boundary of Y and it
follows directly that YN Ď ȲN . Conversely let JpΩ˚,v˚q P ȲN . Consider a sequence
pJpΩn,vnqqnPN with JpΩn,vnq Ñ JpΩ˚,v˚q as n Ñ 8. We assume that the cor-
responding sequence of shapes pΩnqnPN converge to some Ω P O as well (since G is
compact we can always go to subsequences). Due to the lower semicontinuity of J we
have

JipΩ,vΩq ď lim
nÑ8

JipΩn,vΩnq “ JipΩ
˚,v˚q for all 1 ď i ď l.

The Pareto optimality of JpΩ˚,v˚q gives that JpΩ,vq “ JpΩ˚,v˚q and since JpΩ,vq P
Y it follows that JpΩ˚,v˚q P Y and therefore ȲN Ď YN .

3.2. Multi Physics Shape Optimization. In the previous subsection we in-
troduced a general framework of multi criteria shape optimization. We now state a
class of shape optimization problems that includes the multi physics shape optimiza-
tion problem given by the coupled potential and elasticity equation as introduced in
section 2. As we will see in section 4, multi criteria shape optimization problems from
this class fulfill the required assumptions of Theorem 3.3 to ensure us the existence
of the Pareto front.

We consider shapes with Hölder continuous boundaries. This assumptions ensures
strong regularity for the solutions of the physical problems in this setting which enables
us to deal with cost functionals defined on the boundaries of the shapes containing
first and second derivatives as motivated in subsection 2.3. In the following, Ck,α

stands for the real valued functions with k-th derivatives being Hölder continuous
with exponent α, see the appendix 6.

Definition 3.4. Let Ω, Ω1 be bounded domains in Rd.
(i) A Ck,α-diffeomorphism on Ω is a bijective mapping f : Ω Ñ Ω1 such that

f P
“

Ck,αpΩq
‰d

and f´1 P
“

Ck,αpΩ1q
‰d

.
(ii) The set of Ck,α-diffeomorphisms is denoted by Dk,αpΩ,Ω1q or Dk,αpΩq if f :

Ω Ñ Ω.

Definition 3.5. Consider a bounded domain Ω Ă Rd. The boundary of Ω is of
class Ck,α, 0 ď α ď 1, if at each point x0 P BΩ there is a ball B “ Bpx0q and a
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MULTI CRITERIA SHAPE OPTIMIZATION 9

Ck,α-diffeomorphism T of B onto G Ă Rd such that:

piq T pB X Ωq Ă Rd`; piiq T pB X BΩq Ă BRd`;

We shall say that the diffeomorphism T straightens the boundary near x0 and call it
hemisphere transform. Note that by this definition Ω is of class Ck,α if each point of
BΩ has a neighbourhood in which BΩ is the graph of a Ck,α function of d ´ 1 of the
coordinates x1, . . . , xn. The converse is true if k ě 1.

Definition 3.6. Let K ą 0 be a positive constant and Ω0 Ă Ωext Ă R3 be compact
Ck,α domains. The elements of the set

Uad
k,αpΩ

extq :“
!

ψ P Dk,αpΩextq
∣∣ψ|

ΩzD
“ id, ‖ψ‖rCk,αpΩextqs

3 ď K,

‖ψ´1‖rCk,αpΩextqs
3 ď K

)

are called design-variables. These design variables induce, in a natural way the set of
admissible shapes

Ok,αpΩ0,Ω
extq :“

 

ψpΩ0q |ψ P Uad
k,αpΩ

extq
(

assigned to Ω0. Note that due to the Hölder continuity, every Ω P Ok,α is compact.

On the space of admissible domains we can define the Hausdorff distance as
metric. Note that in general the Hausdorff distance is no metric because the identity
of indiscernibles is not given. Here however, the compactness of the shapes ensure us
this property.

Definition 3.7. For two non-empty subsets Ω, Ω1 of a metric space pM,dq we
define their Hausdorff distance by

dHpΩ,Ω
1q :“ maxtsup

xPΩ
inf
yPΩ1

dpx´ yq, sup
yPΩ1

inf
xPΩ

dpx´ yqu

If we equip the set F pMq of all closed subsets of a metric space pM,dq with the
Hausdorff distance then we obtain another metric space. Since the shapes in Ok,α are
compact, the Hausdorff distance defines a metric on Ok,α. By the following Lemma,
we see in chapter 4, that pOk,α, dHq is additionally compact.

Theorem 3.8 (Blaschke’s Selection Theorem [39]). Let pM,dq be a metric space
where M is a compact subset of a Banach space B. Then the set F pMq of all closed
subsets of M is compact w.r.t. the Hausdorff distance dH .

From now on we write JpΩ,vq “ pJ1pΩ,vq, . . . , JlpΩ,vqq, where v “ pv1, . . . , vnq
and J “ pJ1 . . . , Jlq. Additionally we use the notation ∇v “ p∇v1, . . . ,∇vnq.

