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Abstract

As the American early exercise results in a free boundary problem, we add a
penalty term to obtain a partial differential equation. In this article we focus on
an improved definition of the penalty term for American options. We replace
the constant penalty parameter by a time dependent function. To gain insight
into the accuracy of our proposed extension, we compare the solution of the
extension to standard reference solutions from the literature. This illustrates
the improvement of using a penalty function instead of a penalising constant.
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1. Introduction

As American options give the holder the right to exercise the option before
and at the maturity, this leads to free boundary value problems which have to be
solved numerically. Several schemes for solving American option problems have
been proposed, e.g. the projected SOR scheme [1], the binomial method, front-5

fixing schemes [2], the power penalty method [3] and Monte Carlo simulation
techniques. These schemes compute the free boundary value implicitly. Other
researchers focused on an explicit representation of the free boundary value [4,
5, 6].

Another approach to solve American option problems is to add a penalty10

term to the problem [2, 7, 3]. A penalty term forces the problem to fulfill
the free boundary constraint asymptotically. If the free boundary constraint
is fulfilled, the penalty term is zero, otherwise it penalizes the problem with
a factor. Until now the penalty term included a penalisation constant being
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roughly estimated by an optimization. We improve the performance of the15

penalization by replacing the penalty constant by a time dependent penalty
function. An explicit formulation for the derivation of the parameters of the
penalty function is part of further research.

Once we add a penalty term to the American option problem, the problem
reduces to a partial differential equation (PDE) on a fixed domain and we can20

apply standard numerical methods, e.g. finite differences methods, finite ele-
ment methods, alternating direction implicit schemes. The usual approach to
penalisation of the American put option free boundary problem involves a small
parameter making the numerical analysis harder. The novelty and advantage
of our approach consist in introducing a bounded penalty function enabling us25

to construct an efficient and stable numerical approximation scheme.
The outline of this article is as follows. Section 2 reviews the mathematical

modeling for an American option with and without a penalty term. We choose
the classical Black-Scholes equation and use a variable transformation to sim-
plify our computations and add the penalty function. In Section 3 the model is30

discretized and the numerical results of the different test cases are presented in
Section 4. In Section 5 we conclude this work with a brief outlook.

2. Mathematical Modeling

American options are more expensive than European options, as American
options give the holder the right to exercise the option also before the maturity
T . In the following we will focus on American put options for clearness of
the idea, but as it can be seen in the numerical results all assumptions also
hold analogously for the American call options. For pricing an American put
option P with the Black-Scholes model we are seeking for a pair of functions
(

P (S, t), Sf (t)
)

such that

LBSM [P ] ≡
∂P

∂t
+

σ2

2
S2 ∂

2P

∂S2
+ (r − q)S

∂P

∂S
− rP ≥ 0, 0 ≤ t ≤ T,

(K − S)+ = P (S, t) for S ≤ Sf (t),

(K − S)+ < P (S, t) for S > Sf (t),

(1)

where K denotes the predefined strike price, r is the risk free interest rate, q the
dividend rate, σ is the volatility, S is the price of an asset and Sf (t) is the free35

boundary value at time t with 0 ≤ t ≤ T . In (1) we used the standard notation
(f)+ := max(f, 0). The differential operator appearing in the Black-Scholes
PDE (1) is abbreviated by LBSM .

The terminal condition at the maturity t = T reads

P (S, T ) = (K − S)+ (2)

and the ‘spatial’ boundary conditions at S = Sf (t), S → ∞, are given by

P
(

Sf (t), t
)

=
(

K − Sf (t)
)+

,
∂P

∂S

(

Sf (t), t
)

= −1, lim
S→∞

P (S, t) = 0, 0 ≤ t ≤ T.
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If the free boundary value position Sf (t) of the American put option problem
is known, we can write

LBSM [P ](S, t) =

{

−rK, 0 < S ≤ Sf (t),

0, S > Sf (t),
(3)

We transform the option price for the American put option P (S, t) by the
change of variables with τ being the scaled reversed time to maturity x =

ln(S/K), τ = σ2

2
(T − t), k = 2r/σ2, and obtain for the new unknown function

u(x, τ) =
1

K
exp

(1

2
(k − 1)x+

1

4
(k + 1)2τ

)

P (S, t)

the transformed constraint

f(x, τ) = exp
(1

2
(k − 1)x+

1

4
(k + 1)2τ

)

(

1− exp(x)
)+

, (4)

and the transformed right hand side of (3)

g(x, τ) =

{

−k exp
(

1
2
(k − 1)x+ 1

4
(k + 1)2τ

)

, x < xf (τ),

0, x ≥ xf (τ).
(5)

The transformed system is given as follows:

uτ − uxx = g(x, τ). (6)

It is supplied with the initial and boundary conditions

u(x, 0) = f(x, 0), x ∈ R, lim
x→±∞

(

u(x, τ)− f(x, τ)
)

= 0, 0 ≤ τ ≤ T. (7)

Recall that we are seeking for a pair of functions
(

u(x, τ), xf (τ)
)

satisfying the
free boundary problem (5)-(7).40

2.1. The Penalty Term

Here we outline an approach to explore a penalty term p(x, τ) in the trans-
formed problem in equation (6). For the penalty term we use the right hand
side of equation (5). We the penalty function by multiplying it with δ(τ), i.e.:

p(x, τ) = δ(τ) · g(x, τ). (8)

where the modification factor δ(τ) is assumed to be an affine-linear function

δ(τ) = aτ + b, (9)

where a, b ∈ R are constants. As the inversion of the transformed right hand
side of equation (6)

