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APPROXIMATING CORRELATION MATRICES

USING STOCHASTIC LIE GROUP METHODS

Michelle Muniz1, Matthias Ehrhardt1 and Michael Günther1

Abstract. Specifying time-dependent correlation matrices is a problem that occurs in several impor-
tant areas of finance and risk management. The goal of this work is to tackle this problem by applying
techniques of geometric integration in financial mathematics, i.e. to combine two fields of numerical
mathematics that have not been studied yet jointly. Based on isospectral flows we create valid time-
dependent correlation matrices, so called correlation flows, by solving a stochastic differential equation
(SDE) that evolves in SO (n). Since the geometric structure of SO (n) needs to be preserved we use
stochastic Lie group integrators to solve this SDE. An application example is presented to illustrate
this novel methodology.
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1. Introduction

Correlation matrices play an important role e.g. in finance and risk management. A valid correlation matrix
is a real matrix with the following properties:

(1) All diagonal elements of a correlation matrix are equal to one and absolute values of all non-diagonal
elements are less than one.

(2) Correlation matrices are real symmetric and positive semi-definite, i.e. all eigenvalues are non-negative.

In this paper our goal is to construct time-dependent correlation matrices that fulfill the properties above and
approximate the true correlation using real market data.

There are already methods available that were designed to tackle the same problem, see e.g. [3, 11, 17]. But
some methods show weaknesses in at least one of the desired properties of a correlation matrix mentioned
above. Especially, the positive semi-definiteness is a criteria which is not well implemented. For example, the
approach of Finger [6] suffers from drawbacks in other portions of the matrix in order to maintain positive
semi-definiteness.

Here we ensure the positive semi-definiteness of the correlation matrices constructed with our methodology
by taking up the idea of Teng et al. [20]. The authors defined covariance flows based on isospectral flows by
constructing matrices similar to an initial valid covariance matrix. This is a well-analyzed approach but still it
lacks the stochastic nature of correlations.
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In our methodology we include the stochastic behaviour of correlations by assuming that the orthogonal
matrices needed for the covariance flows are driven by a stochastic differential equation (SDE) rather than an
ordinary differential equation (ODE). Since the space of orthogonal matrices can be viewed as a Lie group, we
use Lie group integrators [9] to solve this SDE. Lie group methods arose in the deterministic case for solving
ODEs such that geometric properties of the Lie group are preserved, see e.g. [10, 15] and [7, p. 126]. Their
application in the stochastic setting has been studied in e.g. [4, 12, 13]. So far, stochastic Lie group methods
were mostly applied to SDEs considered in information theory [5] and engineering [19]. However, the application
of Lie group methods on SDEs considered in finance has not been analyzed yet. Consequently, the contribution
of our paper is twofold: we respect the stochastic behaviour of correlations by considering an SDE that evolves
in a Lie group and we use a stochastic Lie group integrator in a financial mathematics context to get a numerical
solution of the considered SDE.

The remainder of the paper is organized as follows. Covariance flows are introduced in Section 2. In Section 3
we present a numerical method to solve SDEs based on the relation between Lie group and Lie algebra. We
then turn our attention to simulations and the application of our methodology in risk management by using
real historical market data in Section 4. Conclusions and an outlook are given in Section 5.

2. Covariance flows

For creating valid time-dependent correlation matrices, we first introduce covariance flows {Pt : 0 ≤ t ≤ T}.
A covariance flow is a set of similar, time-dependent matrices Pt of the covariance space

P (n) = {P ∈ Rn×n : P = P>, x>Px ≥ 0 for allx ∈ Rn}. (2.1)

These covariance matrices can be easily transformed into corresponding correlation matrices Rt. The compu-
tation of covariance flows is based on isospectral flows, see [20].

Due to the symmetry of covariance matrices the principal axis theorem can be applied, i.e. there exists an
orthogonal matrix Q and a diagonal matrix D consisting of the eigenvalues of P such that

P = Q>DQ. (2.2)

Without loss of generality, we can assume that Q is a rotation matrix whose determinant is always equal to 1.
Thus, we assume Q to be an element of the special orthogonal group

SO (n) = {X ∈ GL(n) : X>X = I, det(X) = 1}. (2.3)

Since SO (n) defines a differentiable manifold and the matrix multiplication is a differentiable mapping, SO (n)
is a matrix Lie group. The corresponding Lie algebra is denoted by so(n) and consists of skew-symmetric
n× n-matrices, for details we refer to e.g. [8, p. 58].

