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KRYLOV TYPE METHODS EXPLOITING THE QUADRATIC NUMERICAL1

RANGE∗2

ANDREAS FROMMER , BIRGIT JACOB , KARSTEN KAHL , CHRISTIAN WYSS , AND IAN ZWAAN †, ‡3

Abstract. The quadratic numerical range W 2(A) is a subset of the standard numerical range of a linear operator4

which still contains its spectrum. It arises naturally in operators which have a 2× 2 block structure, and it consists of5

at most two connected components, none of which necessarily convex. The quadratic numerical range can thus reveal6

spectral gaps, and it can in particular indicate that the spectrum of an operator is bounded away from 0.7

We exploit this property in the finite-dimensional setting to derive Krylov subspace type methods to solve the8

system Ax = b, in which the iterates arise as solutions of low-dimensional models of the operator whose quadratic9

numerical ranges is contained in W 2(A). This implies that the iterates are always well-defined and that, as opposed10

to standard FOM, large variations in the approximation quality of consecutive iterates are avoided, although 0 lies11

within the convex hull of the spectrum. We also consider GMRES variants which are obtained in a similar spirit. We12

derive theoretical results on basic properties of these methods, review methods on how to compute the required bases13

in a stable manner and present results of several numerical experiments illustrating improvements over standard FOM14

and GMRES.15

Key words. quadratic numerical range, block operator matrices, iterative solvers, Krylov-type methods, spectral16

gap17
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1. Introduction. It is well known that Krylov subspace methods for a linear system19

Ax = b with a nonsingular matrix A ∈ Cn×n tend to converge slowly or even diverge or20

fail in situations where 0 lies in the “interior” of the spectrum σ(A) of A. Specifically, if21

0 is contained in the numerical range (or field of values) of A, a convex set which contains22

σ(A), we know that methods based on a Galerkin variational characterization like FOM, the23

full orthogonalization method, can fail due to the non-existence of certain iterates which24

manifests itself numerically by huge variations in magnitude and associated stability problems.25

In methods which are based on residual minimization like GMRES, the generalized minimal26

residual method, stagnation can occur in such cases. Related to this, classical convergence27

theory for Krylov subspace methods, in particular for the non-Hermitian case, typically28

assumes that 0 is not contained in the numerical range and then gets quantitative results on29

convergence speed in which the distance of the numerical range to 0 enters as a parameter, see,30

e.g., [1, 15, 16] and the discussion and references in the books [8, 14].31

In this paper we study modifications of the FOM method, and also of GMRES, which32

converge stably and smoothly when the quadratic numerical range, a subset of the standard33

numerical range, splits into two parts which do not contain 0. The quadratic numerical range34

arises naturally for matrices which have a canonical 2 × 2 block structure. Analgously to35

standard Krylov subspace methods, these modifications are also based on projections. By36

projecting onto a larger space than the Krylov subspace we manage to preserve the gap in37

the quadratic numerical range and thus shield the projected matrices away from singularity.38

At the same time we do not require more matrix vector multiplications as in standard Krylov39

subspace methods, i.e. one per iteration.40

This paper is organized as follows: Section 2 reviews those properties of the numerical41

range and the FOM and GMRES method which are important for the sequel. Section 342
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first introduces the quadratic numerical range and then develops the new modified projection43

methods termed quadratic FOM and quadratic GMRES. This section also contains first44

elements of an analysis. In Section 4 we then discuss how the new methods can be realized as45

efficient algorithms before we give some numerical examples in Section 5.46

2. Numerical range and FOM. Regardless of the dimension, n, we will always denote47

by 〈·, ·〉 the standard sesquilinear inner product on Cn and ‖ · ‖ the associated norm. For a48

linear operator A ∈ Cn×n the numerical range (or field of values) W (A) is the set of all its49

Rayleigh quotients50

W (A) = { 〈Ax,x〉〈x,x〉 : x ∈ Cn, x 6= 0} = {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} .

W (A) is a compact convex set (see [5], e.g.) which contains the spectrum spec(A). If A51

is normal,A∗A = AA∗, thenW (A) is actually the convex hull of spec(A). For non-normalA,52

the numerical rangeW (A) can be much larger than the convex hull of the spectrum. If for some53

m ≤ n the matrix V = [v1 | · · · | vm] ∈ Cn×m is an orthonormal matrix, i.e. V ∗V = Im,54

the identity on Cm, then the numerical range of the “projected” matrix V ∗AV ∈ Cm×m is55

contained in that of A, since for all y ∈ Cm, y 6= 0 we have 〈y, y〉 = 〈V y, V y〉 and thus56

〈V ∗AV y,y〉
〈y,y〉 = 〈AV y,V y〉

〈y,y〉 = 〈AV y,V y〉
〈V y,V y〉 ∈W (A).

For future use we state this observation as a lemma.57

LEMMA 2.1. Let A ∈ Cn×n be arbitrary and let V ∈ Cn×m be orthonormal. Then58

W (V ∗AV ) ⊆W (A).

We continue by summarizing the properties of two Krylov subspace methods, namely59

FOM [13] GMRES [15], which are relevant for this work. Proofs and further details can be60

found in [14], e.g.61

A Krylov subspace method for solving the linear system62

Ax = b, A ∈ Cn×n, b ∈ Cn,

takes its kth iterate from the affine subspace x(0) + K(k)(A, r(0)), where r(0) = b − Ax(0)63

and64

K(k)(A, r(0)) = span{r(0), Ar(0), . . . , Ak−1r(0)}.

Krylov subspaces are nested and the Arnoldi process (see [14], e.g.), iteratively computes an65

orthonormal basis v(1), v(2), . . . for these subspaces. Collecting the vectors into an orthonormal66

matrix V (k) = [v(1) | · · · | v(k)], the Arnoldi process can be summarized by the Arnoldi67

relation68

(2.1) AV (k) = V (k+1)H(k), k = 1, 2, . . . .

whereH(k) ∈ C(k+1)×k collects the coefficients resulting from the orthonormalization process.69

It has upper Hessenberg structure. Denoting by H(k) the k × k matrix obtained from H(k) by70

removing the last row, we see that71

H(k) = (V (k))∗AV (k).

The full orthogonalization method (FOM) is the Krylov subspace method with iterate x(k)fom72

characterized variationally via73

x
(k)
fom ∈ x(0) +K(k)(A, r(0)), r

(k)
fom = b−Ax(k)fom ⊥ K(k)(A, r(0)),
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which gives74

x
(k)
fom = x(0) + V (k)(H(k))−1(V (k))∗r(0),

provided H(k) is nonsingular. Note that since v1 is a multiple of r(0) we have75

(2.2) (V (k))∗r(0) = ‖r(0)‖ek1 ,

where ek1 denotes the first canonical unit vector in Ck.76

For an arbitrary (nonsingular) matrix A, the matrix H(k) can become singular in which77

case the k-th FOM iterate does not exist. An important consequence of Lemma 2.1 is therefore78

that such a breakdown of FOM cannot occur if 0 6∈W (A), and, moreover, that H(k) will have79

no eigenvalues with modulus smaller than the distance of W (A) to 0. On the other hand, if80

0 ∈W (A), even when H(k) is nonsingular, it can become arbitrarily ill-conditioned, which81

then typically yields large residuals for the corresponding iterates and which is observed in82

practice as irregular convergence behavior.83

We can interprete FOM as the method which for each k builds a reduced model H(k) of84

dimension k of the original matrix and then obtains its iterate x(k)fom by lifting the solution of85

the corresponding reduced system H(k)ξk = (V (k))∗r(0) back to the full space as a correction86

to the initial guess x(0), x(k)fom = x(0) + V (k)ξk. This interpretation will serve as a guideline87

for our development of the “quadratic” FOM method in section 3.88

The generalized minimal residual method (GMRES) is the Krylov subspace method with89

iterate x(k)gmres characterized variationally via90

x(k)gmres ∈ x(0) +K(k)(A, r(0)), r(k)gmres = b−Ax(k)gmres ⊥ A · K(k)(A, r(0)),

This implies that the residual b − Ax(k)gmres is smallest in norm among all possible residuals91

b−Ax with x ∈ x(0) +K(k)(A, r(0)), i.e. x(k)gmres solves the least squares problem92

x(k)gmres = argminx∈x(0)+K(k)(A,r(0))‖b−Ax‖ = x(0) + argminy∈K(k)(A,r(0))‖r(0) −Ay‖.