Definition 3.9 (Local Cost Functionals). Let O Ă PpR3q be a shape space with
state spaces V1pΩq, . . . , VnpΩq, Ω P O and graph G :“ tpΩ,vq |Ω P Ou. We assume
that VipΩq Ď CkpΩ,R3q for all 1 ď i ď n, then the local cost functional on G is given
by

JpΩ,vq :“

ż

Ω

Fvol px,v,∇v, . . . ,∇kvq dx

`

ż

BΩ

Fsur px,v,∇v, . . . ,∇kvq dA,

(3.2)
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10 HANNO GOTTSCHALK AND MARCO REESE

where Fvol, Fvol : Rd Ñ R̄` and d “ 3` n
řk
j“0 3j`1 “ 3` 3n

2 p3
k`1 ´ 1q. We denote

the volume integral and surface integral with

JvolpΩ,vq :“

ż

Ω

Fvol px,v,∇v, . . . ,∇kvq dx,

JsurpΩ,vq :“

ż

BΩ

Fsur px,v,∇v, . . . ,∇kvq dA.

Definition 3.10 (Multi Physics Shape Optimization Problem). Let
pOk,α, dHq be the space of admissible shapes and let J1, . . . , Jl be local cost functionals
on the Graph G :“ tpΩ, uΩ, φΩq |Ω P Ok,α, uΩ solves p2.3q on Ω,
φΩ solves p2.1q on Ωu. The multi physics shape optimization problem is given by:

"

Find Ω˚ P Ok,α such that
pΩ˚, uΩ˚ , φΩ˚q is Pareto optimal w.r.t. J .

(3.3)

Before this section ends we note that our choice of state problems here is only
exemplary. In the next section we see that we can include an arbitrary amount of
physical models in this multi physics shape optimization problem as long as they
provide unique solution with sufficient regularity and a compact solution space on the
shape space Ok,α.

4. Existence of Pareto Optimal Shapes.

4.1. Uniform Bounds for Solution Spaces. In this section the approach
outlined in Thoerem 3.3 will be followed in order to show the existence of an optimal
shape for the multi physics shape optimization problem. This approach includes the
compactness of the Graph G which requires bounded solution spaces on Ok,α. In this
subsection we derive such uniform bounds based on the Schauder estimates given in
section 2.

Lemma 4.1. Let φ be a unique solution to (2.1) with k ě 2. Then there exist a
constant K ą 0 such that for all Ω P Ok,α we have

‖φ‖C2,αpDzΩq ď K,

Proof. This estimate is based on Lemma 2.1:

‖φ‖C2,αpDzΩq ď C
`

‖φ‖C0,αpDzΩq ` ‖g‖C1,αpBDzBΩq

˘

,

where the constant C ą 0 depends on the shape Ω P Ok,α. First we outline that the
constant C can be chosen uniformly overpronlem the shapes Ω in Ok,α. A full proof
is provided in [25] (or [9]). In order to proof estimate (2.2) one straightens the bound-
ary BΩ piecewise with hemisphere transforms. The dependence of the constant C is
through the ellipticity of the differential operator and hence depends on the bounds
of the hemisphere transform that is used to straightens the boundary. Let T be such
a hemisphere transform for Ω0. For every shape ψpΩ0q P Ok,α we can construct
a hemisphere transform by pulling ψpΩ0q back to Ω0 and apply T afterwards, i.e.
TψpΩ0q :“ T ˝ ψ´1. Due to the definition of design variables ψ is uniformly bounded
and thus one can show that TψpΩ0q is uniformly bounded in Ok,α as well (see e.g. [9]).

Next we note that ‖g‖C1,αpBDzBΩq is obviously uniformly bounded by ‖g‖C1,αpBDq.
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MULTI CRITERIA SHAPE OPTIMIZATION 11

We further estimate ‖φ‖C0,αpDzΩq. One can see (e.g. [27]) that for every ε ą 0 there
is a constant Cpεq ą 0 such that

‖φ‖C0,αpDzΩq ď ε‖φ‖C1,αpDzΩq ` Cpεq

ż

DzΩ

|φ| dx.

We choose ε ă 1{C and get

‖φ‖C2,αpDzΩq ď C
`

‖φ‖C0,αpDzΩq ` ‖g‖C1,αpBDq

˘

,

ď
1

1´ εC

˜

Cpεq

ż

DzΩ

φdx` C‖g‖C1,αpBDq

¸

ď
1

1´ εC

`

Cpεq‖φ‖H1pDzΩq ` C‖g‖C1,αpBDq

˘

One can easily verify the a-priori estimate ‖φ‖H1pDzΩq ď Cp|D|‖g‖C1,αpBDq holds for
a constant Cp ą 0. This yields

‖φ‖C2,αpDzΩq ď
1

1´ εC

`

Cpεq‖φ‖H1pDzΩq ` C‖g‖C1,αpBDq

˘

ď
CpεqCp|D|` C

1´ εC
‖g‖C1,αpBDq :“ K

We recall that the elasticity equation (2.3) describes the surface force gst by the
static pressure pst that the fluid exerts on the component Ω (see (2.5)). Hence in our
framework the surface force gst is given by Bernoulli’s equation and we have

(4.1) σpuq ¨ n “ gst ô σpuq ¨ n “

ˆ

1

2
ρ|∇φ|2 ´ ps

˙

¨ n.

