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Abstract

There are numerous models for specifying the uncertainty of future instantaneous
volatility or variance, including the Heston, SABR and ZABR models. Often it
is observed that a specific stochastic volatility model is chosen not for particular
dynamical features, relevant for exotic payoff structures, but instead for conve-
nience and ease of implementation. The SABR model, with its semi-closed form
approximate solution for the prices of vanilla options, is a well-known example. In
this article, we consider a general approach that includes all practically relevant
stochastic volatility models and introduces new variants of the ZABR model. In
particular, we consider the mean-reverting ZABR and free ZABR models. We use
the method of deriving an effective partial differential equation for the density.
This approach leads to the known approximation formula for the SABR model,
but also provides expressions for arbitrage-free models. Numerical experiments
illustrate our approach.

Keywords: Stochastic volatility, SABR, ZABR, Free boundary ZABR, Mean-
reverting ZABR, Effective PDE, Approximation formula
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1 Introduction

This paper is concerned with modeling the implied volatility surface for an un-
derlying asset. In our exposition, we consider the dynamics of the forward rate,
which simplifies the SDEs considered by ensuring that the asset has no drift. The
implied volatility surface is defined in relation to a reference valuation model with
an analytic solution for vanilla European call and put options. For the underlying
asset, I, strike value, K, and maturity time, 7', the contract pays

Vr = max(Fr — K, 0) for a call, and
Vr = max(K — Fr,0) for a put.

Given the maturity, strike and current (time-ty) price of the underlying, f, the
reference formula used to compute the current price, V;,, must have only one
additional degree of freedom, the implied volatility, which is specified in order to
match the quoted market price, V.. The standard reference models used are
the Black and Bachelier models. Since we shall only consider examples for interest
rates, we use the Bachelier model, also known as the Gauss or normal model.

The Bachelier pricing formulas for calls and puts are
Cy(T,K,0) = (f — K)®(d) + oVTé(d)  and
Py(T, K,0) = (K — ) ®(—d) + oVT(d)
with
f—- K
oT —t,’
where ®(-) and ¢(-) are the normal CDF and PDF respectively. Here, o is called
the Bachelier, normal or bp implied volatility. The choice of the reference model
depends on the given market. For instance the Bachelier model can be applied to

negative asset values (applicable to interest rates) and does not require the values
to be bounded.

Often we are not only interested in a single option price, but require prices for
a set of maturities and strikes. Consider a set T := {T3,T5,..., Ty} of option
maturities and let IC:= {1, Ky, ..., Ky}, K; == {K;1, Kio, ..., K} be sets of
strike values indexed by the number of maturities considered. Usually KC; = K; for
all 1 <1,7 < N. Now, consider the implied volatility for each quoted option with
respect to T; € T, K; € K:

EdITXIC—)R+
(T,K)I—>O'd.



The map >, is called the discrete implied volatility surface. From this set, val-
ues for strikes K ¢ K may be inferred by interpolation and extrapolation. The
latter techniques must respect arbitrage relationships, requiring practitioners to
use interpolation methods consistent with an arbitrage-free model. Furthermore,
starting with the current levels of volatility as an input, it is relevant to consider
the dynamics of the implied volatilities in order to manage exotic options. Such
options may, for instance, include payoffs that strongly depend on the forward
volatility. Examples include forward-starting options and cliquet options. Practi-
tioners refer to the implied volatility surface as the skew or smile. These names
originate from the shapes that the surfaces exhibit in typical market environments.

While there are many approaches for modeling the dynamics of instantaneous
volatility, including Levy and jump-diffusion models, see, e.g., [23-25, 31| for a
non-exhaustive list, practitioners most often use stochastic volatility models to
manage this type of risk. Selecting a stochastic volatility model determines the
continuous implied volatility surface. The process of matching to the observed
discrete implied volatility surface is called calibration, and, once a model is cali-
brated, the continuous implied volatility surface may be used for interpolation and
extrapolation. We consider the continuous implied volatility surface given by the
map

Z]c,O : [OaT] X [Kviu] — RY
(T,K) — o,

and its dynamics X.4(7, K), t € RT. By choosing a stochastic volatility model
these dynamics are implicitly determined by the model. In particular, we consider
the coupled SDEs given by

dﬁt = C(Ft)'l}t th(l), Fto = f7
dvy = pu(vy) dt + v(vy) AW, gy = @, (1.1)
with (WO WY, = pat.

The choice of model and parameters should ensure the best fit to the current
(discrete) market implied volatility surface and that the dynamics are suitable for
risk management and trading of exotic contracts. Often ease of implementation
determines the choice of the model, rather than model suitability. We provide a
general modeling approach with a tractable computational framework that does
not require this compromise.

To achieve numerical tractability, we use singular perturbation methods to derive
an approximate PDE, called the effective PDE, for the marginal probability density



of the asset. Here, this probability density should be understood as

P|F < E,<F+dF|E, = fu,=al.

This technique was originally introduced by Hagan et al. [9,11,14,15] for SABR
models. Our general framework provides an extension to this approach and covers
most well known stochastic volatility models, including the SABR models men-
tioned above, but also the Stein-Stein [33] and Schoebel-Zhu [30] models.

Having derived the general effective equation, we are in a position to consider
many stochastic volatility model variants. Naturally, our approach includes the
standard SABR model as a special case, but it also includes the displaced SABR,
mean-reverting SABR (mrSABR) and free boundary SABR (fSABR) models. Free
boundary models have a volatility function given by |F|°, and were introduced
by Antonov et al. [4]. We also focus on ZABR type models, originally introduced
by Andreasen and Huge [1]. We take this as a starting point and consider the
displaced ZABR, mean-reverting ZABR (mrZABR) and free boundary ZABR (fZ-
ABR) models.