To obtain an efficient algorithm it is important to see that this n × k least squares problem93

can be reduced to a (k + 1) × k system due to the Arnoldi relation (2.1): We have that94

x
(k)
gmres = x(0) + V (k)ξ(k) where ξ(k) solves95

(2.3) ξ(k) = argminξ∈Ck‖(V (k+1))∗r(0) −H(k)ξ‖,

where (V (k+1))∗r(0) = ‖r(0)‖ek+1
1 .96

In case that H(k) is nonsingular, one can use the normal equation for (2.3) to characterize97

ξk = (Ĥ(k))−1ek1 , where98

Ĥ(k) = H(k) + |hk+1,k|2((H(k))−∗ek)e∗k,(2.4)

where hk+1,k is the (k + 1, k) entry of H(k).

This means that the GMRES approach constructs a reduced model Ĥ(k) which differs by the99

FOM model by a matrix of rank 1. The eigenvalues of Ĥ(k) are called the harmonic Ritz100

values of A w.r.t. K(k)(A, r(0)), i.e. the values µ for which101

A−1x− 1
µx ⊥ AK(k)(A, r(0)) for some x ∈ AK(k)(A, r(0)), x 6= 0.
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They are the inverses of the Ritz values of A−1 w.r.t the subspace AK(A, r(0)) which implies102

µ−1 ∈W (A−1).

With ρ denoting the numerical radius of A−1, i.e. ρ = max{|ω| : ω ∈W (A−1)} we see that103

|µ| ≥ ρ−1. In this sense, as opposed to FOM, the GMRES approach shields the eigenvalues104

of the reduced model Ĥ(k) away from 0. Note that if H(k) is singular, GMRES stagnates, i.e.105

x
(k)
gmres = x

(k−1)
gmres .106

3. Quadratic numerical range, QFOM and QGMRES. We now assume that A ∈107

Cn×n has a “natural” block decomposition of the form108

(3.1) A =

[
A11 A12

A21 A22

]
with Aij ∈ Cni×nj , i, j = 1, 2, n1 + n2 = n, n1, n2 ≥ 1.

All vectors x from Cn are endowed with the same block structure109

x =

[
x1
x2

]
, xi ∈ Cni , i = 1, 2.

The definition of the quadratic numerical range goes back to [7], where it was introduced as a110

tool to localize spectra of block operators in Hilbert space.111

DEFINITION 3.1. The quadratic numerical range W 2 of A is given as112

W 2(A) =
⋃

‖x1‖=‖x2‖=1

spec

([
x∗1A11x1 x∗1A12x2
x∗2A21x1 x∗2A22x2

])
.

The following basic properties are, e.g., proved in [17]113

LEMMA 3.2. We have114

(i) W 2(A) is compact,115

(ii) W 2(A) has at most two connected components,116

(iii) spec(A) ⊆W 2(A) ⊆W (A),117

(iv) If n1, n2 ≥ 2, then W (A11),W (A22) ⊆W 2(A).118

The following counterpart of Lemma 2.1 holds.119

LEMMA 3.3. Let A ∈ Cn×n have block structure (3.1) and assume that V1 ∈ Cn1×m1 ,120

V2 ∈ Cn2×m2 with mi ≤ ni, i = 1, 2 have orthonormal columns. Put V = [ V1 0
0 V2

] ∈ Cn×m121

with m = m1 +m2. Then122

W 2(V ∗AV ) ⊆W 2(A), where V ∗AV =

[
V ∗1 A11V1 V ∗1 A12V2
V ∗2 A21V1 V ∗2 A22V2

]
∈ Cm×m.

Proof. Let yi ∈ Cmi for i = 1, 2 with ‖yi‖ = 1. Then xi := Viyi satisfies ‖xi‖ = 1, i =123

1, 2, and since124

[
(y1)∗V ∗1 A11V1y1 (y1)∗V ∗1 A12V2y2
(y2)∗V ∗2 A21V1y1 (y2)∗V ∗2 A22V2y2

]
=

[
x∗1A11x1 x∗1A12x2
x∗2A21x1 x∗2A22x2

]

we obtain W 2(V ∗AV ) ⊆W 2(A).125

Our approach is now to build a Krylov subspace type method where, as opposed to FOM,126

the iterates are obtained by inverting a reduced model of A whose quadratic numerical range127

is contained in that of A. In this manner, if 0 6∈ W 2(A) with δ = min{|µ| : µ ∈ W 2(A)}128

denoting the distance of 0 to W 2(A), no eigenvalue of the reduced model will have modulus129

smaller than δ. In cases where 0 ∈W (A) and 0 6∈W 2(A) this bears the potential of obtaining130
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smoother and faster convergence than with FOM and, as it will turn out experimentally, also131

faster than with GMRES.132

We project the Krylov subspace K(k)(A, r(0)) onto its first n1 and last n2 components,133

respectivley, denoted K(k)
1 (A, r(0)) ⊆ Cn1 and K(k)

2 (A, r(0)) ⊆ Cn2 . Clearly,134

K(k)(A, r(0)) ⊆ K(k)
1 (A, r(0))×K(k)

2 (A, r(0)) =: K(k)
× (A, r(0)),

and dimK(k)(A, r(0)) ≤ dimK(k)
× (A, r(0)) =: d

(k)
× ≤ 2k. Note that the dimension d(k)i of135

either K(k)
i (A, r(0)) may be less than k and that d(k)× = d

(k)
1 + d

(k)
2 .136

We can obtain an orthonormal basis for each of the K(k)
i (A, r(0)) as the columns of the137

matrix V (k)
i which arises from the QR-decomposition of the respective block of the matrix138

V (k) from the Arnoldi process, i.e.139

(3.2) V (k) =

[
V

(k)
1 R

(k)
1

V
(k)
2 R

(k)
2

]
, V

(k)
i ∈ Cni×d(k)

i orthonorm., R(k)
i ∈ Cd

(k)
i ×k upper triang.

Note that with this definition of V (k)
i we have the useful property that V (k+1)

i arises from140

V
(k)
i by the addition of a new last column, just in the way V (k+1) arises from V (k), with the141

exception that the new last column could be empty, i.e. there is no new last column, when142

the last column of the ith block in V (k) is linearly dependent of the other columns. Similarly143

R
(k+1)
i arises from R

(k)
i by adding a new last column and a new last row (if it is not empty).144

We now introduce variational characterizations based on the space K(k)
× (A, r(0)).145

3.1. QFOM. Quadratic FOM imposes a Galerkin condition using K(k)
× (A, r(0)).146

DEFINITION 3.4. The k-th quadratic FOM (“QFOM”) iterate x(k)qfom is defined variation-147

ally through148

(3.3) x
(k)
qfom ∈ x(0) +K(k)

× (A, r(0)), b−Ax(k)qfom ⊥ K(k)
(×)(A, r

(0)).

