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Abstract In engineering applications one often has to trade-off among sev-
eral objectives as, for example, the mechanical stability of a component, its
efficiency, its weight and its cost. We consider a biobjective shape optimization
problem maximizing the mechanical stability of a ceramic component under
tensile load while minimizing its volume. Stability is thereby modeled using
a Weibull-type formulation of the probability of failure under external loads.
The PDE formulation of the mechanical state equation is discretized by a finite
element method on a regular grid.
To solve the discretized biobjective shape optimization problem we suggest
a hypervolume scalarization, with which also unsupported efficient solutions
can be determined without adding constraints to the problem formulation.
We investigate the relation of the hypervolume scalarization to the weighted
sum scalarization and to direct multiobjective descent methods. Since gradient
information can be efficiently obtained by solving the adjoint equation, the
scalarized problem can be solved by a gradient ascent algorithm. We evaluate
our approach on a 2 D test case representing a straight joint under tensile
load.
Key words: biobjective shape optimization, hypervolume scalarization, shape
gradients, probability of failure
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1 Introduction

In engineering design one often follows multiple incompatible goals, for exam-
ple, when maximizing reliability and efficiency while simultaneously minimiz-
ing cost. In practical applications, conflicting goals are often combined into
one single objective function using a weighted sum of the criteria. The main
advantage of this approach is its simplicity and its numerical stability. On the
downside, the selection of meaningful weights is generally difficult. Moreover,
relevant compromise solutions may be missed when the problem is non-convex.
In this paper, we consider a biobjective shape optimization problem with the
two objectives reliability and cost. To carry over the main advantages of the
weighted sum and simultaneously overcome its main drawbacks, we suggest
to use parametric hypervolume scalarizations to efficiently generate compro-
mise solutions. The scalarized subproblems are solved using a gradient ascent
method that takes advantage of derivative information obtained from the nu-
merical solution of the adjoint equation.
Shape optimization problems are typical examples of engineering problems
where multiple conflicting objective functions have to be considered. In this
paper, we focus on the maximization of the mechanical stability of a ceramic
component under tensile load while simultaneously minimizing its volume (as
a measure of cost and weight). We follow the modelling approach proposed
in Doganay et al. (2019), where the mechanical stability is modelled using a
Weibull formulation of the probability of failure. For a general introduction to
shape optimization we refer to Haslinger and Mäkinen (2003).
The main advantage of using a probabilistic formulation for the mechanical
stability is that in this way the probability of failure can be assessed with a
differentiable objective function. This paves the way for the application of effi-
cient optimization methods using gradient information. We adopt the formu-
lation suggested in Bolten et al. (2015, 2019) that is based on the probabilistic
model of Weibull (1939). In our numerical implementation we follow a first
discretize then optimize paradigm as suggested in Doganay et al. (2019). In
this approach, a finite dimensional optimization problem is solved on a finite
element grid subject to a discretized PDE-constraint that is induced by the
mechanical state equation.
The minimization of the probability of failure of a component usually leads
to large and hence costly components. This unwanted effect can be avoided
by setting an upper bound on the admissible volume, see, for example, Bolten
et al. (2019). However, such a constrained formulation of the shape optimiza-
tion problem does not provide information on the trade-off between reliability
and cost. Indeed, interpreting the volume of the component as a second and in-
dependent objective function allows for the computation of alternative shapes,
thus supporting the decision maker with the selection of a most preferred so-
lution with respect to both criteria. Following the approach of Doganay et al.
(2019), we complement the minimization of the probability of failure of a com-
ponent by the minimizaztion of its volume in a biobjective shape optimization
model.



Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t Hypervolume Scalarization for Shape Optimization 3

For a general introduction into the field of multiobjective optimization we refer
to Miettinen (1998) and Ehrgott (2005). Problems of multiobjective shape op-
timization have mainly been approached with evolutionary multiobjective op-
timization (EMO) algorithms, see, for example, Deb and Goel (2002); Chirkov
et al. (2018). However, recently multiobjective PDE-constrained optimization
problems have also been considered from an optimal control point of view in
Iapichino et al. (2017).
In this paper, we employ a scalarization-based approach to approximate the
Pareto front of the biobjective shape optimization problem. Due to its sim-
plicity and its numerical stability, the weighted sum method is a widely used
scalarization method in this context. It combines all objective functions into
one weighted sum objective, hence yielding a single objective counterpart prob-
lem without adding any additional constraints. However, the weighted sum
method is quite limited in the context of non-convex problems. Indeed, by
varying the weights only supported efficient solutions can be computed, i.e.,
Pareto optimal shapes for which the corresponding outcome vectors lie on the
convex hull of the set of all feasible outcomes. Since relevant compromise solu-
tions may thus be missed, we suggest to use nonlinear scalarizing functions as,
for example, the hypervolume scalarization. While sharing the property that
it leads to single-objective counterpart problems without adding constraints to
the problem formulation, it is not restricted to supported efficient solutions. In
the biobjective case, the hypervolume scalarization yields a quadratic objective
function that has a nice geomatrical interpretation. We note that quadratic
scalarizations are also considered in Fliege (2004); Dandurand and Wiecek
(2016).
The hypervolume scalarization is based on the hypervolume indicator that
was introduced in Zitzler and Thiele (1999) as a measure to compare the
performance of EMO algorithms. The hypervolume indicator has since become
an important measure in a large variety of applications, of which the fitness
evaluation of solutions sets (particularly in the context of EMO algorithms)
and of individual solutions are only two examples. Given a reference point
in the objective space, the hypervolume indicator of a solution set measures
the volume that is (a) dominated by the solution set, and (b) dominates the
reference point, c.f. Figure 1. A formal definition is given in Section 3 below.
We exemplarily refer to Auger et al. (2009); Yang et al. (2019) as two examples
from this active research field. The hypervolume indicator is also used as an
objective function when searching for good representations of the Pareto front.
Heuristic and exact solution approaches for this subset selection problem were
discussed in Guerreiro et al. (2016) and in Bringmann et al. (2014); Kuhn
et al. (2016), respectively. When restricting the search to individual solutions
rather than solution sets, then the hypervolume indicator can be interpreted
as a nonlinear scalarizing function, see, for example, Hernandez et al. (2018);
Touré et al. (2019); Schulze et al. (2020).
This paper is organized as follows. In Section 2 a biobjective shape optimiza-
tion model is introduced together with some fundamental properties of multi-
objective optimization in the context of shape optimization. In Section 3 the
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Fig. 1: Hypervolume contribution H(Ω) of a solution Ω with respect to the
reference point r

hypervolume indicator is formally defined and its properties as a scalarizing
functions are discussed and compared to the weighted sum method and the
multiobjective gradient descent approach. Section 4 is devoted to the details
of the numerical implementation. In particular, a finite element discretization
and an iterative accent algorithm using smoothed gradients are presented. Fur-
thermore, the choice of the reference point for the hypervolume scalarization
is discussed. In Section 5 we consider in a 2 D case study the optimal shape of
a rod under tensile load. The article is concluded in Section 6.

2 Biobjective Shape Optimization

In this section, we first provide a general formulation of multiobjective shape
optimization problems (Section 2.1) and then focus on a particular engineering
application, namely the biobjective shape optimization of a ceramic component
under tensile load w.r.t. the two objectives mechanical stability and volume
(Section 2.2).