The solution u of the elasticity equation not only depends on the shape Ω P Ok,α but
on the solution φ of potential equation (2.1) as well. We can derive a uniform bound
for u as we have for φ from estimate (2.6) which already provides an uniform bound
in Ok,α if the surface load gst is independent of φ. However, in our framework gst

depends on φ and thus we have to further estimate the surface force gst in Ok,α.

Lemma 4.2. Let u be the unique solution to (2.3). Then there exist a constant
K ą 0 such that for all Ω P Ok,α we have

‖u‖C2,αpΩq ď K,

with k P N0.

Proof. Consider estimate (2.6):

(4.2) ‖u‖C2,αpΩq ď C
`

‖f‖C0,αpΩq ` ‖gst‖C1,αpBΩq ` ‖u‖C0,αpΩq

˘

In [8] it is proven that the constant C is uniform in Ok,α. Further ‖f‖C0,αpΩq is
bounded by ‖f‖C0,αpΩextq and ‖gst‖C1,αpBΩq depends on the potential φ in terms of
(2.5). For ‖gst‖C1,αpBΩq we can estimate

‖gst‖C1,αpBΩq “

∥∥∥∥ˆ1

2
ρ|∇φ|2 ´ ps

˙

¨ n

∥∥∥∥
C1,αpBΩq

ď ps ` ρp1` ‖∇φ‖8q ‖∇φ‖C1,αpBΩq .
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12 HANNO GOTTSCHALK AND MARCO REESE

Equation (2.1) models an incompressible fluid and therefore the fluid density ρ is
constant. Since pst is also constant and Lemma 4.1 gives that the potential φ is
uniformly bounded in Ok,α, we get that gst is uniformly bounded as well.

Now for ε ą 0 one can estimate

‖u‖C0,αpΩq ď ε‖u‖C1,αpΩq ` Cpεq

ż

Ω

|u| dx.

with constant Cpεq ą 0. Applying this with ε ă 1{C on Lemma 4.2 and estimating
ş

Ω
|φ| dx ď }φ‖H1pΩq yields

‖u‖C2,αpΩq ď C̃
`

‖f‖C0,αpΩextq ` ‖gst‖C1,αpBΩq ` ‖u‖H1pΩq

˘

Let VDN “ tv P rH1pΩqs3 | v “ 0 a.e. on BΩDu, consider the weak formulation of
(2.3):

ż

Ω

trpσpuqεpvqq dx

ż

Ω

fv dx`

ż

ΩN

gstv dA @v P VDN ,

where σi,j “
ř3
k,l“1 Cijklεk,l and εi,j “ 1{2pBjxi ` Bixjq. One can see that for all

v P VDN we have

BΩpv, vq “

ż

Ω

trpσpuqεpvqq dx ě q‖εpvq‖2
L2pΩq,

with a constant q ą 0. Since f and gst are uniform bounded,

|LΩpvq| “
∣∣∣∣ż

Ω

fv dx`

ż

BΩN

gstv dA

∣∣∣∣ ď C‖v‖H1pΩq

for constant C that is uniform in Ok,α. Korn’s second inequality (.3) then implies

q‖εpuq‖2
H0pΩq ďC‖u‖H1pΩq ď CK‖εpuq‖H0pΩq

ñ ‖u‖H1pΩq ď
CK
qC

Using the same arguments as [38] develops for for the local epigraph parametrization,
the constant CK is uniform with respect to a class of domains possessing a uniform
cone property. Therefore the previous inequality is uniform in O and the assertion is
proven.

4.2. Pareto Optimality. In order to prove the existence of an optimal shape to
the multi physics shape optimization problem (3.3) we want to make use of Theorem
3.3. Therefore we show that the local cost functionals from Definition 3.9 are lower
semicontinuous -we even show that they are continuous- and that the graph from
Definition 3.10 is compact. The continuity is given and discussed in Lemma 4.9. We
start this section by proving the compactness of the graph. We denote with Pk,α :“
tφΩ |φΩ solves p2.1q with Ω P Ok,αu and Ek,α :“ tuΩ |uΩ solves p2.3q with Ω P Ok,αu

the spaces of solutions to (2.1) and (2.3) on admissible shapes respectively. We
equipped these spaces with the metric that is induced by the Hölder norm. The
solutions in these spaces are defined on different and distinct domains and there-
fore are not comparable w.r.t. ‖¨‖Ck,α . We give our solution to this problem in the
following first definition of this section:
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MULTI CRITERIA SHAPE OPTIMIZATION 13

Definition 4.3 (Ck,α-convergence of functions with varying domains). Recall-

ing the set Ok,α and Ωext from Definition 3.6 let pΩ : rCk,αpΩqs3n Ñ rCk,α0 pΩextqs3n

be the extension operator that can be derived from Lemma .2. For v P rCk,αpΩqs3n set
vext “ pΩv. For pΩnqnPN Ă Ok,α, Ω P Ok,α and pvnqnPN with vn P rC

k,αpΩnqs
3n, n P

N, the expression vn ù v as nÑ8 is defined by vext
n Ñ vext in rCk,α0 pΩextqs3n.