The columns of the matrix149

V
(k)
× =

[
V

(k)
1 0

0 V
(k)
2

]

form an orthonormal basis of K(k)
× (A, r(0)). Defining the reduced model H(k)

× of A as150

(3.4) H
(k)
× = (V

(k)
× )∗AV (k)

× =

[
(V

(k)
1 )∗A11V

(k)
1 (V

(k)
1 )∗A12V

(k)
2

(V
(k)
2 )∗A21V

(k)
1 (V

(k)
2 )∗A22V

(k)
2

]

we see that if H(k)
× is nonsingular, the QFOM iterate x(k)qfom according to Definition 3.4 exists151

and can be represented as152

(3.5) x
(k)
qfom = x(0) + V

(k)
× (H

(k)
× )−1(V

(k)
× )∗r(0).

Instead of (2.2) we now have153

(3.6) (V
(k)
× )∗r(0) =

[
‖r(0)1 ‖e

d
(k)
1

1

‖r(0)2 ‖e
d
(k)
2

1

]
, where r(0) =

[
r
(0)
1

r
(0)
2

]
.
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If H(k)
× is singular, the k-th QFOM iterate does not exist. We will show in section 4 that154

computing x
(k)
qfom costs k matrix-vector multiplications with A plus additional arithmetic155

operations of order O(k3). The cost is therefore the same as for standard FOM in terms of156

matrix-vector multiplications, and the additional cost is also of the same order (though with a157

larger constant).158

3.2. Analysis of QFOM. The following theorem summarizes some basic properties of159

QFOM.160

Recall that the grade of a vector v with respect to a square matrix A is the first in-161

dex g(v) for which K(g(v))(A, v) = K(g(v)+1)(A, v). We know (see [14], e.g.) that then162

K(g(v))(A, v) = K(g(v)+i)(A, v) for all i ≥ 0 and that A−1v ∈ K(g(v))(A, v), provided A is163

nonsingular.164

THEOREM 3.5. Let A be nonsingular. Then165

(i) [Finite termination] There exists an index kmax ≤ g(r(0)) such that A−1r(0) ∈166

K(kmax)
× (A, r(0)), and if H(kmax)

× is nonsingular, x(kmax)
qfom exists and x(kmax)

qfom = A−1b.167

(ii) [Quadratic numerical range property] The inclusion W 2(H
(k)
× ) ⊆W 2(A) holds for168

k = 1, . . . , kmax, where the 2× 2 block structure of H(k)
× is given in (3.4).169

(iii) [Existence] If 0 6∈W 2(A), then x(k)qfom exists for k = 1, . . . , kmax, i.e. H×k is nonsin-170

gular for all k = 1, . . . , kmax.171

Proof. To show (i), let g be the grade of r(0) w.r.t. A and let kmax ≤ g be the smallest172

index k for which K(g)(A, r(0)) ⊆ K(k)
× (A, r(0)). Since A is nonsingular, there exists y∗ ∈173

K(kmax)
× (A, r(0)) with Ay∗ = r(0), i.e. y∗ = A−1r(0). As a consequence, x∗ = A−1b =174

x(0) + y∗ ∈ x(0) + K(kmax)
× (A, r(0)) satisfies the variational characterization (3.3) from175

Definition 3.4 just as x(kmax)
qfom does. If H(kmax)

× is nonsingular there is exactly one vector from176

x(0) +K(kmax)
× (A, r(0)) which satisfies (3.3) which gives x(kmax)

qfom = x∗.177

Part (ii) follows directly from Lemma 3.3. Finally, part (iii) is an immediate consequence178

of part (ii) and the spectral enclosure property stated as Lemma 3.2(iii).179

More far-reaching results seem to be difficult to obtain. In particular, the absence of a180

polynomial interpolation property—which we discuss in the sequel—makes it impossible to181

follow established concepts from standard Krylov subspace theory.182

The FOM iterates satisfy a polynomial interpolation property: We know that (H(k))−1 =183

q(H(k)) where q is the polynomial of degree at most k − 1 which interpolates the function184

z → z−1 on the eigenvalues in the Hermite sense, i.e. up to the j − 1st deriviative if the185

multiplicity of the eigenvalue in the minimal polynomial is j; see [4]. We have that186

V (k)(H(k))−1(V (k))∗r(0) = V (k)q(H(k))(V (k))∗r(0) = q(A)r(0),

where the last, important equality holds because V (k)(V (k))∗ represents the orthogonal187

projector on Km(A, r(0)), thus implying that for all powers j = 0, . . . , k − 1 we have188

V (k)(H(k))j(V (k))∗r(0) = V (k)((V (k))∗AV (k))j(V (k))∗r(0) = Ajr(0). As a consequence189

(3.7) x
(k)
fom = x(0) + q(A)r(0).

Since Ĥ(k) differs from H(k) only in its last column, the same argument as above shows190

that an analogue of (3.7) holds for the GMRES iterates, where now q interpolates on the191

spectrum of Ĥ(k). This interpolation property is very helpful in the analysis of the FOM192

and GMRES method, but there is no analog for QFOM. Indeed, while we can express193

(H
(k)
× )−1 as a polynomial q of degree at most d(k)1 + d

(k)
2 − 1 ≤ 2k − 1 in H(k)

× , the matrix194
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V
(k)
× (V

(k)
× )∗ is an orthogonal projector on K(k)

× (A, r(0)) which contains K(k)(A, r(0)) but195

not necessarily the higher powers Air(0) for i ≥ k. Therefore, we cannot conclude that196

(V
(k)
× )(H

(k)
× )i(V

(k)
× )∗r(0) = (V

(k)
× )((V

(k)
× )∗AV (k)

× )i(V
(k)
× )∗r(0) would be equal to Air(0)197

for i ≥ k, and therefore, since the degree of the polyonomial q is likely to be larger than k − 1198

don’t get V (k)
× q(H

(k)
× )(V

(k)
× )∗r(0) = q(A)r(0).199

To finish this section, we look at the very extreme case in which W 2(A) consists of200

just one or two points, and we show that in this case QFOM obtains the solution after just201

one iteration in a larger number of cases than standard FOM or GMRES does. So assume202

W 2(A) = {λ1, λ2}, where λ1 = λ2 is allowed.203

LEMMA 3.6. Let n1, n2 ≥ 2. W 2(A) = {λ1, λ2} iff204

(3.8) A =

[
λ1I A12

A21 λ2I

]
, where A12 = 0 or A21 = 0,

(up to a permutation of λ1, λ2 on the diagonal).205

Proof. For xi ∈ Cni , ‖xi‖ = 1, i = 1, 2 denote206

α = x∗1A11x1, β = x∗1A12x2, γ = x∗2A21x1, δ = x∗2A22x2.

