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BLOCK KRYLOV SUBSPACE METHODS FOR FUNCTIONS OF1

MATRICES II: MODIFIED BLOCK FOM⇤2

ANDREAS FROMMER† , KATHRYN LUND‡ , AND DANIEL B. SZYLD§3

Abstract. We analyze an expansion of the generalized block Krylov subspace framework of4
[Electron. Trans. Numer. Anal., 47 (2017), pp. 100-126]. This expansion allows the use of low-rank5
modifications of the matrix projected onto the block Krylov subspace and contains, as special cases,6
the block GMRES method and the new block Radau-Arnoldi method. Within this general setting, we7
present results that extend the interpolation property from the non-block case to a matrix polynomial8
interpolation property for the block case, and we relate the eigenvalues of the projected matrix to the9
latent roots of these matrix polynomials. Some error bounds for these modified block FOM methods10
for solving linear system are presented. We then show how cospatial residuals can be preserved in the11
case of families of shifted linear block systems. This result is used to derive computationally practical12
restarted algorithms for block Krylov approximations that compute the action of a matrix function13
on a set of several vectors simultaneously. We prove some error bounds and present numerical results14
showing that two modifications of FOM, the block harmonic and the block Radau-Arnoldi methods15
for matrix functions, can significantly improve the convergence behavior.16

Key words. generalized block Krylov methods, block FOM, block GMRES, restarts, families17
of shifted linear systems, multiple right-hand sides, matrix polynomials, matrix functions18
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1. Introduction and motivation. Block Krylov subspace methods for solving20

s simultaneous linear systems21

AX = B, where A 2 Cn⇥n, B = [b1| · · · |bs] 2 Cn⇥s
22

bear the potential to be faster than methods that treat individually the systems23

Axi = bi, i = 1, . . . , s, for two reasons. One is that a block Krylov subspace contains24

more information than the individual subspaces, so that one can extract more accu-25

rate approximations for the same total investment of matrix-vector multiplications.26

Furthermore, the multiplication of A with a block vector B can be implemented more27

e�ciently than s individual matrix-vector multiplications, requiring less memory ac-28

cess and, in a parallel environment, allowing for batch communication.29

In this work, we present and analyze a general framework for block Krylov sub-30

space methods. We build on the approach introduced in [22], which allows for the31

treatment of various variants of block Krylov subspaces via corresponding block in-32

ner products and the related block Arnoldi process to generate a block orthogonal33

basis. We extend the block FOM method considered in [22] to a general framework34

for extracting approximations from the block Krylov subspace. These approxima-35

tions can all be expressed via a matrix polynomial, and we completely characterize36

the situations in which a block Krylov subspace approximation satisfies an important37

matrix polynomial exactness property, thus generalizing [21, Lemmas 1.3 and 1.4] for38

the single right-hand side case. For the “classical” block inner product, our analysis39
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2 A. FROMMER, K. LUND, D.B. SZYLD

includes the block FOM method [42], a special case of which is block CG [38], the40

block GMRES method [26, 51], and the block Radau-Arnoldi method, which arises41

from the corresponding method for the single right-hand side case for Hermitian ma-42

trices from [21]. For a di↵erent block inner product, our analysis also comprises the43

respective so-called global methods; see, e.g., [1, 6, 9, 29, 32, 36, 40, 53].44

We then turn to methods for families of shifted linear systems with multiple45

right-hand sides, i.e.,46

(A + tI)X(t) = B. (1.1)47

Such problems arise, e.g., in lattice quantum chromodynamics [18, 50], hydraulic48

tomography [3, 44], the PageRank problem [52], and in the evaluation of matrix func-49

tions when approximated via a rational function– for example, the matrix exponential50

for time-dependent di↵erential equations [2, 5, 27, 31]. An important requirement in51

this context is that the block Krylov subspaces be independent of t and thus have52

to be built only once for all t. A prominent challenge is to preserve this fact when53

having to perform restarts, meaning that we must require that the column spans of54

the block residuals do not depend on the shift t. We present a complete analysis of55

how to obtain this kind of “shift invariance” and discuss to what extent known results56

on convergence in the presence of restarts for the non-block case (s = 1) carry over57

to s > 1.58

The analysis and implementation of approximations to (1.1) are crucial in devel-59

oping block Krylov methods for matrix functions, which is the last topic we address:60

the approximation of f(A)B. Here f(A) 2 Cn⇥n is defined for f : D ✓ C ! C such61

that D contains the spectrum of A and f is `� 1 times di↵erentiable at every eigen-62

value with multiplicity ` in the minimal polynomial of A. When f can be expressed in63

integral form as f(z) =
R
�

g(t)
z�t dt, then we can equivalently define f(A) as the integral64

over the resolvent (A � tI)�1, i.e.,65

f(A) :=

Z

�

g(t)(A � tI)�1 dt.66

Furthermore, we use the results for shifted linear systems to derive a representation of67

the error which is mandatory to e�ciently perform restarts. Our analysis allows for68

di↵erent block Krylov subspace extraction approaches corresponding to block FOM,69

block GMRES, block Radau-Arnoldi, etc. We consider in some detail the special case70

where f is a Stieltjes function, i.e., f(z) =
R1
0

(z � t)�1 dµ(t).71

The paper is organized as follows. In Section 2, we summarize the generalized72

block Krylov framework, consider how block iterates and residuals can be expressed73

using matrix polynomials, and develop the polynomial exactness result, which is im-74

portant for the subsequent sections. We also prove a result on the latent roots of75

the residual matrix polynomial, generalizing results from [16, 46]. Section 3 sum-76

marizes how known and new block Krylov subspace methods fit into our general77

framework, with a particular emphasis on block GMRES and the new block Radau-78

Arnoldi method. In Section 4 we treat restarts for families of shifted linear systems79

and matrix functions. Illustrative numerical experiments are presented in Section 580

before we finish with our conclusions.81

2. The block Krylov framework. In this section we recall the concept of82

a general block inner product introduced in [22] and its relation to block Krylov83

subspaces and matrix polynomials. New results include the polynomial exactness84

property, Theorem 2.7, and a result on the latent roots of the matrix polynomial85

expressing the block residual, Theorem 2.9.86

This manuscript is for review purposes only.
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 3

2.1. General block Krylov subspaces and the block Arnoldi process. To87

clarify our notation, let Im denote the m⇥m identity matrix. Then the kth canonical88

unit vector bem
k 2 Cm is the kth column of Im, and the kth canonical block unit vector89

is90

bEms⇥s
k := bem

k ⌦ Is = [0 · · · 0 Is 0 · · · 0]T

" k

2 Cms⇥s,91

where ⌦ denotes the Kronecker product. We drop the superscripts for bEms⇥s
k when92

the dimensions are clear from context, and likewise for the identity, in which case we93

may drop the subscript.94

Let S be a ⇤-subalgebra of Cs⇥s with identity; that is, with S, T 2 S, ↵ 2 C,95

we have ↵S + T, ST, S⇤ 2 S, along with I 2 S. General block inner products as96

introduced in [22] take their values in S.97

Definition 2.1. A mapping hh·, ·iiS from Cn⇥s⇥Cn⇥s to S is called a block inner98

product onto S if it satisfies the following conditions for all X, Y , Z 2 Cn⇥s and99

C 2 S:100

(i) S-linearity: hhX + Y , ZCiiS = hhX, ZiiSC + hhY , ZiiSC;101

(ii) symmetry: hhX, Y iiS = hhY , Xii⇤S;102

(iii) definiteness: hhX, XiiS is positive definite if X has full rank, and hhX, XiiS = 0103

if and only if X = 0.104

Note that since ↵I 2 S for all ↵ 2 C, (i) implies in particular that105

hhX, ↵Y iiS = ↵hhX, Y iiS, hh↵X, Y iiS = ↵hhX, Y iiS.106

Definition 2.2. A mapping N which maps all X 2 Cn⇥s with full rank on a107

matrix N(X) 2 S is called a scaling quotient if for all such X, there exists Y 2 Cn⇥s108

such that X = Y N(X) and hhY , Y iiS = Is.109

Let us mention that since hhX, XiiS = N(X)⇤N(X) is positive definite, and if X110

has full rank, then the scaling quotient N(X) is nonsingular.111

These definitions give rise to block-based notions of orthogonality and normaliza-112

tion.113

Definition 2.3. (i) X, Y 2 Cn⇥s are block orthogonal, if hhX, Y iiS = 0s.114

(ii) X 2 Cn⇥s is block normalized if N(X) = Is.115

(iii) {Xj}m
j=1 ⇢ Cn⇥s is block orthonormal if hhXi, XjiiS = �ijIs.116

We say that a set of vectors {Xj}m
j=1 ⇢ Cn⇥s S-spans a space K ✓ Cn⇥s and117

write K = spanS{Xj}m
j=1, if K is given as118

spanS{Xj}m
j=1 :=

n mX

j=1

Xj�j : �j 2 S for j = 1, . . . , m
o

.119

The set {Xj}m
j=1 constitutes a block orthonormal basis for K = spanS{Xj}m

j=1 if it120

is block orthonormal. Clearly, S-spans are vector subspaces of Cn⇥s, and we define121

the mth block Krylov subspace for A and B (with respect to S) as122

K S
m(A, B) := spanS{B, AB, . . . , Am�1B}.123

Table 2.1 summarizes combinations of S, hh·, ·iiS, and N that lead to established124

block Krylov subspaces. Note that {↵Is : ↵ 2 C} and Cs⇥s are the smallest and125

This manuscript is for review purposes only.
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4 A. FROMMER, K. LUND, D.B. SZYLD

S hhX, Y iiS N(X)

classical (Cl) Cs⇥s X⇤Y
R, where X = QR, and
Q 2 Cn⇥s, Q⇤Q = Is

global (Gl) CIs
1
s trace (X⇤Y )Is

1p
s
kXkF Is

loop-interchange (Li) Is ⌦ C diag(X⇤Y ) diag([kx1k2 , . . . , kxsk2])

Table 2.1: Choices of S, hh·, ·iiS, and N in common block paradigms. Here the diag
operator works in two ways: when the argument is a matrix, it returns a diagonal
matrix taken from the diagonal of the input; when the argument is a vector, it builds
a diagonal matrix whose diagonal entries are those of the vector.