Our methodology relies on efficiently solving the one-dimensional effective PDE.
The alternative would be to solve the two-dimensional problem. From a numeri-
cal perspective, a non-zero correlation between the asset and the volatility driver
makes it impossible to apply alternating direction implicit (ADI) methods di-
rectly. For an approach that uses transforms and an application to the Heston
model, see [17]. Transformations may be problematic when it comes to boundary
conditions. The boundaries of the transformed dynamics may be more compli-
cated than the original ones. Another approach is to handle the terms involving
both quantities Fr and vy by an explicit step, but this requires small time steps
in order to avoid numerical instability. However, for the two-dimensional setting,
the Peaceman-Rachford-Douglas method [6,27] may be used; it may even be com-
bined with an appropriate solver so that an explicit step is not necessary. Iterative
solver algorithms, such as BiCGStab [7,29], do not even require an explicit matrix
representation. When considering examples to illustrate the new models, we use
the numerical methods described in |13,20,21].

The rest of the paper proceeds as follows: In Section 2 we introduce the methodol-
ogy and derive the effective PDE for the general framework. The whole derivation—
including all details—can be found in Appendix A. In Subsection 2.2 we consider
the approximating formula and then provide more detail on concrete models in
Subsection 2.3. In Subsection 2.3.1 we use the method to analyze the smile dy-
namics of the ZABR model, while in Subsection 2.3.2 we investigate the extended
ZABR models.



The approach taken to demonstrate numerical examples in Section 3 is based on
one dimensional PDE solvers. We use numerical methods to compare the resulting
stochastic volatility modeling approaches in Subsection 3.1 and the calibration
behavior in Subsection 3.2. Finally, Subsection 3.3 compares our approach to a
classical Monte Carlo approach [22]. Section 4 concludes with a summary, draws
conclusions and outlines directions for future research.

2 Main Results

To provide a tractable way to compute solutions for the general two dimensional
SDE in (1.1), our main goal is to approximate the dynamics by a suitable one
dimensional local version. For this we consider the marginal probability density
of the asset, also called the reduced density or effective probability, as our main
object of interest. The reduced density ) of F' at time ¢, starting from time ty, is
defined as

Q(t,F)dF:P[F<Ft<F+dF By = fou, = al. (2.1)

Given the reduced density for a specified exercise time 7', we can then recover the
corresponding call and put prices for all strikes by an evaluation of

Co(T, K) = /OO(F—K)Q(T, FYdF  and
Po(T,K) = /K (K — F)Q(T, F) dF.

To compute the reduced density, we derive a PDE of the form

8tQ(t> F) = aFF [D(t’ F)Q(t> F)] ) Q(th f) = 5(F - f)7 (2‘2)

where D(-,-) is a function that involves the model parameters and depends on ¢
and the asset value F. It can be viewed as a local volatility function. To derive this
PDE, we use singular perturbation methods to systematically analyze the system

dﬁt = €C(Ft>2}t th(l)’ F;fo = fa
dvy = p(vy) dt + ev(vy) th(Q), Vg = @, (2.3)
with (WO W), = pat.

Once the result is derived we set € back to 1.



The effective PDE, also called the effective forward equation, is accurate to order
O(e?). For achieving a stable and efficient numerical implementation to solve the
PDE, we especially need to specify the boundary behaviour. This leads us to
consider two PDEs for accumulating probability. The lower boundary b; is either
explicitly specified when the model under consideration is not admissible for values
below b;, or artificially when setting up the grid for numerical computation. The
upper boundary is set by specifying the highest level b, we wish to consider. The
corresponding values of the probability densities are denoted by Q% and QF. In
our setting the PDEs are given by

atQL(t) = }%ﬂ}l aF [D(t> F)Q(tv F)] ) QL(tO) =0
and Q") =l 0 D F)Q(F)],  Q"(t) =0

u

For the SABR model the derivation can be found in [13,21], the fSABR model is
considered in [20].

Next, we derive the effective equation for the general setting (1.1), then we restrict
ourselves to a special class of dynamics, called the ZABR class. This includes the
standard ZABR model [1], but also the free boundary version of ZABR (fZABR),
which generalizes the results from [4], and the mean-reverting ZABR (mrZABR).

2.1 The Effective PDE

To derive the effective PDE we make the following assumptions related to (1.1):

Assumption I. The drift term, u(-), is differentiable, with derivative 1/(-), and a
solution Y'(¢,ty, @) to the following PDE exists:

Y (t,to, ) = p(Y (L, 19, )
Y(t, t,a) =«
Y(to, to, Oz) = Q.

Assumption II. The function Y is differentiable and has an inverse function
y(to,t,a) such that

Y(t,tg,a) = a & a=1y(ty, t,a).

Remark 2.1. Functions p(-) allowing a closed-form solution include:
(i) for p(z) = p the solution is Y (¢, %y, o) = a + pu(t — o).
(ii) for u(z) = k(6 — x) the solution is Y (¢, g, a) = ae™*=t) 4 §(1 — e=rt=t0)),
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Assumption ITI. The functions

X(t,tg, ) = 0, Y (¢ tg, a), Z(t,u) = Z(t,u,tg, ) = y(u,t,Y(t, to, )),

/ o s(t)—S(to,t,a)—/tZ(t,u,to,oz)Qdu

to

and
U(t,u, Z) = v(Z(t,u) Z(t,w)X (t,u, Z(t,u))

are well defined!, X (t, u, Z(t, u))_1 exists, and the following integral functions are
defined:

L(t) = /t V(Z(t,u))QX(t,u, Z(t,u))Q/ Z(t,v)X (v, Z(t,v))_1 dv du,
t) = p/t W(t,u, Z) /tZ(t,v)X(t,v, Z(t,v))f1 dv du,

L(t) = p? /ttw(t,u, ) /t 0, (w(t,v, Z))X(t,v, Z(t,v)) " dv du,

I5(t) = / V(Z(t,u))QX(t,u, Z(t,u))Qdu.

to

Assumption IV. The function C(-) is differentiable at f, with derivative denoted
by C'(-).