Then λ ∈W 2(A) iff207

(3.9) (λ− α)(λ− δ)− βγ = 0

for α, β, γ, δ associated with such x1, x2. Now, if A is of the form (3.8), then βγ = 0, α = λ1208

and δ = λ2, which immediately gives that (3.8) is sufficient to get W 2(A) = {λ1, λ2}.209

To prove necessity, assume W 2(A) = {λ1, λ2}. Since W (Aii) ⊆ W 2(A) for i = 1, 2210

by Lemma 3.2(iv) and since the numerical range is convex, this implies W (A11) = {µ1},211

W (A22) = {µ2} with µ1, µ2 ∈ {λ1, λ2}. Consequently A11 = µ1I, A22 = µ2I . For a212

proof by contradiction assume now that both A12 and A21 are nonzero. Then there exist213

normalized vectors x1, x2, y1, y2 such that x∗1A12x2 6= 0 and y∗2A21y1 6= 0. For ε ∈ R,214

consider z1 = x1 + εy1, z2 = x2 + εy2. Then z∗1A12z2 6= 0 for ε 6= 0 small enough and215

z∗2A21z1 = x∗2A21x1 + ε(x∗2A21y1 + y∗2A21x1) + ε2y∗2A21y1.

This quadratic function in ε is nonzero for sufficiently small ε 6= 0. Thus, for ε 6= 0 sufficiently216

small, taking the normalized versions of z1, z2 we get that the corresponding β and γ are both217

nonzero. Consequently the expression218

(λ− µ1)(λ− µ2)− βγ

is nonzero for λ = µ1 ∈W 2(A), but zero at the same time by (3.9). Thus at least one of the219

matrices A12, A21 is zero. It follows that W 2(A) = {µ1, µ2} and consequently µ1 = λ1 and220

µ2 = λ2 up to a permutation of λ1, λ2.221

With these preparations we obtain the following result.222

THEOREM 3.7. Assume that n1, n2 ≥ 2 and 0 /∈ W 2(A) = {λ1, λ2} and consider the223

linear system224

Ax = b.

Without loss of generality we assume that iterations start with the initial guess x(0) = 0. We225

also denote by x∗ = A−1b the solution of the system. Then226

(i) x(1)fom = x∗ if b is an eigenvector of A. In all other cases, x(2)fom = x∗.227
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(ii) x(1)qfom = x∗ if A12b2 is collinear to b1 (or 0). In all other cases, x(2)qfom = x∗.228

Proof. By Lemma 3.6 we know that A has the form229

A =

[
λ1I A12

0 λ2I

]
or A =

[
λ1I 0
A21 λ2I

]
,

and we focus on the first case. The second case can be treated in a completely analogous230

manner. We first note that if λ1 6= λ2, the eigenvectors to the eigenvalue λ1 are of the form231

[ x1
0 ] and the eigenvectors to the eigenvalue λ2 are given by

[
(λ2−λ1)

−1A12x2
x2

]
. If λ1 = λ2, all232

vectors of the form [ x1
x2

] with A12x2 = 0 are eigenvectors. The theorem thus asserts that the233

situations where FOM gets the solution in the first iteration is a true subset of the situations in234

which QFOM obtains the solution in its first iteration.235

To proceed, we observe that the minimal polynomial of A is p(z) = (z − λ1)(z − λ2) in236

all cases except for the case where λ1 = λ2 and A12 = 0, i.e. when A = λ1I with minimal237

polynomial p(z) = (z − λ1). Since x(1)fom ∈ K(1)(A, b), which is spanned by b, FOM obtains238

the solution x∗ in the first iteration exactly in the case where b is an eigenvector of A. If b is239

not an eigenvector of A, then the minimal polynomial is p(z) = (z − λ1)(z − λ2) so that the240

grade of b is 2, and FOM obtains the solution Âğx∗ in its second iteration.241

If b1 6= 0 and b2 6= 0, the first iteration of QFOM obtains x(1)qfom as242

x
(1)
qfom =

[
1
‖b1‖b1 0

0 1
‖b2‖b2

] [
λ1

1
‖b1‖ ‖b2‖b

∗
1A12b2

0 λ2

]−1 [‖b1‖
‖b2‖

]

=

[
1
‖b1‖b1 0

0 1
‖b2‖b2

] [ 1
λ1
− 1
λ1λ2

1
‖b1‖ ‖b2‖b

∗
1A12b2

0 1
λ2

] [
‖b1‖
‖b2‖

]

=

[ 1
λ1

(b1 − 1
λ2

1
‖b1‖2 b1b

∗
1A12b2)

1
λ2
b2

]
,

which is equal to the solution243

x∗ =

[ 1
λ1

(b1 − 1
λ2
A12b2)

1
λ2
b2

]

exactly when the projector 1
‖b1‖2 b1b

∗
1 acts as the identity on A12b2, i.e. when A12b2 is zero244

or collinear to b1. A similar observation holds if b1 = 0 or b2 = 0. In all other cases, by245

Theorem 3.5 we have x(2)qfom = x∗ since the grade of b then equals 2.246

3.3. QGMRES and QQGMRES. In principle, we can proceed in a manner similar to247

QFOM to derive a “quadratic” GMRES method. Variationally, its iterates x(k)qgmr would be248

characterized by249

(3.10) x(k)qgmr ∈ x(0) +K(k)
× (A, r(0)), b−Ax(k)qgmr ⊥ AK(k)

× (A, r(0)),

which is equivalent to minimizing the norm of the residual ‖b − Ax‖ for x ∈ x(0) +250

K
(k)
× (A, r(0)). Thus, as for standard GMRES, we can get x(k)qgmr as x(0) + V

(k)
× ηk where251

ηk solves the least squares problem252

(3.11) ηk = argmin
η∈Cd

(k)
×
‖r(0) −AV (k)

× η‖.
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However, as opposed to standard GMRES, it is not possible to recast this n×d(k)× least squares253

problem into one with a reduced first dimension, since an analogon to the Arnoldi relation254

(2.1) does not hold for the product spaces K(k)
× (A, r(0)). In particular, for x(k) ∈ x(0) +255

K(k)
× (A, r(0)), the residual r(k) = r(0) − Ax(k) need not be contained in K(k+1)

× (A, r(0)).256

This fact prevents approaches based on the variational characterization (3.10) to be realized257

with cost depending exclusively on k and not on n.258

As an alternative, we thus suggest an approach similar to truncated GMRES (see [14],259

e.g.). We project the n× d(k)× least squares problem (3.11) onto a d(k+1)
× × d(k)× least squares260

problem by minimizing, instead of the whole residual ‖b − Ax(k)‖, only its orthogonal261

projection on K(k+1)
× (A, r(0)).262

DEFINITION 3.8. The k-th quadratic quasi GMRES (“QQGMRES”) iterate x(k)qqgmr is the263

solution of the least squares problem264

(3.12) x(k)qqgmr = argmin
x∈x(0)+K(k)

× (A,b)
‖(V (k+1)
× )∗(b−Ax)‖.