2.1 Multiobjective Optimization

We consider multiobjective optimization problems occurring in engineering
applications and particularly focus on multiobjective shape optimization prob-
lems. To keep the exposition general, we denote the set of all admissible shapes
by Oad and refer to individual shapes as Ω ∈ Oad. Let J : Oad → RQ be a
vector valued objective function comprising Q individual objective functions
Ji : Oad −→ R, i = 1, . . . , Q and let J(Ω) = (J1(Ω), . . . , JQ(Ω))>. Then the
multiobjective shape optimization problem is given by

min J(Ω) = (J1(Ω), . . . , JQ(Ω)
)>

s.t. Ω ∈ Oad.
(2.1)
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Note that in general there does not exist a solution Ω∗ ∈ Oad that min-
imizes all Q objective functions simultaneously (such a solution would be
called ideal solution). Throughout the article we use the Pareto concept of
optimality: A solution Ω̄ ∈ Oad is called efficient or Pareto optimal, if its ob-
jective function vector J(Ω̄) can not be improved in one component without
deterioration in at least one other component. More precisely, Ω̄ is efficient
if and only if there does not exist Ω′ ∈ Oad such that J(Ω′) 6 J(Ω̄), i.e.,
Ji(Ω′) ≤ Ji(Ω̄) for all i = 1, . . . , Q and J(Ω′) 6= J(Ω̄). The objective vector
J(Ω̄) = (J1(Ω̄), . . . , JQ(Ω̄))> of an efficient solution Ω̄ is called nondominated
point or nondominated outcome vector. An efficient solution Ω̄ (respectively a
nondominated point J(Ω̄)) is called supported efficient (or supported nondom-
inated, respectively) if there is no point y ∈ conv{J(Ω) : Ω ∈ Oad} dominating
J(Ω̄). For an extensive introduction to multiobjective optimization see, e.g.,
Steuer (1986); Miettinen (1998); Ehrgott (2005).

2.2 Biobjective Optimization of Stability and Cost

In the biobjective case study described in this paper we consider a ceramic
component under tensile load. The component is represented by a two dimen-
sional compact body with Lipschitz boundary, denoted by Ω ⊂ R2 (in general,
Ω ⊂ Rd, d = 2, 3). We assume that the boundary of Ω is composed of three
parts, i.e.,

∂Ω = cl(∂ΩD) ∪ cl(∂ΩNfixed) ∪ cl(∂ΩNfree).

Here, ∂ΩD is the part where the boundary is fixed, i.e., where Dirichlet con-
ditions are satisfied. The tensile load acts at ∂ΩNfixed , which is also fixed and
where Neumann conditions apply. The remaining parts of ∂Ω can be modified
during the optimization and are denoted by ΩNfree . Furthermore, we assume
that all reasonable shapes are contained in a (sufficiently large) bounded open
set Ω̂ ⊂ R2 that satisfies the cone property (see, e.g., Bolten et al. (2015);
Doganay et al. (2019)). Using this notation, the set of admissible shapes can
be defined as

Oad := {Ω ⊂ Ω̂ : ∂ΩD ⊂ ∂Ω, ∂ΩNfree ⊂ ∂Ω, Ω satisfies the cone property},

see Figure 2 for an exemplary setting.
A ceramic component under tensile load behaves according to the linear elas-
ticity theory, see, e.g., Braess (2007). Its deformation under tensile loads is
described by the state equation which is an elliptic PDE given by

−div(σ(u(x))) = f(x) for x ∈ Ω
u(x) = 0 for x ∈ ∂ΩD

σ(u(x))n(x) = g(x) for x ∈ ∂ΩNfixed

σ(u(x))n(x) = 0 for x ∈ ∂ΩNfree .

(2.2)

Here, f ∈ L2(Ω,R2) denotes the volume force density and g ∈ L2(∂ΩNfixed ,R2)
denotes the surface loads. Moreover, u ∈ H1(Ω,R2) describes the displacement
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n

g

Ω̂

Ω

∂ΩNfixed
∂ΩNfree∂ΩD

Fig. 2: Possible shape of a rod Ω under tensile load g

field as the reaction on the given loads, the stress tensor is denoted by σ ∈
L2(Ω,R2×2), and n(x) is the outward pointing normal vector at x ∈ ∂Ω (which
is defined almost everywhere on ∂Ω). We refer to Doganay et al. (2019) for
further details.
Based on this formulation we consider the biobjective optimization of the me-
chanical stability and the cost of the component. Note that these two objective
functions are usually conflicting since larger components tend to have a higher
stability. We use the same formulation as Doganay et al. (2019) to assess the
mechanical stability of the component via its probability of failure, that is to
be minimized. Thus, our first objective function, J1, is based on a probabilistic
Weibull-type model as suggested in Bolten et al. (2015):

J1(Ω) := J1(Ω, u(Ω)) := 1
2π

∫
Ω

∫
S1

(
n>σ(Du(x))n

σ0

)m
dn dx (2.3)

Here, m denotes the Weibull module that typically assumes values between 5
and 25, Du denotes the Jacobian matrix of u and σ0 is a positive constant.
The second objective function, J2, models the material cost which is approx-
imated by the volume of the component Ω ∈ Oad, and which is also to be
minimized:

J2(Ω) :=
∫
Ω

dx (2.4)

All in all, we obtain a biobjective PDE constrained shape optimization problem
w.r.t. reliability and cost which is given by

min J1(Ω)
min J2(Ω)
s.t. u(Ω) solves the state equation (2.2)

Ω ∈ Oad.

(2.5)

3 Hypervolume Scalarization

Given a biobjective optimization problem (2.5), the hypervolume indicator
measures the hypervolume spanned by an outcome vector J(Ω) ∈ R2 (or a set
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of outcome vectors J(S), respectively) and a predetermined reference point
r ∈ R2 (that should be selected such that it is dominated by all considered
outcome vectors), see Figure 1. The value of the hypervolume indicator for a
set of solutions S ⊂ Oad and an appropriate reference point r ∈ R2 can be
written as

H(S) = Vol
( ⋃
Ω∈S

(
J(Ω) + R2

+
)
∩
(
r − R2

+
))
,

where R2
+ = {y ∈ R2 : yi ≥ 0, i = 1, 2} denotes the positive orthant. Note

that the hypervolume indicator is only meaningful when the reference point r
is chosen such that ri ≥ Ji(Ω) for i = 1, 2 and for all Ω ∈ S.
In the case of a single solution Ω ∈ Oad the hypervolume indicator function
simplifies to

H(Ω) = (r1 − J1(Ω)) · (r2 − J2(Ω)),

which corresponds to the area of the hypervolume rectangle defined by the
corner points J(Ω) and r.
While in EMO algorithms the hypervolume indicator is mainly used to evaluate
the quality of already computed solutions (or solution sets, respectively), it can
also be used as an objective function in a single-objective scalarization of (2.5)
that aims at finding solutions that maximize the dominated hypervolume. For
a given reference point r := (r1, r2)> ∈ R2, the hypervolume scalarization for
(2.5) is formulated as

max H(Ω) = (r1 − J1(Ω)) · (r2 − J2(Ω))
s.t. u(Ω) solves the state equation (2.2)

J1(Ω) ≤ r1

J2(Ω) ≤ r2

Ω ∈ Oad.