Remark 4.4. Obviously, in the same way as above, we can extend a Hölder con-
tinuous functions p on DzΩ to the whole domain D for all Ω P Ok,α.

With this definition of convergence, we can proof the compactness of G. We
show that the metric spaces pOk,α, dHq, pPk,α, ‖¨‖Ck,α1 q, and pEk,α, ‖¨‖Ck,α1 q are each
compact where 0 ă α1 ă α ă 1 and that G is a closed subset of Ok,α ˆ Pk,α ˆ Ek,α.

Lemma 4.5. The space of admissible shapes Ok,αpΩ0,Ω
extq equipped with the

Hausdorff distance dH is a compact metric space.

Proof. We proof that Ok,α is sequentially compact. First we show that the space
of design variable Uad

k,αpΩ
extq is compact. Then the compactness of Ok,αpΩ0,Ω

extq

follows out of it. Due to its definition Uad
k,αpΩ

extq is a bounded subspace of Ck,α and

therefore precompact in Ck,α
1

pΩ̄extq for any 0 ă α1 ă α (see Lemma .4). Hence,
for every sequence pψnqnPN Ă Uad

k,αpΩ
extq there exists a convergent subsequence. For

the compactness of Uad
k,αpΩ

extq it remains to show that the limit of pψnqnPN lies in

Uad
k,αpΩ

extq. Since Uad
k,αpΩ

extq is precompact in Ck,α
1

and Ck,α
1

is a Banach space,

that sequence has a subsequence pψnlqlPN with ψnl Ñ ψ and ψ´1
nl
Ñ ψ´1 in ‖¨‖Ck,α1

for some ψ. First we note that since ‖ψnl‖Ck,αpΩextq ď K we have for any γ P N3 with
0 ď |γ| ď k ∣∣∣∣B|γ|ψnlpxqBγx

´
B|γ|ψnlpyq

Bγx

∣∣∣∣ ď ˆ

K ´ max
|γ|“k

∥∥∥∥B|γ|ψnlBxγ

∥∥∥∥
8

˙

|x´ y|α

and

max
|γ|“k

„

B|γ|ψnl
Bxγ



0,α

ď K ´ max
|γ|ďk

∥∥∥∥B|γ|ψnlBxγ

∥∥∥∥
8

,

max
|γ|ďk

∥∥∥∥B|γ|ψnlBxγ

∥∥∥∥
8

ÝÑ max
|γ|ďk

∥∥∥∥B|γ|ψBxγ

∥∥∥∥
8

ď K.

We apply these estimates to show that ψ P Ck,α and ‖ψ‖Ck,αpΩextq ď K:∣∣∣∣B|γ|ψpxqBγx
´
B|γ|ψpyq

Bγx

∣∣∣∣ ď ∣∣∣∣B|γ|ψpxqBγx
´
B|γ|ψnlpxq

Bγx

∣∣∣∣` ∣∣∣∣B|γ|ψnlpxqBγx
´
B|γ|ψnlpyq

Bγx

∣∣∣∣
`

∣∣∣∣B|γ|ψnlpyqBγx
´
B|γ|ψpyq

Bγx

∣∣∣∣
ď

∣∣∣∣B|γ|ψpxqBγx
´
B|γ|ψnlpxq

Bγx

∣∣∣∣
`

ˆ

K ´ max
|γ|ďk

∥∥∥∥B|γ|ψnlBxγ

∥∥∥∥
8

˙

|x´ y|α

`

∣∣∣∣B|γ|ψnlpyqBγx
´
B|γ|ψpyq

Bγx

∣∣∣∣
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14 HANNO GOTTSCHALK AND MARCO REESE

For the second term we used the Hölder continuity of ψnl . The first and third term
converge to zero since ‖ψnl‖Ck,α Ñ ‖ψ‖Ck,α . Overall we get∣∣∣∣B|γ|ψpxqBγx

´
B|γ|ψpyq

Bγx

∣∣∣∣ ď ∣∣∣∣B|γ|ψpxqBγx
´
B|γ|ψnlpxq

Bγx

∣∣∣∣
`

ˆ

K ´ max
|γ|ďk

∥∥∥∥B|γ|ψnlBxγ

∥∥∥∥
8

˙

|x´ y|α

`

∣∣∣∣B|γ|ψnlpyqBγx
´
B|γ|ψpyq

Bγx

∣∣∣∣
ÝÑ

ˆ

K ´ max
|γ|ďk

∥∥∥∥B|γ|ψBxγ

∥∥∥∥
8

˙

|x´ y|α.

This gives ψ P Ck,α and ‖ψ‖Ck,αpΩextq ď K, hence ψ P Uad
k,αpΩ

extq. Therefore

Uad
k,αpΩ

extq is closed and with that compact.

