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Spontaneous wave formation in stochastic self-driven particle systems

Martin Friesen , Hanno Gottschalk , Barbara Rüdiger∗ , and Antoine Tordeux†

Abstract. Waves and oscillations are commonly observed in the dynamics of systems self-driven agents such
as pedestrians or vehicles. Interestingly, many factors may perturb the stability of homogeneous
solutions, leading to the spontaneous formation of waves related as stop-and-go waves or phantom
jam in the literature. In this article, we demonstrate that even a minimal additive stochastic noise
in stable first-order dynamics can describe stop-and-go phenomena. The noise is not a classic white
one, but a colored noise described by a Gaussian Ornstein-Uhlenbeck process. It turns out that the
joint dynamics of particles and noises forms again a (Gaussian) Ornstein-Uhlenbeck process whose
characteristics can be explicitly expressed in terms of parameters of the model. We analyze its
stability and characterize the presence of waves by calculating the correlation and autocorrelation
functions of the distance spacing between the particles. The autocorrelation of the noise induces
collective oscillation in the system and spontaneous emergence of waves. While the correlation and
autocorrelation functions are complex-valued and difficult to analyze and interpret, we show that
these functions become real-valued in the continuum limit when the system size is infinite. Finally,
we propose consistent statistical estimations of the model parameters and compare experimental
trajectories of single-file pedestrian motions to simulation results of the calibrated stochastic model.

Key words. Self-driven particle system, stop-and-go wave, stability analysis, autocorrelation, interacting par-
ticle system, Markovian process

AMS subject classifications. 90B20 Traffic problems
60K30 Applications (congestion, allocation, storage, traffic, etc.)
82C22 Interacting particle systems
60H10 Stochastic ordinary differential equations
34F05 Equations and systems with randomness

1. Introduction. The emergence of collective behaviors is frequently observed in the dy-
namics of self-driven agents interacting locally. Examples are collective motions and self-
organization including the formation of patterns, structures, waves, or clusters in bacterial
colonies, animal aggregations, or pedestrian dynamics [11, 10, 40, 22, 21]. Spontaneous for-
mation of stop-and-go waves in congested road traffic flows or pedestrian streams is a typical
example of self-organization. Indeed, stop-and-go phenomena, also related as phantom jam,
jamiton, or self-sustained waves in the literature [26, 35, 17], currently occur in traffic, pedes-
trian or again bicycle flows. Even in experiments with periodic boundary conditions where the
infrastructure cannot explain their presence stop-and-go waves emerge, the flows of vehicles
or pedestrians tending to stream jerky instead of streaming homogeneously [36, 41].

Road traffic flows are modeled thanks to microscopic, mesoscopic or macroscopic models
(see [13, 8] for reviews). Microscopic approaches describe the individual trajectories of ve-
hicles with car-following models, agent-based approaches, or cellular automata. Mesoscopic
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models are gas-kinetic approaches describing PDF for the speeds and the vehicle positions,
while macroscopic models are partial differential equations for aggregated performances. The
spontaneous formation of stop-and-go waves is generally explained by means of instability
of the homogeneous solutions and phase transition. See, e.g., the references [4, 25, 5, 16]
for microscopic models, [24, 6, 9] for mesoscopic models, or [15, 14, 18] for macroscopic
ones. Macroscopic hyperbolic continuum, such as Korteweg-de Vries, modified Korteweg-
de Vries or time-dependent Ginzburg-Landau soliton equations, are derived from microscopic
car-following models [28, 29, 7, 3]. Generally speaking, the models are second order differen-
tial equations defined by relaxation processes for the speed, the distance spacing of the flow
density. The stability of the homogeneous can break down due to inertia effects, i.e. when
the relaxations times (i.e. the inertia) exceed critical thresholds [31, 30]. In the unstable case,
the solutions can be periodic, quasi-periodic, limit cycles or even chaotic dynamics describing
stationary stop-and-go waves [37].

Recent results have pointed out that spontaneous stop-and-go waves can also simply
emerge from stochastic effects [19, 38]. Stochastic effects have different roles in the dynamics
of self-driven systems. Generally speaking, the introduction of white noises tends to increase
the disorder and prevent self-organization [39, 20], while coloured noises can generate com-
plex structures and patterns [2, 12]. Stochastic effects and notions of noise are one of the
main emphases of pedestrian or traffic modeling approaches. In most of the cases, the noises
added to the dynamics are white noises [23, 37, 11, 20]. In this article, we demonstrate
that the introduction of a colored noise, namely a truncated Brownian noise provided by
the Ornstein-Uhlenbeck process, induces the spontaneous formation of stop-and-go waves in
stable dynamics of the first order. In contrast to classical inertial deterministic modelling
approaches, no instability neither as phase transition phenomena are observed. The waves
are due to non-linear stochastic effects. They are highlighted by analysing the correlation and
autocorrelation of the spacing difference describing oscillations and traffic waves propagating
at characterised speeds given by the Rankine–Hugoniot formula. The stochastic model has
been introduced to describe pedestrian dynamics in [38]. It is defined in the next section. The
model is solved in Sec. 3, while its stability is analyzed in Sec. 4. The covariance and autoco-
variance are calculated for the finite system with periodic boundary conditions in Sec. 5, and
at the limit of an infinite system in Sec. 6. Finally, we demonstrate convergence property of
statistical estimates for the model parameters in Sec. 7.