(3.1)

The constraints J1(Ω) ≤ r1 and J2(Ω) ≤ r2 ensure that H(Ω) is non-negative.
They are redundant when all feasible outcome vectors lie below the reference
point, i.e., when r is chosen such that J(Ω) 6 r for all Ω ∈ Oad. If this is not
the case, however, these two constraints can not be omitted in general, since
also points that are strictly dominated by the reference point have positive
hypervolume values and are thus potential candidates for maximizing H(Ω).
Note that even in this case it is sufficient to include one of these constraints,
since then the other will be automatically satisfied at optimality due to the
maximization of the product H(Ω) = (r1 − J1(Ω)) · (r2 − J2(Ω)). Moreover,
when problem (3.1) is solved with a steepest ascent algorithm (c.f. Section 4.2
below), starting with a shape Ω(0) such that J(Ω(0)) < r (i.e., J1(Ω(0)) <
r1 and J2(Ω(0)) < r2), then the constraints J1(Ω) ≤ r1 and J2(Ω) ≤ r2
will always be satisfied during the course of the algorithm and can hence be
omitted. We conclude that while some caution is necessary with regard to the
choice of the reference point r, the constraints J1(Ω) ≤ r1 and J2(Ω) ≤ r2
can in most cases be omitted. If not stated otherwise, we will hence assume in
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the following that the scalarized problem shares the same feasible set as the
original problem.
The following result shows that under the above assumptions the hypervolume
scalarization (3.1) always generates an efficient solution. This result is not new,
however, we include a proof for the sake of completeness.

Theorem 1 An optimal solution of the hypervolume scalarization (3.1) is an
efficient solution of the corresponding biobjective optimization problem (2.5).

Proof Suppose that Ω∗ ∈ arg maxOad H(Ω) is not efficient for (2.5). Then
there exists a shape Ω′ ∈ Oad such that J1(Ω′) ≤ J1(Ω∗) and J2(Ω′) ≤
J2(Ω∗), with at least one strict inequality. It follows that

H(Ω′) = (r1 − J1(Ω′)) · (r2 − J2(Ω′))
> (r1 − J1(Ω∗)) · (r2 − J2(Ω∗)) = H(Ω∗),

contradicting the assumption that Ω∗ ∈ arg maxOad H(Ω). ut
Note that Theorem 1 also follows directly from the theory of achievement
scalarizing functions of which the hypervolume indicator is a special case
(see, e.g., Wierzbicki (1986a,b); Miettinen (1998)). Indeed, since −H(Ω) is
a strongly increasing function (i.e., J(Ω) 6 J(Ω′) implies that −H(Ω) <
−H(Ω′)), an optimal solution of maxΩ∈Oad H(Ω) = minΩ∈Oad −H(Ω) is effi-
cient for (2.5).
Efficient numerical optimization procedures require gradient information to
obtain fast convergence. In this situation, we can take advantage of the fact
that the gradient of the hypervolume indicator can be determined from the
gradients of the individual objective functions using the chain-rule of differen-
tiation:

∇H(Ω) = (J2(Ω)− r2) · ∇J1(Ω) + (J1(Ω)− r1) · ∇J2(Ω) (3.2)

Observe that the gradient vector of the hypervolume indicator is a negative
weighted sum of the gradients of the individual objective functions.

3.1 Hypervolume Scalarization Versus Weighted Sum Scalarization

Let λ = (λ1, λ2) ∈ R2
+ with (λ1, λ2) 6= (0, 0)> be a given weight vector. Then

the weighted sum scalarization of problem (2.5) is given by

min W (Ω) = λ1J1(Ω) + λ2J2(Ω)
s.t. u(Ω) solves the state equation (2.2)

Ω ∈ Oad.

(3.3)

Note that the weights are usually normalized such that λ1 + λ2 = 1. We
omit this normalization to simplify the notation in the following. Note that
this does not affect the properties of the weighted sum scalarization. Note
also that under the assumption that the reference point in the hypervolume
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scalarization (3.1) is chosen sufficiently large the feasible sets of the hyper-
volume scalarization (3.1) and the weighted sum scalarization (3.3) coincide.
Thus, both scalarizations share the advantage that the feasible set of the orig-
inal multiobjective optimization problem is not modified, i.e., no additional
constraints have to be added to the problem formulation. However, since the
level sets of the hypervolume indicator in the objective space are non-convex,
non-supported efficient solutions can be determined using the hypervolume
scalarization, which is not possible using the weighted sum scalarization. For-
mally, the level set of the hypervolume indicator in the objective space at level
H(Ω̄) is given by

L(H(Ω̄)) :=
{

(J1, J2)> ∈ R2 : (r1 − J1) · (r2 − J2) ≤ H(Ω̄)
}
.

The non-convexity of the hypervolume indicator as a function of the outcome
vector J(Ω) is easy to see when rewriting H(Ω) as a quadratic form

H(Ω) = J(Ω)>
(

0 1
21

2 0

)
J(Ω)−

(
r2
r1

)>
J(Ω) + r1 r2.

Since the quadratic form is negative semi-definite, H(Ω) is a concave func-
tion. Thus, the hypervolume scalarization is not limited to supported efficient
solutions. Even more so, by interpreting the reference point as a scalarization
parameter, every efficient solution can be obtained as an optimal solution of
a hypervolume scalarization with an appropriately chosen reference point.

Corollary 2 If Ω∗ ∈ Oad is an efficient solution of (2.5), then it is optimal
for (3.1) with reference point r := J(Ω∗).

Note that this is of rather theoretical interest since this choice of the refer-
ence point assumes that the corresponding efficient solution is already known.
Practical choices for reference points in the context of biobjective shape opti-
mization are discussed in Section 4.3.
In the following, let r = (r1, r2)> be a fixed reference point and let Ω̄ ∈ Oad be
a strictly feasible solution of (3.1), i.e., J(Ω̄) < r. To interrelate hypervolume
scalarizations with weighted sum scalarizations, we analyze the level sets and
the gradient of the hypervolume indicator. To simplify the notation in the
biobjective case, we denote the two sides of the hypervolume rectangle spanned
by J(Ω̄) = (J1(Ω̄), J2(Ω̄))> and r by a(Ω̄) := r1 − J1(Ω̄) and b(Ω̄) := r2 −
J2(Ω̄), respectively, see Figure 3. Now the hypervolume induced by J(Ω̄) can
be rewritten as

H(Ω̄) = a(Ω̄) · b(Ω̄). (3.4)

Using this notation, the contour line of the hypervolume indicator at the level
H(Ω̄) can be described by the parameterization hΩ̄ : R −→ R given by

hΩ̄(J1) = (J1(Ω̄)− J1) b(Ω̄)
a(Ω̄) + J1(Ω̄)− J1

+ J2(Ω̄), (3.5)
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1

2

3

4

a(Ω̄)

b(Ω̄)

dΩ̄

wΩ̄ with slope − b(Ω̄)
a(Ω̄)

hΩ̄

r

J(Ω̄)

J(Ω̄)− R2
+

J1

J2

Fig. 3: A nondominated point which is suboptimal w.r.t. the hypervolume
indicator

see Figure 3 for an illustration. Denoting the contour line by

hΩ̄ :=
{

(J1, hΩ̄(J1))> : J1 ∈ (−∞, r1)
}
,

we can conclude that all points (J1, hΩ̄(J1))> ∈ hΩ̄ attain the same hyper-
volume indicator value as J(Ω̄). For example, the two highlighted rectangles
in Figure 3 have the same area, and hence the same hypervolume indicator
value.
The derivative of hΩ̄(J1) w.r.t. J1 can be computed as

h′
Ω̄

(J1) = −b(Ω̄) a(Ω̄)
(a(Ω̄) + J1(Ω̄)− J1)2

.