Theorem 2.2. Given that the general stochastic volatility model (1.1) obeys As-
sumptions -1V, an effective PDE for the effective probability (2.1), of the form
(2.2), can be derived, with function D given by

D(t, F) = %a(t)zC(F)QeG(t) (14 2b(t)2(F) + c(t)z(F)?),

where the coefficients are specified as

- NV 6b(1) 2
a(t) - Y(tvth )7 (t) b<t) + (l(t)S(t)2 ]2(t) S(t)Q IS(t) + a(t)s(t)2]4(t)a
1 1
b(t) = Wh(t)7 G(t) = —s(t)c(t) — s(t)b(t)To + ;15(15)

'Note that this definition of z(F) differs by a factor of 1 compared to the definition in (A.4).
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and

Ty = —C'(f).

Proof. In Appendix A we show that the effective PDE of order O(¢?) is given by

8,Q(t, F) = %52a(t)28pp C(F)Q(t, F)e= %W (1 + 2b(t)2(F) + e2c(t)2(F)?)

Qt,F)—6(F—f)ast—tg.

(2.4)
This comes from combining (A.3), (A.5), (A.10) and (A.1). Setting ¢ to 1 yields
the desired form. O

Remark 2.3. The class of models is not restricted to the above choices of the
function ['y. Choosing a different form could in turn impose a new version of
Assumption IV.

Figure 1 shows the output obtained by numerically solving the effective PDE. It
is the density of the asset at maturity and depends on all the input parameters.

Density from Effective Equation

0.25

0.20
.10
0.05
0.00
-4 2 0

2 4 6 8 10 12 14
Strikes in Forward Units

——SABR ——ZABR mrSABR mrZABR

Figure 1: Output from numerically solving the effective PDE for SABR, ZABR,
mrSABR and mrZABR.



2.2 Implied Volatility Formula

As seen in Theorem 2.2, the effective PDE of the general model is of the same
form as the classical or mean-reverting SABR [10,16|. In particular, both these
models fit into the same framework, which allows for a direct approximation of
the implied normal or Black volatility [9].

To show that our model also fits into this framework, we use Effective Media
theory [12] to approximate the effective PDE of Equation (2.4) by a suitable SABR
effective PDE. To facilitate this we consider a fixed maturity T and set the initial
time ¢ty = 0, from now on. We start by defining time independent parameters b,
¢ and G, which allow for an approximation of Equation (2.4) to order O(¢?), at
time T'. These parameters are generally given by [12, Equation 2.4]:

_ 2 [T

b= — ub(u) du
3 (7 18 (7 : ;

=3 u?c(u) du + = b(u) / vb(v) dv du — 3b*
T J T Jo 0

- 17 I

= — d p— —cC d .
G T ), G(u) du + T/o u(c(u) — ¢) du

Note that before using these equations, the functions b and ¢ of Theorem 2.2 must
be modified to fit into the setting of [12, Equation 2.2]|.

With the constant effective parameters we can define the so called effective SABR
parameters:
= _ ) — o1+ 16+ Tain,T (2.5)
Veff = C, Peff = \/E’ Qeff = Q 2 40[ 0 . .

These allow us to approximate our model to order O(g?) with a SABR model,
and in turn provide us with the various available implied volatility formulae. One
prominent example would be the formula provided in [9]:

 va(K—f) [1+20(QT if0>0
oK) = h {ﬁﬁﬁﬁ if © <0,
with
_ Peft 1 C + E(C)
R(C) - log ( 1+ peff ) )
_ Vgﬂf peft +C — peffE@) Aoar%ew (peff + OE(O — Peff
0= (3 ROEQ) 1) T (1 ~fr ¥ R(0)
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where

Veft K 1
=2 [ e BQ) = VI 2+

Qnew (u)
1 1
Olnew = aeﬂ”(]- - Z,Oeffl/effaeffFOT)a A0 = ZC(f)CW(f) - gC,(f)Q

In the next section we consider special cases to illustrate the applicability of our
approach.

2.3 ZABR-type Models

Given the prevailing negative interest rate regime for some currencies, we focus
on stochastic volatility models that are often applied for managing the volatility
risk for this asset class. Such models are applied, for instance, to parametrize the
implied volatility surface, but also for pricing cash-settled swaptions and constant
maturity swaps. Since practitioners have found that standard SABR models are
too restrictive for this task, we consider specific choices of the coefficients that lead
to ZABR-type models. In particular we consider stochastic volatility models of
the form (2.3) where the functions p, C' and v are of the form given in Table 1.

1 C v | Model
0 Ef v, | SABR
0 EP 1 | Normal SABR (nSABR)
0 (F, +d)? | v, | Displaced SABR
0 |F|° v, | Free SABR (fSABR)
K(0 — vy) Ef v; | mean reverting SABR (mrSABR)
0 P v | ZABR
0 (F, 4+ d)" | v | Displaced ZABR
0 |E,|P | v | Free ZABR (fZABR)
K(0 — vy) P v/ | mean reverting ZABR (mrZABR)

Table 1: Parametrizations of the ZABR-type models.