2. Stochastic following model. We consider N particles on a system of length L with
periodic boundary conditions. We denote in the following as (xn(t))n=1,...,N the curvilinear
positions of the particles n = 1, . . . , N at time t ≥ 0 (see Fig. 1) and suppose that the particles
are initially ordered by their index, i.e.

x1(0) ≤ x2(0) ≤ ... ≤ xN (0) ≤ L+ x1(0).

In the following model, the speed of a particle is a deterministic optimal velocity V : s 7→
V (s) depending on the spacing s, coupled to an additive stochastic noise. We consider in the
rest of the paper congested traffic states and the affine optimal velocity function

V (s) = λ(s− `),
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ẋn ẋn+1

xn+1 − xn

Ring of length L N agents
Agent n Agent n+ 1

Figure 1. Scheme of the system with periodic boundary conditions. xn is the curvilinear position while
∆xn = xn+1 − xn is the spacing and ẋn the speed of the particle with number n.

with λ > 0 the inverse of the equilibrium time gap between the particles and ` ≥ 0 their
length. The time evolution of the particle with number n = 1, . . . , N is supposed to follow
the stochastic ordinary differential equation

(1) ẋn(t) = λ(∆xn(t)− `) + ξn(t), t ≥ 0,

where (ξn(t))t≥0 denotes the noise and the spacing between the particles are

(2)

{
∆xn(t) = xn+1(t)− xn(t), n = 1, . . . , N − 1,

∆xN (t) = L+ x1(t)− xN (t).

We suppose that the noise is given by independent Ornstein-Uhlenbeck processes, i.e.

(3) dξn(t) = −βξn(t) dt+ σ dWn(t),

where Wn(t), n = 1, . . . , N , are independent Wiener processes, β > 0 denotes the relaxation
rate and σ ∈ R the amplitude of the noise, respectively. Applying the Itô formula to Kn(t) =
eβtξn(t) one finds that each ξn(t) is given by

(4) ξn(t) = e−βtξn(0) + σ

∫ t

0
eβ(s−t) dWn(s).

Instead of (1), we analyse the spacing difference of xn(t) to the homogeneous solution xHn (t),
i.e.

(5) yn(t) = ∆xn(t)−∆xHn (t)

where the homogeneous solution is given by

{
xHn (t) = xHn (0) + tλ(L/N − `),
∆xHn (t) = L/N

.
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Representation (5) has the advantage that it allows us to study the effects of noise such as
stop-and-go waves. We have for all n = 1, . . . , N

ẏn(t) = λ
(
yn+1(t)− yn(t)

)
+ ξn+1(t)− ξn(t).

This equation can be expressed by the system of stochastic ordinary differential equations

(6) Ẏ (t) = λAY (t) +AΞ(t),

where Y (t) =
[
y1(t), y2(t), . . . , yN (t)

]> ∈ RN , Ξ(t) =
[
ξ1(t), ξ2(t), . . . , ξN (t)

]> ∈ RN and

A =



−1 1

. . .. . . 1
1 −1


 ∈ MN×N .

Let us stress that the processes [x1(t), . . . , xn(t)]> obtained from (1) as well as Y (t) obtained
from (6) both take values in RN , i.e. they are not measured on the (periodic) ring but on an
infinite lane and by assuming, as given in (2), that the spacing of the vehicle N is ∆xN (t) =
L+ x1(t)− xN (t) + L.

3. Solving the model. Rewriting (6) into the differential form

(7) dY (t) =
(
λAY (t) +AΞ(t)

)
dt

shows that the noise Ξ(t) enters in the definition of Y (t) as an additional random drift pa-
rameter. Hence Y (t) cannot be a Markov process in its own. To overcome this difficulty we
enlarge the state space from RN to RN ×RN by also taking the evolution of the noise Ξ into
account. In this way Z := (Y,Ξ) becomes a Markov process with state space RN ×RN .

Indeed, using (3) combined with (7) we find that Z(t) = (Y (t),Ξ(t)) solves the system of
stochastic differential equations

(8) dZ(t) = BZ(t) dt+GdW (t), Z(0) = (Y (0),Ξ(0)),

where W (t) = (Wn(t))n=1,...,2N is a family of independent Wiener processes and the N × N
matrices B,G are given by

B =

(
λA A
0 −β1N

)
, G =

(
0 0
0 σ1N

)
,

where 1N denotes the identity matrix acting on RN .
The particular form of (8) shows that Z is a 2N -dimensional Ornstein-Uhlenbeck process

and hence is given by

(9) Z(t) = etBZ(0) +

∫ t

0
e(t−s)BGdW (s).
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SPONTANEOUS WAVE FORMATION IN STOCHASTIC SELF-DRIVEN PARTICLE SYSTEMS 5

Following the general theory of Ornstein-Uhlenbeck processes (see, e.g., [34, 1]) we find that
Z is a Feller process with Markov generator

Lf(z) =

2N∑

k=1

(Bz)j
∂f(z)

∂zj
+

1

2

2N∑

k,j=1

(GG>)kj
∂2f(z)

∂zk∂zj
.

Moreover, it is a Gaussian process whose characteristic function is, for z, p ∈ R2N , given by

E[ei〈p,Z(t)〉 | Z(0) = z] = exp

(
i〈z, etB>p〉 − 1

2

∫ t

0
〈esB>p,GG>esB>p〉 ds

)

= exp

(
i〈µz(t), p〉 −

1

2
〈p,Σ(t)p〉

)
(10)

where its expectation µz(t) and covariance operator Σ(t) are given by

µz(t) = etBz, Σ(t) =

∫ t

0
esBGG>esB

>
ds.

More generally one can also compute its covariance structure at different times.