Now let an initial covariance matrix P0 be given. We consider the covariance flow

Pt = Q>t P0Qt. (2.4)

Creating time-dependent covariance matrices Pt that are similar to P0 implies the generation of time-dependent,
orthogonal matrices Qt, t ≥ 0. Therefore, we consider the following stochastic differential equation (SDE):

dQt = QtKt dt + Qt

(
Vt,1 dWt,1 + Vt,2 dWt,2

)
, Qt=0 =: Q0 = I, (2.5)

where Kt, Vt,1, Vt,2 ∈ Rn×n and Wt is the standard Brownian motion, i.e. it holds dWt ∼ N (0,dt). In order to
ensure that the resulting matrices Qt have the desired properties, we use the characterization of Kt, Vt,1 and
Vt,2 defined in the following theorem.
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Theorem 2.1. If Qt obeys the matrix SDE (2.5) then Qt ∈ SO (n) if and only if Vt,1, Vt,2 ∈ so(n) and
Kt + K>t = V 2

t,1 + V 2
t,2.

A more general version and the proof of this theorem can be found in [13]. Theorem 2.1 suggests that the
easiest way to determine the unknown matrices is to first find symmetric matrices V 2

t,1 and V 2
t,2 such that skew-

symmetric square roots Vt,1 and Vt,2 exist. The matrix Kt can then be identified as the lower triangular matrix
of Y 2

t := V 2
t,1 + V 2

t,2 where the entries on the diagonal of Kt are equal to 0.5 times the diagonal elements of Y 2
t .

The matrices Vt,1, Vt,2 and Kt can be fixed according to a given problem. We describe a possible initialization
of these matrices for the application in approximating correlation matrices in Section 4.

3. Stochastic Lie group method

In the following we are taking a closer look on the SDE (2.5) and how it can be solved numerically. In general,
there is no closed form solution. However, a solution can be defined via a Magnus expansion Qt = Q0e

Ωt ,
Ωt=0 = 0, where Ωt ∈ Rn×n obeys a matrix SDE. This auxiliary SDE is given in the following theorem and can
also be found in [13].

Theorem 3.1. If Q = Q0e
Ω, Ω(0) = 0, obeys the SDE (2.5) then Ω obeys the SDE

dΩ = A dt + Γ1 dW1 + Γ2 dW2, (3.1)

where

A = d exp−1
−Ω(A0)− 1

2
d exp−1

−Ω(C1)− 1

2
d exp−1

−Ω(C2),

A0 = K − 1

2
V 2

1 −
1

2
V 2

2 ,

Cr =

∞∑
p=0

∞∑
q=0

1

(p + q + 2)

(−1)p

p!(q + 1)!
adp

Ω

(
adΓr

(
adq

Ω(Γr)
))

, r = 1, 2,

Γr = d exp−1
−Ω(Vr), r = 1, 2.

The expression d exp−1
−Ω(X) is given by

d exp−1
−Ω(X) =

∞∑
k=0

Bk

k!
adk
−Ω(X),

where Bk are the Bernoulli numbers and adX(Y ) = [X,Y ] is the adjoint operator which is used iteratively

ad0
X(Y ) = Y,

adi
X(Y ) =

[
X, adi−1

X (Y )
]

= adX

(
adi−1

X (Y )
)
, i ≥ 1.

(3.2)

In the case where the solution Qt of the SDE (2.5) is in the Lie group SO (n), it holds that the matrix SDE
(3.1) evolves in the corresponding Lie algebra so(n) [13]. The Lie algebra so(n) is the tangent space of the
differentiable manifold SO (n) at the identity, see e.g. [8, p. 71]. This simple Euclidean-like geometry of the Lie
algebra can be used to solve SDEs that evolve in the associated Lie group.