Algorithm 2.1 Block Arnoldi process
If A is block self-adjoint, the process simplifies to block Lanczos, since in line 6 we would

then have that Hj,k = 0 for j < k � 1 and Hk�1,k = H⇤
k,k�1.

1: Given: A, B, S, hh·, ·iiS, N , m
2: Compute B = N(B) and V1 = BB�1

3: for k = 1, . . . , m do
4: Compute W = AVk

5: for j = 1, . . . , k do
6: Hj,k = hhVj , W iiS
7: W = W � VjHj,k

8: end for
9: Compute Hk+1,k = N(W ) and Vk+1 = WH�1

k+1,k

10: end for
11: return B, Vm = [V1| . . . |Vm], Hm = (Hj,k)m

j,k=1, Vm+1, and Hm+1,m

largest possible ⇤-subalgebras with identity, respectively. It then holds, with obvious126

notation, that for any ⇤-algebra S with identity127

SGl ✓ S, SLi ✓ SCl and K Gl
m (A, B) ✓ K S

m(A, B), K Li
m (A, B) ✓ K Cl

m (A, B), (2.1)128

a fact which will be useful later when establishing comparison results.129

Algorithm 2.1 formulates the block generalization of the Arnold process. It130

computes a block orthonormal basis {Vj}m
j=1 ⇢ Cn⇥s of the block Krylov subspace131

K S
m(A, B). It simplifies to the block Lanczos processs if A is block self-adjoint with132

respect to hh·, ·iiS according to the following definition; see also [22].133

Definition 2.4. A 2 Cn⇥n is block self-adjoint if for all X, Y 2 Cn⇥s,134

hhAX, Y iiS = hhX, AY iiS.135

Note that if A = A⇤, then A is block self-adjoint for the three block inner products136

shown in Table 2.1.137

We always assume that Algorithm 2.1 runs to completion without breaking down,138

i.e., that we obtain139

(i) a block orthonormal basis {Vk}m+1
k=1 ⇢ Cn⇥s, such that each Vk has full rank140

and K S
m(A, B) = spanS{Vk}m

k=1, and141

(ii) a block upper Hessenberg matrix Hm 2 Sm⇥m and Hm+1,m 2 S,142

all satisfying the block Arnoldi relation143

AVm = VmHm + Vm+1Hm+1,m
bE⇤

m = Vm+1Hm, (2.2)144

This manuscript is for review purposes only.
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 5

where Vm = [V1| . . . |Vm] 2 Cn⇥ms, and145

Hm =

2
6664

H1,1 H1,2 . . . H1,m

H2,1 H2,2 . . . H2,m

. . .
. . .

...
Hm,m�1 Hm,m

3
7775 , Hm :=

 Hm

Hm+1,m
bE⇤

m+1

�
.146

By construction, the block Arnoldi vectors Vi S-span the block Krylov subspace147

K S
m(A, B). As in the scalar case, any element X 2 K S

m(A, B) has a unique represen-148

tation in terms of these block Arnoldi vectors in the sense that in the representation149

X =
mX

i=1

Vi�i, �i 2 S, (2.3)150

the “block coe�cients” �i are unique.151

Proposition 2.5. The representation (2.3) is unique.152

Proof. Taking block inner products with the basis vectors Vj gives153

hhVj , XiiS = �j , j = 1, . . . , m.154

2.2. Matrix polynomials over S. We denote as Pm(S) the space of all polyomi-155

als P of degree at most m and with coe�cients �k 2 S, P : C ! S, P (z) =
Pm

k=0 zk�k,156

and use the notation P (A) � B introduced in [33] to denote157

P (A) � B :=
mX

k=0

AkB�k. (2.4)158

When regarded as a mapping from C to S, P is often termed a �-matrix [11, 12,159

13, 24, 34]. In (2.4), P is considered a mapping from Cn⇥n ⇥ Cn⇥s to Cn⇥s. This160

interpretation allows for the characterization of block Krylov subspaces using matrix161

polynomials as162

K S
m(A, B) = {Q(A) � B : Q 2 Pm�1(S)}.163

As a consequence, we have the following characterization of the block residual,164

which will be used later.165

Remark 2.6. For any block vector X = Q(A)�B 2 K S
m(A, B), the corresponding166

residual R = B � AX can be written as R = Pm(A) � B, with Pm 2 Pm(S) and167

Pm(0) = I. Indeed, Pm(z) = I � zQ(z), for some Q 2 Pm�1(S).168

For a given element Xm = Q(A) � B of K S
m(A, B), Q 2 Pm�1(S), a natural169

question is how this element is represented in terms of the block Arnoldi basis Vm,170

i.e., as Xm = Vm⌅m, for block coe�cients ⌅m. The polynomial exactness property171

formulated in the following theorem shows that ⌅m arises from evaluating Q on the172

block Hessenberg matrix Hm or a modification thereof that changes only the last block173

column. The theorem will be useful in the context of restarts for families of shifted174

linear systems and for matrix functions in Section 4. We use the notation introduced175

with the block Arnoldi process, Algorithm 2.1.176

This manuscript is for review purposes only.
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6 A. FROMMER, K. LUND, D.B. SZYLD

Theorem 2.7.177178

(i) For any matrix of the form Hm + M, where M = M bE⇤
m, M 2 Sm, we have179

Q(A) � B = VmQ(Hm + M) � bE1B for all Q 2 Pm�1(S). (2.5)180

(ii) If (2.5) holds for some matrix M 2 Sm⇥m, then M = M bE⇤
m with M 2 Sm.181

Proof. To prove (i), observe first that Hm+M bE⇤
m is still block upper Hessenberg.182

So in its j-th power all block subdiagonals beyond the j-th are zero. In particular,183

for the bottom left block,184

bE⇤
m(Hm + M bE⇤

m)j bE1 = 0, j = 1, . . . , m � 2. (2.6)185

To obtain (2.5) it is su�cient to show that186

AjB = Vm(Hm + M)j bE1B, j = 0, . . . , m � 1. (2.7)187

This certainly holds for j = 0, since A0B = B = V1B = Vm
bE1B. If (2.7) holds for188

some j 2 {0, . . . , m � 2}, then Aj+1B = AAjB = AVm(Hm + M)j bE1B. Using the189

block Arnoldi relation (2.2) we then obtain that190

Aj+1B = (VmHm + Vm+1Hm+1,m
bE⇤

m)(Hm + M)j bE1B191

= VmHm(Hm + M)j bE1B + Vm+1Hm+1,m
bE⇤

m(Hm + M)j bE1B. (2.8)192193

Herein, the second term vanishes due to (2.6) and, again due to (2.6), M(Hm +194

M)j bE1B = M bE⇤
m(Hm + M)j bE1B = 0 for j = 1, . . . , m � 2. Thus, equation (2.8)195

becomes196

Aj+1B = VmHm(Hm + M)j bE1B197

= VmHm(Hm + M)j bE1B + VmM(Hm + M)j bE1B198

= Vm(Hm + M)j+1 bE1B,199200

completing the proof for (i). Note that by taking M = 0, (i) gives that201

AjB = VmHj
m

bE1B, j = 0, . . . , m � 1. (2.9)202

To prove (ii), by assumption we now have that in particular203

AjB = Vm(Hm + M)j bE1B, j = 0, . . . , m � 1,204

as well as, by (2.9),205

AjB = VmHj
m

bE1B, j = 0, . . . , m � 1,206

giving207

VmHj
m

bE1B = Vm(Hm + M)j bE1B, j = 0, . . . , m � 1.208

Since Vm has full rank and B is nonsingular, all this implies that Hj
m

bE1 = (Hm +209

M)j bE1 for j = 0, . . . , m � 1, yielding210

Hj
m

bE1 = (Hm + M)Hj�1
m

bE1, for j = 1, . . . , m � 1.211

This manuscript is for review purposes only.
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 7