The SABR-type models were considered in [4, 15,20, 26] and the ZABR model
was introduced in [1]. We consider the displaced ZABR, dZABR, the free ZABR,
fZABR, and the mean-reverting ZABR, mrZABR, models. Furthermore, our nu-
merical approach for solving the standard ZABR model differs from the approach
in [1] and is arbitrage free by construction.

9



The models presented in Table 1 are a non-exhaustive list with other choices possi-
ble. Different choices for the function C are, for example, suggested in [18] or [19].

Remark 2.4. Note that the absolute value appearing in the function C' of the free
SABR and free ZABR model is not differentiable at the point 0 and thus would
not satisfy the Assumption IV and fit into the framework of Theorem 2.2. To
overcome this problem we follow the setting of the original free SABR model [4]
and only consider the case where f # 0.

2.3.1 Effective PDE for ZABR

Consider the ZABR model as specified in Table 1. The corresponding coefficients
for the effective PDE in (2.4) may be greatly simplified.

First of all the function Y has an explicit form that equals the initial value:
Y (t,ty, ) = «

Evaluation of the coefficients needed for the effective PDE yields

¢ =122 (1+ (8, - 1)p?), (2.6)
G(t) = —p*v 22D (t — 45) (B, — 1) — (t — to)pra™ Ty

and gives the ZABR effective PDE characterized by the function

D(t,F) = %oﬂ(J(F)?(l + 2b2(F) + é2(F)%)ef®,

For the numerical implementation of the ZABR model, we use the effective SABR
parameters presented in Section 2.2. Given the explicit form of the coefficients in
(2.6), the effective SABR parameters are given by:

Ve = v 1\ /1 4+ (By — 1)p2
p

TV (B DA (2.7)
et = a(l + ip2y2a2(621)(1 — 52)T)

Peft

Note that these are the coefficients used for the actual implementation. In par-
ticular, we have already set ¢ = 1 and approximated the original exponential

10



function. To guarantee that the term +/D(¢, F') remains real, we further impose
the condition )
—1
ﬁg > 14 P p2 .

Since we are using a SABR model to approximate the ZABR model, it is not
surprising that we observe similar behaviour of the models. For example, if we
shift the underlying forward rate f, as done in Figure 2, we can see that the
implied volatility moves in same direction as the forward.

Implied Bachelier Volatility

0.0030
0.0025
0.0020
0.0015
0.0010
0.0005

0.0000
-0.002 0.003 0.008 0.013 0.018 0.023

Strikes

——ZABR ——ZABR_Shifted

Figure 2: The implied volatility for the ZABR model with parameters § = 0.5,
Po = 0.8, v = 0.3, p = —0.8, an underlying forward rate of f = 0.005, which is
shifted by 0.002, and a displacement of 0.001.

2.3.2 Effective PDE for fZABR and mrZABR

Having examined the ZABR model, we can now consider the natural extensions
of the free ZABR and mean-reverting ZABR models.

For the free ZABR model, the effective SABR parameters are the same as for
the ZABR model and are given in (2.7). The difference between the models lies
exclusively in the function C'(F), as was the case in the extension of the SABR to

the free SABR model, see [20].

Considering the mean-reverting ZABR model with a reversion back to the initial
state, i.e., with 6 = «, as specified in Table 1, the corresponding parameters for

11



the effective forward equation change and are given by

Ba—2
b(t) o pre 2 (1 . €_H(t_t0)),

Rt —t)
2\ 2 2(By—2
C(t) _ (1+p )V Q (B>-2) 1_€—H(t—t0)>2
K2(t — tg)?
6p*v2a2P2=2) (bt —k(t—t
Wl—e ( 0)>(1—I€<t—t0)—€ ( O))
2071202 2=2) (i
+(1+ ﬁz)m(l — (1 + K(t — tg))e "710)),

Ba 2 2(Ba—1)
G(t) = —a?(t — to)c — pra (1- e’“(t’tO))Fo e a2 (1- e’QK(t’tO)).
K K

Fixing a specified maturity 7', the corresponding constant effective parameters of
Section 2.2 are given by

b= %(HT —1+e"),

c= 31+ szl){lﬁ)o;’%ﬁ?_l) <2HT +4e~ T — 3 — e_QHT)
+6(1 + @)% (KT + 2" =2+ Te ")
_12p%202% D) (“T —(;TJ)geNT)

G = %(%T L %CT = p:f‘f (KT =14 "1)T

Here we can now use (2.5) to derive the effective SABR parameters. As seen in
Figure 3 and 4, in both cases we still observe that the implied volatility moves
together with the shifted underlying.

3 Numerical Examples

For our numerical implementation we use the effective SABR parameters derived
for each model and the methods described in [13,20,21] adapted to our setting.

12



Implied Bachelier Volatility

0.0025
0.0020
0.0015
0.0010
0.0005

0.0000
-0.002 0.003 0.008 0.013 0.018 0.023

Strikes

——fZABR ——1{ZABR_Shifted

Figure 3: Free ZABR implied volatility with parameters as in Figure 2.

Implied Bachelier Volatility

0.0025
0.0020
0.0015
0.0010
0.0005

0.0000
-0.002 0.003 0.008 0.013 0.018 0.023

Strikes

——mrZABR ———mrZABR_Shifted

Figure 4: Mean reverting ZABR implied volatility with parameters as in Figure 2
and kK = 0.2.