Therefore, we compute a numerical solution of the SDE (2.5) by solving the SDE (3.1) e.g. with the Euler-
Maruyama scheme in the Lie algebra so(n) and projecting this solution Ωt back onto the Lie group via the
exponential map, exp : so(n) → SO (n), to get a solution for Qt. Since this scheme preserves the geometry of
the manifold SO (n), it is called the geometric Euler-Maruyama scheme [13]. One can easily check that the
geometry of SO (n), namely the condition Q>t Qt = I, is not preserved if a numerical integration scheme is
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applied directly to (2.5) instead of (3.1). A simple version of the geometric Euler-Maruyama scheme applied to
(2.5) is given in the following algorithm.

Algorithm 3.2 (Geometric Euler-Maruyama). We divide the time interval [0, T ] into subintervals [tj , tj+1],
j ≥ 0. Starting with t0 = 0 and Q0 = I the following steps are repeated over successive intervals [tj , tj+1] until
tj+1 = T .

(1) Initialization step: Let Qj be the approximation of Qt at t = tj. Analogously: Kj, Vj,1 and Vj,2.
(2) Euler-Maruyama step: Compute

∆j = tj+1 − tj ,

∆Wj,r ∼ N (0,∆j) for r = 1, 2,

Ωj+1 =

(
Kj −

1

2
V 2
j,1 −

1

2
V 2
j,2

)
∆j + Vj,1 ∆Wj,1 + Vj,2 ∆Wj,2.

(3) Projection step: Set Qj+1 = Qj exp(Ωj+1).

There are only limited convergence results available for stochastic Lie group methods. However, it was proven
in [16] that the geometric Euler-Maruyama scheme converges with rate O(∆j) with respect to mean uniform
squared error over the whole interval [0, T ].

In the Euler-Maruyama step of Algorithm 3.2 we truncated each of the infinite sums involved in (3.1) to the
first summand only. The geometry is preserved under these truncations because for skew-symmetric matrices
X and Y , the adjoint operator adk

X(Y ) is also skew-symmetric for any k ≥ 0, which can be easily proved by
induction. It follows that any truncation of Ωj+1 is in so(n) and thus, any projection of Ωj+1 is in SO (n).

In the Projection step of Algorithm 3.2 and in Theorem 3.1 the exponential map is used as a parametriza-
tion for the Lie group. However, the basic concepts of Lie group methods are not limited to this specific
parametrization. One could also use other mappings, e.g. the Cayley transform cay(Ω) = (I − Ω)−1(I + Ω).
Since a truncation of infinite sums induced by the definition of the matrix exponential can be avoided, consider-
ing the Cayley map instead might be beneficial in cases of higher dimensions where no closed form expressions
for the exponential map are available. A comparison of the usage of these two maps, exp(Ω) and cay(Ω), in the
context of Lie group methods can be viewed in [21].

4. Simulation

In this section we want to apply the method described in the previous sections to approximate correlations
that can be observed in a real market. For this purpose we consider historical prices of the S&P 500 index and
the Euro/US-Dollar exchange rate on a daily basis. We compute moving correlations with a window size of 30
days and obtain correlations from January 03, 2005 to January 06, 2006 (see Figure 1). Assume the following
scenario: A risk manager retrieves from the middle office’s reporting system the initial correlation matrix at
t = 0 (which corresponds to January 03, 2005) of the regarded historical data

Rhist
0 =

(
1 −0.0159

−0.0159 1

)
. (4.1)

Furthermore, we suppose that the risk manager is aware of the density function of the considered correlation.
Therefore, we estimate a density function from the historical data using kernel smoothing functions, which is
also plotted in Figure 2. For more details on the density estimation see [2]. Then, the goal is to create valid
time-dependent correlation matrices that reflect the stochastic nature of correlations while trying to match the
density function of the historical data.
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Figure 1. The 30-day historical correlations between S&P 500 and Euro/US-Dollar exchange
rate, source of data: www.yahoo.com.
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Figure 2. Empirical density function of the historical correlation between S&P 500 and
Euro/US-Dollar exchange rate, computed with the MATLAB function ksdensity.