Evaluating this derivative at J1 = J1(Ω̄) yields

h′
Ω̄

(J1(Ω̄)) = − b(Ω̄)
a(Ω̄)

,

which is the slope of the tangent to the level set of the hypervolume indicator
at the point J(Ω̄), see again Figure 3. Note that this slope corresponds to the
ratio of the two sides of the hypervolume rectangle, and thus also corresponds
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to the slope of the diagonal passing through two opposite corners of the current
hypervolume rectangle as illustrated in Figure 3, given by the equation

dΩ̄(J1) = − b(Ω̄)
a(Ω̄)

(J1 − J1(Ω̄)) + r2. (3.6)

As can be seen in Figure 3, the tangent to the level set of the hypervolume
indicator at the point J(Ω̄) also corresponds to the contour line of the weighted
sum scalarization W (Ω) with weights (λ1, λ2) = (b(Ω̄), a(Ω̄)) at this point.
This contour line can be described by a function of J1, similar to (3.6), as

wΩ̄(J1) = − b(Ω̄)
a(Ω̄)

· J1 + c

a(Ω̄)
,

where c := b(Ω̄) J1(Ω̄) + a(Ω̄) J2(Ω̄) is defined by the point J(Ω̄). The corre-
sponding contour line is denoted by

wΩ̄ :=
{

(J1, wΩ̄(J1))> : J1 ∈ R
}
.

As a consequence, the contour lines of both scalarizations, the hypervolume
indicator and the weighted sum function, have the same slope at the point
J(Ω̄), and hence both scalarizations share the same direction of largest im-
provement. Indeed, if we consider the gradient ∇H(Ω̄) of the hypervolume
indicator at the point J(Ω̄) (which is the steepest ascent direction, see (3.2))
we obtain

∇H(Ω̄) = (J2(Ω̄)− r2) · ∇J1(Ω̄) + (J1(Ω̄)− r1) · ∇J2(Ω̄)
= −b(Ω̄)∇J1(Ω̄)− a(Ω̄)∇J2(Ω̄). (3.7)

Similarly, the steepest descent direction for the weighted sum scalarization
(3.3) with weights (λ1, λ2) = (b(Ω̄), a(Ω̄)) at the point J(Ω̄) can be computed
as

−∇W (Ω̄) = −
(
λ1∇J1(Ω̄) + λ2∇J2(Ω̄)

)
= −b(Ω̄)∇J1(Ω̄)− a(Ω̄)∇J2(Ω̄). (3.8)

Hence, in an iterative algorithm the direction of steepest ascent of the hy-
pervolume indicator (which is to be maximized) corresponds to the direc-
tion of steepest descent w.r.t. the weighted sum scalarization (which is to be
minimized) with weights (λ1, λ2) = (b(Ω̄), a(Ω̄)). Note that these associated
weights are determined by the ratio of the sides of the hypervolume rectangle.
The above analysis implies that if an iterative ascent algorithm for the hyper-
volume scalarization (3.1) is initialized with a strictly feasible starting solution
Ω(0) ∈ Oad, i.e., J(Ω(0)) < r, then moving in the direction of steepest ascent
ensures that the next iterate Ω(1) is also strictly feasible irrespective of the
step length, i.e., J1(Ω(1)) < r1 and J2(Ω(1)) < r2. Hence, the constraints
J1(Ω) ≤ r1 and J2(Ω) ≤ r2 can be omitted in (3.1) when starting with a
strictly feasible starting solution. Note that, for any strictly feasible solution
Ω̄ ∈ Oad, the side lengths of the hypervolume rectangle a(Ω̄) and b(Ω̄) cor-
respond to the slackness of the constraints J1(Ω̄) ≤ r1 and J2(Ω̄) ≤ r2. This
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is reflected in the gradient direction ∇H(Ω̄) at J(Ω̄) that is composed of a
weighted sum of the gradients of the individual objective functions ∇J1(Ω̄)
and ∇J2(Ω̄). The ratio of the side lengths of the hypervolume rectangle de-
fines the relative contribution of ∇J1(Ω̄) and ∇J2(Ω̄) to the ascent direction
∇H(Ω̄). If this ratio is very large (very small, respectively), which is the case
when one side of the hypervolume rectangle is considerably larger than the
other, then the opposite objective function is emphasized in the computation
of ∇H(Ω̄).

3.2 Hypervolume Scalarization Versus MO Descent Algorithms

Multiobjective gradient descent algorithms were proposed in Fliege and Svaiter
(2000); Désidéri (2012); Fliege et al. (2019). In the minimization case, they can
be interpreted as iterative optimization processes with search direction

d(k) := −
(
ω

(k)
1 ∇J1(Ω(k)) + ω

(k)
2 ∇J2(Ω(k))

)
in iteration k with weights ω(k)

1 , ω
(k)
2 ≥ 0. The search direction d(k) is thus

induced by a positive linear combination of the gradients of the individual ob-
jective functions with weights ω(k)

1 , ω
(k)
2 . These weights are chosen adaptively

to achieve the steepest descent w.r.t. all objectives in each iteration. This is
in contrast to applying a single-objective gradient descent algorithm to the
weighted sum scalarization (3.3), in which the weights are predefined and thus
fixed throughout all iterations of the optimization procedure. We argue that
performing gradient ascent steps w.r.t. the hypervolume indicator is somewhat
similar to applying a multiobjective gradient descent algorithm: The weights
ω

(k)
1 = b(Ω(k)) and ω

(k)
2 = a(Ω(k)) of the gradients of the individual objective

functions are chosen adaptively, depending on the side lengths of the hyper-
volume rectangle induced by the current iterate, c.f. (3.7).
While each iterate Ω(k) in a multiobjective gradient descent algorithm domi-
nates all previous iterates Ω(k−`) for all ` = 1, . . . , k, i.e., J(Ω(k)) 6 J(Ω(k−`)),
this is in general not the case when applying a single-objective ascent algo-
rithm to the hypervolume scalarization or a single-objective descent algorithm
to the weighted sum scalarizazion, respectively. Indeed, only single-objective
improvements can be guaranteed with respect to the hypervolume indicator
and the weighted sum objective, i.e., H(Ω(k)) ≥ H(Ω(k−`)) and λ>J(Ω(k)) ≤
λ>J(Ω(k−`)), respectively. This can be seen in Figure 3 when comparing the
dominance cone J(Ω̄)−R2

+ (which contains the image of the next iterate in a
multiobjective descent algorithm), the set of improving points for the hyper-
volume indicator given by hΩ̄ −R2

+ = {y ∈ R2 : (r1 − y1) · (r2 − y2) ≥ H(Ω̄)},
and the set of improving points for the weighted sum objective given by
wΩ̄ −R2

+ = {y ∈ R2 : λ>y ≤ J(Ω̄)} (with λ> = (b(Ω̄), a(Ω̄))). Since the dom-
inance cone J(Ω̄)− R2

+ is a proper subset of the respective sets of improving
points, multiobjective gradient descent algorithms are more restrictive regard-
ing the choice of the next iterate. The weighted sum scalarization is in this
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regard the most flexible approach, allowing for the deterioration of individual
objective functions as long as the weighted sum value improves. In this respect,
we can say that the hypervolume indicator function compromises between the
other two approaches.