We make use of the compactness of Uad
k,αpΩ

extq w.r.t. ‖¨‖Ck,α1 pΩextq to show the

compactness of pOk,α, dOq. Consider a sequence pΩnqnPN Ă Ok,α. Due to the def-
inition of Ok,α there exists a corresponding sequence pψnqnPN Ă Uad

k,αpΩ
extq with

ψnpΩ0q “ Ωn for all n P N. Since Uad
k,αpΩ

extq is compact, there exists a subsequence

pψnlqlPN that converge to some ψ P Uad
k,αpΩ

extq in ‖¨‖Ck,α1 . We show that the corre-
sponding subsequence of shapes pΩnlq “ ψnlpΩ0q converge to Ω “ ψpΩ0q by using the
convergence of ψnl Ñ ψ in ‖¨‖Ck,α1 :

dOpΩnl ,Ωq “ maxt sup
xPΩnl

inf
yPΩ

|x´ y|, sup
yPΩ

inf
xPΩnl

|x´ y|u

“ maxt sup
xPΩ0

inf
yPΩ0

|ψnlpxq ´ ψpyq|, sup
yPΩ0

inf
xPΩ0

|ψnlpxq ´ ψpyq|u

ď maxt sup
xPΩ0

|ψnlpxq ´ ψpxq|, sup
yPΩ0

|ψnlpyq ´ ψpyq|u

ÝÑ
lÑ8

0.

Hence, each sequence in Ok,α has a convergent subsequence that converge in Ok,α

w.r.t the Hausdorff distance. Therefore pOk,α, dOq is sequentially compact.

Lemma 4.6. Let 0 ă α1 ă α ă 1 and k ě 2. Then the solution space Pk,α is

compact in C2,α1pΩextq.

Proof. First Lemma 2.1 gives that Pk,α Ă C2,α1 . Consider the space of extensions
Pext
k,α consisting the extensions from Definition 4.3 of the solutions φΩ P Pk,α. We

denote the extension from φΩ P Pk,α on D with φext
Ω . With Lemma 4.1 and (.1) this

extension holds

‖φext
Ω ‖C2,αpDq ď C‖φ‖C2,αpDzΩq ď CK,

where K is uniform in Ok,α. In [9] it is shown that the constant C can also be cho-
sen uniformly w.r.t. Ok,α which yields an uniform bound for φext

Ω . Hence, Pext
k,α is a

bounded subset of C2,αpΩextq and therefore precompact in C2,α1pΩextq (see
Lemma .4). Since Ck,α

1

is a Banach space it remains to show that Pext
k,α is closed.
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MULTI CRITERIA SHAPE OPTIMIZATION 15

For this consider a convergent sequence pφext
Ωn
qnPN Ă Pext

k,α with limit φ and corre-
sponding shapes pΩnqnPN Ă Ok,α. As Ok,α is compact we can find a subsequence of
shapes pΩnlqlPN that converge against some Ω P Ok,α. Now consider the correspond-
ing subsequence of solutions pφext

Ωnl
qlPN. This subsequence also converge against φ and

since we have seen in the proof of Lemma 4.5 that φ P C2,α and the convergent is in
‖¨‖C2,α1 , φ is the extension to a solution φΩ for (2.1) and therefore lies in Pext

k,α.

Lemma 4.7. Let 0 ă α1 ă α ă 1 and k P N0. The solution space Ek,α is compact

in C2,α1pΩextq.

Proof. The proof follows the exact same arguments as in Lemma 4.6 and therefore
is omitted.

Lemma 4.8. Consider the multi physics shape optimization problem (3.3) with
boundary regularity k ě 2. Then the Graph G is compact w.r.t. the corresponding
maximum product metric.

Proof. Lemma 4.5, Lemma 4.6 and Lemma 4.7 are implying that Ok,αˆPk,αˆEk,α
is compact. Let pΩnqnPN Ă Ok,α and Ω P Ok,α with Ωn Ñ Ω in dH . Then one can
see that due to the compactness of Ok,α ˆ Pk,α ˆ Ek,α, φext

Ωn
Ñ φext and uext

Ωn
Ñ uext

in ‖¨‖C2,α with φext
|Ω solves (2.1) on Ω and uext

|Ω solves (2.3) on Ω. Hence G is a closed
subspace of a compact metric space and therefore compact as well.

Lemma 4.9 (Continuity of Local Cost Functionals [27]). Let Fvol, Fsur

P C0pRdq (with d as in Definition 3.9 with r “ 3) and let Ok,α only consists C0-
admissible shapes. For Ω and v P rCkpΩqs3n consider the volume integral JvolpΩ,vq
and the surface integral JsurpΩ,vq

Let Ωn Ă Ok,α with Ωn
Õ
ÝÑ Ω as n Ñ 8 and let pvnqnPN Ă rCkpΩnqs

3n be a
sequence with vn ù v as nÑ8 for some v P rCkpΩnqs

3n. Then
(i) JvolpΩn,vnq ÝÑ JvolpΩ,vq as nÑ8.