4.1. Construction of covariance and correlation flows

Our methodology for approximating correlation matrices can be summarized by the following steps:

(1) Find matrices Vt,1, Vt,2 and Kt such that the conditions in Theorem 2.1, namely Vt,1, Vt,2 ∈ so(n) and
Kt + K>t = V 2

t,1 + V 2
t,2, are fulfilled.

(2) Insert the matrices computed in the previous step into (2.5) and solve this SDE, i.e.

dQt = QtKt dt + Qt

(
Vt,1 dWt,1 + Vt,2 dWt,2

)
, Q0 = I,

by using Algorithm 3.2, the geometric Euler-Maruyama scheme.
(3) Compute for a given initial covariance matrix P0 the covariance flow Pt = Q>t P0Qt.
(4) Transform the so computed covariance matrices Pt to corresponding correlation matrices Rt = Σ−1

t PtΣ
−1
t

with Σt =
(
diag(Pt)

) 1
2 .
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Setting Vt,1, Vt,2 and Kt

For the first step, we construct a symmetric matrix Y 2
t := V 2

t,1 +V 2
t,2 such that skew-symmetric matrices Vt,1

and Vt,2 can be derived. According to Rinehart [18], every real square root of a symmetric matrix is similar
to a real skew square root of this matrix if it is negative semi-definite with nonzero eigenvalues that have even
multiplicities. Regarding this required matrix structure, this step might seem like an obstacle. However, this
initialization step is actually the part that gives the degrees of freedom needed to incorporate historical market
data. To explain this further, we consider the following generator of so(2):

G =

(
0 −1
1 0

)
. (4.2)

An element of so(2) is then any scalar multiple of the generator:

ω ∈ R⇒ ωG ∈ so(2). (4.3)

Together with a function g(t) : R≥0 → R, an arbitrary time-dependent skew-symmetric matrix Yt can be defined
as

Yt := g(t)G. (4.4)

The function g(t) can be chosen arbitrarily, e.g. as a cubic polynomial. Experimenting with different functions,
we found that the following function performed best given the historical data

g(t) = x1 + x2 t + x3 t
2 + x4 t

3 + x5 t sin(x6 t) + x7 t cos(x8 t), (4.5)

where x1, . . . , x8 ∈ R represent parameters that can be associated with possible degrees of freedom. The
symmetric matrices V 2

t,1 and V 2
t,2 can now be arranged, e.g. in a convex combination

V 2
t,1 = x9 · Y 2

t , V 2
t,2 = (1− x9) · Y 2

t (4.6)

where x9 ∈ [0, 1]. The so constructed V 2
t,1 (resp. V 2

t,2) fulfills the aforementioned requirements such that skew
square roots Vt,1 (resp. Vt,2) can be computed. As mentioned before we set Kt equal to the lower triangular
matrix of Y 2

t where the diagonal elements of Kt are equal to the diagonal entries of Y 2
t multiplied with 0.5.

Preparation for the geometric Euler-Maruyama scheme

For the second step, solving (2.5) with Algorithm 3.2, we chose to simulate 100 independent realizations of
Brownian motions. As a result, we obtained M = 100 paths of skew-symmetric matrices Ωt at each time step
t = tj+1, j ≥ 0. Next, we computed the mean of these different paths as an estimator for the expectation value
which we then projected onto SO(n) via the exponential map, i.e.

Ê(Ωt) =
1

M

M∑
k=1

Ω
(k)
t , Qt = Q0 exp

(
Ê(Ωt)

)
. (4.7)

In the projection step of Algorithm 3.2 we used

exp(Ω) = exp

(
0 −ω
ω 0

)
=

(
cosω − sinω
sinω cosω

)
(4.8)

for fast computation which results from Taylor series expansion of sinω and cosω. If more than two correlations
are considered, e.g. Ω ∈ so(3), then the Rodrigues formula [14, p. 261] can be used to avoid dealing with the
infinite sum expression of the matrix exponential.
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Computation of covariance flows

For the third step of computing covariance flows, we first need an initial P0 to begin with. As in [20], we
estimate the covariance matrix of the whole historical data for this purpose