3.3 Contour Lines of the Hypervolume Indicator

The regions of the Pareto front which can be attained using a scalarization
method are determined by the level sets and contour lines of the scalariz-
ing function. Consider, for example, the contour lines of the weighted sum
scalarization (hyperplanes) and the weighted Chebyshev scalarization (hyper-
boxes with weight-dependent aspect ratio), respectively. While the former is
restricted to supported nondominted points, the latter has the potential to
determine all nondominated points, including the non-supported ones. The
contour lines of the hypervolume indicator for a given reference point r ∈ R2

are illustrated in Figure 4a. It can be seen that their shape strongly depends
on their Hausdorff distance from the reference point. The closer the reference
point is to a nondominated outcome vector in at least one component, the
more the corresponding contour line resembles the contour line of a weighted
l∞ function, i.e., a weighted Chebyshev scalarization. On the other hand, the
further the reference point is from a nondominated outcome vector (in all com-
ponents), the more the contour line resembles that of an l1 function, that is,
a weighted sum scalarization with equal weights. More formally, considering
again the parameterization of the contour line of the hypervolume indicator
w.r.t. J1, see (3.5), and assuming for now that J1 < J1(Ω̄) < r1, we can see
that

lim
r→J(Ω̄)

hΩ̄(J1) = lim
r→J(Ω̄)

constant︷ ︸︸ ︷
(J1(Ω̄)−J1)

→0︷︸︸︷
b(Ω̄)

a(Ω̄)︸ ︷︷ ︸
→0

+ J1(Ω̄)−J1︸ ︷︷ ︸
constant

+ J2(Ω̄) = J2(Ω̄)

This implies that for r → J(Ω̄) the contour line hΩ̄ converges point-wise to
a horizontal line passing through r when J1 < J1(Ω̄). By using a parameter-
ization of hΩ̄ w.r.t. J2 it can be shown that the contour line hΩ̄ converges
point-wise to a vertical line passing through r when J2 < J2(Ω̄).
Similarly, when r = (r1, r1)> (i.e., r2 = r1) and r1 → ∞ we obtain for J1 6=
J1(Ω̄) that

lim
r1→∞

hΩ̄(J1) = lim
r1→∞

constant︷ ︸︸ ︷
(J1(Ω̄)− J1)

→∞︷︸︸︷
b(Ω̄)

a(Ω̄)︸ ︷︷ ︸
→∞

+ J1(Ω̄)− J1︸ ︷︷ ︸
constant

+ J2(Ω̄)︸ ︷︷ ︸
constant

= −J1 + J1(Ω̄) + J2(Ω̄),

and hence hΩ̄ converges point-wise to a line with slope −1 and passing through
J(Ω̄). The contour lines passing through a given point J(Ω̄), that are generated
by different reference points, are illustrated in Figure 4b.



Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t 14 Johanna Schultes et al.
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(a) Contour lines for a fixed reference
point r ∈ R2
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r2

r1

J(Ω̄)

J1

J2

(b) Contour lines w.r.t. different refer-
ence points, passing through a given point
J(Ω̄)

Fig. 4: Contour lines of the hypervolume indicator

4 Numerical Implementation

The hypervolume scalarization (3.1) of the biobjective shape optimization
problem (2.5) is solved using an iterative ascent algorithm in the framework
of a ‘first discretize, then optimize’ approach. The discretization of the shape
optimization problem is based on a finite element approach (see, e.g., Braess
(2007)). Consequently, the state equation (2.2) and the objective functions
given in (2.3) and (2.4) are evaluated on a finite element grid. In this section
details of the numerical implementation are presented including the discretiza-
tion approach using structured finite element grids, the determination of ascent
directions for the hypervolume scalarization, and the update scheme for the
current shape. Finally, the choice of the reference point is discussed.

4.1 Finite Element Discretization

The component to be optimized (i.e., the current shape) is discretized via finite
elements on a structured grid in the following way. Consider a rectangular
domain Ω̂ with width Ω̂l and height Ω̂h that entirely covers the initial shape
Ω(0) (see Figure 2 for an illustration). The domain is discretized by a regular
triangular grid denoted by T̂ with nx and ny grid points in x- and y-direction,
respectively. The corresponding mesh sizes are given by mx = Ω̂l/(nx − 1)
and my = Ω̂h/(ny − 1). The mesh sizes should be chosen such that mx ≈ my

in order to avoid distorted finite elements. In a next step, as visualized in
Figure 5, the boundary ∂Ω(0) of the initial shape is superimposed onto the grid
and the closest grid points are moved onto the boundary in a controlled way,
such that degenerate elements do not occur. More precisely, it is guaranteed
that the maximum angle condition (Babuska and Aziz (1976)) is satisfied.
The adapted grid is denoted by T∞0 . The computations are performed only on
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Fig. 5: Exemplary adaption of the finite element grid to a shape Ω(0) in iter-
ation k = 0

that part of the grid that represents Ω(0) which is called the active grid and
denoted by T0, see Figure 5.
In the iterative optimization process (see Section 4.2 for more details) the ac-
tive grid Tk+1 of the next iteration, k = 0, 1, 2, . . . , representing the updated
shape Ω(k+1), is generated by starting again from T̂ . Consequently, the con-
nectivity is maintained throughout all iterations. Rather than going through
all elements (as required in the first iteration) we now incorporate the in-
formation from the previous mesh T∞k . In the ‘updating procedure’ it is only
necessary to iterate over elements in a certain neighborhood of previous bound-
ary elements, and adapt them if necessary. Note that a complete re-meshing
is necessary only when the next iterate Ω(k+1) differs too much from Ω(k),
which is usually only the case when the update step exceeds the mesh size in
at least one grid point. This property and the persistent connectivity lead to
a significant speed up compared to standard re-meshing techniques. As stated
above, in most iterations the majority of the elements inside the component
remain unchanged. This leads to an additional advantage over both standard
re-meshing and mesh morphing approaches. In regions where elements are not
changed, the entries of the governing PDE are also not changed. Therefore, a
full re-assembly of the system matrix and the right hand side is avoided and
only entries corresponding to modified elements have to be updated.
In the following, we distinguish between the continuous shape Ω(k) and its (ap-
proximative) representation on the finite element grid. The discretized shape,
induced by the active grid Tk, is denoted by Ω(k)

nx×ny . This implicates that the
gradient of the hypervolume indicator ∇H is evaluated w.r.t. the discretized
shape, i.e., ∇H(Ω(k)

nx×ny ) is defined on the grid points given by Tk.

4.2 Iterative Ascent Algorithm

Ascent direction and update scheme. In the following we develop an iterative
update scheme for the biobjective shape optimization problem (2.5). As stated
above, the finite element discretization of the component is based on a regular
grid, where only the grid points that are close to the boundary of the current
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shape Ω(k) are adapted to the boundary of the component. All finite elements
that are not adjacent to the boundary of the current shape Ω(k) remain un-
changed and form a subset of the regular grid. Whenever the component is
updated, we thus want to modify the boundary points of the component with-
out moving inner or outer grid points. For this purpose we consider the grid
points lying on the boundary of the shape Ω(k), or rather of its finite element
representation Ω

(k)
nx×ny . Since these grid points are induced by the active grid

Tk, we call them boundary points and denote them by ∂Tk.
The discretized shape Ω(k)

nx×ny in iteration k is updated by determining a search
direction and calculating a step length. For a given search direction d(k) and
step length tk, we define the update of the component by the expression

Ω
(k+1)
nx×ny = Ω

(k)
nx×ny ⊕ tk · d

(k). (4.1)

The operation ⊕ is defined as follows: First, the boundary points are moved
by tk · d(k) resulting in

∂T ′k := ∂Tk + tk · d(k).

