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Abstract. Recently it was shown that the solution of the Helmholtz equation can be approximated by a series over the solu-
tions of iterative parabolic equations. An extension of the fundamental solution of the Helmholtz equation via the solution of
the iterative parabolic equations is considered. Initial conditions are derived which are consistent with the iterative parabolic
equations. The derived conditions can be used to model the wave field generated by a point source.
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1. Introduction

The parabolic equations method is currently one of the most important tools for the simulation of

wave propagation in different media [1, 2]. In pioneering works wide-angle parabolic equations (PEs)

are usually derived from Padé approximations of an operator square root resulting from the formal

factorization of the Helmholtz equation [3, 4]. The solution of such equations allows to simulate one-

way wave propagation both efficiently and accurately [2]. It is known that both the aperture of a PE (i.e.,

its capability to handle wide-angle effects) and the stability of its solution strongly depends on the choice

of the Cauchy data in the respective initial-boundary value problems [2, 5, 6] (often referred to as starters

in the PE theory). Various techniques have been used in the literature for the design of starters, including

analytical methods, normal mode theory, ray theory and the so-called self-starter approach [2, 5, 6].

Recently Trofimov [7] proposed a new approach to the PE theory. Trofimov’s derivation is based on

the method of multiple scales [7], and it leads to a system of so-called iterative PEs, where the solution of

the j-th equation is used to calculate the input term of the j+1-th equation (thus, higher order equations

can be considered as a correction to lower order ones). This approach was further developed in [8], and

in [9] it was also shown that it can be extended to the case of nonlinear media (leading to first wide-angle

parabolic approximations to a nonlinear equation). Despite considerable success in the development of
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the method, no consistent starters for iterative PEs have been developed so far (in previous work we

have mostly used the starters for standard wide-angle PEs, e.g., those described in [2]). This present

study aims to close this gap.

In our work we derive initial conditions (or starters) for iterative PEs that can be used to simulate the

wavefield generated by a point source (the case of distributed sources is also covered by our derivation).

The starter is obtained by using the same asymptotic expansion for the fundamental solution of the

Helmholtz equation as used in [7] for the derivation of iterative PEs. This expansion is interesting in

itself, because to our knowledge the counterpart of this fundamental solution has not been considered in

the ’PE world’ so far.

2. Helmholtz equation and iterative parabolic approximations

In this work we consider the Helmholtz equation [2] describing an acoustic field produced by a point

source located at x = 0, y = 0, z = 0 in a 3D homogeneous medium

uxx + uyy + uzz + k2u = δ(x)δ(y)δ(z) . (1)

The solution u = u(x, y, z) to Eq. (1) is the sound pressure, and k denotes the wavenumber (the ratio of

the angular frequency to the sound speed). In acoustics the variable z usually denotes the depth, x is the

range along some acoustic path, and y is the transverse horizontal direction. Our goal here is to simulate

the paraxial propagation of sound along the x axis.

Such kind of wave propagation in a preferred direction can be efficiently described by so-called

parabolic equations (PEs) that can be derived either via a pseudo-differential one-way Helmholtz equa-

tion or using a direct multiscale approach. In this study we focus on the second approach introduced

2013 by Trofimov [7] in the context of 2D propagation in ocean acoustics. It was later generalized to the

3D case by Petrov [10]. In the sequel we briefly outline the idea and the main results of the approach of

Trofimov [7].