We thus have212

MHj�1
m

bE1 = 0 for j = 1, . . . , m � 1. (2.10)213

For j = 1 (2.10) directly gives that M bE1 = 0. Inductively now, assume that M bE` = 0214

for ` = 0, . . . , j for some j � 0, j < m � 1. The relation (2.10), with j � 1 replaced215

by j, can be written as216

0 = MHj
m

bE1 = M
mX

`=1

bE`
bE⇤
` Hj

m
bE1 = M

j+1X

`=1

bE`
bE⇤
` Hj

m
bE1,217

with the last equality holding since all block subdiagonals beyond the j +1-st are zero218

in Hj
m. With the inductive assumption we thus obtain M bEj+1

bE⇤
j+1Hj

m
bE1 = 0. We219

now note that220
bE⇤

j+1Hj
m

bE1 = Hj+1,jHj,j�1 · · · H2,1,221

and herein all factors H`+1,` are nonsingular, since they arise as scaling quotients in222

the block Arnoldi process, Algorithm 2.1. This relation implies that M bEj+1 = 0,223

thus completing the inductive proof of (ii).224

Theorem 2.7 generalizes to blocks what is known in the case s = 1; see, e.g., [21,225

Lemmas 1.3 and 1.4], as well as [4, 14, 19, 39, 41, 50].226

The block FOM approximation Xm for a block linear system AX = B is given227

as (see [42])228

X fom
m := VmH�1

m V⇤
mB = VmH�1

m
bE1B.229

Note that X fom
m is indeed in K S

m�1(A, B), because H�1
m can be expressed as a poly-230

nomial in Hm and is thus in Sm⇥m.231

More generally, we can consider a whole family of approximations from232

K S
m�1(A, B) of the form233

Xm = Vm(Hm + M)�1 bE1B, where M = M bE⇤
m.234

We will see in Section 3 that, for example, block GMRES approximations are con-235

tained in this family. In light of Theorem 2.7, such types of Xm satisfy236

Xm = Vm(Hm + M)�1 bE1B = Qm�1(A) � B = VmQm�1(Hm + M) � bE1B (2.11)237

for some Qm�1 2 Pm�1(S). This observation motivates the following definition.238

Definition 2.8. Given H 2 Sm⇥m, ⌅ 2 Sm, and f : D ⇢ C ! C such that239

f(H) 2 Sm⇥m is defined, we say that Q 2 Pm�1(S) interpolates f on the pair (H,⌅)240

if241

Q(H) �⌅ = f(H)⌅.242

With the block Vandermonde matrix243

W := [⌅ | H⌅ | · · · | Hm�1⌅] 2 Sm⇥m, (2.12)244

we see that Q(z) =
Pm�1

j=0 zj�j interpolates f on the pair (H,⌅) if and only if245

� = [�0| · · · |�m�1]
T 2 Sm solves246

W� = f(H)⌅. (2.13)247

Consequently, an interpolating polynomial exists if W is nonsingular.248

This manuscript is for review purposes only.
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8 A. FROMMER, K. LUND, D.B. SZYLD

The matrix polynmial Qm�1 from (2.11) interpolates the function f : z ! z�1249

on the pair (Hm + M, bE1B) since Vm has full rank. Our last contribution in this250

section relates the eigenvalues of Hm + M to the latent roots of the “residual matrix251

polynomial” Pm(z) = I � zQm�1(z) 2 Pm(S). Recall that the latent roots of a252

matrix polynomial P are the zeros of the function det(P (z)) : z 2 C ! C; see, e.g.,253

[13, 24, 34].254

Theorem 2.9. Let H 2 Sm⇥m be nonsingular and let ⌅ 2 Sm be such that the255

block Vandermonde matrix (2.12) is nonsingular. Let Qm�1 2 Pm�1(S) be the matrix256

polynomial interpolating f(z) = z�1 on the pair (H,⌅) and let �(z) be the character-257

istic polynomial of H. Then the residual matrix polynomial Pm(z) = I � zQm�1(z) =258 Pm
i=0 zi⌥i satisfies259

det(Pm(z)) = �(z)/�(0). (2.14)260

In particular, the latent roots of Pm coincide with the eigenvalues of H including261

(algebraic) multiplicity.262

Proof. We first prove the result under the following additional assumptions:263

(i) H is diagonizable and all its eigenvalues are distinct, i.e., we have264

H = X⇤X�1,265

where ⇤ = diag(�1, . . . , �ms), �i 6= �j for i 6= j, X 2 Cms⇥ms nonsingular.266

(ii) All rows in X�1⌅ are non-zero.267

With these assumptions, let x⇤
j 6= 0 denote row j of X�1; i.e., x⇤

j is a left eigenvector268

for the eigenvalue �j of H:269

x⇤
jH = �jx

⇤
j .270

From 0 = Pm(H) � ⌅ =
Pm

i=0 Hi⌅⌥i, we obtain, multiplying with x⇤
j from the left,271

that272

0 =
mX

i=0

�i
jx

⇤
j⌅⌥i = x⇤

j⌅
mX

i=0

�i
j⌥i = (x⇤

j⌅) · Pm(�j).273

By assumption (ii), x⇤
j⌅ 6= 0, so it is a left eigenvector to the eigenvalue 0 of Pm(�j);274

i.e., det(Pm(�j)) = 0. Since this holds for all j and det(P (z)) is a polynomial of275

degree ms, we have det(P (z)) = c
Qms

j=1(z��j), and since det(P (0)) = det(I) = 1 we276

have c =
Qms

j=1(��j)
�1 = 1

�(0) .277

We now turn to the situation where (i) and (ii) do not necessarily hold and use an278

argument based on continuity. Let H = T J T �1 with J being the Jordan canonical279

form of H. Then J is a bidiagonal matrix with the eigenvalues �i of H on the280

diagonal according to their algebraic multiplicity. Let ✏0 > 0 denote the minimal281

distance between the distinct eigenvalues282

✏0 := min{|�i � �j | : �i 6= �j},283

and let284

J✏ = J +
✏

2
diag

✓
1

1
,
1

2
, . . . ,

1

ms

�◆
.285

Then for 0 < ✏  ✏0 the diagonal elements of J✏, which are the eigenvalues �
(✏)
i of J✏,286

are all di↵erent. For all such ✏ we therefore have that H✏ = T J✏T �1 is diagonizable287

with ms pairwise di↵erent eigenvalues,288

H✏ = X✏⇤✏X�1
✏ , ⇤✏ = diag(�

(✏)
i ),289

This manuscript is for review purposes only.
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 9

and that kH✏ � Hk2  ✏
2kT k2kT �1k2. For � > 0 consider now X✏,� = X✏ +290

�[ Is| . . . | Is]
⇤⌅⇤. Then291

X✏,�⌅ = X✏⌅ + �[ Is| . . . | Is]
⇤⌅⇤⌅.292

The block vector ⌅ has full rank since the Vandermonde matrix W from (2.12) is293

nonsingular. So for all i the i-th row e⇤i⌅
⇤⌅ of ⌅⇤⌅ is non-zero. Therefore, for294

0  � < �1(✏) := min
i

{ke⇤i X✏⌅k2 : e⇤i X✏⌅ 6= 0}/ max
i

{ke⇤i⌅⇤⌅k2},295

we have that all rows in X✏,�⌅ are non-zero. Choose � > 0 small enough such that,296

in addition,297

H✏,� := X✏,�⇤✏X�1
✏,�298

satisfies kH✏,� �H✏k2  ✏. Then, since kH✏,� �Hk2  ✏
2kT k2kT �1k2 + ✏, the Vander-299

monde matrix300

[⌅|H✏,�⌅| . . . Hm�1
✏,� ⌅]301

is nonsingular if ✏ is small enough. For such ✏, let Q✏,�
m�1 be the polynomial interpolat-302

ing f(z) = z�1 on the pair (H✏,�,⌅). By part (i), the corresponding residual matrix303

polynomial P ✏,�
m (z) = I � zQ✏,�

m�1(z) satisfies304

det(P ✏,�
m (z)) = �✏,�(z)/�✏,�(0), (2.15)305

where �✏,�(z) is the characteristic polynomial of H✏,�. As solutions of the306

system (2.13), the matrix coe�cients of Q✏,�
m�1(z) and thus the coe�cients of the307

polynomial det(P ✏,�
m (z)) depend continuously on the entries of H✏,�, as well as the308

coe�cients of the characteristic polynomial �✏,�(z). By continuity then, and since309

kH � H✏,�k2  ✏
2kT k2kT �1k2 + ✏, taking the limit ✏ ! 0 in (2.15) gives (2.14).310