Then ∂T ′k is fitted by cubic splines, resulting in the updated shape Ω(k+1).
Finally, the new active grid Tk+1 is generated based on ∂Ω(k+1) as detailed
in Section 4.1. This defines Ω(k+1)

nx×ny in (4.1). Note that the boundary points
∂Tk+1 of iteration (k + 1) do not have to coincide with ∂T ′k since Tk+1 is
generated based on ∂Ω(k+1), which is defined by cubic splines.
The search direction d(k) is computed based on the gradient of the hyper-
volume indicator function ∇H(Ω(k)

nx×ny ). However, due to the discretization
∇H(Ω(k)

nx×ny ) is usually largely irregular and needs to be smoothed to avoid
zigzagging boundaries and overfitted spline representations of the next iter-
ate. To obtain a smooth deformation field for the boundary points, we follow
the approach suggested in Schmidt and Schulz (2009) and use a Dirichlet-to-
Neumann map to compute a smoothed gradient. Let ∇̃H(Ω(k)

nx×ny ) denote the
smoothed gradient. Then

d(k) := ∇̃H(Ω(k)
nx×ny )

∣∣∣
∂Tk

(4.2)

denotes its values on the boundary points. See Figure 6 for a visual comparison
of the gradient ∇H(Ω(k)

nx×ny ) and the smoothed gradient ∇̃H(Ω(k)
nx×ny ) of an

exemplary shape.
The step length tk in direction d(k) is determined according on the Armijo-
rule (see, e.g., Geiger and Kanzow, 1999; Bazaraa et al., 2006). For given
parameters σ, β ∈ (0, 1) we set

tk := max
`∈N0

{
β` : H

(
Ω

(k)
nx×ny⊕ β

` d(k)) ≥ H(Ω(k)
nx×ny )+σ β`∇H(Ω(k)

nx×ny )>d(k)
}
.

(4.3)
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Fig. 6: Unsmoothed (left) and smoothed (right) gradient of the hypervolume
indicator

The complete iterative ascent algorithm using smoothed gradients is summa-
rized in Algorithm 1. As stopping conditions, an upper bound K on the number
of iterations, an upper bound on the number of iterations ` in the evaluation
of the Armijo rule (4.3), and a lower bound ε on the Frobenius norm of the
search direction are used.

Data: starting solution Ω
(0)
nx×ny , reference point r; Armijo parameters

σ, β ∈ (0, 1), accuracy ε > 0, maximal number of iterations
K ∈ N;

Result: approximate solution of the hypervolume problem Ω∗nx×ny ;
Set k := 0, calculate ∇̃H(Ω(0)

nx×ny )|∂Tk ;
while ‖∇̃H(Ω(k)

nx×ny )|∂Tk‖ < ε and k ≤ K do
Compute a search direction d(k) := ∇̃H(Ω(k)

nx×ny )
∣∣
∂Tk

;
Compute a step length tk ∈ (0, 1] according to the
Armijo-rule (4.3);
Ω

(k+1)
nx×ny := Ω

(k)
nx×ny ⊕ tk · d

(k);
k := k + 1;

end
Ω∗nx×ny := Ω

(k)
nx×ny ;

Algorithm 1: Iterative optimization scheme for hypervolume maximiza-
tion

Re-scaling the search direction. In order to avoid re-meshing operations when-
ever possible, it is often advantageous to re-scale the search direction such that



Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t 18 Johanna Schultes et al.

the gird T∞k+1 can be computed by performing a simple grid adaption (c.f. Sec-
tion 4.1). Indeed, when for example for a large gradient (e.g., resulting from
large given loads) the step tk = 1 is not feasible, this leads to numerical prob-
lems when implementing Algorithm 1. To avoid such situations, the search
direction d(k) is re-scaled in the following way: First, the norm ‖d(k)

ij ‖2 is cal-
culated for all grid points (i, j), i = 1, . . . , nx and j = 1, . . . , ny, where d(k)

ij is
the entry of d(k) for grid point (i, j). Since d(k) is only defined at the bound-
ary points, d(k)

ij is set to zero for grid points (i, j) that are not related to the
boundary points. When maxi,j ‖dij‖2 is larger than a predefined percentage
pmax of the minimum mesh size min{mx,my}, with pmax < 1, then the search
direction is re-scaled by the factor s(pmax) given by

s(p) = p

maxi,j‖dij‖2
min{mx,my}. (4.4)

By computing a step length tk ∈ (0, 1] it is then guaranteed that the boundary
points do not move more than the mesh size, and a grid apdation can be
performed.
Furthermore, numerical tests have shown that near an efficient solution the
search direction d(k) becomes very small, thus slowing down the potential
improvement while the unsmoothed gradient ∇H(Ω(k)

nx×ny ) may still be large.
Then the search direction is re-scaled when maxi,j‖dij‖2 is less than a given
percentage pmin ∈ (0, 1) of the mesh size. In this case, the search direction is
multiplied by s(pmin).

Grid refinement. In order to accelerate the convergence to the Pareto front, it
may be useful to start the optimization on a coarse grid and later continue on a
finer grid. Since for numerical reasons each update step is restricted to the mesh
size, we expect that a coarse grid allows for larger steps in early stages of the
optimization procedure. Moreover, the evaluation of objective function values
and gradients on the coarse grid is generally faster. On the other hand, with
a finer resolution of the grid the accuracy of the approximation of objective
function values and gradients is improved. Thus, near an efficient solution large
steps are not necessary and a finer grid may result in a better approximation
of the shape.

4.3 Choice and Variation of the Reference Point

For the iterative ascent algorithm (Algorithm 1) a feasible starting solution
Ω

(0)
nx×ny and a reference point r ∈ R2 with r > J(Ω(0)

nx×ny ) are needed as in-
put. Since in general neither the Pareto front nor efficient shapes are known
beforehand, the reference point can only be chosen based on a known feasible
shape Ω(0)

nx×ny that may actually be far from the Pareto front. To ensure that
the hypervolume scalarization (3.1) is well defined and that the constraints
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J1(Ω) ≤ r1 and J2(Ω) ≤ r2 are redundant throughout the execution of Algo-
rithm 1 (c.f. Section 3 for a discussion of this issue,) we select the reference
point r such that

r =
(
J1(Ω(0)

nx×ny ) + δ1, J2(Ω(0)
nx×ny ) + δ2

)>
(4.5)

with positive parameters δ1, δ2 > 0.
The impact of the reference point on the hypervolume indicator was already
discussed in Auger et al. (2009). They derive properties of optimal µ distri-
butions depending on the choice of the reference point, i.e., of representative
subsets of the Pareto front of cardinality µ maximizing the joint hypervolume.
Moreover, they derive an explicit lower bound for the reference point guaran-
teeing that, under appropriate conditions, the extreme solutions are contained
in the representation.
In order to take advantage of the fact that, at least theoretically, the complete
Pareto front can be generated by varying the reference point in the hypervol-
ume scalarization (3.1) (see Corollary 2), we suggest a systematic approach to
approximate the Pareto front of problem (2.5) by repeatedly solving problem
(3.1) with different reference points. The ultimate goal is the determination of
a Pareto front generating reference set (PFG reference set for short). In order
to formally introduce the concept of a PFG reference set, let YND ⊂ R2 denote
the Pareto front in the objective space and let YPND denote the set of properly
nondominated outcome vectors according to Geoffrion (1968) (briefly speak-
ing this is the set of all nondominated outcome vectors that have bounded
trade-offs). Moreover, let YH(r) denote the optimal outcome vector obtained
from solving problem (3.1), and let YH(R) :=

⋃
r∈R YH(r) denote the set of all

optimal outcome vectors obtained over all reference points in the set R ⊆ R2,
called reference set.