3.1 Comparison SABR and ZABR Type Models

To see the impact of our new models, we compare the implied volatilities generated
by each model. For this we use the same parameters as in Figure 2 and various
values for the new parameters fy and k. The results are shown in Figure 5 and
Figure 6. As we can see, the change from a SABR to a ZABR model heavily

13



Implied Bachelier Volatility

0.0035
0.0030
0.0025

0.0020

0.0015 S
\
0.0010 ;
0.0005 J
i
0.0000
-0.002 0.003 0.008 0.013 0.018 0.023
Strikes
— SABR ——ZABR_09 ——ZABR 0.8 ZABR_0.7

Figure 5: Implied volatility for the ZABR model when (3, changes.

Implied Bachelier Volatility

0.0030

0.0025

S

0.0010
0.0005 i

0.0000
-0.002 0.003 0.008 0.013 0.018 0.023

Strikes

——ZABR ——mrZABR 0.1 ——mrZABR_0.5 mrZABR_0.8

Figure 6: Implied volatility for the mean reversion ZABR when  changes.

influences the smile. In particular the OTM end shows much steeper behaviour.
The inclusion of mean reversion again works in the contrary direction and brings
the model closer to the SABR case.

In Figure 7 we considered the density of the ZABR model. Here we can see that the
model exhibits a much higher and steeper peak in the density function, compared
with the SABR model.
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Density Function

030
0.25
0.20
0.15

0.10

- K
0.00 -
-5 3 -1 1 3 5 7 9

Strikes in Forward Units

——SABR ——ZABR_09 ——ZABR 0.8 ZABR_0.7

Figure 7: Density for the ZABR model when 3, changes.

Finally, Figure 8 shows that the implied volatility formulas yield a good approx-
imation to the models for moderate to high strikes. As in the case of the SABR
model, the approximation becomes worse for low strikes.

3.2 Calibration

One crucial aspect of a model is its ability to fit to real market data. One common
way to calibrate a model is to consider a set of implied volatilities and try to
adjust the model parameters to minimize the error between market and model
volatilities. For our numerical experiment we calibrated the models on a set of
normal swaption volatilities with maturity and tenor of 5 years. The volatility
data is for the EUR currency and corresponds to the dates 2 Sept 2019 and 1 Nov
2019.

Since we are approximating the various models with a version of the SABR model,
it is assumed that the fit is of the same quality. In fact, if we consider the ZABR
model, we can predetermine the new parameter 5 based on a market analysis and
calibrate the remaining parameters to swaption data. In Figures 9 and 10 we can
see that the quality of the fit matches the SABR model for various dates and fixed
By. Also, for the mean-reverting ZABR, in Figure 9, we observe a calibration result
similar to that obtained for the SABR model. Overall a good fit of the models to
the market data is observed.

If the quality of the calibration is similar to that of the SABR model, indeed
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Figure 8: Comparison of implied Bachelier volatility functions for the SABR,
ZABR and mrZABR models.
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Figure 9: The ZABR model with parameter 5, = 0.9 and the mrZABR model
with k = 0.3 calibrated to two different dates.

we may ask ourselves why we are not using the SABR to begin with. Here it
is relevant to mention that in most applications, we are not only interested in
matching the current market data, but we also want to provide a set of economic
scenarios for future prices or obligations that may be more complicated and even
path dependent. In [5] it is shown that models with the same calibration quality
may reveal their flexibility when exotic derivatives are considered. For instance,
CMS index related derivatives illustrate this. We do not repeat this study here.

Using, for example, an Euler-Maruyama scheme to simulate the model, the ad-
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Figure 10: The ZABR model with different values of 3, calibrated to one date.

ditional parameters play an important role, since, at each time step, we would
need a different SABR model to approximate the current distribution. We shall
further investigate the additional benefits coming from such considerations in a
future study.

3.3 Comparison to MC

For the comparison with a Monte Carlo experiment we chose the same parameter
set as above and ran a simulation with one million paths with 240 time steps
for all the models except for the free SABR and ZABR models where we used
ten million paths with 480 time steps. Figure 11 shows the difference in implied
Bachelier volatility observed. The results from using both approaches are very
close. Here we observe an average relative error of about 5%, with the most
significant contribution in the tails.
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Figure 11: Implied Bachelier volatility computed from the Call option prices obtained from the effective equation
and Monte Carlo simulation for the SABR (top left), ZABR (top right), mrSABR (mid left), mrZABR (mid right),
fSABR (bottom left) and fZABR (bottom right).
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Relative Error for Bachelier Volatility (effective vs MC)
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Figure 12: Relative error for the implied Bachelier volatility computed from the

call option prices obtained from the effective equation and Monte Carlo simulation
for the SABR, ZABR, mrSABR, mrZABR, fSABR and fZABR.

Figure 12 shows the relative error as a function of the strike and for all the models
considered.

4 Conclusion and Summary

We have outlined an approach applicable to a large class of stochastic volatility
models. The approach is based on an effective PDE associated with the stochastic
volatility model. In particular we have derived a (one dimensional) local volatility
representation of the (two dimensional) model. Then, we applied accurate and
efficient numerical schemes to calculate option prices. General conditions for ap-
plicability were derived. We extend the modeling to include the ZABR model and
introduced the free ZABR and mean-reverting ZABR models. The flexibility of
the new models was explored and a numerical comparison with existing methods
was given.