We start the derivation of the iterative PEs by introducing slow variables with the so-called parabolic

scaling X = ǫ x, Y = ǫ1/2 y and Z = ǫ1/2 z, and the fast variable η = (1/ǫ) θ(X,Y,Z).
Following the idea of the method of multiple scales [11] we assume that

k2 = k20 + ǫ ν(X,Y,Z) , (2)

and seek the solution of Eq. (1) in the form

u = u0(X,Y,Z, η) + ǫ u1(X,Y,Z, η) + . . . . (3)

Next, we replace the derivatives in (1) using the chain rule

∂

∂x
→ ǫ

(

∂

∂X
+

1

ǫ
θX
∂

∂η

)

,
∂

∂y
→ ǫ1/2

(

∂

∂Y
+

1

ǫ
θY
∂

∂η

)

,
∂

∂z
→ ǫ1/2

(

∂

∂Z
+

1

ǫ
θZ
∂

∂η

)

.
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Substituting (2) and (3) into (1), collecting the terms of the same orders in ǫ and solving the resulting
equations one by one we finally obtain the following series for u(x, z):

u(x, y, z) = exp(ik0x)

∞
∑

j=0

A j(x, y, z) = exp(ik0X/ǫ)

∞
∑

j=0

ǫ jA j(X,Y,Z) . (4)

The amplitudes A j(x, y, z), in the series (4) can be obtained (cf. [7, 10]) from the following system of
iterative parabolic equations:

2ik0A j,x +A j,yy +A j,zz + νA j +A j−1,xx = 0 , j = 0, 1, 2 . . . , (5)

where we set A−1(x, y, z) ≡ 0. Note that by definition we have A j(x, y, z) ≡ ǫ jA j(X,Y,Z).
The approximation of u(x, y, z) obtained by taking into account only the first N + 1 terms

A0(x, y, z), . . . , AN(x, y, z) of the series (4) is called N-th order iterative parabolic approximation. The
iterative parabolic equations (5) should be solved one by one, and the solution of the n-th equation is
used as the input for the n + 1-th equation.

It is interesting to note that a system similar to (5) first appeared 1986 in the work of Grikurov and
Kiselev [12]. They studied the accuracy of the solution given by a narrow-angle PE in ray coordinates,
and derived a simplified version of (5) in order to estimate the contribution of the high-order terms.

3. Decomposition of the fundamental solution of the Helmholtz equation

The 3D Helmholtz equation (1) possess a fundamental solution

F3(x, y, z) =
eikR

4πR
, (6)

where R =
√

x2 + y2 + z2.
Let us now define F3 as F3(X,Y,Z) = F3(X/ǫ,Y/

√
ǫ,Y/

√
ǫ,Z/

√
ǫ). Clearly, the terms in the expan-

sion of F3(X,Y,Z) · e−ikX/ǫ over the powers of ǫ must be equal to the respective terms of the series
∑∞

j=0 ǫ
jA j(X,Y,Z). The former expansion reads

e
ik X
ǫ

(

√

1+
ǫ(Y2+Z2)

X2
−1

)

4πX
ǫ

√

1 + ǫ(Y2+Z2)
X2

=
ǫ

4πX
e

1
2

ik Y2+Z2

X

(

1 + ǫ

(

−1

2

(Y2 + Z2)

X2
− 1

8
ik
(Y2 + Z2)2

X3

)

+ ǫ2
(

3

8

(Y2 + Z2)2

X4
− 1

128
k2

(Y2 + Z2)4

X6
+

1

8
ik
(Y2 + Z2)3

X5

)

+ ǫ3(. . . )

)

. (7)

Hence we obtain the following expressions for the free-space solutions of the iterative PEs (5) in rescaled
variables X,Y,Z

A0(X,Y,Z) =
ǫ

4πX
e

1
2

ik Y2+Z2

X ,
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A1(X,Y,Z) =
ǫ

4πX
e

1
2

ik Y2+Z2

X

(

−1

2

(Y2 + Z2)

X2
− 1

8
ik
(Y2 + Z2)2

X3

)

,

A2(X,Y,Z) =
ǫ

4πX
e

1
2

ik Y2+Z2

X

(

3

8

(Y2 + Z2)2

X4
− 1

128
k2

(Y2 + Z2)4

X6
+

1

8
ik
(Y2 + Z2)3

X5

)

, . . . . (8)

Let us stress the fact that the solutions of iterative PEs (8) correspond to the fundamental solution of the

Helmholtz equation, i.e., to the wavefield produced by a point source. Eq. (8) implies that the j-th term

of the series
∑∞

j=0 ǫ
jA j(X,Y,Z) is of the order ǫ j+1, not ǫ j (e.g., the term A0 is of the order ǫ).