If H = Hm + M with M = M bE⇤
m, M 2 Sm, where Hm arises from the Arnoldi311

process with starting block vector B, the block Vandermonde matrix (2.12) is312

[ bE1B | (Hm + M) bE1B | · · · | (Hm + M)m�1 bE1B].313

This matrix is block upper triangular, with
Qi�1

j=1 Hi�j+1,i�jB as its i-th diagonal314

block. Since we assume the Arnoldi process runs without breakdown until step m, all315

matrices Hj+1,j exist and are nonsingular, since they are the scaling quotients from316

the block Arnoldi process. Therefore, the block Vandermonde matrix is nonsingular,317

and we obtain the following corollary to Theorem 2.9.318

Corollary 2.10. Let H = Hm + M 2 Sm⇥m, M = M bE⇤
m with M 2 Sm be319

nonsingular. Let Qm�1 2 Pm�1(S) interpolate f(z) = z�1 on the pair (Hm+M, bE1B)320

and let �(z) be the characteristic polynomial of Hm + M. Then the residual matrix321

polynomial Pm(z) = I � zQm�1(z) satisfies det(Pm(z)) = �(z)/�(0).322

Parts of this corollary have been observed in various constellations in the litera-323

ture before. For example, for block GMRES–where the assumptions on H are fulfilled,324

as we will see in section 3.2–it was shown in [46, Theorem 3.3] that for the classical325

block inner product, the latent roots are exactly the roots of the characteristic poly-326

nomial; see also [45]. This result does not, however, contain the result on the algebraic327

multiplicities. The same result for the global inner product was formulated in [16,328

Theorem 3.1].329
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10 A. FROMMER, K. LUND, D.B. SZYLD

3. Block FOM and its low-rank modifications. Given a block inner prod-330

uct hh·, ·iiS and the output of the corresponding block Arnoldi process, the common331

property of the block Krylov subspace methods to be discussed in this section is that332

they take their m-th iterate, approximating the solution of the block linear system333

AX = B, as334

Xm = Vm(Hm + M bE⇤
m)�1 bE1B with M 2 Sm. (3.1)335

Theorem 2.7 shows that these are iterates for which the defining polynomial Xm =336

Qm�1(A)�B is the one interpolating (Hm+M bE⇤
m)�1 on the pair (Hm+M bE⇤

m, bE1B).337

3.1. Block FOM. The m-th block FOM approximation X fom
m is variationally338

characterized by the Galerkin condition339

hhB � AX fom
m , Y iiS = 0 for all Y 2 K S

m(A, B). (3.2)340

As was shown in [22], (3.2) is satisfied if we take M = 0 in (3.1),341

X fom
m = VmH�1

m
bE1B,342

and the residual Rfom
m = B � AX fom

m is cospatial to the next block Arnoldi vector,343

Rfom
m = Vm+1Cm with Cm 2 S; (3.3)344

see also Theorem 4.1 below. If Hm is singular, the block FOM approximation does345

not exist. To state results on convergence, we introduce the scalar inner product h·, ·iS346

hX, Y iS := trace hhY , XiiS. (3.4)347

The properties of hh·, ·iiS from Definition 2.1 guarantee that (3.4) is a true inner product348

on Cn⇥s. Naturally, it induces the norm349

kXkS := hX, Xi1/2
S .350

For the classical, global, and loop-interchange paradigms from Table 2.1, k·kS is the351

familiar Frobenius norm in all three cases.352

As a complement to the notion of block self-adjointness, we use the following353

notion of positive definiteness.354

Definition 3.1. A 2 Cn⇥n is block positive definite with respect to the block355

inner product hh·, ·iiS if hhAX, XiiS is Hermitian and positive definite for all full rank356

X 2 Cn⇥s and positive semidefinite and non-zero for all rank-deficient X 6= 0.357

We immediately obtain the following: if A is block self-adjoint with respect to358

hh·, ·iiS according to Definition 2.4, then A is also self-adjoint with respect to h·, ·iS.359

If, in addition, A is block positive definite according to Definition 3.1, then A is also360

positive definite with respect to h·, ·iS.361

If A is block self-adjoint and block positive definite with respect to hh·, ·iiS, the362

block FOM iterates can be computed e�ciently using short recurrences. The resulting363

block CG method was first described and analyzed in [38] for the classical paradigm.364

Several authors have considered various aspects of numerical stability and strategies365

for “deflation” corresponding to the case that a block Lanczos vector becomes numer-366

ically rank-deficient; for a thorough discussion of the literature, see [7]. The following367

convergence result for a general block inner product hh·, ·iiS was basically proven in368

[22, Theorem 3.7]. It uses the scalar A inner product hX, Y iA-S := hAX, Y iS and369

transports the standard CG error bound to the general block case.370

This manuscript is for review purposes only.
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 11

Theorem 3.2. Let A 2 Cn⇥n be self-adjoint and positive definite with respect to371

h·, ·iS. Then the error Efom
m := X fom

m � X⇤, where X⇤ = A�1B, satisfies372

��Efom
m

��
A-S = min

X2K S
m(A,B)

kX⇤ � XkA-S  ⇠m kBkA-S , (3.5)373

with374

⇠m :=
2

cm + c�m
, c :=

p
� 1p
 + 1

,  :=
�max

�min
, (3.6)375

and �min and �max denoting the smallest and largest eigenvalues of A, respectively.376

We note that the theorem applies in particular for a matrix A which is block377

self-adjoint and block positive definite with respect to the block inner product hh·, ·iiS.378

If A is Hermitian and positive definite with respect to the standard inner prod-379

uct, it is also block self-adjoint and block positive definite with respect to the block380

inner products corresponding to the classical, the global and the loop-interchanged381

paradigm from Table 2.1. Moreover, all three paradigms yield the same induced scalar382

inner product hV , W iS = trace V ⇤W , termed the Frobenius inner product. The corre-383

sponding common A-norm h·, ·iA-S is kXkA-F := trace X⇤AX. Given the nestedness384

of the block Krylov subspaces (2.1), the optimality property of Theorem 3.2 yields385

the following additional result.386

Theorem 3.3. Let EGl
m , ELi

m and ECl
m denote the errors of the m-th block FOM387

approximations corresponding to the global, loop-interchange, and classical paradigms,388

respectively. Moreover, let hh·, ·iiS be a block inner product for which the corresponding389

scalar inner product satisfies hV , W iS = trace V ⇤W and denote ES
m the error of the390

corresponding block FOM iterate. Then391

��ECl
m

��
A-F


��ELi

m

��
A-F

,
��ES

m

��
A-F


��EGl

m

��
A-F

.392

3.2. Block GMRES. The m-th block GMRES iterate from K S
m(A, B) is de-393

fined via the Petrov-Galerkin condition394

hhB � AXgmr
m , AY iiS = 0 for all Y 2 K S

m(A, B). (3.7)395

This is equivalent to requiring396

hB � AXgmr
m , AY iS = 0 for all Y 2 K S

m(A, B)397

for the derived scalar inner product h·, ·iS. Since for any Y 2 K S
m(A, B) we have that398

hB � A(Xgmr
m � Y ), B � A(Xgmr

m � Y )iS399

= hB � AXgmr
m , B � AXgmr

m iS � hB � AXgmr
m , AY iS400

� hAY , B � AXgmr
m iS + hAY , AY iS401

= hB � AXgmr
m , B � AXgmr

m iS + hAY , AY iS,402

we then see that the Petrov-Galerkin condition (3.7) is equivalent to the block GMRES403

iterate minimizing the S-norm of the block residual. That is,404

Xgmr
m = argminX2K S

m(A,B) kB � AXkS . (3.8)405

For the classical paradigm, this equivalence has been observed in [46, Section 1], and406

for the global paradigm in [29, Section 3.2] and [16, Section 2.2].407
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12 A. FROMMER, K. LUND, D.B. SZYLD

Representing Xgmr
m = Vm⌅gmr with the coe�cient block vector ⌅gmr

m 2 Sm, the408

block Arnoldi relation (2.2) and the h·, ·iS-orthogonality of the block Arnoldi basis409

show that the minimizing property (3.8) turns into a least squares problem for ⌅gmr
m ,410

expressed via the Frobenius norm k·kF:411

⌅gmr = argmin⌅2Sm k bE1B � Hm⌅kF .412

This is the approach of choice for obtaining Xgmr
m computationally. On the more413

theoretical side, it is of interest to see that the block GMRES iterates can be regarded414

as modified block FOM iterates in the sense of (3.1).415

Theorem 3.4. Assume that Hm is nonsingular. Then the m-th block GMRES416

iterate Xgmr
m is given as Xgmr

m = Vm⌅gmr, where417

⌅gmr = (Hm + Mgmr)�1 bE1B with Mgmr = H�⇤
m

bEmH⇤
m+1,mHm+1,m

bE⇤
m. (3.9)418

Proof. We have to show that the Petrov-Galerkin condition (3.7) is satisfied, i.e.419

hhAVm⇥, B � AVm⌅gmriiS = 0 for all ⇥ 2 Sm.420

From the block Arnoldi relation (2.2), we have for any ⇥ 2 Sm421

hhAVm⇥, B � AVm⌅gmriiS = hhVm+1Hm⇥, Vm+1( bE1B � Hm⌅gmr)iiS.422

Using square brackets [·]i to denote the i-th block component bE⇤
i V 2 S of a block423

vector V 2 Sm, the basic properties of hh·, ·iiS from Definition 2.1 and the block424

orthonormality of the block Arnoldi vectors Vi give425

hhVm+1Hm⇥, Vm+1( bE1B � Hm⌅gmr)iiS426

= hhPm+1
i=1 Vi[Hm⇥]i,

Pm+1
i=1 Vi[ bE1B � Hm⌅gmr]iiiS427

=
Pm+1

i=1 [Hm⇥]⇤i [ bE1B � Hm⌅gmr]i428

= ⇥⇤H⇤
m( bE1B � Hm⌅gmr

m )429

= ⇥⇤(H⇤
m

bE1B � H⇤
mHm⌅gmr

m ).430

So the proof is accomplished once we have shown that H⇤
mHm⌅gmr

m = H⇤
m

bE1B. To431

this end, note that432

H⇤
m = [H⇤

m | bEmH⇤
m+1,m], (3.10)433

which gives H⇤
mHm = H⇤

mHm + bEmH⇤
m+1,mHm+1,m

bE⇤
m. Together with (3.9) this434

shows435

H⇤
mHm⌅gmr

m = (H⇤
mHm + bEmH⇤

m+1,mHm+1,m
bE⇤

m)⌅gmr
m = H⇤

m
bE(m)