To derive the results we applied singular perturbation theory. There are, however,
other techniques that may be used to derive a local volatility model associated with
a stochastic volatility model. For instance we still wish to compare our results to
those derived via the method of Markovian Projection, see e.g. [2,3,28]|. From a
numerical methods perspective, we applied the method considered in [13,20, 21].
While we have included a basic comparison to Monte Carlo simulation results we
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still wish to derive numerical schemes for the two dimensional equation as in [32].
The generalization of the numerical scheme derived in the context of analyzing the
Heston model seems to be a good starting point for further analyzing the quality
of our approximation using effective equations.

A Appendix: Derivations

A.1 Deriving the Effective Forward Equation

As described in Section 2, we analyze a stochastic volatility model of the form

dﬁt = EC(FO'&% th(l), Eo = f’
dvy = p(vy) dt + ev(vy) th(Q), Vgy = Q,

with (WO W), = pat.

Following Hagan et al. [8,10,16], we define the probability density p(to, f, a, ¢, F, A)
that F'(t) = F and v, = A at time ¢, given that F'(ty) = f and vy, = « at time t,.
Furthermore, we define the moments

Q(k)(t07f7 Oé,t, F) :/ Akp<t07f7057t7 F7 A) dA
0

and set
Q. F) =Q(to, f, o t, F) (A1)
to be the reduced probability density of the model given ¢y, f and a.

A.2 Volatility Drift

Before analyzing the corresponding PDE equations, let us first take a look at the
drift term of the volatility function. For this, we consider the following PDE given
by the drift term
Y (t,to, ) = p(Y (¢, t0, )
Y(t,t,a) =« (A.2)
Y (o, to, ) = av.

By Assumptions I and IT we know that there exists a solution Y (¢,%y,«) and an
inverse function y(to, ¢, a), such that

Y(t,tg,a) = a & a=y(to, t,a).
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Considering the integrated form of the PDE (A.2), the derivatives of Y'(¢,to, o)
satisfy

t
Y (t, 0, ) = —p(v) +/ 1 (Y (5,0, )04 Y (8, to, ) ds

to
¢
and 0nY (t,tg, ) =1 +/ W (Y (s, to, ))0.Y (s, o, ) ds.
to

This, in turn, implies that

O Y (t, to, ) = —p(a) 0, Y (t, to, ).

Remark A.1. Note that in both cases of the Remark 2.1 we have that Y coincides
with the expected volatility:

Y (t,to, a) = Efvy | vy, = @],

If 1 is a non-linear function, this would not be true anymore, since we would have
to exchange the expectation with the function u, which in general can not be done.

A.3 The Forward Equation

Now, we start by considering the Kolmogorov forward equation to get
1
atp(tv F7 A) = _614 [/L(A)p(tu Fv A):| + 5528FF |:C(F)2A2p<t7 Fa A)i|
1
+2p0p |C(F) Av(A)p(t, F. A)| + 52044 [W(A)p(t, F A)]

where we have abbreviated p(to, f,a,t, F, A) as p(t, F, A). Integrating over A and
considering reflecting boundary conditions to conserve the probability, as done for
example in [10], we get

o0

/0 o [u(AYp(t, P, A)|dA = [u(A)p(t, F,4)]| ~ =0

0

/ " O [C(F)AV(A)p(t, F, A): dA = dp [C(F)AV(A)p(t, F, A)} ‘OO —0

0

[e.e]

/O o V(A2p(t, F,A)|dA = 0a[v(A)p(t, F,4)|| ~ =0,

0

With this, we get the forward equation

8QU(1. F) = 200 [C(F)Q (1, F)]

QU(t,F) = 6(F — f) ast — t,

(A.3)

for t > t,
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A.4 The Backward Equation

Next, let us consider the Kolmogorov backward equation for Q%) given by

(
—0,,Q™ = 11()9,Q™ + %52a2 C(f)20;,Q™ + 2/’?0( £)0;.QW

(2o

QW) = of5(F — fasty —t,

where we have abbreviated Q" (o, f, o, t, F) as Q). To cancel the drift term, let
us change variables from « to a = Y (¢,%p,@). As seen in Section A.2 the change
of variables is provided by

8a — 8QY(t, to, a)@a = X(t, to, y(to, t, a))@a,
ato - a150 - #(O‘>8O<Y(ta to, a)aa = ato - /L(y(t()» t CL))X(LL? lo, y(t07 t a))aa'

Here, we use the function X as an abbreviation of 0,Y (t,,a). With this the
drift term vanishes and we get

5 1
~0,QY = 5%y (to,1,0)2 [ C(£)20,QY + 209C(f)7aQ™ + 70,0 Q"
QW (to, f,a) = a"6(F — f) as tyg =t~

where we have abbreviated Q" (t, f,a,t, F) as Q¥ and

v(y(to, t,a))
y(to, t,a)

Note that this equation corresponds to the one in [16, A.19]. The only difference is
the form of 7(ty, t,a) where we have an additional dependence on y(ty,¢,a). Thus,
until we reach the point where the explicit form of 7 is needed, our reasoning is the
same that used by Hagan et al. |8,16]. Nevertheless, for completeness, we briefly
present the main steps.

U= I;(to,t,a) = X(t,to,y(to,t,a)).

We start by changing the variable f to

IR
z:g/f mdu (A4)

and re-scale Q) to be

k
QW (to, f,a,t, F) = 6;—(0)62(’“) (to, z,a,t, F) (A.5)
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with variables
B(ez) = C(f) and [(ez) =

This yields the equation
1 U~
—0,Q"™ = y(to, t,a) zzQ — —6F(5z)8 OW — ckpa.0W
a
+ lsgk(k — 1)’;—2(2(“ — epird., QW
2 a2 za

2 9,0M 4+ S 2528, O
a

QW) = 6(2) asty — 7,

where we have abbreviated Q" (t, z,a,t, F) as Q™.