Next, rewriting the solutions (8) in physical variables x, y, z, we obtain

A0(x, y, z) =
1

4πx
e

1
2

ik
y2+z2

x ,

A1(x, y, z) =
1

4πx2
e

1
2

ik
y2+z2

x

(

−1

2

(y2 + z2)

x
− 1

8
ik
(y2 + z2)2

x2

)

,

A2(x, y, z) =
1

4πx3
e

1
2

ik
y2+z2

x

(

3

8

(y2 + z2)2

x2
+

1

8
ik
(y2 + z2)3

x3
− 1

128
k2

(y2 + z2)4

x4

)

,

A3(x, y, z) =
1

4πx4
e

1
2

ik
y2+z2

x

(

− 5

16

(y2 + z2)3

x3
− 15

128
ik
(y2 + z2)4

x4
+

3

256
k2

(y2 + z2)5

x5

+
1

3072
ik3

(y2 + z2)6

x6

)

, . . . . (9)

Remark 1. It might seem confusing that for purely real values of the medium wavenumber k the solu-

tions of the iterative PEs (9) are not even square-integrable functions. However, in physical applications

(e.g., in underwater acoustics) the waves are always attenuated by the media (e.g., the water column,

the seabed), and therefore Im(k) > 0. For arbitrarily small yet positive Im(k) all solutions (9) belong to

C([0,∞), L2(R2)). However, for a lossless medium with Im(k) = 0 the solutions (9) must be considered

in a distributional sense.

Let us derive a general expression for An(X,Y,Z). We start with introducing the following quantities

P = X2 + Y2 ,

W = ik
X

ǫ

(
√

1 +
ǫ(Y2 + Z2)

X2
− 1

)

.

Our goal is to obtain the expansion for the reduced fundamental solution

F̄(X,Y,Z, ǫ) = 4π
X

ǫ
F3(X,Y,Z) e−ikX/ǫ = eW

(

1 +
ǫP

X2

)−1/2
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over the powers of ǫ. This objective can be achieved by computing all derivatives dnF̄/dǫn|ǫ=0. One can

easily verify that

dF̄

dǫ
= F̄ · V , (10)

where

V = W ′ − 1

2

P

X2

(

1 +
ǫP

X2

)−1

(hereafter primes denote derivatives w.r.t. the scaling parameter ǫ).

Computing the second and the third derivatives of F̄ w.r.t. ǫ that have the form

d2F̄

dǫ2
= F(V2 + V ′) ,

and

d3F̄

dǫ3
= F(V3 + 3VV ′ + V ′′) ,

we observe that in general

dnF̄

dǫn
= F̄S n(V) , (11)

where the expressions S n(V) containing products of V and their derivatives can be obtained recursively

by the formula

S n(V) = V · S n−1(V) + S ′
n−1(V) , n = 1, 2, 3, . . . ,

starting with S 0(V) = 1.

Since

V(n) = W(n+1) − 1

2

(

P

X2

)n+1

(−1)nn!

(

1 +
ǫP

X2

)−(n+1)

,

it only remains to compute W(n+1). The calculation is straightforward (yet tedious), and we present here

only the resulting formula

W(n) =
−ikX

ǫn+1
(−1)nn! +

n
∑

j=0

ikX

ǫn+1− j
(−1)n− j(n − j)!

(

1 +
ǫP

X2

)1/2− j(
P

X2

) j (−1) j−1

2 j
(2 j − 3)!! ,

(12)
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where we used the notation of the double factorial !!. Note that we actually need the formula for V(n)|ǫ=0.
Using Eq. (12) one can easily show that it can be written as

V(n)|ǫ=0 = −1

2
(−1)nn!