1 B436

= H⇤
m

bE(m+1)
1 B, (superscripts in bE1 indicate the dimension)437438

where the last equality follows from (3.10).439

Recall that a matrix A 2 Cn⇥n is termed positive real, if Re(x⇤Ax) > 0, for440

all x 6= 0, and that this concept trivially extends to other inner products than the441

standard one. A positive real matrix has all of its, possibly non-real, eigenvalues in442

C+, the open right half-plane. For the non-block case (s = 1), an important result443

from [15] (see also [43] and the improvement in [48]), states that if A is positive444
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 13

real, the norm of the m-th GMRES residual is reduced by at least a constant factor445

independent of m. Our next theorem shows that this extends to the general block446

case. It uses the following quantities which are well defined and positive if A is positive447

real with respect to h·, ·iS:448

� := min

⇢
Re(hV , AV iS)

hV , V iS
: V 2 Cn⇥s, V 6= 0

�
,449

⌫max := max

⇢ hAV , AV iS
hV , V iS

: V 2 Cn⇥s, V 6= 0

�
.450

451

Theorem 3.5. Assume that A is positive real with respect to the inner product452

h·, ·iS. Then for m = 1, 2, . . . the block GMRES residuals Rgmr
m = B �AXgmr

m satisfy453

kRgmr
m kS 

✓
1 � �2

⌫max

◆1/2 ��Rgmr
m�1

��
S . (3.11)454

Proof. Let Pm�1 2 Pm�1(S) be the residual matrix polynomial for Rgmr
m�1, i.e.,455

Rgmr
m�1 = Pm�1(A) � B, and let R be the matrix polynomial R(z) = I � z(↵I),456

where ↵ 2 R is yet to be determined. Because the matrix coe�cients in R are scalar457

multiplies of the identity, we have (RQ)(A) � V = R(A) · (Q(A) � V ) for all matrix458

polynomials Q and all V 2 Sm. Since by (3.8) the S-norm of Rm = Pm(A) � B is459

minimal over all polynomials P in Pm(S) with P (0) = I, we have that460

kRgmr
m kS  k(RPm�1)(A) � BkS = kR(A) · (Pm�1(A) � B)kS  kR(A)kS

��Rgmr
m�1

��
S .461

Morover, for all V 2 Cn⇥s462

hR(A)V , R(A)V iS = hV � ↵AV , V � ↵AV iS463

= hV , V iS � 2↵Re(hV , AV iS) + ↵2hAV , AV iS,464465

which gives466

kR(A)k2
S  1 � 2↵� + ↵2⌫max.467

With ↵ = �/⌫max minimizing the right-hand side, the inequality (3.11) follows.468

As a side remark, let us note that A is positive real with respect to h·, ·iS if it is469

block positive real according to the following definition.470

Definition 3.6. A 2 Cn⇥n is called block positive real if hhAV , V iiS 2 S is471

positive real with respect to the standard inner product for all full rank block vectors472

V and has at least one eigenvalue with positive real part for all V 6= 0.473

If A is positive real with respect to the standard inner product, then it is also pos-474

itive real for the block inner products corresponding to the global, loop-interchange,475

and classical paradigms and, more generally, to any derived scalar inner product h·, ·iS476

for which hV , W iS = trace V ⇤W . Thus, Theorem 3.5 applies particularly to that477

case. Since k·kS then reduces to the Frobenius norm in all these cases, the minimiza-478

tion property (3.8) together with the nestedness of the respective Krylov subspaces479

gives the following analogue to what was formulated in Theorem 3.3 for block FOM.480

See also [16, Theorem 2.4].481

Theorem 3.7. Let RGl
m , RLi

m, and RCl
m denote the residuals of the m-th block482

GMRES approximations corresponding to the global, loop-interchange, and classical483

paradigms, respectively. Moreover, let hh·, ·iiS be a further block inner product for which484

This manuscript is for review purposes only.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

14 A. FROMMER, K. LUND, D.B. SZYLD

the corresponding scalar inner product satisfies hV , W iS = trace V ⇤W , and let RS
m485

denote the corresponding block GMRES residual. Then486

��RCl
m

��
F


��RLi

m

��
F

,
��RS

m

��
F


��RGl

m

��
F

.487

3.3. Block Radau-Arnoldi. The idea of the Radau-Arnoldi approach is to488

modify the FOM approach by imposing an additional constraint on the residual that489

is also independent of B. This can be useful, for instance, as a means to use previously490

built-up information such as in the case of restarts and thus in particular when dealing491

with matrix functions; see Section 4. Here, we describe the method for linear systems.1492

We need the polynomials bPj�1 2 Pj�1(S), j = 1, . . . m, which describe the block493

Arnoldi vectors Vj , j = 1, . . . , m, as494

Vj = bPj�1(A) � B, j = 1, . . . , m.495

The block Arnoldi relation (2.2), AVm = Vm+1Hm, directly turns into a correspond-496

ing relation for these matrix polynomials497

z ·
h
bP0(z) | · · · | bPm�1(z)

i
=

h
bP0(z) | · · · | bPm(z)

i
· Hm, (3.12)498

with bP0 = B�1.499

We now fix an S 2 S, and require the residual Rra
m of the m-th block Radau-500

Arnoldi approximation Xra
m 2 K S

m(A, B) to be hh·, ·iiS-orthogonal to K S
m�1(A, B)501

(rather than to K S
m(A, B) as in block FOM),502

Rra
m = P ra

m (A) � B ?hh·,·iiS
K S

m�1(A, B), (3.13)503

and ask P ra
m (z) 2 Pm(S) to satisfy the additional constraints504

P ra
m (S) = 0s and P ra

m (0) = Is. (3.14)505

A matrix polynomial P is regular if there exists some z 2 C such that506

det(P (z)) 6= 0. Residual polynomials are always regular, since they are the iden-507

tity at 0. A matrix eS 2 Cs⇥s is called a solvent for Pm 2 Pm(Cs⇥s) if Pm(eS) = 0.508

It is known for regular matrix polynomials that then Pm can be factored as Pm(z) =509

(zI� eS)P
eS

m�1(z) with P
eS

m�1 2 Pm�1(Cs⇥s); see [34, Theorem 3.3] and its corollary, as510

well as [37, Theorem 2.17]. The constraints (3.14) can thus equivalently be formulated511

as512

P ra
m 2 PS

m(S), (3.15)513

where514

PS

m(S) := {P 2 Pm(S) : P (z) = (zI�S)PS
m�1(z), PS

m�1 2 Pm�1(S) and P (0) = Is}.515

The following theorem shows that, just as for block GMRES, the block Radau-516

Arnoldi iterates are modified block FOM iterates in the sense of (3.1).517

1The method was introduced for the non-block case in [21] as the “Radau-Lanczos” method,
wherein the name reflects the relationship between Gauß-Radau quadrature and the Lanczos pro-
cedure for symmetric matrices; see [25, Chapter 6]. Inspired by these earlier results, we use the
name “Radau-Arnoldi” here but note that this more general modification lacks the connection with
Gauß quadrature unless the matrix A is symmetric; see, e.g., [25, Chapter 8] or [35, Section 5.6.2].