Computationally, we have that x(k)qqgmr = x(0) +V
(k)
× ζk, where ζk solves the d(k+1)

× ×d(k)×265

least squares problem266

(3.13) ζk = argmin
ζ∈Cd

(k)
×
‖(V (k+1)
× )∗r(0) − (V

(k+1)
× )∗AV (k)

× ζ‖,

where267

(3.14) H
(k)
× = (V

(k+1)
× )∗AV (k)

× =

[
(V

(k+1)
1 )∗A11V

(k)
1 (V

(k+1)
1 )∗A12V

(k)
2

(V
(k+1)
2 )∗A21V

(k)
1 (V

(k+1)
2 )∗A22V

(k)
2

]

and where the structure of (V ×k+1)∗r(0) is given in (3.6).268

3.4. Analysis of QGMRES and QQGMRES. As for QFOM, there is no polynomial269

interpolation property for QGMRES nor for QQGMRES. We can again present only simple270

first elements of an analysis.271

As solutions to least squares problems, the iterates x(k)qgmr and x(k)qqgmr are always defined.272

They are uniquely defined in case of QGMRES, since AV (k)
× has full rank since V (k)

× has full273

rank. For QQMRES we have274

PROPOSITION 3.9. The matrix H(k)
× from (3.14) has full rank if 0 6∈W 2(A).275

Proof. The matrix H(k)
× is obtained from H

(k)
× by complementing it with two rows, one276

after each block, and H(k)
× is nonsingular by Theorem 3.5(iii). Thus, H(k)

× has full rank277

d
(k)
× = d

(k)
1 + d

(k)
2 .278

QGMRES and QQGMRES also both have a finite termination property.279

PROPOSITION 3.10. Let kmax ≤ g(r(0)) be as in the proof of Theorem 3.5. Then280

x
(kmax)
qgmr = A−1b. Provided H(kmax)

× has full rank, we also have x(kmax)
qqgmr = A−1b.281

Proof. As in the proof of Theorem 3.5, we have that x∗ = A−1b = x(0) + y∗ with282

y∗ = A−1r(0) being contained in K(kmax)
× (A, r(0)). So x∗ satisfies the variational charac-283

terization (3.10) with residual norm 0, and as such it is unique. This implies that x∗ is284

identical to the QGMRES iterate x(kmax)
qgmr . For QQGMRES, we write y∗ ∈ K(kmax)

× (A, r(0))285

as y∗ = V
(k)
× ζ. This ζ is a solution of the least squares problem (3.13), yielding the minimal286

value 0 for the resiudal norm. IfH(kmax)
× has full rank, the solution of the least squares problem287
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(3.13) is unique. And since the QQGMRES iterate x((kmax)
qqgmr is obtained by solving this least288

squares problem, it is equal to x∗.289

Trivially, QGMRES gets iterates x(k)qgmr whose residuals r(k)qgmr are smaller in norm than290

r
(k)
gmres, i.e. the residual of the iterate x(k)gmres of standard GMRES, since QGMRES minimizes291

the residual norm over a larger subspace. Moreover, since QQGMRES minimizes over the292

same subspace as QGMRES, but minimizes the norm of the projection of the residual rather293

than the norm of the residual itself, we also have that ‖r(k)qgmr‖ ≤ ‖r(k)qqgmr‖. Finally, note that294

we cannot expect the relation ‖r(k)qqgmr‖ ≤ ‖r(k)gmres‖ to hold in general.295

4. Algorithmic aspects. An important practical question is how one can compute V (k)
×296

and H(k)
× efficiently and in a stable manner. Interestingly, for the special case where A21 = I297

and A22 = 0, which arises in the linearization of quadratic eigenvalue problems, this question298

has been treated in many papers, and recently the two-level orthogonal Arnoldi method299

has emerged as a cost-efficient and at the same time stable algorithm; see [6, 9, 10]. In300

the following, we describe how the two-level orthogonal Arnoldi method generalizes to301

general 2× 2 block matrices with minor changes. Generalizing the stability analysis is not302

as straightforward, and a detailed analysis is beyond the scope of this paper. The main idea303

is that we refrain from directly computing the orthogonal Arnoldi basis V (k) from (2.1), but304

rather compute/update the orthonormal bases V (k)
1 , V

(k)
2 of its block components while at the305

same time updating H(k)
× .306

Assume that no breakdown occurs and no deflation is necessary. Then we have (see (3.2))307

V (k) =

[
V

(k)
1 R

(k)
1

V
(k)
2 R

(k)
2

]
,

where the V (k)
i have k orthonormal columns, and the R(k)

i ∈ Ck×k are upper triangular. Since308

the columns of V (k) are orthonormal, too, this implies309

(4.1) (R
(k)
1 )∗R(k)

1 + (R
(k)
2 )∗R(k)

2 = (V (k))∗V (k) = I,

showing that the matrix
[
R

(k)
1

R
(k)
2

]
∈ C2k×k also has orthonormal columns. Writing the Arnoldi310

relation (2.1) in terms of the block components gives311

A11V
(k)
1 R

(k)
1 +A12V

(k)
2 R

(k)
2 = V

(k+1)
1 R

(k+1)
1 H(k) =: V

(k+1)
1 H

(k)
1 ,

A21V
(k)
1 R

(k)
1 +A22V

(k)
2 R

(k)
2 = V

(k+1)
2 R

(k+1)
2 H(k) =: V

(k+1)
2 H

(k)
2 ,

(4.2)

where the matrices312

H
(k)
i := R

(k+1)
i H(k) ∈ C(k+1)×k, i = 1, 2,

are upper Hessenberg.313

The relation (4.2) reveals that V (k+1)
i can be obtained as an update of V (k)

i by adding314

a new last column, and H(k)
i as an update of H(k−1)

i by adding a new last column and a315

new last row. Thus, the new column of V (k+1)
i arises from the orthonormalization of the last316

column of Ai1V
(k)
1 R

(k)
1 + Ai2V

(k)
2 R

(k)
2 against all columns of V (k)

i and it is nonzero. The317

upper-Hessenberg matrix H(k)
1 is obtained from H

(k−1)
1 by first adding a new last row of zeros318

and then adding a new last column holding the coefficients from the orthonormalization. To319
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obtain a viable computational scheme, it remains to show that R(k+1)
i as well as H(k) (which320

we need to get the QFOM or QGMRES iterates) can also be obtained from these quantities.321

We do so by establishing how to get them as updates from H(k−1) and R(k)
i , noting that in the322

very first step we have323

R
(1)
i = ‖bi‖, V

(1)
i = bi/‖bi‖, i = 1, 2,

unless bi = 0 in which case we let the corresponding R(1)
i be zero and let V (1)

i be a random324

unitary vector.325

For k > 1 we write

R
(k+1)
i =

[
R

(k)
i r

(k+1)
i

0 ρ
(k+1)
i

]
and H(k) =

[
H(k−1) h(k)

0 η(k)

]
,

where R(k)
i and H(k−1) are known, and the remaining quantities are to be determined. Since326

H
(k)
i equals327

(4.3) R
(k+1)
i H(k) =

[
R

(k)
i H(k−1) R

(k)
i h(k) + η

(k)
i r

(k+1)
i

0 η(k)ρ
(k+1)
i

]
=

[
H

(k−1)
i h

(k)
i

0 η
(k)
i

]
,

it follows, using (4.1), that328

[(R
(k)
1 )∗ 0]H

(k)
1 + [(R

(k)
2 )∗ 0]H

(k)
2 =

(
(R

(k)
1 )∗[R(k)

1 r
(k+1)
1 ] + (R

(k)
2 )∗[R(k)

2 r
(k+1)
2 ]

)
H(k)

= [I 0]H(k) = H(k).