Now, to cancel the a dependent term y(to,t,a)? in front of every term, we change
the time scaling from ty to s given by

t
s = S(to,t,a) = / y(u,t,a)? du.

to
Again, we consider the inverse denoted by to such that t, = tNO(s,t, a) when s =
S(to,t,a). Then we get the new PDE

(asQ(k) = %azzé(k) - %5F(Ez)azé(k) - 5/077 (aas azsé)(k) + 8zaQ(k)>

1 ) ) 5
5% <8a52 05s0™ 1 9,05 ascg(k)) — ekpZ.0®
a

~2

+52k%8a58562(k)+ > k(k—l) oW (A.6)

+e2k2-9,0® + Sei (28as 0,.Q® + 8aaQ(k)>
a
Q™ — §(2) as s — 07,

where we have abbreviated Q®)(s, z,a,t, F) as Q. Note that this equation cor-
responds to the ones in for example [16, A.29] or [8, A.28]. Now, we argue that to
leading order we only have the heat equation

~ 1 ~

QM = §(2) as s — 0*.

(A7)
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Thus, if we expand Q%) = Q(()k) + Sng) + €2Q§k) + -+ we can conclude that the
first term Q(()k) is given by the solution of (A.7) as

~ (k) ~ (k) 1
Qo' (s,2z,a) =Qp (s,2) = e 2.
0 ( ) o (8,2) s

In particular, ng) does not depend on @ and thus 9,Q® is actually of order O(e)
and the last two terms of (A.6) are of order O(¢®) and can be neglected.

A.5 Computing Q?

With (A.6) we can set up the two PDEs for Q® and Q®. Without explicitly
writing them down, we can still see that for £ = 2 the PDE contains all the terms
of k = 0 and the addltlonal terms of the last lines. Since our goal is to express
Q® in terms of Q© and to insert this back into the forward equation, we use the
ansatz

Q(Q)(& z,a,t, F) _ H(S, z,a,t, F)eZsb(s,a)z+526(s,a)z2+52G(s,a)

and determine the coefficients in such a way that the PDE for H corresponds to
the one of QW

This yields the PDE given by
1 1 -
O H = §8zzH — EsF(sz)ﬁzH — 5,01/((%3 0,sH + 8zaH)
1 2
5% (aa82 8. H + aaasasﬂ) - (sa b+b— —) H
a S
— <s@sé 26 — 207 <6ab ey 8a3>> =2y

2
+(—6SG+E+2b2 s b+——bF0—2pu<8b+8b85>> 2y
~ ~2
42 (b— @)s<8ZH+ fH) - 2(,0;717— V—)e28as 8.H,
a S a

where we have abbreviated H(s, z,a,t F) as H. Here I'g = I'(0) is a suitable
approximation of I'(ez) with order (9( 2). To bring the equation of H closer to
the one for Q© we set b such that

(A.8)

0,

sob+b— 2~
a

25



in which case b has the form

1
b(S, CL) = Ell(svta)

with I = Ii(s,t,a) = p/ ﬁ(fo(x,t,a),t,a) dx.
0

Switching the integration variable from = to u = to(z,t,a), [1(s,t,a) may be
written as

t
Li(s,t,a) = p/ D(u,t,a)yz(u,t,a) du
to(s,t,a)

t
— [ vyt o)yt o)Xty ) du
to(s,t,a)

Note that here the only s dependence of the integral I; comes from the boundary
to(s,t,a). To handle the term containing (9. H + ZH) we recall that

1 22
Hy(s,z) = \/%e_Z

and that 0,H°(s, z) + £H"(s, z) = 0. With this the PDE of order O(e) is

1 1
0.H = §6ZZH - §5F08ZH — epr0ys 0,5 H.

As in [16] we can show through the concrete form of H that H' has the form

1
H'(s,z) = —§SF082H0 — I3(s,t,a)0... H°
1 - -
with I3(s,t,a) = 5/)/ U(to(z,t,a),t,a)0,S(to(x,t,a),t,a)dx.
0
Using our new form of 7 and the explicit form of 9,5(ty(x,t,a),t,a) given by

t
,5(o.t.0) =2 [ y(u b,y t.a) du

to

t
=2[me@X@wymu@rwm

to

we get
@_@sta—p/ (9.t @)y (s @) X (1w, y o, 0))
(s,t a)

></ y(v,t,a) X (t,v,y(v,t,a)) " dvdu.
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Moreover, we can conclude as in [16] that

I3e22? I 1
5<8ZH+EH) = ﬁg_ZH_ (% _ _F0)52H+O(83).
S

s2 s 52 2

Before determining the parameters ¢ and G in (A.8) we rewrite the last term in
terms of H. For this note that to order O(¢?) we have

1 1 22 1
2 _ 19 _ 1o
9 83H— 55 SazzH = 58 (; — g)H
With this, the PDE in (A.8) simplifies to
1 1
0.H = 5(922[{ — §5F(5z)8zH — epU <8as 0, H + 8zaH)

1

+552;72 (8a52 Oss H + Onqs 8SH)

I
- {sasa + 20 — 2p00,b + 6-20,b
S

~2 2.2
— <2pﬁsﬁsb — pvb + V—) 5(18} Sy &}
a

S S

~ ~2 ~
+[—05G+a+2b2—4ﬂb+”—2—ﬁro—zpﬁaab
a a a

I ~2
+6-20,b — (Qpﬁsasb — b+ ”—) %} 2.
S a S

A.5.1 Computing ¢

From the above equation it is clear that we should choose ¢ in order to cancel the

2.2 .
ESZ H term. This means we set

I 72\ 0,
804C + 2¢ — 2p00,b + 6—3856 — (Qpﬁsasb — pub + V—) - 0.
s a

Multiplying by s and summarizing the terms yields

~9
Os (526) + 6130,b = 2spr0,b + (%S% + (Qpﬂsasb — pﬁb) 0aS
~9
= 25pv0,b + aas% + (2/)1785 (sb) — 3pﬁb> 0,8.