Ĉ =

(
0.2327 · 10−4 0.0056 · 10−4

0.0056 · 10−4 0.4269 · 10−4

)
. (4.9)

We keep the eigenvalues {0.2325 · 10−4, 0.4271 · 10−4} of this historical covariance matrix Ĉ and construct a P0

with the same eigenvalues such that the corresponding correlation matrix R0, given by Rt = Σ−1
t PtΣ

−1
t with

Σt =
(
diag(Pt)

) 1
2 , is a good approximation for the given historical correlation matrix at t = 0. More precisely,

we are looking for an orthogonal matrix H ∈ R3×3 such that

P0 = H>DH and ‖R0 −Rhist
0 ‖F → min, (4.10)

where D is a diagonal matrix containing the eigenvalues of Ĉ multiplied with 1000. Since the eigenvalues of Ĉ
are very small, multiplying with the factor 1000 simplifies the optimization procedure of finding a compatible
initial matrix P0. The choice of this factor can be adapted according to the given historical data. In our
experiments, the initial covariance matrix is found as

P0 =

(
0.0233 −0.0005
−0.0005 0.0427

)
, (4.11)

whereas the orthogonal matrix used to get P0 is given by

H =

(
−0.9997 −0.0258
−0.0258 0.9997

)
. (4.12)

Due to the construction of our covariance flow it follows that every computed covariance matrix Pt = Q>t P0Qt

will be positive semi-definite and contain information from the whole historical data.

Computation of correlation flows

Finally, we convert the covariance flows to correlation flows by

Rt = Σ−1
t PtΣ

−1
t , (4.13)

where Σt =
(
diag(Pt)

) 1
2 . The covariance flows or rather the correlation flows are computed such that the mean

squared error between the empirical density function of the historical data fhist(z) and the empirical density
function of the correlation flow fflow(z) is minimized

1

N

N∑
j=0

(
fhist(zj)− fflow(zj)

)2 → min, (4.14)

where N is the number of points where the kernel smoothing function estimate is evaluated at.

4.2. Results

Implementing the steps of our methodology in the software package MATLAB we found that the error defined
in (4.14) is minimized by the following choice of parameters

x = (x1, x2, x3, x4, x5, x6, x7, x8, x9)

= (8.7492,−29.2169, 21.4603,−14.7219, 18.0489,−6.6036,−9.4284,−9.3455, 0.0975),
(4.15)
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Figure 3. Empirical density function of the historical correlation and the correlation flow
between S&P 500 and Euro/US-Dollar exchange rate.

where x1, . . . , x9 are the parameters in (4.5) and (4.6). The mean squared error using these parameters is
3.527 · 10−3. The corresponding density function of our correlation flow compared to the historical density
function is plotted in Figure 3. The plot shows that the fitting by least-squares works well. The optimal
bandwidth of the kernel smoothing function estimate of the historical data was computed to be 0.0559. We
chose the same bandwidth for the density estimate of our correlation flow. The density functions were evaluated
at N = 100 equally spaced points in the interval [-0.5473, 0.4788].

5. Conclusion

We have presented a method to produce feasible covariance and correlation matrices. Our generated covari-
ance and correlation matrices are not only real symmetric and positive semi-definite but also exhibit stochastic
behaviour. Based on isospectral flows we produced matrices similar to an initial valid covariance matrix, which
we determined beforehand using historical data. In these covariance flows we assumed the required rotation
matrices to be driven by an SDE in order to mimic the stochastic behaviour of correlations. These rotation
matrices can be used to control the tendency of the corresponding correlation flows. For instance, one can
require that the correlation flows match a desired density function.

There are multiple possibilities to extend our presented methodology. For example, the function f(t) used
in the linear combination (4.4) can be chosen such that even more degrees of freedom are involved. In the case
where n > 2 correlations are considered and thus, a basis for so(n) with more elements (similar to (4.2)) is
needed, one could incorporate as many functions for the linear combination as there are basis matrices.

For the numerical integration of (3.1) one could also use a method of higher order. The Euler-Maruyama
scheme in Algorithm 3.2 could for example be replaced by the Milstein scheme. By analyzing modified equations
one could construct even higher order methods, see e.g. [1].
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