(ii) If the set Ok,α only consists of C1-admissible shapes one obtains
JsurpΩn,vn ÝÑ JsurpΩ,vq as nÑ8 as well.

Proof. (i) First, we apply the characteristic function on the volume integral and
obtain

JvolpΩn,vnq :“

ż

Ωext

χΩn ¨ Fvol px,v
ext
n ,∇vext

n , . . . ,∇kvext
n q dx.

Because of Fvol P C0pRq and vn ù v as n Ñ 8 there exist a constant C ą 0
such that |χΩn ¨ Fvol px,v

ext
n ,∇vext

n , . . . ,∇kvext
n q| ď C is valid for all n P N almost

everywhere in Ωext. Moreover, Ωn
Õ
ÝÑ Ω and vext

n Ñ vext in rCk0 pΩ
extqs3n ensure the

existence of

lim
nÑ8

χΩn ¨ Fvol px,v
ext
n ,∇vext

n , . . . ,∇kvext
n q

“ χΩ ¨ Fvol px,v
ext,∇vext, . . . ,∇kvextq,

for all x P Ωext. The are pointwise and uniformly bounded in Ωext which let us apply
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16 HANNO GOTTSCHALK AND MARCO REESE

Lebesgue‘s dominated convergence theorem:

lim
nÑ8

JvolpΩn,vnq “ lim
nÑ8

ż

Ωext

χΩn ¨ Fvol px,v
ext
n ,∇vext

n , . . . ,∇kvext
n q dx

“

ż

Ωext

lim
nÑ8

χΩn ¨ Fvol px,v
ext
n ,∇vext

n , . . . ,∇kvext
n q dx

“

ż

Ωext

χΩ ¨ Fvol px,v
ext,∇vext, . . . ,∇kvextq dx

“ JvolpΩ,vq

(ii) The second assertion can be analogously proven as in [9] and we only state the
main ideas here.

First we note that every shape Ω P Ok,α by its definition can be considered as
two-dimensional submanifold and therefore locally embeddable into R2. Let Ain Ă BΩ,
1 ď i ď m with Ymi“1Ai “ BΩ and Ai X Aj “ H for i ‰ j. We can find in i and n

uniformly bounded chart mappings hin : Ani Ñ Ãi with Ãi Ă R2. We use them to
straighten the boundary of Ωn to obtain a volume integral, e.g.

JsurpΩn,vnq “

ż

BΩn

Fsur px,vn,∇vn, . . . ,∇kvnq dA

“

m
ÿ

i“1

ż

Ain

Fsur px,vn,∇vn, . . . ,∇kvnq dA

“

m
ÿ

i“1

ż

Ãi
Fsur

`

hinpsq,vnph
i
npsqq,∇vnph

i
npsqq, . . . ,∇kvnph

i
npsqq

˘

b

gh
i
npsq ds.

With corresponding Gram determinants gh
i
n . Due to the fact that the chart mappings

hin are uniform bounded and since Ãi is independent of n one can see that similarly
to (i) we can apply Lebesgue’s Theorem here which give us the assertion after.

Remark 4.10. The continuity assumption of Lemma 4.9 ensures the existence of
an integrable majorant for Fvol and Fsur. Example 2.9 does not fulfil this assumption.
However, (2.8) is integrable on compact sets and one can easily find an integrable
majorant, by applying the uniform bound of Lemma 4.1.

Theorem 4.11. Consider boundary regularity k ě 2. Then the multi physics
shape optimization problem (3.3) possesses at least one Pareto optimal solution
pΩ˚, φΩ˚ , uΩ˚q P G and covers all nondominated points in Y, e.g. YN “ ȲN

Proof. Lemma 4.8 provides the compactness of G and Lemma 4.9 the continuity
of the local cost functionals. Then Theorem 3.3 provides the existence of an optimal
shape and the closeness of the set of optimal shapes.

5. Scalarization and Multi Physics Optimization. Scalarizing is the tradi-
tional approach to solving a multicriteria optimization problem. This includes formu-
lating a single objective optimization problem that is related to the original Pareto
optimality problem by means of a real-valued scalarizing function typically being a
function of the objective function, auxiliary scalar or vector variables, and/or scalar or
vector parameters. Additionally scalarization techniques sometimes further restrict
the feasible set of the problem with new variables or/and restriction functions. In
this section we investigate the stability of the parameter-dependent optimal shapes
to different types of scalarization techniques with underlying design problem (3.3).
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First, let us define the scalarization methods we consider. This involves a certain
class of real-valued functions Sθ : Rl Ñ R, referred to as scalaraization function
that possibly depends on a parameter θ which lies in a parameter space Θ. The
scalarization problem is given by

minSθ pJpΩ, uΩ, φΩqq

subject to pΩ, uΩ, φΩq P Gθ,
(5.1)

where Gθ Ď G. For the sake of notational convenience, we sometimes identify an
element pΩ, uΩ, φΩq P Gθ only by its distinct shape Ω. If we assume that Gθ is closed
and the scalarization SθpJq is lower semicontinuous on Gθ ˆ tθu then by the results
of section 4, (5.1) obviously has an optimal solution for θ P Θ. For a fixed θ P Θ we
shall denote the space of all optimal shapes to an achievement function problem with
ζθ “ arg minΩPGθ Sθ pJpΩ, uΩ, φΩqq. We assume that Θ Ă Rl is closed and equip the
space Z :“ tζθ | θ P Θu with the Hausdorff distance which in this setting defines, due
to the closeness of the optimal shapes sets, a metric (see Lemma 5.1 and Lemma 5.2).