(

P

X2

)n+1

+
ikX

2n+1

(

P

X2

)n+1

(2n − 1)!!

n
∑

j=0

(−1) j

n + 1− j

(

n

j

)

. (13)

The terms of the expansion of F̄ can therefore be easily computed by the formulae Eq. (11) and Eq. (13).
In order to summarize all the results of our derivation we formulate the following theorem.

Theorem 1. The general formula for the terms in the expansion (7) can be written as

A j(x, y, z) =
1

4πx
e

1
2

ik
y2+z2

x
S j(v)

j!
, (14)

where S j(v) = (v0+D) j1, and D is a formal differential operator defined by the formula Dv(n) = v(n+1)

(it is also assumed that D is linear, and that it satisfies the Leibniz rule). The functions v(n)(x, y, z) are

given by the following formula

v(n)(x, y, z) = −1

2
(−1)nn!

(y2 + z2)n+1

x2(n+1)
+

ikx

2n+1

(y2 + z2)n+1

x2(n+1)
(2n − 1)!!

n
∑

j=0

(−1) j

n + 1− j

(

n

j

)

. (15)

Remark 2. Note that A j(x, y, z) = 1
4πx j+1 e

1
2

ik
y2+z2

x P2 j

(

y2+z2

x

)

, where P2 j(q) is a polynomial of degree

2 j.

4. Cauchy data for iterative PEs that corresponds to a point source

It is not immediately obvious what Cauchy data (i.e., initial conditions, or ICs) for the equations (5)
correspond to the solutions (9). Indeed, it is not easy to see what is the limit of these expressions for
x → 0. In this section we guess the correct answer to this question by using some non-rigorous gener-
alizations of the formulae for low-order terms in the expansion (4). Clearly, the derivation below cannot
be considered as a formal proof of the final result (it is postponed until the next section). Nevertheless,
we invite our readers to follow the course of our study.

Our first step is a lemma that can be easily proven using the standard formula for the fundamental
solution of the heat equation (see, e.g., [13]) and the Duhamel’s principle.

Lemma 4.1. The function A0(x, y, z) given by Eq. (9) is the solution of the Cauchy problem for the

parabolic equation

2ik0A0,x +A0,yy +A0,zz = −δ(x, y, z), x > 0,

with zero initial condition at x = 0. It can also be considered as a solution of the Cauchy problem

{

2ik0A0,x +A0,yy +A0,zz = 0 , x > 0,

A0|x=0 = −δ(y, z) . (16)
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Since the functions A j are distributions in y, z at x = 0, we can investigate their behavior by perform-
ing a smoothing in y, z-directions by a convolution with the Gaussian kernel function

G(y, z) =
1

πσ
e−

y2+z2

σ . (17)

Indeed, once we replace the right-hand side in Eq. (1) by δ(x)G(y, z), its solution will be smeared to

F3 ∗ G =

∫ +∞

−∞

∫ +∞

−∞
F3(x, ξ, η)G(y − η, z − ζ) dη dζ

(note that symbol ∗ denotes the convolution in y and z directions only). Clearly, the respective solutions
of the iterative parabolic equations (9) will also be smeared into A j ∗ G. One can easily verify that

A0 ∗ G|x=0 = e−
y2+z2

σ
i

2πkσ
=

i

2k
G ,

A1 ∗ G|x=0 = e−
y2+z2

σ
i

πk3σ2

(

1− y2 + z2

σ

)

=
i

2k

(

−1

2

∆

k2

)

G ,

A2 ∗ G|x=0 = e−
y2+z2

σ
3i

πk5σ3

(

2− 4

(

y2 + z2

σ

)

+

(

y2 + z2

σ

)2
)

=
i

2k

(

3

8

∆2

k4

)

G ,

A3 ∗ G|x=0 = · · · = i

2k

(

− 5

16

∆3

k6

)

G , . . . , (18)

with the 2D Laplace operator ∆ = ∂2

∂y2
+ ∂2

∂z2
.