Hence, we see that329

(4.4) h(k) = (R
(k)
1 )∗h(k)1 + (R

(k)
2 )∗h(k)2 ,

which allows for the computation of h(k) from known quantities. Once h(k) is known, (4.3)330

can be used to compute331

r̃
(k+1)
i = η(k)r

(k+1)
i = h

(k)
i −R

(k)
i h(k),

at which point η(k) and the ρ(k)i are the only remaining quantities to be determined. Letting332

η(k) be real valued (and nonnegative) allows its computation in at least two different ways.333

The first is to consider the bottom right entry of (4.1) which gives334

(η(k))2 = ‖η(k)r(k+1)
1 ‖2 + |η(k)ρ(k+1)

1 |2 + ‖η(k)r(k+1)
2 ‖2 + |η(k)ρ(k+1)

2 |2

= ‖r̃(k+1)
1 ‖2 + |η(k)1 |2 + ‖r̃(k+1)

2 ‖2 + |η(k)2 |2.

The second possibility is to determine η(k) from the (k + 1, k + 1) entry of the equality
(H(k))∗H(k) = (H

(k)
1 )∗H(k)

1 + (H
(k)
2 )∗H(k)

2 , which results in

(η(k))2 + ‖h(k)‖2 = ‖h(k)1 ‖2 + |η(k)1 |2 + ‖h(k)2 ‖2 + |η(k)2 |2,

using (4.1). The first method may be preferred, since it guarantees that the computed (η(k))335

is nonnegative, even with roundoff errors. Once η(k) has been determined, we get ρ(k)i as336

ρ
(k)
i = η

(k)
i /η(k) from (4.3). Putting everything together yields the following proposition.337

PROPOSITION 4.1. In iteration k, the quantities V (k+1)
i , R

(k+1)
i and H(k)

i as well as338

H(k) can be obtained from those of iteration k − 1 at cost comparable to one matrix-vector339
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multiplication with A, 2k vector scalings and additions with vectors of length n and additional340

O(k2) arithmetic operations.341

Proof. Computing the last column of V (k)
i R

(k)
i costs k vector scalings and additions with342

vectors of length ni for i = 1, 2, which is comparable to k scalings and additions with vectors343

of length n. Multiplication of these last columns with the Aij in (4.2) amounts to one matrix344

vector multiplication with A. Orthogonalizing the two resulting blocks against all columns of345

V
(i)
k costs again k scalings and additions of vectors of size n1 and n2 which corresponds to346

additional k such operations on vectors of length n. All other necessary updates as described347

before require O(k2) operations.348

In the standard Arnoldi process, when η(k) = 0, we know that we have reached the349

maximum size of the Krylov subspace, i.e. k is equal to the grade of the initial residual r(0),350

and that A−1b is contained in K(k)(A, r(0)). Since by (4.3) we have η(k)i = ρ
(k)
i η(k), i = 1, 2,351

we see that the two-level orthogonal Arnoldi method also stops when η(k) = 0. However, the352

reverse statement need not necessarily be true, i.e. we can have η(k)i = 0 for i = 1, 2 without353

having η(k) = 0. This would represent a serious breakdown of the two-level orthogonal354

Arnoldi process. Of course, exact zeros rarely appear in a numerical computation, but near355

breakdowns should be dealt with appropriately. In our implementation, we simply chose to356

replace a block vector corresponding to some η(k)i ≈ 0 by a vector with just random entries.357

This makes the book-keeping much easier, since then d(k)i = k for all k and i = 1, 2, while358

keeping V (k)
× as a subspace of our approximation space.359

The full algorithm is summarized in Algorithm 4.1. We assume no deflation is necessary360

and no breakdown occurs for simplicity, but we can deal with this in practice in two ways.361

When ṽ(k+1)
i is (numerically) linear dependent, we can either set v(k+1)

i to some random362

vector and set η(k)i to zero, or we can set V (k+1)
i = V

(k)
i and H

(k)
i = [H

(k−1)
i h

(k)
i ].363

The former approach requires less bookkeeping, but the latter approach can safe space and364

time. Another simplification compared to a practical implementation is the use of classical365

Gramm–Schmidt for the orthogonalization, instead of repeated Gram–Schmidt or modified366

Gram–Schmidt. However, the algorithm does show how to avoid unnecessary recomputation367

of quantities. In particular, we avoid recomputing matrix-vector products by updating the368

products W (k)
ij = AijV

(k)
j , Z(k,k)

ij = (V
(k)
i )∗AijV

(k)
j , and Z(k+1,k)

ij = (V
(k+1)
i )∗AijV

(k)
j .369

Since this updating approach requires more memory, it should only be used if that extra370

memory is available, and if matrix-vector products with A are sufficiently expensive.371

From the pseudocode of the algorithm we can determine the computational cost per372

iteration as follows. We count one matrix-vector multiplication with each of the blocks A11,373

A12, A21, and A22, which equals one matrix-vector multiplication with A. Then we have374

an orthogonalization cost of O((n1 + n2)k) = O(nk), which equals the orthogonalization375

cost in the standard Arnoldi process. Updating the Zij costs O(nk) floating-point operations376

per iteration, but does not have an equivalent cost in Arnoldi. The same is true for updating377

the matrices H(k) and R(k+1)
i for i = 1, 2, although the cost is limited to O(k) flops in this378

case. Computing c(k)qfom and d(k)qfom takes O(k3) floating-point operations, while computing the379

approximation x(k)qfom and its residual r(k)qfom require O(nk). Clearly, computing the approxima-380

tion and its residual is expensive, but there is no need to do it in every iteration. For example,381

in a restarted version of the QFOM algorithm, we may decide to compute them only once382

per restart, after the inner loop reaches kmax. When we add everything together, we see that383

QFOM has the same asymptotic cost as FOM, although QFOM does require more memory.384

With minor changes, we can change the code of Algorithm 4.1 to compute the QQGMRES
approximation instead of the QFOM approximation. One downside of QQGMRES is that we
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Algorithm 4.1: Quadratic Krylov
Input: A11, A12, A21, A22, b1, b2, kmax, and τ

1 H(0) = [] and β = (‖b1‖2 + ‖b2‖2)−1/2

2 for i = 1, 2

3 ρ
(1)
i = ‖bi‖/β and v(1)i = bi/ρ

(1)
i

4 H
(0)
i = [], R(1)

i = [ρ
(1)
i ], and V (1)

i = [v
(1)
i ]

5 for k = 1 to kmax

6 for i = 1, 2 /* Update matrix products. */
7 for j = 1, 2

8 w
(k)
ij = Aijv

(k)
j

9 W
(k)
ij = [W

(k−1)
ij w

(k)
ij ]

10 Z
(k,k)
ij = [Z

(k,k−1)
ij (V

(k)
i )∗w(k)

ij ]

11 for i = 1, 2 /* Update V
(k+1)
i and H

(k)
i . */

12 ṽ
(k+1)
i = W

(k)
i1 (R

(k)
1 e(k)) +W

(k)
i2 (R

(k)
2 e(k))

13 h
(k)
i = (V

(k)
i )∗ṽ(k+1)

i

14 η
(k)
i = ‖ṽ(k+1)

i − V (k)
i h

(k)
h ‖

15 v
(k+1)
i = (ṽ

(k+1)
i − V (k)

i h
(k)
h )/η

(k)
i

16 V
(k+1)
i = [V

(k)
i v

(k+1)
i ] and H(k)

i =
[
H

(k−1)
i h

(k)
i

0T η
(k)
i

]

17 for j = 1, 2

18 Z
(k+1,k)
ij = [Z

(k,k)
ij ; (v

(k+1)
i )∗W (k)

ij ]

/* Update H(k) and R
(k+1)
i . */

19 h(k) = (R
(k)
1 )∗h(k)1 + (R

(k)
2 )∗h(k)2

20 for i = 1, 2

21 r̃
(k+1)
i = h

(k)
i −R

(k)
i h(k)