Definition 3 A set R ⊆ R2 is called Pareto front generating (PFG) reference
set if and only if YND = YH(R). Moreover, we denote a reference set R ⊆
R2 as pPFG reference set, if and only if it is generating the set of properly
nondominated outcome vectors, i.e., YPND = YH(R).

Note that a PFG reference set always exists since, for example, R = YND is
a valid selection, c.f. Corollary 2. Note also that a PFG reference set may
contain redundant reference points that can be omitted without loosing the
PFG property.
From a practical point of view, we can not expect to solve the hypervolume
scalarization (3.1) to global optimality and thus only aim at an approximation
of the Pareto front YND. Towards this end, we suggest to choose the reference
set R based on varying values of δ = (δ1, δ2) > (0, 0) in (4.5). More precisely,
we suggest to set (δ1, δ2) = (ξ, 1

ξ ) with ξ > 0 in (4.5), i.e.,

r(ξ) :=
(
J1(Ω(0)

nx×ny ) + ξ, J2(Ω(0)
nx×ny ) + 1

ξ

)>
(4.6)
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and set RH := {r(ξ) ∈ R2 : ξ > 0}. This ensures that the starting solution
Ω

(0)
nx×ny is strictly feasible for the hypervolume scalarization (3.1) for all choices

of r(ξ) ∈ RH, i.e., J(Ω(0)
nx×ny ) < r(ξ) for all ξ > 0. This implies that RH ⊂

J(Ω(0)
nx×ny ) +R2

> with R2
> = {y ∈ R2 : yi > 0, i = 1, 2}. Hence, YND ∩RH = ∅,

i.e., the Pareto front lies completely ‘below’ the reference set.
For reference points from the reference set RH the result of Theorem 1 can be
strengthened.

Lemma 4 An optimal solution of the hypervolume scalarization (3.1) w.r.t.
a reference point from the set RH is a properly efficient solution of the corre-
sponding biobjective optimization problem (2.5).

Proof Consider an optimal solution of the hypervolume scalarization (3.1) y =
J(Ω̄) ∈ YH(r̄) for an arbitrary reference point r̄ ∈ RH. Since J(Ω(0)

nx×ny ) < r̄ we
know that for this reference point H(Ω(0)

nx×ny ) > 0, and hence also H(Ω̄) > 0.
Therefore, the hypervolume rectangle induced by y and r̄ must have positive
side lengths a(Ω̄) > 0 and b(Ω̄) > 0. This implies that y is locally optimal for
a weighted sum scalarization with weights λ1 = b(Ω̄) > 0 and λ2 = a(Ω̄) >
0 since this has the same cone of improving directions as the hypervolume
indicator in this point (see Section 3.1 for a detailed derivation). It follows
that y ∈ YPND. ut
Note that Lemma 4 is in line with the results of Auger et al. (2009) who
showed that, irrespective of the choice of the reference point, nondominated
points with unbounded trade-off are not part of what they call ‘optimal µ
distributions’, that is, of subsets of points on the Pareto front that maximize
the joint hypervolume.
Note also that by varying ξ > 0 different reference points are obtained that
lie along a hyperbola in the objective space, see Figure 7 for an illustration.
Indeed, for two parameter values 0 < ξ1 < ξ2 we have that r1(ξ1) < r1(ξ2) and
r2(ξ1) > r2(ξ2). Hence, the hypervolume rectangle spanned by J(Ω(0)

nx×ny ) and
r(ξ1) cannot be contained in the hypervolume rectangle spanned by J(Ω(0)

nx×ny )
and r(ξ2) and vice versa. However, for all associated hypervolume rectangles
it holds that a(Ω(0)

nx×ny ) · b(Ω(0)
nx×ny ) = 1.

While we can not guarantee that the set RH is a PFG reference set in general,
we argue that the chances are high that the reference set RH induces solutions
with varying objective values. This is validated by the numerical experiments
described in Section 5 below. From a theoratical perspective, we argue that
at least for convex problems the reference set RH is pPFG, i.e., the properly
efficient set can be generated by varying the reference points in RH.

Theorem 5 Suppose that the biobjective optimization problem (2.5) is con-
vex, i.e., all efficient solutions of (2.5) are supported efficient solutions. Then
YPND = YH(RH), i.e., RH is a pPFG reference set.

Proof First, recall that Lemma 4 implies that YH(RH) ⊆ YPND. Thus, it re-
mains to be shown that YPND ⊆ YH(RH).
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Fig. 7: Reference set RH defining a hyperbola in the objective space

Now let y = J(Ω̄) ∈ YPND be properly efficient. Then there exist weights
λ1, λ2 > 0 such that Ω̄ is optimal for the associated weighted sum scalarization
(3.3), see, e.g., Ehrgott (2005); Geoffrion (1968). Now define a rectangle with
sides a := λ2 > 0 and b := λ1 > 0 and let r′ := J(Ω̄) + (a, b)>. It is easy
to see that the hypervolume rectangle spanned by J(Ω̄) and r′ is precisely
the rectangle with side lengths a and b. From the discussion in Section 3.1 we
can conclude that Ω̄ is optimal for the hypervolume scalarization (3.1) with
reference point r′ since in this situation the set of improving points w.r.t. the
hypervolume indicator is completely contained in that of the weighted sum
(which is empty in this case). See Figure 8 for an illustration of the respective
contour lines. Moreover, J(Ω̄) is the unique optimal outcome vector of the
hypervolume scalarization (3.1) in this case. Since this property only relies on
the ratio b

a of the side lengths of the hypervolume rectangle, the reference point
can be moved along the half-line starting at J(Ω̄) and passing through r′ until
it intersects the set RH. This intersection point exists and can be determined
as the positive solution ξ of the system

J1(Ω̄) + τ a = J1(Ω(0)
nx×ny ) + ξ

J2(Ω̄) + τ b = J2(Ω(0)
nx×ny ) + 1

ξ
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RH

r(ξ)

hΩ̄;r(ξ)hΩ̄;r′

J(Ω̄)

r′

J1

J2

Fig. 8: Identification of a reference point r(ξ) ∈ RH that generates a given
outcome vector J(Ω̄)

which yields

ξ2 − ξ
(

(J1(Ω̄)− J1(Ω(0)
nx×ny ))− a

b
(J2(Ω̄)− J2(Ω(0)

nx×ny )
)

︸ ︷︷ ︸
=:c

−a
b

= 0.

We obtain two solutions for ξ, namely

ξ1,2 = c

2 ±
√
c2

4 + a

b
.