Now passing to the limit σ→ 0 we observe that

A j|x=0 =
i

2k
(−1) jC j

∆ j

k2 j

(

δ(y)δ(z)
)

, (19)

and the coefficients are given by C0 = 1, C1 = 1/2, C2 = 3/8, C3 = 5/16 , . . . . Although initially
we failed to recognize the underlying formula for this sequence, four terms were sufficient to recover it
using the ’Pattern Solver tool’ [14]. It turned out to be

C j =

(

2 j

j

)

4 j
, j = 1, 2, 3, . . . . (20)

Note that this sequence consists of the Taylor series coefficients for the function 1/
√
1 + x (up to a sign).

In turn, this observation leads to the following insightful equality

∞
∑

j=0

A j|x=0 =
i

2k

∞
∑

j=0

(−1) j

(

2 j

j

)

4 j

∆ j

k2 j

(

δ(y)δ(z)
)

=
i

2

1√
k2 +∆

(

δ(y)δ(z)
)

. (21)

This quantity can be considered as a formal initial condition for a pseudo-differential PE (i.e., to a one-
way counterpart for the Helmholtz equation (1)) corresponding to the point-source input term in Eq. (1).
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Of course, this condition is in no way suitable for practical computations (one should subject it to a

smoothing procedure before using in a numerical scheme), yet it led the authors of the present study to

a clear and simple idea of a formal derivation of Eq. (19). A formula similar to (21) was also derived by

Collins in his study on the self-starter for standard wide-angle parabolic equations [5].

5. Formal derivation of ICs for iterative PEs

In the previous section the way we guessed the final result was outlined. Once it was obtained, a formal

proof was also easy to establish. We start with a more rigorous derivation of the formula (21). Let us

first rewrite the Helmholtz equation (1) in the following form

∂2u

∂x2
+ M2u = −δ(x)Ω , (22)

where M2 = k2 +∆2, and Ω = δ(y)δ(z). For x > 0 the solution of (22) can be formally written as

u(x, y, z) =
i

2M
eiMxΩ =

i

2
√

k2 +∆
ei
√

k2+∆x
(

δ(y)δ(z)
)

. (23)

By setting x = 0 in the last formula we formally obtain

u(x, y, z)|x=0 =
i

2
√

k2 +∆

(

δ(y)δ(z)
)

, (24)

and this formula coincides with Eq. (21).

Using Eq. (24) we can easily prove (19), and, correspondingly, a more general formula for a smoothed

IC

A j ∗ G|x=0 =
i

2k
(−1) j

(

2 j

j

)

4 j

∆ j

k2 j
G .

In order to reestablish Eq. (19) we must rewrite the operator in Eq. (24) in rescaled variables. Indeed,

∆ =
∂2

∂y2
+
∂2

∂z2
= ǫ

(

∂2

∂Y2
+
∂2

∂Z2

)

= ǫ∆̃ ,

and therefore the operator in Eq. (24) can be formally expanded as

1
√

ǫ∆̃ + k2
=

i

2k

∑

(−1) j

(

2 j

j

)

4 j

∆̃ j

k2 j
ǫ j ,

and thus the coincidence between the terms in expansion of u(x, y, z)|x=0 and terms of the same powers

of ǫ in Eq. (7) is established.
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6. Concluding remarks

In this study we derived the solution of iterative parabolic equations (IPEs) that corresponds to the

fundamental solution of the Helmholtz equation. In a sense, we obtained the counterpart of the self-

starter (see [5]) for the IPE theory.

On the practical side this result yields the initial conditions for the solution of the Cauchy problem for

IPEs that allow to simulate a wavefield produced by a point source (i.e., to approximate the solution of

the Helmholtz equation with the delta input term).

In many problems of underwater acoustics it would be useful to construct a starter that is formed by

vertical normal modes in z (in this case, e.g., only waterborne modes can be retained) but omnidirectional

in the horizontal plane. This will be accomplished in future work.
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