22 η(k) = (‖r̃(k+1)
i ‖2 + |η(k)1 |2 + ‖r̃(k+1)

i ‖2 + |η(k)2 |2)1/2

23 for i = 1, 2

24 r
(k+1)
i = r̃

(k+1)
i /η(k), ρ(k+1)

i = η
(k)
i /η(k), and R(k+1)

i =
[
R

(k)
i r

(k+1)
i

0 ρ
(k+1)
i

]

/* Compute the approximation x
(k)
qfom and the residual

r
(k)
qfom. */

25 H
(k)
× =

[
Z

(k,k)
11 Z

(k,k)
12

Z
(k,k)
21 Z

(k,k)
22

]
and b(k)× = β

[
R

(k)
1 e(k)

R
(k)
2 e(k)

]

26
[
c
(k)
qfom

d
(k)
qfom

]
= (H

(k)
× )−1b(k)× and x(k)qfom =

[
V

(k)
1 c

(k)
qfom

V
(k)
2 d

(k)
qfom

]

27 r
(k)
qfom =

[
b1−W (k)

11 c
(k)
qfom−W

(k)
12 d

(k)
qfom

b2−W (k)
21 c

(k)
qfom−W

(k)
22 d

(k)
qfom

]

28 if ‖r(k)qfom‖ ≤ τβ then
29 return x(k)qfom

30 return x(kmax)
qfom
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cannot guarantee that its approximation, or even the residual norm of its approximation, is
better than that of GMRES. We can remedy this problem by interpolating between the GMRES
and the QQGMRES solution. Let r(k)gmres = b−Ax(k)gmres and r(k)qqgmr = b−Ax(k)qqgmr, then

‖b−A(αx(k)gmres + (1− α)x(k)qqgmr)‖2 = ‖αr(k)gmres + (1− α)r(k)qqgmr‖2

= α2‖r(k)gmres − r(k)qqgmr‖2 + 2α(<{(r(k)gmres)∗r(k)qqgmr} − ‖r(k)qqgmr‖2) + ‖r(k)qqgmr‖2.

Hence, the residual norm of the interpolated approximation is minimized for

αopt =
‖r(k)qqgmr‖2 −<{(r(k)gmres)∗r(k)qqgmr}

‖r(k)gmres − r(k)qqgmr‖2

if r(k)gmres 6= r
(k)
qqgmr. The residual norm of the approximation x(k)opt corresponding αopt is

‖ropt‖2 =
‖r(k)gmres‖2‖r(k)qqgmr‖2 −<{(r(k)gmres)∗r(k)qqgmr}2

‖r(k)gmres − r(k)qqgmr‖2
,

and satisfies ‖ropt‖ ≤ min{‖rgmres‖, ‖rqqgmr‖}.385

5. Numerical experiments.386

5.1. The Hain-Lüst operator. Hain-Lüst operators appear in magnetohydrodynamics387

[3], and their spectral properties, in particular their quadratic numerical range, were investi-388

gated in a series of papers, e.g., in [7, 11, 12]. We consider the Hain-Lüst operator389

A =

[
−L I
I q

]

acting on L2([0, 1]) × L2([0, 1]) where L = d2/dx2 is the Laplace operator on [0, 1] with390

Dirichlet boundary conditions, I is the identity operator, and q denotes multiplication by the391

function q(x) = −3 + 2e2πix. The domain of A is D(A) = (H2([0, 1]) ∩ H1
0 ([0, 1])) ×392

L2([0, 1]).393

We consider a discretization of A, approximating function values at an equispaced grid394

for both blocks, i.e. we take xj = jh, j = 0, . . . , N + 1, h = 1/(N + 1) and obtain, using395

finite differences, the discretized Hain-Lüst operator396

A =

[
1
h2L I
I Q

]
∈ C2N×2N ,

with L = tridiag(−1, 2,−1) ∈ CN×N and Q = −3I + 2 diag(e2hπi, . . . , e2hNπi) ∈ CN×N ,397

see [12] for more details.398

Note that 1
h2L is Hermitian and thatQ is normal, so the numerical ranges of these diagonal399

blocks of A satisfy400

W1 := W ( 1
h2L) = 1

h2 [2− 2 cos(πh), 2 + 2 cos(πh)] =: [αmin(h), αmax(h)],

W2 := W (Q) = conv{−3 + 2e2πhj , j = 1, . . . , N} ⊆ C(−3, 2),

where C(−3, 2) is the circle with center −3 and radius 2. Since both numerical ranges401

W1 and W2 are contained in the convex set W (A) we see that 0 ∈ W (A). The following402

argumentation shows that, with the possible exception of very large values for h, we have403

0 6∈W 2(A): Any λ ∈W 2(A) satisfies404

(5.1) (λ− x∗1 1
h2Lx1)(λ− x∗2Qx2) = (x∗1x2)(x∗2x1),
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FIG. 5.1. Convergence plots for the discretized Hain-Lüst operator: N = 1023 (left) and N = 16 383 (right),

for some x1, x2 with ‖x1‖ = ‖x2‖ = 1. Assume that λ lies within the strip a < <(λ) < b405

with −1 < a < 0 and 0 < b < αmin(h). Then we have d(λ,W1) > αmin(h)− b as well as406

d(λ,W2) > a+ 1 for the distances of λ to the sets W1,W2. Taking absolute values in (5.1)407

and using the bound |x∗1x2| ≤ 1 we thus see that λ from this strip cannot be in W 2(A) if408

(a + 1)(αmin(h) − b) > 1. This is the case, for example, if b < αmin(h) − 2 and a > − 1
2 .409

Note that limh→0 αmin(h) = π2.410

In all our examples we chose the right hand side b as b = Ae where e is the vector of411

all ones, and our initial guess is always x0 = 0. Figure 5.1 shows convergence plots for412

FOM, GMRES, QFOM, QQGMRES and the interpolated QQGMRES method as described413

at the end of Section 4. The figure displays the relative norm of the residual as a function414

of the invested matrix-vector multiplications. In the left part, we took N = 1 023, the right415

part is for N = 16 383. We restarted every method after m = 50 iterations to avoid that416

the arithmetic work and the storage related with the (two-level) Arnoldi process becomes417

too expensive. Note that the figure displays the residual norms at the end of each cycle only,418

which makes the convergence of some of the methods, in particular FOM, to appear smoother419

than it actually is. Two major observations can be made: On the one side, the FOM type420

methods yield significantly larger residals than the GMRES type methods. For N = 1 023, the421

“quadratic methods” still make progress in the later cycles while their “non-quadratic” counter422

parts then basically stagnate. There is no such difference visible for dimension N = 16 383;423

convergence for all methods is very slow.424

In a second numerical experiment we therefore report results of a geometric multigrid425

method as an attempt to cope with large condition numbers. For a given discretization with426

step size h = 1/(N + 1) with N + 1 = 2k we construct the system at the next coarser level427

to be the discretizaton with hc = 2h = 1/(Nc + 1) with Nc + 1 = 2k−1. We stop descending428

the grid hierarchy when we reach N = 7, where we solve the corresponding 14× 14 system429

by explicit inversion of A. Interpolation between two levels of the grid hierarchy is done using430

standard linear interpolation from the neighboring grid points; restriction is the standard adjoint431

of interpolation. For the smoothing iteration we test one or five steps of standard GMRES432

versus one or two steps of QFOM. We always performed V-cycles with pre-smoothing. The433

left part of Figure 5.2 gives the resulting convergence plots for the multigrid methods for434