Lemma 1. For t, s ≥ 0 it holds

cov(Z(t), Z(s)) = etB
∫ min{t,s}

0
e−uBGG>e−uB

>
duesB

>
.

Proof. Denote by 1{u≤t} =

{
1, u ≤ t
0, u > t

the indicator function on the set {u ≤ t}. Using

(9) we find that

cov(Z(t), Z(s)) = cov

(
etB
∫ ∞

0
1{u≤t}e

−uBGdW (u), esB
∫ ∞

0
1{v≤s}e

−vBGdW (v)

)

= E

[
etB
∫ ∞

0
1{u≤t}e

−uBGdW (u)

(∫ ∞

0
e−vBGdW (v)

)>
esB

>
]

= etBE
[∫ ∞

0

∫ ∞

0
1{u≤t}1{v≤s}e

−uBGdW (u) dW>(v)G>e−vB
>
]
esB

>

= etB
∫ ∞

0
1{u≤t}1{u≤s}e

−uBG> duesB
>

= etB
∫ min{t,s}

0
e−uBGG>e−uB

>
duesB

>
,

where we have used that dWj(u) dWk(v) = δkjδ(u− v) du dv which yields

dW (u) dW (v)> = ( dWj(u) dWk(v))j,k∈{1,...,2N} = 12Nδ(u− v) du dv

with 12N denoting the identity matrix acting on R2N .

As Z is a Gaussian process, it is completely characterized by its expectation and covariance
structure. Based on the formulas of this section we can express all desired (statistical) quan-
tities in terms of the characteristic function and hence its mean and covariance structure.
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6 M. FRIESEN, H. GOTTSCHALK, B. RÜDIGER, A. TORDEUX

4. Stability analysis. In this section we investigate the long-time behaviour of the mean
E[X(t)], the limiting distribution X(∞), and finally invariant measures for the Markovian
dynamics. Such analysis crucially relies on the spectra of A and B which are, therefore,
investigated first.

Proposition 2. The matrix A is diagonalizable with eigenvalues

ωk = γk − 1, γk = e2πi k
N , k = 0, . . . , N − 1,

and corresponding eigenvectors

(11) uk =
[
γ0
k γ1

k . . . γN−1
k

]>
, k = 0, . . . N − 1.

The coefficients of the matrix exponential eAt are given by

eAt(n,m) =
1

N

N−1∑

k=0

γn−mk eωkt, 1 ≤ n,m ≤ N(12)

and it holds for each y ∈ RN
∥∥∥∥∥∥∥
eAty −

(
1

N

N∑

k=1

yk

)


1
...
1




∥∥∥∥∥∥∥
N

≤
√
N‖y‖Ne−2 sin( πN )

2
t, t ≥ 0,(13)

where ‖y‖2N =
∑N

n=1 |yn|2 denotes the euclidean norm on RN .

Proof. The matrix A is invariant by circular permutation, i.e. θ(A) = A with

θ : (an,m, 1 ≤ n,m ≤ N) 7→ (an+1,m+1, 1 ≤ n,m ≤ N),

and (an,m)n,m being the coefficients of A and by assuming that aN+1,m = a1,m, an,N+1 =
an,1 and aN+1,N+1 = a1,1. Likewise, let θ(u) = (uj+1)j=1,...,N with uN+1 := u1. If u =[
u1 . . . uN

]>
is an eigenvector of A associated to the eigenvalue ω, i.e. Au = ωu, then

ωθ(u) = θ(ωu) = θ(Au) = θ(A)θ(u) = Aθ(u),

i.e. θ(u) is also an eigenvector with eigenvalue ω. Iterating this procedure yields u1 = γu2 =
. . . = γNu1 and γ = N

√
1 is a N -th root of unity. The eigenvectors of A are then given by

(11). Using Auk = ωkuk, the eigenvalues are precisely ωk = γk − 1. The N eigenvalues
(ω0, . . . , ωN−1) are distinct, therefore A is diagonalisable and A = PDP−1, with

P (n,m) = γn−1
m−1, P−1(n,m) =

1

N
γ1−m
n−1 , D = diag(ω0, . . . , ωN−1).

Using eAt = PeDtP−1 gives (12). Moreover, using the particular form of the eigenvalues it is
not difficult to show that

eAt(n,m) →
t→∞

γn−m0

N
=

1

N
for all 1 ≤ n,m ≤ N.
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SPONTANEOUS WAVE FORMATION IN STOCHASTIC SELF-DRIVEN PARTICLE SYSTEMS 7

From this we could deduce a similar estimate to (13) where the constant
√
N is replaced by N .

In order to prove the stronger estimate (13), we first set v0 = N−1/2u0 and then find by the
Graham-Schmidt procedure an orthonormal basis v0, . . . ,vN−1 of RN such that Avn = ωnvn,
n = 0, . . . , N − 1. For

y =
N−1∑

n=0

〈y,vn〉vn

we obtain

eAty =
N−1∑

n=0

〈y,vn〉eωntvn

and hence

∥∥eAty − 〈y,v0〉v0

∥∥
N
≤

N∑

n=1

|〈y,vn〉|e<(ωn)t

≤
√
Ne−2 sin( πN )

2
t

(
N−1∑

n=1

|〈y,vn〉|2
)1/2

≤
√
N‖y‖Ne−2 sin( πN )

2
t,

where we have used the Cauchy-Schwartz inequality and

<(ωn) = cos

(
2πn

N

)
− 1 = −2 sin

(πn
N

)
≤ −2 sin

( π
N

)
, n = 1, . . . , N − 1.