In the following we gather some definitions and assertion from chapter 4 of [6].
We define the optimal set mapping χ : Θ ÝÑ Z, the optimal value mapping τ :
Θ ÝÑ R and the graph mapping G : Θ ÝÑ 2G which maps a parameter θ P Θ to the
corresponding set of optimal shapes ζθ, the corresponding optimal value minΩPGθ SθpJq
and the corresponding graph Gθ respectively. With these definitions in hand, we can
describe the stability of the optimal shapes for a wide range of scalarization methods.
First we state a lemma that shows that pZ, dHq is indeed a metric space.

Lemma 5.1. The optimal set mapping χ is closed if τ is upper semicontinuous
and SθpJq is lower semicontinuous on G ˆ tθu.

Corollary 5.2. If the scalarization function Sθ is lower semicontinuous on Rlˆ
tθu and uniform continuous on tru ˆ Θ, for r P Rl, then the Hausdorff distance dH
defines a metric on Z.

Proof. Due to the continuity of J (see Lemma 4.9) and the uniform continuity of
Sθ on tru ˆΘ the optimal value maping τ is upper semicontinuous and therefore by
Lemma 5.1 the optimal set mapping χ is closed. Since dH defines a metric on F pGq
(the set of all closed subsets of G), pZ, dHq defines a metric space.

Since the sclarization solution is not necessarly unique, we need some sort of
continuity property of point-to-set mappings in order to discuss the stability of sets
of optimal shapes. The literatur discribes serveral definitions which vary considerably
in the statement. We investigate the stabilty according to Hausdorff and Berge (for
Berge see [6]) which in this setting are equivalent.

Definition 5.3 (Upper semicontiniuity according to Hausdorff). Let pΘ, dΘq and
pX, dxq be metric spaces. A point-to-set mapping of Θ into X is a function Γ that
assigns a subset Γpθq of X to each element θ P Θ. This function is called upper
semicontinuous in θ˚, if for each sequence pθnqnPN Ď Θ with θn ÝÑ θ˚, for n Ñ 8,
we have

(5.2) sup
xPT pθnq

inf
x1PT pθ˚q

dXpx, x
1q ÝÑ 0.

Γ is called upper semicontinuous if Γ is upper semicontinuous in each θ P Θ. For this
type of continuity we simply write u.s.c.-H.

The next Theorem states stability conditions for scalarization function problems.
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18 HANNO GOTTSCHALK AND MARCO REESE

Theorem 5.4 ([6]). Assume that G is u.s.c.-H at θ˚ and Gpθ˚q is compact.
Further let τ be upper semicontinuous at θ˚ and Sθ˚ lower semicontinuous on Gpθ˚qˆ
tθ˚u. Then the optimal set mapping χ is u.s.c.-H at θ˚.

The following two corollaries demonstrate continuity properties of shapes under
change of preferences for two commonly used scalarization techniques. In particular,
the results apply to the shape optimization problem introduced in section 3.2.

Corollary 5.5 (Weighted Sum Method). Consider cost functionals
J “ pJ1, . . . , Jlq and let Θ Ă Rl be a closed subset. Then the weighted sum scalaraiza-
tion method which is given by

min
řl
i“1 θiJippΩ, uΩ, φΩqq

subject to pΩ, uΩ, φΩq P G,

fulfils all conditions of Theorem 5.4 due to the compactness of G (see Lemma 4.8) and
the continuity of J (see Lemma 4.9).

Corollary 5.6 (ε-Constraint Method). Consider cost functionals J “

pJ1, . . . , Jlq. We optimize cost functional Jj and constrain the other functionals by
Ji ď εi P R, for 1 ď i ď n and i ‰ j. If each εi converges monotonically decreasing to
some ε˚i then the ε-Constraint Method

min JjppΩ, uΩ, φΩqq

subject to Ji ď εi,

fulfils all conditions of Theorem 5.4.

Proof. Let ε “ pε1, . . . , εlq and Gε “ tΩ P G | JipΩq ď εi, i ‰ ju. Th u.s.c.-H of
G is given due to the continuity of J. The continuity of Jj , the u.s.c.-H of G and the
fact that Gε Ď Gε1 for all ε˚ ď ε1 ď ε gives that τpεq converge continuously against
τpε˚q for ε Œ ε˚. Hence the optimal sets χpεq converge against χpε˚q for ε Œ ε˚ in
the sense of u.s.c.-H.