N = 1 023, the right part for N = 16 383.435

From these plots it is apparent that QFOM is a well-working smoothing iteration for the436

multigrid method, whereas GMRES is not, even not for larger numbers of smoothing steps per437
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FIG. 5.2. Convergence plots for geometric multigrid for the Hain-Lüst operator for QFOM and GMRES
smoothing and different numbers of smoothing steps ν; N = 1023 (left), N = 16 383 (right).
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FIG. 5.3. Number of multigrid iterations needed to reduce the initial residual by a factor of 10−12 as a function
of N

iteration. As a complement to these results, Figure 5.3 illustrates the mesh size independence438

of the convergence behavior of the multigrid method with QFOM smoothing. It shows that the439

number of iterations required to reduce the initial residual by a factor of 10−12 is basically440

independent of h.441

5.2. The Schwinger model. Our second example is the Schwinger model in two di-442

mensions that arises in computations of quantum electrodynamics (QED). QED models the443

interactions of electrons and photons and is oftentimes used as a simpler model problem for444

the 4-dimensional problems of quantum chromodynamics (QCD). It is a quantum field theory,445

meaning that physical quantities arise as expected values of solutions of partial differential446

equations whose coefficients are coming from the quantum background field, i.e., they are447

stochastic quantities obeying a given distribution. The Schwinger model is a discretization of448

the Dirac equation449

Dψ = (σ1 ⊗ (∂x +Ax) + σ2 ⊗ (∂y +Ay))ψ = ϕ,
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FIG. 5.4. Naming conventions in the Schwinger model.

on a regular, 2-dimensional N ×N cartesian lattice, where the spin structure is encoded by450

the Pauli matrices451

σ1 =

(
1

1

)
, σ2 =

(
i

−i

)
and σ3 =

(
1
−1

)

and Aµ encodes the background gauge field.∗ In the Schwinger model we have Aµ ∈ R.452

Using a central covariant finite difference discretization for the first order derivatives, and453

introducing a scaled second-order stabilization term one writes the action of the discretized454

operator D ∈ C2N2×2N2

of the Schwinger model at any lattice site x on a spinor ψ(x) ∈ C2
455

as456

(5.2)

(Dψ) (x) = (m0 + 2)ψ(x)

+
1

2

∑

µ∈{x,y}
((I − σµ)⊗ Uµ(x))ψ(x+ eµ)

+
1

2

∑

µ∈{x,y}

(
(I + σµ)⊗ Uµ(x− eµ)

)
ψ(x− eµ).





In here Uµ correspond to a discrete version of the stochastically varying gauge field with457

Uµ(x) ∈ C, |Uµ(x)| = 1 for all x, and m0 sets the mass of the simulated theory. The naming458

convention of this formula is depicted in Figure 5.4, and we refer to the textbook [2], e.g., for459

further details.460

The canonical 2× 2 block structure of the Schwinger model matrix arises from the spin461

structure: We reorder the unknowns in ψ according to spin, i.e., we take462

ψ =

(
ψ1

ψ2

)
,

where ψ1 ∈ CN2

collects all the spin 1 components ψ1(x) of ψ(x) =
[
ψ1(x)
ψ2(x)

]
∈ C2 at all463

lattice sites, and similarly for ψ2. Then the reordered discretized Schwinger model matrix,464

∗The σ-matrices are generators of a Clifford algebra and arise in the derivation of the Dirac equation from the
Klein-Gordon equation. They give rise to the internal spin (i.e., angular momentum) degrees of freedom of the fields
ψ [2]. Note that although our discussion is limited to this particular choice of generators, all the results that follow
extend to any other of the admissible choices of the σ-matrices.
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acting on the reordered vector
(
ψ1(x)
ψ2(x)

)
, is given as465

D =

(
A B
−B∗ A

)
.

Here, the diagonal blocks A correspond to the discretized second order stabilization term
and are thus called gauge Laplace operators, while the off-diagonal blocks B correspond to
the central finite covariant difference discretization of the Dirac equation. Using (5.2) we see
that the action of the blocks A and B on a vector ψ1, ψ2 is given as

(Aψ1)(x) = (m0 + 2)ψ1(x)− 1

2

∑

µ∈{x,y}
Uµ(x)ψ1(x+ eµ)

− 1

2

∑

µ∈{x,y}
Uµ(x− eµ)ψ1(x− eµ),

(Bψ2)(x) = − 1

2
(Ux(x)ψ1(x+ ex) + i · Uy(x)ψ1(x+ ey))

+
1

2

(
Ux(x− ex)ψ1(x− ex)− i · Uy(x− ey)ψ1(x− ey)

)
.

From this we see that the mass parameter m0 induces a shift by a multiple of the identity in A,466

which we make explicit in writing A = A0 +m0I .467

In our tests we consider the “symmetrized” operator Q := Σ3D with Σ3 = σ3 ⊗ IN ·N .468

Due to A∗ = A,B∗ = −B this operator469

Q =

(
A B
B∗ −A

)
=

(
A0 +m0I B

B∗ −A0 −m0I

)

is hermitian, but indefinite.470

The quadratic range W2(Q) has two connected components to the left and right of 0 on471

the real axis, provided m0 > −αmin, the smallest eigenvalue of A0. This can be seen as472

follows: Let x1, x2 ∈ CN×N be two normalized vectors and let473

(
x∗1Ax1 x∗1Bx2
x∗2B

∗x1 −x∗2Ax2

)
=:

(
α1 β

β −α2

)
.

Then any eigenvalue λ of this matrix satisfies474

(λ− α1)(λ+ α2) = |β|2
=⇒ (<(λ)− α1)(<(λ) + α2) = |β|2 + =(λ)2.

The last equality cannot be satisfied if −α2 < <(λ) < α1. In particular, if m0 > −αmin, the475

equality cannot be satisfied if |<(λ)| < m0 + αmin, since α1, α2 ≥ m0 + αmin.476

For our tests we use a gauge configuration obtained by a heatbath algorithm excluding the477

fermionic action, which results in the smallest eigenvalue αmin of A0 being approximately478

0.11. Figure 5.5 reports results for two different choices of m0. As in the first example we479

perform a restart after every 50 iterations. The first choice for m0 is m0 = −0.1 > −αmin,480

so that the quadratic range indeed has two connected components with a gap around 0. The481

second is m0 = −0.22 < −αmin, so that W 2(Q) consists of only one component containing482

0. The figure shows that a marked improvement can be observed for the “quadratic” methods if483

the quadratic range consists indeed of two different connected components (left plot), whereas484
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this advantage is lost to a large extent for the second choice for m0, where W 2(Q) does not485

indicate a spectral gap (right plot). In this case, the system is also severely ill-conditioned,486

so that the convergence of all methods considered is much slower. We also note that for this487

example and for both choices for m0, interpolated QQGMRES does not differ substantially488

from standard GMRES. Without showing the corresponding convergence plots, let us at489

least mention that when decreasing m0 from −0.1 to −0.22 we observe for a long time a490

convergence behavior very similar to that for the largest value −0.1, even when m0 is already491

smaller than −αmin.492
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FIG. 5.5. Convergence plots for the Schwinger model, αmin ≈ 0.11,N = 1282. Left: m0 = −0.1 > −αmin,
right: m0 = −0.22 < −αmin.
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