K exp
(

−
1

2
(k − 1)x−

1

4
(k + 1)2τ

)

· g(x, τ) =

{

−kK, x < xf (τ),

0, x ≥ xf (τ),
(10)
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should coincide with the right hand side of (3), we deduce the equation r = b 2r
σ2

from which we conclude b = σ2

2
. The multiplier δ(τ) is therefore given by an

affine-linear function

δ(τ) = aτ +
σ2

2
, (11)

where a ∈ R is constant.
As the transformed right hand side (5) is also space dependent, the penalty

term p(x, τ) is space dependent, too. By including the penalty term (8) to the
heat equation, we obtain the following penalised PDE formulation

uτ − uxx = p(x, τ). (12)

A solution is subject to the initial and boundary conditions (7).
Since our penalty term requires an initial guess for the free boundary, we

compute the exact solution for the Black-Scholes equation for the European45

put option and compute the point of intersection between the payoff and the
solution as an initial guess x̄f (τ) for the free boundary xf (τ). Then we compute
the penalty term, solve the penalised heat equation (12) and obtain finally the
solution of the American option problem.

3. Discretization50

Let us introduce a temporal discretization τj = T − j∆τ , ∆τ = T/M ,
j = 0, . . . ,M , and a spatial grid between the points xmin and xmax

xi = xmin + i∆x, ∆x =
xmax − xmin

N
, i = 0, . . . , N.

We use the finite difference θ-scheme for discretization and simplify notation by

α1 = θ
∆τ

(∆x)2
and α2 = (1− θ)

∆τ

(∆x)2
with 0 ≤ θ ≤ 1.

We obtain wj = (wj
1, . . . , w

j
N−1)

⊤ with wj
i as the approximation for u(xi, τj),

f j = (f j
1 , . . . , f

j
N−1)

⊤ with f j
i ∼ f(xi, τj) and the diagonal matrices A and B

A = diag(−α1, 2α1 + 1,−α1), B = diag(α2,−2α2 + 1, α2)

as well as the vector dj containing the boundary values

(dj)⊤ =
(

α1w
j+1
0 + α2w

j
0, 0, . . . , 0, α1w

j+1
N+1 + α2w

j
N+1

)

.

The discretized penalty term (8) is given by

pj = δj · gj with δj =
(

aτj +
σ2

2

)

and with

gji =

{

− k exp
(

1
2
(k − 1)xi +

1
4
(k + 1)2τj

)

, xi < x̄j
f ,

0, otherwise,
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where x̄j
f is the unique solution to the European put option problem

ū
(

x̄f (τ), τ
)

= f
(

x̄f (τ), τ
)

(13)

where ū is a solution to the Cauchy problem: ūτ − ūxx = 0, ū(x, 0) = f(x, 0),
which is given in a closed explicit form. Including all the components we obtain
the θ-scheme discretized formulation for the penalised heat equation (12)

Awj+1 −Bwj − dj = ∆τ · pj ,

where the multiplication of ∆τ results from the discretization.

4. Numerical Results

In this section we consider the example for pricing American put options
from Nielson et al. [2]. All results are computed on a Intel R© CoreTM i7-5557U
CPU with 3.10 GHz. We choose xmin = −4, xmax = 4, M = 5000, and use the
parameter sets from Table 1. The penalty term parameters are obtained by an
optimization, as a deterministic expression is a goal of our future research. To
facilitate the optimization, we summarised ∆τpj to

∆τpj =
(

ãτj+∆τ ·r
)

·

{

− exp
(

1
2
(k − 1)xi +

1
4
(k + 1)2τj

)

, xi < x̄j
f ,

0, otherwise,
(14)

where ã = ∆τ · k · a. The mean square error (MSE) is given by

MSE =
1

N

N
∑

i=1

(PPSOR(Si, 0)− PPen(Si, 0))
2, Si = K exp(xi),

where PPSOR is the solution obtained by the projected SOR algorithm and PPen

the maximum of the solution of the penalised system and the payoff-function.
The maximum is used to gain comparable results to the PSOR algorithm.55

Our numerical results illustrate the accuracy of the method. The best re-
sults are obtained by the sample sets with a small volatility and short time
maturity. The observation of the short time maturity is based on the fact, that
the number of points is different. The dependence to the volatility is caused
by the simplification of the term p since we cancel out σ2/2 and include 2/σ2

60

into ã. We observed that the differences are in the range between the estimated
free boundary value and the final free boundary value. They are caused by the
time-dependent movement of the free boundary position.

5. Conclusion

The numerical results give a clear evidence that using a non-constant penalty65

parameter δ is both feasible and beneficial. Future work will focus on the
inclusion of the free boundary movement, a deterministic penalty function and
on the extension to multi-asset American options.
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Table 1: Numerical results of the corresponding parameter sets.

Example T K r σ N ã(×10−4) Sf MSE

1 3 100 0.08 0.2
1000 7.5 81.87 9.6× 10−3

2500 7.4 82.00 6.2× 10−3

2 1 1 0.1 0.2
1000 10.2 0.862 5.2× 10−5

2500 10.0 0.863 3.3× 10−5

3 0.05 10 0.1 0.25
1000 8.0 9.158 3.5× 10−5

2500 8.5 9.142 3.5× 10−5

4 0.1 100 0.1 0.3
1000 5.5 86.59 1.2× 10−3

2500 5.4 86.87 7.6× 10−4

5 1 100 0.1 0.4
1000 2.6 66.49 1.4× 10−2

2500 2.63 66.60 9.2× 10−3

6 0.05 50 0.1 0.4
1000 3.0 42.61 3.8× 10−4

2500 3.1 42.61 2.5× 10−4
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