Since a
b > 0 we have that ( c

2

4 + a
b ) 1

2 > | c2 | and hence exactly one of the two
solutions for ξ is positive, irrespective of the sign of c. This solution yields the
sought reference point r(ξ) ∈ RH, and we can conclude that YPND ⊆ YH(RH).

ut
Note that even though Theorem 5 is restricted to convex problems, the set RH
may be pPFG also for non-convex problems. This depends on the degree of
non-convexity on one hand, and on the distance of the reference set RH from
the Pareto front in the objective space on the other hand, where the latter is
defined by the image of the starting solution J(Ω(0)

nx×ny ).
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5 Numerical Tests

We consider a 2 D test case of a ceramic rod consisting of Beryllium oxide
(BeO). The rod is 0.6 m long and has a height of 0.1 m. It is fixed on one
side while tensile load is applied on the other side, modeling a horizontal load
transfer. On the fixed boundary ΩD of the rod the displacement field u(x) is
zero, i.e., here Dirichlet boundary conditions hold, c.f. (2.2). The part ΩNfixed

denotes the boundary on which the surface loads g are applied, i.e., where
Neumann boundary conditions hold. The remaining parts of the boundary,
denoted by ΩNfree , can be modified according to the optimization objectives
whereas the boundaries ΩD and ΩNfixed are fixed during the optimization. In
particular, the corner points cannot be moved. In Figure 2 the rod and the
decomposition of its boundary into ΩD, ΩNfixed and ΩNfree are illustrated.
As we consider the same ceramic material BeO as in Doganay et al. (2019),
we use the same material parameter setting in order to evaluate the state
equation (2.2) and the PoF objective (2.3). In particular, Young’s modulus is
set to E = 320 GPa, Poisson’s ratio to ν = 0.25, the ultimate tensile strength
to 140 MPa and the Weibull parameter to m = 5. The surface loads, acting
on ΩNfixed , are set to g = (108, 0)> Pa and the volume force density is set to
f = (0, 1000)> Pa. To speed up the numerical evaluation of the state equation,
an improved discretization approach based on regular grids is employed, see
Section 4.1 for more details and Figure 9 for an illustration of the considered
shape. In contrast to Doganay et al. (2019), volume forces that model, e.g.,
gravity, are included in the numerical evaluation.
We choose a bent rod as shown in Figure 2 as the initial shape (i.e., as the
starting solution) for the optimization that is implemented using Algorithm 1.
Note that this shape is clearly not efficient. Indeed, in this situation the ef-
ficient shapes are straight rods of different width, trading off between small
probabilities of failure and high volumes on one hand, and high probabilities
of failure and low volumes on the other hand. This simple setting has the
advantage that the optimization results can be validated and compared with
the ‘true’ Pareto front.
The rectangular domain Ω̂ that contains all admissible shapes Oad is given by
a rectangle of width Ω̂l = 0.7 m and height Ω̂h = 0.35 m. The initial shape is
placed in the interior of this rectangle. Moreover, the whole setting is slightly
rotated so that the boundaries of the initial shape can be represented by
interpolating cubic splines. The domain Ω̂ is discretized by a triangular grid
with nx×ny grid points as described in Section 4.1. Hereby, we determine the
number of grid points such that a prescribed mesh size of mx = my ≈ 0.02 m is
realized. In our setting, this results in a discretization with 36×18 grid points,
see Figure 9. Note that this shape representation has more degrees of freedom
than the B-spline representation in Doganay et al. (2019). This significantly
increases the flexibility of our approach.
In the numerical tests reported below, we use the Armijo-rule (4.3) with pa-
rameters β = 0.5 and σ = 0.1. Moreover, the smoothed gradient d(k) is adap-
tively scaled such that maxi,j ‖d(k)

ij ‖2 is within 10% to 90% of the mesh size,
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Fig. 9: Illustration of the discretized rod with 36× 18 grid points

i.e., pmin = 0.1 and pmax = 0.9 as explained in Section 4.2. The optimization
process is restricted to 500 iterations, i.e., K = 500. To avoid tiny step sizes,
the Armijo-rule is restricted to 30 iterations, i.e., ` ∈ {0, . . . , 30}. Whenever
the Armijo rule does not yield a sufficient improvement for reasonable step
sizes, the algorithm stops. Moreover, the algorithm stops when the Frobenius
norm of the unscaled search direction d(k) is lower than ε = 10−10.
Twelve exemplary reference points r(ξ) are selected from the pPFG reference
set RH (see (4.6)), with ξ ∈ {0.0005, 0.001, 0.0015, . . . , 0.005, 0.006, 0.007}. Al-
gorithm 1 is implemented in Python 3.6 and all tests are run under open-
suse 15.0 on an IntelCore i7-8700 with 32 GB RAM.

5.1 Results

The twelve optimization runs with varying reference points yield 12 different
mutually nondominated outcome vectors. The resulting approximation of the
Pareto front is shown in Figure 10. As was to be expected, the optimized
shapes resemble a straight rod with varying thickness. The objective vector
of the initial shape Ω(0)

36×18 is (18456.28, 0.06)>, which is actually far form the
Pareto front.
Several exemplary shapes are shown in Figure 10. In addition to the illustration
of the respective shapes, the stresses in the direction of the tensile load acting
on the finite elements are depicted as arrows at the respective center points.
Note that the diagonal pattern of the arrows is due to the rotated (not axis-
parallel) grid structure.
It turns out that the iterates evolve similarly for different optimization runs.
For about 50 iterations the hump of the rod decreases quickly, and the Armijo
rule often returns a sufficient improvement already for tk = 1. Thus, the
shape converges quickly to a nearly straight joint, however, usually with a
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Fig. 10: Coarse approximation on a 36× 18 grid (orange) and two exemplary
results from the grid refinement (red)

wavy boundary, and its probability of failure improves considerably. In later
iterations the changes are less visible and the shape converges slowly to a
straight joint, the thickness of which depends on the chosen reference point.
During the optimization process, the volume decreases only slowly as the wavy
boundary gets smoother.
The optimization runs require between 292 and 486 iterations with one excep-
tion: for the reference point r(0.0005) the optimization process stops at the
maximum of 500 iterations. In all other cases the algorithm terminated in the
Armijo rule.
The solutions from the coarse 36× 18 grid were used as starting solutions on
a refined 71 × 36 grid with mesh size m = 0.01 m. Exemplary results for the
reference points r(0.001) and r(0.003) are shown by red crosses in Figure 10.
The respective starting solutions, which are now evaluated on a 71× 36 grid,
are illustrated by red circles in the same Figure. The results are smoother, see
Figure 11, but require significantly more computational time. Nevertheless, in
this test case setting the coarse grid approximation obtained already consid-
erably good results, which are not dominated by the corresponding results on
the finer grid.
Moreover, numerical tests show that shapes representing very thin or thick
straight rods, respectively, induce numerical difficulties due to the fixed bound-
ary parts and, particularly, their corner points. Thick rods suffer from overfit-
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(a) Solution Ω∗
36×18 evaluated on a 71 × 36

grid
(b) Solution Ω∗

71×36

Fig. 11: Comparison of the coarse and fine grid solution obtained for reference
point r(0.003)

ted spline representations of their boundaries. Thin rods, on the other hand,
lead to distorted finite elements at the spiky corner points.

6 Conclusion

The hypervolume indicator function is a well suited scalarization approach
for multiobjective shape optimization problems, since it does not require an
explicit handling of additional constraints. In contrast to the weighted sum
approach which shares this advantage it is also capable of computing non-
supported efficient solutions. The nonlinear dependency on the individual ob-
jective functions is not a critical issue in this context since the individual
objective functions are already nonlinear. Furthermore, the gradient of the
hypervolume can be easily computed based on the gradients of the objective
functions.
We show that for convex problems, a non-trivial reference set generating the
set of properly nondominated outcome vectors (pPFG reference set) can be
determined without prior knowledge on the Pareto front. We validate the ap-
proach at a case study from engineering design where the shape of a horizontal
bar under tensile load is to be optimized w.r.t. reliability and cost.
Clearly, there are other possibilities for defining pPFG reference sets. We will
test and analyze different choices of reference sets in the future. Moreover,
the question if and how non-trivial pPFG reference sets can be defined for
non-convex problems – without knowing the Pareto front beforehand – will be
analyzed. From an engineering point of view, 3 D shape optimization are still
a challenge that needs further attention.
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