The assertion follows from the identity

〈y,v0〉v0 =
1

N
〈y,u0〉u0 =

(
1

N

N∑

n=1

yn

)


1
...
1


 .

Next we continue with the analysis of the spectrum for B.

Proposition 3. The matrix B has eigenvalues

(λω0, . . . , λωN−1,−β, . . . ,−β)(14)

and corresponding eigenvectors
([

u0

0

]
, . . .

[
uN−1

0

]
,

[
−(β + λA)−1Ae1

e1

]
, . . . ,

[
−(β + λA)−1AeN

eN

])
,(15)

where e1, . . . , eN ∈ RN denote the canonical basis vectors in RN . In particular B is diagonal-
isable and for each z ∈ R2N

∥∥∥∥∥e
Btz −

(
1

N

N∑

n=1

zn

)[
u0

0

]∥∥∥∥∥
2N

≤
√

2N‖z‖2Ne−δt, t ≥ 0,(16)

where δ = min{β, 2 sin (π/N)2} > 0 and u0 =
[
1 . . . 1

]> ∈ RN .
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8 M. FRIESEN, H. GOTTSCHALK, B. RÜDIGER, A. TORDEUX

Proof. The characteristic equation for B is

0 = det

([
w1N 0

0 w1N

]
−
[
λA A
0 −β1N

])
= det(w1N − λA)det(w1N + β1N ),

whose solutions in w ∈ C are exactly (14). Let
[
y ξ

]> ∈ R2N be an eigenvector for the
eigenvalue λωk, then

λωk

[
y
ξ

]
=

[
λA A
0 −β1N

] [
y
ξ

]
=

[
λAy +Aξ
−βξ

]
.

Hence ξ = 0 and y = uk. Similarly, let
[
y ξ

]> ∈ R2N be an eigenvector for the eigenvalue
−β, then

−β
[
y
ξ

]
=

[
λAy +Aξ
−βξ

]
.

Hence ξ is arbitrary while y satisfies (β1N + λA)y = −Aξ. Choosing ξ ∈ {e1, . . . , eN} shows
that the eigenvectors are given by (15) and that the corresponding eigenspaces span R2N , i.e.
B is diagonalisable. Concerning assertion (16) we proceed similarly to (13). Let v1, . . . ,v2N

be an orthonormal basis of eigenvectors of B with v1 = N−1/2
[
u0 0

]>
, and denote by

%1, . . . %2N the corresponding eigenvalues with %n = λωn−1, n = 1, . . . , N , while %n = −β for
n = N + 1, . . . , 2N . For

z =
2N∑

n=1

〈z,vn〉vn,

we obtain

eBtz =
2N∑

n=1

〈z,vn〉e%ntvn

and hence

∥∥eBtz − 〈z,v1〉v1

∥∥
2N
≤

2N∑

n=2

|〈z,vn〉|e<(%n)t

≤ e−δt
√

2N

(
2N∑

n=2

|〈z,vn〉|2
)1/2

≤
√

2N‖z‖2Ne−δt,

where we have used the Cauchy-Schwartz inequality and

<(%n) ≤ −δ, n = 2, . . . , 2N.

Since 〈z, v1〉v1 =
(

1
N

∑N
n=1 zn

) [
u0 0

]>
, the assertion is proved.

Next we study the asymptotic behaviour of Z(t) as t→∞.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

SPONTANEOUS WAVE FORMATION IN STOCHASTIC SELF-DRIVEN PARTICLE SYSTEMS 9

Theorem 4. It holds Z(t)→t→∞ Z(∞) in law, where Z(∞) is a Gaussian random variable
on R2N with mean zero and covariance matrix

Σ(∞) =

∫ ∞

0
etBGG>etB

>
dt.

Proof. Using the characterization of convergence in law by characteristic functions (that
is Lévy’s continuity Theorem), it suffices to show that Σ(∞) is well-defined and that

lim
t→∞

E[ei〈p,Z(t)〉] = exp

(
−1

2
〈p,Σ(∞)p〉

)
, ∀p ∈ R2N .(17)

Note that Σ(∞) is well-defined, if

∫ ∞

0

∣∣∣〈p, eBtGG>eB>tq〉
∣∣∣ dt <∞, ∀p, q ∈ R2N .(18)

Estimating first the scalar product and then the integral by Cauchy-Schwartz we arrive at

∫ ∞

0

∣∣∣〈p, eBtGG>eB>tq〉
∣∣∣ dt ≤

∫ ∞

0
‖G>eB>tp‖2N‖G>eB

>tq‖2N dt

≤
(∫ ∞

0
‖G>eB>tp‖22N dt

)1/2(∫ ∞

0
‖G>eB>tq‖22N dt

)1/2

.

In order to show that these integrals are finite we first estimate eBtG in the Frobenius norm

‖ · ‖F of a 2N × 2N matrix. Indeed, for each p =
[
p1 p2

]> ∈ R2N we find Gp =
[
0 σp2

]>
and hence from (16) applied to z = Gp

‖eBtGp‖2N ≤
√

2N‖Gp‖2Ne−δt ≤
√

2N‖G‖F‖p‖2Ne−δt,

i.e. ‖eBtG‖F ≤
√

2N‖G‖Fe−δt. From this we obtain

‖G>eB>tp‖2N ≤ ‖G>eB
>t‖F‖p‖2N = ‖eBtG‖F‖p‖2N ≤

√
2N‖G‖Fe−δt‖p‖2N ,

which shows that (18) is satisfied.
We proceed to prove (17). Using regular conditional distributions combined with (10) we

find that

E[ei〈p,Z(t)〉] =

∫

R2N
E[ei〈p,Z(t)〉 | Z(0) = z]P[Z(0) ∈ dz]

= e−
1
2
〈p,Σ(t)p〉

∫

R2N
ei〈e

Btz,p〉P[Z(0) ∈ dz].