This manuscript is for review purposes only.
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 15

Theorem 3.8. Assume that bPm�1(S) is nonsingular and define518

ePm(z) = bPm(z) � bPm�1(z)�, where � = bPm�1(S)�1 bPm(S) 2 S. (3.16)519

Moreover, assume that Hm + Mra is nonsingular, where Mra = bEm(�Hm+1,m) bE⇤
m.520

Then we have521

Xra
m = Vm(Hm + Mra)�1 bE1B (3.17)522

and523

Rra
m = B � AXra

m = P ra
m (A) � B with P ra

m = ePm · ePm(0)�1, (3.18)524

where ePm(0) is nonsingular.525

Proof. If we use ePm instead of bPm, an analogue of the block Arnoldi relation526

(3.12) holds if we add �Hm+1,m to the (m, m) block entry of Hm,527

z ·
h
bP0 | · · · | bPm�1

i
=

h
bP0 | · · · | bPm�1 | ePm

i
· eHm,528

with529

eHm =

"
eHm

Hm+1,m
bE⇤

m

#
, eHm = Hm + Mra.530

Evaluating all matrix polynomials on (A, B) with the � operator induces a block531

Arnoldi-type relation for the block vectors Vj+1 = bPj(A) � B, j = 0, . . . , m � 1, and532

the block vector eVm+1 = ePm(A) � B:533

A
⇥
V1 | · · · | Vm

⇤
=

h
V1 | · · · | Vm | eVm+1

i
eHm.534

With this we see that for Xra
m defined in (3.17) we have535

B � AXra
m = B � AVm

eH�1
m

bE1B536

= B � [Vm | eVm+1]

"
eHm

Hm+1,m
bE⇤

m

#
eH�1

m
bE1B537

= B � Vm
bE1B � eVm+1(Hm+1,m

bE⇤
m

eH�1
m

bE1B)538

= � eVm+1(Hm+1,m
bE⇤

m
eH�1

m
bE1B),539540

showing that Rra
m = P ra

m (A)�B with P ra
m = ePm · eCm and eCm = �Hm+1,m

bE⇤
m

eH�1
m

bE1B.541

To see that eCm = ePm(0)�1, or, equivalently, that P ra
m (0) = I, we first note that by542

Remark 2.6, there exists Pm 2 Pm(S), with Pm(0) = I such that Rra
m = Pm(A) � B.543

Now, the uniqueness property stated in Proposition 2.5, reformulated in terms of544

matrix polynomials, shows that when expressed as
Pm

i=0
bPi�i, the two polynomials545

P ra
m and Pm have identical coe�cients �i. In particular, their values at 0 coincide,546

thus P ra
m (0) = Pm(0) = I.547

By the block Arnoldi process, the block vectors Vm+1 and Vm are hh·, ·iiS-orthogo-548

nal to K S
m�1(A, B) and so is ePm(A)�B = bPm(A)�B+( bPm�1(A)�B)� = Vm+1+Vm�.549

Moreover, ePm(S) = 0. The scaled version P ra
m = ePm · ePm(0)�1 of ePm then satisfies550

(3.13) as well as (3.14).551
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16 A. FROMMER, K. LUND, D.B. SZYLD

Remark 3.9. Since P ra
m (z) = (zI�S)PS

m�1(z), see (3.15), every eigenvalue of S is a552

latent root of P ra
m , and thus, by Theorem 2.9, is also an eigenvalue of553

Hm + Mra, including algebraic multiplicity. The block Radau-Arnoldi method can554

thus be regarded as a modified block FOM method which prescribes the eigenvalues555

of S as eigenvalues for the modified matrix Hm + Mra.556

It is always possible to compute Mra by evaluating bPm�1(S) and bPm(S) using557

the recurrences (3.12). In the non-block case s = 1, there is a more elegant and stable558

way to obtain Mra, as is described in [25, 21], for the case that A is self-adjoint. An559

analogue for the block case holds if S commutes with bPi(S) for i = 1, . . . , m�1, which560

is the case, e.g., if S is a multiple of the identity. Indeed, then, the polynomial block561

Arnoldi relation (3.12), evaluated at S,562

S ·
h
bP0(S) | · · · | bPm�1(S)

i
=

h
bP0(S) | · · · | bPm(S)

i
· Hm, (3.19)563

can be rewritten as564

h
bP0(S) | · · · | bPm�1(S)

i
(Im ⌦ S) =

h
bP0(S) | · · · | bPm(S)

i
· Hm.565

This gives566

h
bP0(S) | · · · | bPm�1(S)

i
(Hm � Im ⌦ S) = � bPm(S)Hm+1,m

bE⇤
m, (3.20)567

showing that ��1 = bPm(S)�1 bPm�1(S) is the last block entry of the solution X of the568

linear system. Written in transposed form, X(Hm � Im ⌦ S) = Hm+1,m
bE⇤

m, i.e.,569

bPm(S)�1 bPm�1(S) = Hm+1,m
bE⇤

m(Hm � Im ⌦ S)�1 bEm.570

Note that if S does not commute with all the bPi(S), it is not possible to cast (3.12)571

into a block system with a matrix from Sm⇥m and a block right-hand side from Sm.572

If A is block self-adjoint with respect to hh·, ·iiS, the block Radau-Arnoldi method573

simplifies to the block Radau-Lanczos method. Theorems 2.2 and 2.3 in [21] for the574

non-block case induce the following convergence result for block Radau-Lanczos. It575

is formulated using the errors Era
m = A�1B � Xra

m = A�1Rra
m = P ra

m (A) � X⇤ where576

X⇤ = A�1B.577

Theorem 3.10. Assume that A is block self-adjoint with respect to hh·, ·iiS and578

positive definite with respect to h·, ·iS. Let 0 < �min  �max denote the smallest and579

largest eigenvalues of A, respectively, and let S = �Is with � > �max. Finally, let580

A� = A(�I�A)�1 and let h·, ·iA�-S denote the inner product hX, Y iA�-S = hA�X, Y iS581

with associated norm k·kA�-S. Then582

kEra
mkA�-S = min{kPm(A) � X⇤kA�-S : Pm 2 PS

m(S)} (3.21)583

and584

kEra
mkA�-S 

✓
1 � �min

�

◆
⇠m�1 kX⇤kA�-S with ⇠m�1 as in (3.6). (3.22)585
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 17

Proof. Since for any P 2 Pm(S) and X 2 Cn⇥s we have A(P (A) � X) =586

P (A) � (AX), we obtain587

kPm(A) � X⇤k2
A�-S = hA(�I � A)�1Pm(A) � X⇤, Pm(A) � X⇤iS588

= hAPm(A) � X⇤, (�I � A)�1A�1APm(A) � X⇤iS589

= hPm(A) � AX⇤, (�I � A)�1A�1Pm(A) � AX⇤iS590

= hPm(A) � B, (�I � A)�1A�1Pm(A) � BiS.591

Now observe that Pm 2 PS

m(S) can be written as Pm = P ra
m + Tm where Tm =592

Pm � P ra
m satisfies Tm(S) = 0 and Tm(0) = 0, implying Tm(z) = (zI � S)zTS

m�2(z)593

with TS
m�2 2 Pm�2(S). Also note that for any Q 2 Pm(S) and P (z) = (zIs � �I)Q(z)594

we have that P (A)�B = (�In�A) ·(Q(A)�B), an equality which has no counterpart595

if S is not of the form �I. Given this, for any Pm(z) = P ra
m (z) + (zI � �I)zTS

m�2, we596

obtain that597

hPm(A) � B, (�I � A)�1A�1(Pm(A) � B)iS598

= hP ra
m (A) � B, (�I � A)�1A�1(P ra

m (A) � B)iS599

+ hP ra
m (A) � B, (�I � A)�1A�1(�I � A)A(TS

m�2(A) � B)iS600

+ h(�I � A)A(TS
m�2(A) � B), (�I � A)�1A�1[P ra

m (A) � B]iS601

+ h(�I � A)A(TS
m�2(A) � B), (�I � A)�1A�1(�I � A)A(TS

m�2(A) � B)iS.602

Herein, the second summand hP ra
m (A) � B, TS

m�2(A) � BiS vanishes due to the vari-603

ational characterization (3.13) of the block Radau-Arnoldi method, and so does the604

third summand, which is equal to hTS
m�2(A) � B, P ra

m (A) � BiS. Finally, the fourth605

summand equals h(�I �A)A(TS
m�2(A) �B), TS

m�2(A) �BiS and is thus non-negative,606

since (�I �A)A is self-adjoint and positive definite with respect to h·, ·iS. This proves607

(3.21).608

The estimate (3.22) follows from results in [21] and [22]. The proof of Theo-609

rem 2.3 in [21] constructs a scalar polynomial pm(z) of degree m with pm(�) = 0 and610

pm(0) = 1 for which max�2spec(A) |pm(�)| 
�
1 � �min

�

�
⇠m�1. Associating with611

pm(z) =
Pm

i=0 ciz
i the matrix polynomial612

Pm(z) =
mX

i=0

zi · (ciIs) 2 PS

m(S),613

we have that Pm(A)�X⇤ = pm(A)X⇤, and Lemma 3.6 in [22] shows that the operator614

norm kpm(A)kA�-S is given as kpm(A)kA�-S = max�2spec(A) |pm(�)|. Putting things615

together gives (3.22).616

The variational characterization (3.21), together with the nestedness of the re-617

spective block Krylov subspaces, gives the following comparison result in analogy to618

Theorems 3.3 and 3.7.619

Theorem 3.11. Under the assumptions of Theorem 3.10, let EGl
m , ELi

m and ECl
m620

denote the errors of the m-th block Radau-Arnoldi approximations corresponding to621

the global, loop-interchange, and classical paradigms, respectively. Moreover, let hh·, ·iiS622

be a block inner product for which the corresponding scalar inner product satisfies623

hV , W iS = trace V ⇤W and denote ES
m the error of the corresponding block Radau-624