Remark 5.7. Whenever the scalarized problem (5.1) has a unique solution ζθ “
tΩθu for all θ in some neighborhood of θ P Θ, Ωθn ÝÑ Ωθ in Hausdorff distance (for
subsets in Rd), if θn Ñ θ.

6. Conclusions. In this work we extended the well known framework of for
the existence of optimal solutions in shape optimization [14, 30] to a multi criteria
a setting. We formulated conditions for the existence and completeness of Pareto
optimal points. Multiple criteria in design are often related to simulations that include
different domains of physics. We presented a coupled fluid-dynamic and mechanical
system which is motivated by gas turbine design and fits to the given framework. The
objective functions in this case are given by fluid losses and mechanical durability
expressed by the probability of failure under low cycle fatigue. Both objectives require
classical solutions to the underlying partial differential equations and therefore can
only be formulated on sufficiently regular shapes, such that elliptic regularity theory
applies [1, 2, 25]. We presented a formulation of the family of admissible shapes
that implied the existence such classical solutions and thereby provided a non trivial
example for the general framework.

In multi criteria optimization [19], the Pareto front contains points which are
optimal with respect to different preferences of a decision maker. An interesting point
is, if a small variation of the preference also leads to a small variation in the design.
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MULTI CRITERIA SHAPE OPTIMIZATION 19

This question however is ill-posed if Pareto optimal solutions need not to be unique.
We therefore presented a study where we went over to the sets of Pareto optimal
shapes for a given preference and studied the variation of these sets in the Hausdorff-
metric. In this setting, certain continuity properties in the preference parameters were
derived.

It will be of interest to develop multi-criteria shape optimization also from an
algorithmic standpoint using the theory of shape derivatives and gradient based op-
timization – see e.g. [10, 18] for some first steps in that direction. For a rigorous
analysis of numerical schemes of shape optimization, it will be of interest if (a) the
optima of the discretized problem are close to the optima of the continuous problem
and (b) if the same holds for shape gradients for non optimal solutions, as e.g. used in
multi-criteria descent algorithms. In particular, this should be true for the objective
values of discretized and continuous solutions, respectively. Potentially, iso-geometric
finite elements [16, 24, 49] could be a useful numerical tool to not spoil the domain reg-
ularity that is built into our framework by the need of Ck,α-classical solutions needed
for the evaluation of the objectives in multi-criteria shape optimization problems like
the one presented here.

Achnowledgement.. The authors gratefully acknowledge interesting discussions
with Laura Bittner and Kathrin Klamroth. This work has been funded by the Fed-
eral Ministry of Education and Research - BMBF via the GIVEN project, grant no.
05M18PXA.

Appendix.

Definition .1 (Hölder continuity). Let U Ď Rd be open. A function f : U Ñ R
is called Hölder continuous if there exist non-negative real constants C,α ą 0, such
that

|fpxq ´ fpyq| ď C|x´ y|α.

With Ck,αpUq we denote the space consisting of function on U having Hölder contin-
uous derivatives up to order k with exponent α. If the function f and its derivatives
up to order k are bounded on the closure of U , we can assign the norm

‖f‖Ck,αpŪq “ max
|γ|ďk

∥∥∥∥B|γ|fBxγ

∥∥∥∥
8

` max
|γ|“k

„

B|γ|f

Bxγ



0,α

,

where,

‖f‖8 “ sup
xPU

|fpxq|

rf s0,α “ sup
x,yPU
x‰y

|fpxq ´ fpyq|
|x´ y|α

.

We note that pCk,αpUq, ‖¨‖Ck,αpUqq is a Banach space. A vector field f : U Ñ Rn is
Hölder continuous with exponent α ą 0, if each component of f is Hölder continuous
with exponent α.

Lemma .2 ([25], Lemma 6.37). Let Ω be a Ck,α domain in Rd (with k ě 1) and
let Ω1 be an open set containing Ω̄. Suppose u P Ck,αpΩ̄q. Then there exist a function

w P Ck,α0 pΩ1q such that w “ u and

(.1) ‖w‖Ck,αpΩ1q ď C‖u‖Ck,αpΩq,
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where C “ Cpk,Ω,Ω1q.

Lemma .3 (Korn’s Second Inequality, [11]). Let Ω Ă R3 be an open bounded
set with piecewise smooth boundary. In addition, suppose Γ0 Ă BΩ has positive two
dimensional measure. Then there exist a positive number c1 “ c1pΩ,Γ0q such that

ż

Ω

εpvq : εpvq dx ě c1‖v‖H1pΩq @v P H1
ΓpΩq.

Here H1
ΓpΩq is the closure of tv P rC8pΩqs3 | vpxq “ 0 for x P Γ0u w.r.t. the ‖¨‖H1pΩq-

norm.

Lemma .4 ([25], Lemma 6.36). Let Ω be a Ck,α domain in Rd (with k ě 1) and
let S be a bounded set in Ck,α. Then S is precompact in Cj,βpΩ̄q if j ` β ď k ` α.
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