Using (18) we conclude that Σ(t)→ Σ(∞) as t→∞. Using (16) we find

eBtz −→
(

1

N

N∑

n=1

zn

)〈
p,

[
u0

0

]〉
= 0
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10 M. FRIESEN, H. GOTTSCHALK, B. RÜDIGER, A. TORDEUX

for z ∈ Q = {w ∈ R2N | ∑N
n=1wn = 0}. Then observing that

N∑

n=1

Zn(0) =

N∑

n=1

yn(0)

=

N∑

n=1

(
∆xn(0)−∆xHn (0)

)

= L+ x1(0)− xN (0) +

N−1∑

n=1

(
xn+1(0)− xn(0)

)
−

N∑

n=1

∆xHn (0)

= L− L = 0

we find that Z(0) belongs to Q a.s. and hence

∫

R2N
ei〈e

Btz,p〉P[Z(0) ∈ dz] =

∫

Q
ei〈e

Btz,p〉P[Z(0) ∈ dz] −→ 1, t→∞.

This proves (17) and hence the assertion.

This result shows that E[Z(t)] −→ 0 as t→∞, i.e. the whole dynamics tends asymptotically
(in the mean) to the homogeneous solution. Since Σ(∞) 6= 0 the limiting law Z(∞) is non-
trivial and describes Gaussian fluctuations around the homogeneous solution. Note that this
law is also the unique invariant distribution for the process (at least when restricted to the
phyically interesting configurations satisfying

∑N
n=1 zn = 0). As a consequence of previous

result we find for the first component Y

E[Y (t)] −→ 0 and Y (t)
d−−→ Y (∞), as t→∞,

where Y (∞) is a Gaussian random variable RN with covariance structure

〈k,ΣY (∞)p〉 =

∫ ∞

0

〈
G>eB

>s
[
k
0

]
, G>eB

>s
[
p
0

]〉
ds.

We close this section with a precise formula for E[Y (t)], while the values for ΣY (∞) will be
computed in the next section.

Theorem 5. One has

E[Y (t)] = eλAtE[Y (0)] + (β + λA)−1
(
e−βt − eλAt

)
AE[ξ(0)].

Proof. To simplify notation we let Y (t) = E[Y (t)] and similarly ξ(t) = E[ξ(t)]. Taking
expectations in (6) gives

Y (t) = λAY (t)−Aξ(t).
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Using (4) so that ξ(t) = e−βtξ(0) gives

Y (t) = eλAtY (0) +

∫ t

0
eλA(t−s)e−βsAξ(s) ds

= eλAtY (0) + eλAt
∫ t

0
e−(β+λA)sAξ(0) ds

= eλAtY (0) + eλAt(β + λA)−1(e−(β+λA)t − 1N )Aξ(0)

= eλAtY (0) + (β + λA)−1(e−βt − eλAt)Aξ(0),

which proves the assertion.

5. Covariance and autocovariance. Writing

Y (t) = eλAtK(t),

with K(t) a vector of size N , we obtain using Eq. (6) K ′(t) = e−λAtAξ(t). One gets by
integrating on [0, t]

K(t) = C +
∫ t

0 e
−λAuAξ(u) du.

Here C = K(0) = Y (0) and we obtain

(19) Y (t) = eλAtK(t) = eλAtY (0) +

∫ t

0
eλA(t−u)Aξ(u) du,

or again, using the explicit solution ξn(t) = e−βtξn(0) + σ
∫ t

0 e
β(u−t) dWn(u) for the Ornstein-

Uhlenbeck processes,

Y (t) = eλAtY (0) +R0(t) + σR(t),

with

R0(t) =

∫ t

0
eλA(t−u)Ae−βu du ξ(0),

and

R(t) =

∫ t

0
eλA(t−u)A

∫ u

0
eβ(s−u) dW (s) du,

W (t) = (W1(t), . . . ,WN (t))> being a vector of independent Wiener processes.
We have

R0(t) =
∫ t

0 e
−(λA+INβ)u du eλAtAξ(0)

= [λA+ INβ]−1
(
IN − e−βte−λAt

)
eλAtAξ(0)

= [λA+ INβ]−1
(
eλAtAξ(0)− e−βtξ(0)

)
→ (0, . . . , 0) as t→∞,

since eλAtA and e−βtξ(0) tends to 0 as t→∞, while [λA + INβ]X = 0 implies X = 0 for all
λ, β > 0.
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We denote respectively in the following covj(0) and cov0(τ) the asymptotic covariance and
autocovariance of the spacing difference of the particles

cov(yn(t), yn+j(t)) →
t→∞

covj(0),

and
cov(yn(t), yn(t+ τ)) →

t→∞
cov0(τ).

Theorem 6. The asymptotic covariance of the spacing difference to the spacing difference
of the particle n+ j ahead is for any particle n = 1, . . . , N ,

(20) covj(0) =
σ2

2βN

N−1∑

k=1

γjk
λ− β − λγk

(
(1− γk)2

λ− (λ+ β)γk
− 2β

λ(λ+ β − λγk)

)
,

while the asymptotic autocovariance at time τ ≥ 0 is

(21) cov0(τ) =
σ2

2βN

N−1∑

k=1

1

λ− β − λγk

(
e−βτ (1− γk)2

λ− (λ+ β)γk
− 2βe−λ(1−γk)τ

λ(λ+ β − λγk)

)
,

with γk = e2πi k
N the N -roots of unity.