Arnoldi iterate. Then625

��ECl
m

��
A�-S 

��ELi
m

��
A�-S ,

��ES
m

��
A�-S 

��EGl
m

��
A�-S .626
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18 A. FROMMER, K. LUND, D.B. SZYLD

As a last remark we note that a result similar to Theorem 3.10 holds if we take627

0 < � < �min, where A(�I � A)�1 is replaced by A(A � �I)�1, and the factor628

(1 � �min/�) in (3.22) by |1 � �max/�| (which is larger than 1).629

4. Shifted systems and matrix functions. We now turn to the task of com-630

puting solutions for a family of shifted block linear systems631

(A + tI)X(t) = B, t from some finite subset of C, (4.1)632

and the evaluation of a matrix function acting on a block vector633

F = f(A)B.634

The introductions in [47, 49] o↵er a thorough discussion of the literature pertain-635

ing to (4.1). We refer to the book [30] for a general treatment of matrix functions636

and recall that for f : D ⇢ C ! C and A 2 Cn⇥n, the matrix function f(A) 2 Cn⇥n637

is defined if D contains the spectrum of A and f is `� 1 times di↵erentiable at every638

eigenvalue with multiplicity ` in the minimal polynomial of A. Often f(A) can be639

expressed as an integral, and we here concentrate on the case of a Stieltjes function,640

meaning that f that can be written as a Riemann-Stieltjes integral641

f : C \ (�1, 0] ! C, f(z) =

Z 1

0

1

z + t
dµ(t), (4.2)642

where µ is monotonically increasing and nonnegative on [0,1) and
R1
0

1
t+1 dµ(t) < 1.643

Note in particular that f(z) = z�↵ is a Stieltjes function for ↵ 2 (0, 1)[28], and that644

f(A) is defined if A has no eigenvalue in (�1, 0]; see, e.g.,[19]. Given a Stieltjes645

function f , we have that646

f(A)B =

Z 1

0

(A + tI)�1B dµ(t),647

thus establishing the close connection with (4.1). This connection is also present if648

f is holomorphic on a domain D containing the spectrum of A, since by Cauchy’s649

integral theorem we then have for a contour � in D enclosing the spectrum of A that650

f(z) =
1

2⇡i

Z

�

f(t)

z � t
dt ) f(A)B =

1

2⇡i

Z

�

f(t)(A � tI)�1B dt.651

4.1. Block Krylov subspace approximations. The block Arnoldi process652

Algorithm 2.1 is shift-invariant in the sense that if we start with the same block vector653

B but with matrix A + tI instead of A we retrieve exactly the same block Arnoldi654

vectors Vk, k = 1, . . . , m, with the block upper Hessenberg matrix changing from Hm655

to Hm + tI. For a family of shifted linear systems (4.1) we can thus perform the block656

Arnoldi process only once (for A and B) and then compute the block Krylov subspace657

approximations for the various t simultaneously. Within our general framework from658

Section 3, the respective iterates Xm(t) are then given as659

Xm(t) = Vm(Hm + tI + Mt)
�1 bE1B, where Mt = Mt

bE⇤
m, Mt 2 Sm. (4.3)660

If Mt does not depend on t, Mt = M, we can use this in the integral representation661

for the matrix function case to obtain the block Krylov subspace approximation Fm662
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 19

for f(A)B, namely,663

Fm :=

Z 1

0

Vm(Hm + tI + M)�1 bE1B dµ(t)664

= Vm

Z 1

0

(Hm + tI + M)�1 dµ(t) bE1B = Vmf(Hm + M) bE1B.665

For M = 0 this reduces to the standard block Arnoldi approximation Vmf(Hm) bE1B,666

termed B(FOM)
2

(block FOM for functions of matrices) in [22].667

4.2. Restarts and cospatiality. A crucial question now is whether we can668

perform restarts e�ciently for shifted systems as well as for matrix functions. If669

convergence is not very fast, restarts become mandatory in the matrix function case,670

since there the entire block Krylov basis Vm is always needed to obtain Fm. A similar671

situation holds for the shifted system case, except when A is block self-adjoint and672

positive definite. In such a case, we can arrange a block CG method in a manner673

which uses short recurrences in both, the block Lanczos process as well as the update674

of the iterates.675

To take advantage of the shifted nature of our systems for a restart after m676

iterations, we here aim for cospatial block residuals in the sense that677

Rm(t) = B � (A + tI)Xm(t) = Rm(0)Cm(t), where Cm(t) 2 S, (4.4)678

Then, after a restart, the block Arnoldi process for the new cycle needs again to679

be computed only once for all t, now starting with the vector Rm(0) (or any other680

block vector which is cospatial to Rm(0)). In the shifted system case, the computed681

approximations for (A + tI)�1Rm(t) are to be multiplied with the cospatiality factor682

Cm(t) from the right to obtain the correction to be added to Xm(t) from the first683

cycle, and we can proceed similarly for all further cycles, updating the products of the684

cospatiality factors. This approach was also pursued in [49] for block GMRES; more685

involved approaches which side-step the need for cospatial residuals include [47].686

In the matrix function case, having cospatial residuals allows us to find an ex-687

pression for the error of the block Krylov subspace approximation as688

F � Fm =

Z 1

0

(A + tI)�1B � Vm(Hm + tI + M)�1 bE1B dµ(t)689

=

Z 1

0

(A + tI)�1Rm(t) dµ(t) (4.5)690

=

Z 1

0

(A + tI)�1Rm(0)Cm(t) dµ(t).691

Interestingly, the latter expression does not represent a standard matrix function692

applied to a block vector. Rather, the situation is analogous to the matrix polynomial693

case: using the matrix integral J(z) : C \ (�1, 0] ! S, J(z) =
R1
0

1
z+tCm(t) dµ(t) we694

can express F � Fm above as695

F � Fm = J(A) � Rm(0) :=

Z 1

0

(A + tI)�1Rm(0)Cm(t) dµ(t).696

The following theorem shows that we indeed have cospatial residuals if Mt in697

(4.3) does not depend on t. It also shows that the shifted residuals are cospatial to698

the block vector699

Um := Vm+1


M

�Hm+1,m

�
, (4.6)700
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20 A. FROMMER, K. LUND, D.B. SZYLD

with cospatiality factors that are easily available. The theorem thus also suggests701

that algorithmically one should build restarts upon Um rather than Rm(0), since the702

former is easily computed. We again use square brackets to denote block components,703

specifically [⌅]m := bE⇤
m⌅ for ⌅ 2 Sm.704

Theorem 4.1. Let M = M bE⇤
m with M 2 Sm and let705

⌅m(t) = (Hm + M + tI)�1 bE1B706

be the block coe�cient vector for the block Krylov subspace approximation Xm(t) =707

Vm⌅m(t) of the linear system (4.1). Then with Um as in (4.6) it holds that708

Rm(t) = Um[⌅m(t)]m. (4.7)709

Proof. The block Arnoldi relation (2.2) gives710

Rm(t) = B � Vm+1

✓
Hm+1 + t


I
0

�◆
⌅m(t)711

= Vm+1

✓ bE1B
0

�
�

✓
Hm+1 + t


I
0

�◆
⌅m(t)

◆
712

= Vm+1

 bE1B � (Hm + tI)⌅m(t)
�Hm+1,m[⌅m(t)]m

�
.713

714

Herein, bE1B � (Hm + tI)⌅m(t) = M [⌅m(t)]m, since by the definition of ⌅m(t)715

bE1B � (Hm + tI)⌅m(t) � M [⌅m(t)]m = bE1B � (Hm + tI + M bE⇤
m)⌅m(t) = 0.716

This shows (4.7).717

A consequence of this theorem is that the cospatiality factors Cm(t) for the resid-718

uals from (4.4) are given as Cm(t) = [⌅m(0)]�1
m [⌅m(t)]m.719

Assume now that we solve the block linear system AX = B with a restarted720

modified block FOM method, performing cycles of length m. We use an upper721

index (k) to denote quantities belonging to cycle k. At the end of cycle k + 1722

we update the iterate X
(k)
m (0) by an approximate solution Z

(k)
m (0) of the residual723

equation AZ(k)(0) = R
(k)
m (0) := B � AX

(k)
m (0) which, given (4.7), we obtain as724

eZ(k)
m (0)[⌅

(k)
m (0)]m with eZ(k)

m (0) being the modified block FOM approximation for the725

solution of A eZ(k)(0) = U
(k)
m ,726

X(k+1)
m (0) = X(k)

m (0) + eZ(k)
m (0)[⌅(k)

m (0)]m.727

Likewise, the iterates for the restarted method for the shifted linear system728

(A + tI)X = B are obtained as729

X(k+1)
m (t) = X(k)

m (t) + eZ(k)
m [⌅(k)

m (t)]m,730

and the block residuals R
(k)
m (t) = B � AX

(k)
m (t) are given as731

R(k)
m (t) = U (k)

m G(k)
m (t) with G(k)

m (t) = [⌅(k)
m (t)]m · [⌅(k�1)

m (t)]m · · · [⌅(1)
m (t)]m. (4.8)732

Taking integrals over t, we define733

F (k)
m :=

Z 1

0

X(k)
m (t) dµ(t)734
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 21

as the restarted modified block FOM approximation for the matrix Stieltjes function735

f(A)B. The above results directly give736

f(A)B � F (k)
m =

Z 1

0

(A + tI)�1B � X(k)
m (t) dµ(t) (4.9)737

=

Z 1

0

(A + tI)�1
⇣
B � (A + tI)X(k)

m (t)
⌘

dµ(t)738

=

Z 1

0

(A + tI)�1U (k)
m G(k)

m (t) dµ(t)739

as a representation for the error. We summarize all this in the following theorem,740

where we use the matrix integrals741

J (0)
m (z) :=

Z 1

0

(z + t)�1Is dµ(t), J (k)
m (z) :=

Z 1

0

(z + t)�1G(k)
m (t) dµ(t), k = 1, 2, . . . ,742

with G
(k)
m (t) 2 S from (4.8).743

Theorem 4.2. Let f be a Stieltjes function, f(z) =
R1
0

(z + t)�1 dµ and put744

F
(0)
m = 0. For k = 0, 1, . . ., set the k-th modified block FOM correction to be745