Taking into consideration that I3 was chosen to satisfy

1
8513 = 5,017(%8,
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we can conclude that ¢ must solve
~2
0,(5°¢) = —60, (Isb) + s + 2p (0, (sb) Ous + s9b).
a
To explicitly solve this, let us first consider the last term of this equation. We get

O (sb) 0a8 + 80,b = O (éh) 0aS + O, (ih)

1
a?

1 1
= —0,80,0, — —1I) + —0,I;. (A.9)
a a

Recall that I1(s,t,a) is defined as

t
B(stia) = p [ vl o))yl @)X (6 y(u,t ) du
to(s,t,a)

In particular, this means for the a-derivative that we have
0,11 (s,t,a) = —04to(s,t,a)pi(to(s, t,a),t,a)y*(to(s,t,a),t,a)

¢
+P/( )8a(1/(y(u,t,a))y(u,t,a)X(t,u,y(u,t,a))) du.
to(s,t,a

Following [16] we can see that we have
0.5 (to(s,t,a),t,a) = y*(to(s,t,a),t,a)duto(s, t, a).

Thus, (A.9) reduces to

Os (sb) 048 + $0,b

1 I

=~ (s, ta)+=p [ du(vlylut a)y(u ta)X (¢ uylu,t,0) ) du
a a to(s,t,a)
1 I

=——sb+—p [ du(vlylut a)ylu, )X (6w y(ut,))) du
a a to(s,t,a)

and yields
2070, (sb) s + 50,b] =

t
—0() + 25 [ (vl )yt 0) X (1w .1, 0)
to(s,t,a)
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Switching from ¢ to ¢ = ¢ + 2b? we finally get

~9
0O, (826) = —60, (]3b) + %&Ls + 0, (3262)

L2, /t T, (y(y(u,t,a))y(u,t,a)X(t,u,y(u,t,a))) du.

a 0(s,t,a)
Now, we only need to integrate over s to conclude that
2 272, 1 2
s“c(s,a) = s°b% + —Is(s,t,a) — 615(s,t,a)b+ —14(s,t,a).
a a
Here the integral functions are given by

IQ(Sa t? a)

t
= / 8aS(u,t,a)u(y(u,t,a))2X(t,u,y(u,t, a))? du
to(s,t,a)

2/t y(u,t,a))? X (t,u,y(u,t,a))? / y(v,t,a)0uy(v,t,a) dvdu

o(s,t a)

t
2/ y(u,t,a))* X (t,u,y(u,t,a))? / y(v,t,a)X (t,v,y(v,t,a)) " dvdu
o(sta) u

and

14(87 ta CL)

s t
~ [ ottt [ 0 (vlutot et 0)X (600, ta))) dods
0 to(z,t,a)

¢ ¢
—pz/ ¢(u,t,a)/ Oath(v,t, a) dv du.
tb(s,ta) u

Here the function 1) is defined as

(u,t,a) =v(y(u,t,a))y(u,t,a) X (t, u, y(u,t,a)).
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A.5.2 Computing G
Analogously to determining ¢, we set G to cancel the remaining 2H term. This

Py — 2p08,b + 6-20,b
S

means
7
X | Lak N R
a a a
172) 0,8

— <2p175(93b — pvb+ —

a

SRR Lk R S N Y
a a a
~2

%
—0s(sc) — 0s(sb)g + =

)

Now we can integrate over s and conclude that
I5(s,t,a)

G(s,a) = —sc — sbl'y + e

with
S t
Iy(s,t,a) = / Pio(x.t,a),t, a)* da = / V(y(v,t, @)X (1, u, y(u, 1, a))? du.
0 t~0(s,t,a)

A.6 The Effective Forward Equation
With these choices we have found the following PDE for H:
1 1 .
O.H = 50..H — SeT(e2)0.H — epi <8as ,.H + 8ZQH>

1
g2 (aa32 O H + 0,05 8SH>

H —6(z) as s — 0%,
where we have abbreviated H(s,z,a,t, F) as H. Since this is the same equation
as for Q) (s, z,a,t, F), we can identify H(s,z,a,t, F) as Q(s, z,a,t, F) to order

O(e?). So, we have )
H(s,z,a,t,F) =Q©(s,z,a,t, F).

Thus, we have shown that
Q(2) (8, z,a,t, F) _ Q(O) (S, z,a,t, F)e2€b(s,a)z+€2E(s,a)z2+52G(s,a)7

and by further approximating the exponential function we can conclude that
Q@ (s, z,a,t, F) = QO (s, z,a,t, F)e” D (1 4 22b(s, a)z + £%c(s, a)?2?). (A.10)
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Now, to express this in terms of the original variables o and ¢y, simply recall our
previous changes of variable

a =Y (t,tg, )

t
and s:/ y(u,t,a)® du.

to
Furthermore, recall that y was defined as the inverse of Y. Thus, we can express
y(u,t,a) as
y(u,t,a) =y(u,t,Y(t, to, ) = Z(t,u, to, ).

With this we can express s in terms of « as

t
s:/ Z(t,u,tg, @)* du.

to

Making these changes in the integral functions I;-I5 yields those found in Assump-
tion I1I.
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