Proof. The autocovariance of the one-dimensional Ornstein-Uhlenbeck is

(22) cov(ξn(t), ξn(s)) =
σ2

2β
e−β(t+s)

(
e2βmin{t,s} − 1

)
,

Using Eq. (19) by assuming Y (0) = ξ(0) = (0, . . . , 0)> in order to simplify the calculation and
by remarking that A+A> = −AA>, the covariance of the process is

(23)

cov(Y (t), Y (s)) = E
(∫ t

0 Ae
λA(t−u)ξ(u) du

∫ s
0 ξ
>(v)eλA

>(s−v)A> dv
)

= AeλAt
∫ t

0

∫ s
0 e
−λAue−λA

>vcov(ξ(u), ξ(v)) dv du eλA
>sA>

= σ2

2βAe
λAt
∫ t

0

∫ s
0 e
−(λA+βIN )ue−(λA>+βIN )v

(
e2βmin{u,v} − 1

)
dv du eλA

>sA>

= σ2
[
AeλAt︸ ︷︷ ︸
→ 0

−Ae−βt︸ ︷︷ ︸
→ 0

]
[λA+ βIN ]−1

[
λ2
(
A>
)2 − β2IN

]−1
eλA

>sA>︸ ︷︷ ︸
→ 0

+
σ2

λ

[
eλAA

>t
︸ ︷︷ ︸
→(1/N)N2

−IN
]
eλA

>(s−t)
[
λ2
(
A>
)2 − β2IN

]−1

− σ2

2β

[[
e−βsAeλAt︸ ︷︷ ︸

→ 0

−e−β(s−t)A
]

[λA− β]−1

−
[
e−βsAeλAt︸ ︷︷ ︸

→ 0

− e−β(t+s)A︸ ︷︷ ︸
→ 0

]
[λA+ β]−1

] [
λA> + β

]−1
A>.
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The calculation details are provided in Appendix 1. We obtain asymptotically if s = t + τ
with τ ≥ 0,

lim
t→∞

cov(Y (t), Y (t+ τ)) =
σ2

λ

[
(1/N)N2 − IN

]
eλA

>τ
[
λ2
(
A>
)2 − β2IN

]−1

+
σ2

2β
e−βτA [λA− βIN ]−1

[
λA> + βIN

]−1
A>,

with (1/N)N2 the N × N matrix with coefficients 1/N everywhere. Developing the matrix,
one gets for any particle n = 1, . . . , N , the asymptotic covariance of the spacing difference to
the spacing difference of the particle n+ j ahead

covj(0) =
σ2

2βN

N−1∑

k=1

γjk
λ− β − λγk

(
(1− γk)2

λ− (λ+ β)γk
− 2β

λ(λ+ β − λγk)

)
,

while the asymptotic autocovariance at time τ ≥ 0 is

cov0(τ) =
σ2

2βN

N−1∑

k=1

1

λ− β − λγk

(
e−βτ (1− γk)2

λ− (λ+ β)γk
− 2βe−λ(1−γk)τ

λ(λ+ β − λγk)

)
,

with γk = e2πi k
N .

Corollary 7. The correlation and autocorrelation

corj(τ) =
covj(τ)

cov0(0)

do not depend on the parameter σ.

The correlation and autocorrelation of the spacing difference are not zero (see Fig. 2).
Indeed, a single wave propagates backward in the system, the correlation with the neighbor
being decreasing with the first half of the predecessors and increasing the second (see Fig. 2,
left panel). In adequacy with the LWR theory [33, 27], the waves propagate backward in
the system at the speed vw = −λ` provided by the Rankine–Hugoniot formula while the
particles travel in average at the speed v = λ(L/N − `). Therefore, the period of the waves is
P = L/(v − vw) = N/λ (see Fig. 2, right panel).

6. Covariance and autocovariance for the infinite system. The covariance and auto-
covariance Eqs. (20) and (21) at the limit N,L → ∞ with L/N constant are the Riemann
integrals

(24) cov∞j (τ) =
σ2

2β

∫ 1

0
F (e2πit) dt =

σ2

2β

1

2πi

∫

|z|=1

F (z)

z
dz

with

F (z) =
1

λ− β − λz

(
zje−βτ (1− z)2

λ− (λ+ β)z
− zjeλ(z−1)τ2β

λ(λ+ β − λz)

)
.
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Figure 2. Empirical and exact correlation and autocorrelation (see Eqs. (20) and (21)) for a system
with N = 50 particles in stationary state. λ = 1 and β = 0.1. The empirical results are measured after
1e5 units of simulation time.

Theorem 8. The asymptotic correlation and autocorrelation of the spacing difference in
stationary state are respectively at the limit N,L→ with L/N constant

(25) cor∞j (0) =
1

2

(
λ

λ+ β

)j
, j > 0,

and

(26) cor∞0 (τ) =
λe−βτ − βe−λτ

λ− β , τ ≥ 0.

Proof. We decompose the function F (z)/z in simple elements to calculate the asymptotic
autocovariance Eq. (24)

F (z)

z
=
zje−βτ

λ


 1

(λ− β)z
− 1

(λ− β)
(
z − λ−β

λ

) +
1

(λ+ β)
(
z − λ

λ+β

)




− zjeλ(z−1)τ

λ


 2β

(λ2 − β2)z
− 1

(λ− β)
(
z − λ−β

λ

) +
1

(λ+ β)
(
z − λ+β

λ

)


 .

Using the Cauchy formula

1

2πi

∫

|z|=1

zj

z − ξ dz =

{
ξj , |ξ| < 1

0, |ξ| > 1,

we obtain after calculations detailed in Appendix 2

cov∞j (0) =





σ2

λβ(λ+ β)
, j = 0,

σ2λj−1

2β(λ+ β)j+1
, j > 0,
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Proceeding in the same way we find for the autocovariance Eq. (21) at the limit N,L→∞

cov∞0 (τ) =
σ2

λβ(λ2 − β2)

(
λe−βτ − βe−λτ

)
.

The asymptotic variance of the distance spacing is cov∞0 (0) = σ2

λβ(λ+β) , while the asymptotic

correlation and autocorrelation are then respectively (see Fig. 3)

cor∞j (0) =
1

2

(
λ

λ+ β

)j
, j > 0,

and

cor∞0 (τ) =
λe−βτ − βe−λτ

λ− β , τ ≥ 0.

In Fig. (3), the correlation and autocorrelation for the spacing difference in stationary
state are plotted for N = 50, N = 100, N = 200 and at the limit N,L→∞ with L/N
constant for λ = 1 and β = 0.1. The wave period is P = N/λ = 50 for N = 50, while it is
P = 100 and P = 200 for N = 100 and N = 200 and is infinite at the limit N,L→∞.
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Figure 3. Correlation and autocorrelation in stationary state for systems with N = 50, 100, 200
and at the limit N,L→∞ with L/N constant (see Eqs. (25) and (26)) . λ = 1 and β = 0.1.

7. Estimation of the model parameters. The stochastic pedestrian model is based on
four parameters: the time gap inverse λ, the pedestrian length `, the noise relaxation rate β
and the noise volatility σ. Let us suppose disposing of K observations (vk, sk), k = 1, . . . ,K,
of the speed vk and spacing sk of pedestrians in a row. We suppose that the observations are
realisations of time-dependent random variables (V, S) such that V = λ?(S − `?) + Z(β?, σ?)
for some parameter θ? = (λ?, `?, β?, σ?), Z(a, b) being a Ornstein-Uhlenbeck process with
relaxation a and volatility b.

Theorem 9. We denote as θ̃K = (λ̃K , ˜̀
K , β̃K , σ̃K) the least squares estimates of the param-

eters of the model.
Then

(27) θ̃K
a.s.−−−→ θ? as K →∞.
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Proof. The least squares estimations (λ̃K , ˜̀
K) of the time gap inverse and pedestrian

length parameters are solutions of the quadratic optimisation problem

(λ̃K , ˜̀
K) = arg min

λ,`
HK(λ, `), with HK(λ, `) =

1

K

K∑

k=1

[λ(sk − `)− vk]2 .

Solving ∂HK/∂λ = ∂HK/∂` = 0, the optima are

λ̃K =
1
K

∑
k(sk − s̄K)2

1
K

∑
k(skvk − s̄K v̄K)

and ˜̀
K = s̄K − v̄K/λ̃K ,

with the mean values s̄K = 1
K

∑K
k=1 sk and v̄K = 1

K

∑K
k=1 vk.

Thanks to the ergodic framework of the process,

HK(λ, `)→H(λ, `) = E∞
[
(λ(S − `)− V )2

]

almost surely as K → ∞, i.e. the least squares estimate corresponds asymptotically to min-
imising the variability of the model’s residuum. Furthermore,

λ̃K → λ? =
var∞(S)

cov∞(S, V )
while ˜̀

K → `? = E∞(S)− E∞(V )/λ?

almost surely as K →∞.
We denote in the following the model’s residuals rk = λ̃K(dk − ˜̀

K) − vk. We suppose
disposing of successive observations of the residual (rk, r

τ
k) at time tk and tk + τ to estimate

empirically the autocorrelation of the noise. The asymptotic autocorrelation of the Ornstein-
Uhlenbeck process ξn(t) is e−τβ while the asymptotic variance is σ2β−1/2. The least-squares
estimators for the noise relaxation rate β and the noise volatility σ are

β̃K = − log(c̃K(τ))

τ
and σ̃2

K = 2β̃KHK

(
λ̃K , ˜̀

K

)
,

with c̃K(τ) = 1
K

∑K
k=1 rkr

τ
k the empirical estimation of the autocorrelation of the residuals at

time lag τ . Here again, the ergodic theorem allows to show that c̃K(τ)→ c∞(τ),

β̃K → β? = − log(c∞(τ))

τ
, and σ̃2

K → (σ?)2 = 2β?H(λ?, `?),

almost surely as K →∞.

Single-file experimental data are used to calibrate the parameters. The data come from
experiments done on a quasi-circular geometry of length 27 m with soldiers in 2007 in Germany
(see the schemes Fig. 4 and [32, 38] for details on the data). Extracting speed and spacing
observations from the trajectories, the estimates of the parameters were λ̃ = 0.98 s−1, ˜̀ =
0.34 m, β̃ = 0.23 s−1 and σ̃ = 0.09 ms3/2 [38]. The trajectories for the experiments done
with 28, 45 and 62 participants (corresponding to a density level of 1 ped/m, 1.7 ped/m and
2.3 ped/m) are plotted in Fig. 5, top panels, while the simulated trajectories obtained with
the calibrated stochastic model are shown in the bottom panels. The simulation results are
obtained using a Euler-Maruyama scheme with time step δt = 0.01 s.
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Figure 4. Schemes for the single-motion experiment and the collection of the trajectory data.
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Figure 5. Trajectories of single-file pedestrian motions with density levels 1 ped/m (left panels),
1.7 ped/m (central panels) and 2.3 ped/m (right panel). Top panels: Real experimental data. Bottom
panels: Simulation of the calibrated stochastic pedestrian model. We observe stop-and-go waves for
medium and high density levels in both real data and simulation.
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Appendix 1. The covariance of the spacing difference to the homogeneous solution is, by
using Eq. (23),

(A1)

2β

σ2

[
AeλAt

]−1
cov(y(t),y(s))

[
A>eλA

>s
]−1

=

∫ t

0

∫ s

0
e−(λA+βIN )ue−(λA>+βIN )v

(
e2βmin{u,v} − 1

)
dv du

=

∫ t

0

∫ u

0
e−(λA+βIN )ue−(λA>+βIN )v

(
e2βv − 1

)
dv du

+

∫ t

0

∫ s

u
e−(λA+βIN )ue−(λA>+βIN )v

(
e2βu − 1

)
dv du

=

∫ t

0
e−(λA+βIN )u

∫ u

0

[
e−(λA>−βIN )v − e−(λA>+βIN )v

]
dv du

+

∫ t

0

[
e−(λA−βIN )u − e−(λA+βIN )u

] ∫ s

u
e−(λA>+βIN )v dv du

=

∫ t

0
e−(λA+βIN )u

[
IN − e−(λA>−βIN )u

] [
λA> − βIN

]−1

−e−(λA+βIN )u
[
IN − e−(λA>+βIN )u

] [
λA> + βIN

]−1
du

+

∫ t

0

[
e−(λA−βIN )u − e−(λA+βIN )u

] [
e−(λA>+βIN )u − e−(λA>+βIN )s

]

[
λA> + βIN

]−1
du>

Finally,

(A2)

cov(y(t),y(s)) =
σ2

2β
AeλAt

∫ t

0

[
e−(λA+βIN )u − e−λ(A+A>)u

]
du

[[
λA> − βIN

]−1
−
[
λA> + βIN

]−1
]
eλA

>sA>

− σ2

2β
e−βsAeλAt

∫ t

0

[
e−(λA−βIN )u − e−(λA+βIN )u

]
du
[
λA> + βIN

]−1
A>

= σ2
[
AeλAt −Ae−βt

]
[λA+ βIN ]−1

[
λ2
(
A>
)2 − β2IN

]−1
eλA

>sA>

+
σ2

λ

[
eλAA

>t − IN
]
eλA

>(s−t)
[
λ2
(
A>
)2 − β2IN

]−1

− σ2

2β

[[
e−βsAeλAt − e−β(s−t)A

]
[λA− β]−1

−
[
e−βsAeλAt − e−β(t+s)A

]
[λA+ β]−1

] [
λA> + β

]−1
A>,

since A+A> = −AA> and
[
λA> − βIN

]−1 −
[
λA> + βIN

]−1
= 2β

[
λ2
(
A>
)2 − β2IN

]−1
.
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Appendix 2. The covariance and autocovariance of the spacing difference at the limit
N,L→∞ with L/N constant are the Riemann integrals

cov∞j (τ) =
σ2

2β

1

2πi

∫

|z|=1

F (z)

z
dz,

with

F (z)

z
=
zje−βτ

λ


 1

(λ− β)z
− 1

(λ− β)
(
z − λ−β

λ

) +
1

(λ+ β)
(
z − λ

λ+β

)




− zjeλ(z−1)τ

λ


 2β

(λ2 − β2)z
− 1

(λ− β)
(
z − λ−β

λ

) +
1

(λ+ β)
(
z − λ+β

λ

)


 .

In the following, the covariances and autocovariances are determined by using the Cauchy
formula. We obtain the variance if j = 0 and τ = 0

(A3) cov∞0 (0) =
σ2

2λβ

[
1

λ− β +
1

λ+ β
− 2β

λ2 − β2

]
=

σ2

λβ(λ+ β)
.

For j > 0 and τ = 0, the covariance is

(A4) cov∞j (0) =
σ2

2λβ

(
λ

λ+β

)j

λ+ β
=

σ2λj−1

2β(λ+ β)j+1
,

and cor∞j (0) = 1
2

[
λ/(λ+ β)

]j
. For j = 0 and τ ≥ 0, the auto-covariance is if

∣∣∣λ−βλ
∣∣∣ ≤ 1, i.e. if

β ≤ 2λ,

(A5)

cov∞0 (τ) =
σ2

2λβ

[
e−βτ

λ+ β
− 2βe−λτ

λ2 − β2
+
eλ
(
λ−β
λ
−1
)
τ

λ− β

]

=
σ2

2λβ

[ e−βτ
λ+ β

− 2βe−λτ

λ2 − β2
+
e−βττ

λ− β
]

=
σ2
[
λe−βτ − βe−λτ

]

λβ[λ2 − β2]
.

Similarly, we get if β > 2λ

cov∞0 (τ) =
σ2

2λβ

[ e−βτ
λ− β +

e−βτ

λ+ β
− 2βe−λτ

λ2 − β2

]
=
σ2
[
λe−βτ − βe−λτ

]

λβ[λ2 − β2]
,

and cor∞0 (τ) = [λe−βτ − βe−λτ ]/[λ − β]. Note that by taking λ = β + ε and by calculating
the auto-covariance at the limit ε→ 0 we obtain

cov∞0 (τ) =
σ2e−λτ

2λ3
[1 + λτ ]

while cor∞0 (τ) = e−λτ [1 + λτ ] if β = λ.
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