D(k)
m := V(k+1)

m J (k)
m

�
H(k+1)

m + M(k+1)
�
� bE1B

(k+1), (4.10)746747

such that F
(k+1)
m = F

(k)
m + D

(k)
m . Then for k = 0, 1, . . ., the k + 1-st modified block748

FOM error D(k+1) := f(A)B � F
(k+1)
m is given as749

D(k+1) = J (k+1)
m (A) � U (k+1)

m . (4.11)750

Algorithm 4.1 summarizes how to implement a modified block FOM method for751

functions of matrices, from now on termed modified B(FOM)2. It encounters the same752

preallocation issues as [22, Algorithm 2] in the case that the nodes of the quadrature753

are not fixed a priori.

Algorithm 4.1 Modified B(FOM)2 for functions of matrices with restarts

1: Given f , A, B = U
(0)
m , S, hh·, ·iiS, N , m, tol

2: for k = 0, 1, . . ., until convergence do {cycle k + 1}
3: Run Algorithm 2.1 with inputs A, U

(k)
m , S, hh·, ·iiS, N , and m, store V(k+1)

m+1 in

place of the previous basis V(k)
m+1, store B(k+1)

4: Compute eD(k)
m := V(k+1)

m J
(k)
m

�
H(k+1)

m +M(k+1)
�
� bE1, where J

(k)
m is evaluated via

quadrature. This requires the computation of the cospatial factors G
(k)
m (t) =

[⌅
(k)
m (t)]m[⌅

(k�1)
m (t)]m · · · [⌅(1)

m (t)]m (see (4.8)) at a set of quadrature nodes,
which could be variable

5: Update F
(k+1)
m = F

(k)
m + eD(k)

m

6: Store H
(k+1)
m+1,m, M(k+1)

7: Compute U
(k+1)
m = V(k+1)

M

h
M(k+1)

�H
(k+1)
m+1,m

i

8: end for
9: return F

(k+1)
m

754

In the following sections, we discuss special instances of Algorithm 4.1 for the755

di↵erent modifications analyzed in Section 3.756
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22 A. FROMMER, K. LUND, D.B. SZYLD

4.3. Shifted block FOM and B(FOM)2. For any t, the block FOM iter-757

ates that approximate the solution of (4.1) are given by X fom
m (t) = Vm⌅fom

m (t) with758

⌅fom
m (t) = (Hm +tI)�1 bE1B, so we have that M = 0 for all t. Theorem 4.1 shows that759

the residuals Rfom
m (t) are all cospatial to U fom

m = �Vm+1Hm+1,m, i.e., to Vm+1. If A760

is self-adjoint and positive definite with respect to h·, ·iS, [22] uses the bound (3.5) for761

every shift t � 0 to obtain a convergence result for restarted block FOM for families762

of shifted linear systems as well as for unmodified B(FOM)2 for Stieltjes functions763

of matrices; see [22, Theorem 4.5]. (Note that unmodified B(FOM)2 is equivalent to764

Algorithm 4.1 with M = 0; cf. [22, Algorithm 2].)765

4.4. Shifted block GMRES and harmonic block Arnoldi for matrix766

functions. The situation is di↵erent for block GMRES: From (3.9) we have767

Xgmr
m (t) = Vm⌅gmr

m (t) with768

⌅gmr(t) = (Hm + tI + Mgmr(t))�1 bE1B,769

where770

Mgmr(t) = Mgmr(t) bE⇤
m, and Mgmr(t) = (Hm + tI)�⇤ bEmH⇤

m+1,mHm+1,m,771

showing that Mgmr(t) indeed depends on t. In order to maintain cospatial residuals772

for shifted linear systems, one thus has to pick one value for t, typically t = 0, for773

which “true” block GMRES is performed, giving the block vector M . This same block774

vector is then used for all the other shifts to obtain the block iterates according to775

(3.1). These block iterates are not the block GMRES iterates for the shifted system,776

so their block residuals do not satisfy the minimization property (3.8). They are,777

however, all cospatial to Um from (4.6) with M = Mgmr(0).778

In this manner we can e�ciently perform restarts for families of shifted linear779

systems as well as for Stieltjes functions of matrices. In the non-block case, this780

approach goes back to [17] for families of shifted systems and to [19] for Stieltjes func-781

tions of matrices. In accordance with [19], the resulting method for matrix functions782

is referred to as the harmonic block Arnoldi method.783

If we were to transfer the convergence analysis from [22] to the shifted block784

GMRES case, we would need a result analogous to Theorem 3.5 for the iterates of the785

shifted systems, which are not “true” block GMRES iterates. It seems hard to find the786

right analogue, and we could obtain only partial results based on the following theorem787

which is also of interest on its own. The theorem uses shifted matrix polynomials,788

where for P (z) =
Pm

i=0 zi�i its shifted counterpart P (t)(z) is defined as789

P (t)(z) := P (z + t) =
mX

i=0

zi�
(t)
i with �

(t)
i =

mX

j=i

�
j
i

�
tj�i�j . (4.12)790

Note that for V 2 Cn⇥s we have791

P (�t)(A + tI) � V = P (A) � V .792

The following theorem gives an alternative representation of the cospatiality factors793

Cm(t) in terms of the residual matrix polynomial.794

Theorem 4.3. Let P (z) 2 Pm(S) be the matrix polynomial expressing the residual795

Rm(0) = B�AXm(0) with Xm(0) = Vm(Hm+M)�1 bE1B as Rm(0) = P (A)�B and796

assume that for some t 2 C the matrix P (�t) 2 S is nonsingular. Then Hm +M+ tI797

is nonsingular, and the block residual Rm(t) = B � (A + tI)Xm(t) with Xm(t) =798

Vm(Hm + M + tI)�1 bE1B satisfies799
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(i) Rm(t) = Pt(A + tI) � B with Pt(z) := P (�t)(z) · P (�t)�1.800

(ii) Rm(t) = Rm(0)Cm(t) with Cm(t) = P (�t)�1.801

Proof. We first note that (ii) follows immediately once (i) is established, since802

Pt(A + tI) � B =
⇣
P (�t)(A + tI) · P (�t)�1

⌘
� B803

=
�
P (A) · P (�t)�1

�
� B = (P (A) � B) · P (�t)�1.804805

To prove (i), we systematically use the polynomial exactness property formulated in806

Theorem 2.7. We have Xm(0) = Q(A)B, where the matrix polynomial Q 2 Pm�1(S)807

interpolates f(z) = z�1 on the pair (Hm +M, bE1B). The matrix residual polynomial808

P (z) is thus given as P (z) = I � zQ(z) and we have that809

P (Hm + M) � ( bE1B) = 0.810

Now, the matrix polynomial Pt(z) defined in (i) satisfies811

Pt(Hm + M + tI) � ( bE1B) =
�
P (Hm + M) · P (�t)�1

�
� ( bE1B)812

=
⇣
P (Hm + M) � ( bE1B)

⌘
· P (�t)�1 = 0, (4.13)813

814

and since Pt 2 Pm(S) with Pt(0) = I, we can represent it as Pt(z) = I � zQt(z) with815

Qt 2 Pm�1(S). Equation (4.13) then shows that Qt interpolates f(z) = z�1 on the816

pair (Hm + M + tI, bE1B), which means that Xm(t) = Vm(Hm + M + tI)�1 bE1B is817

given as Xm(t) = Qt(A) � B and thus Rm(t) = Pt(A) � B.818

Corollary 4.4. Assume that Hm + M has all its eigenvalues in C+ and let819

t � 0. Then the cospatiality factors Cm(t) 2 S from Theorem 4.3 satisfy820

| det(Cm(t))|  1.821

Irrespective of the block inner product hh·, ·iiS, this holds in particular if A is pos-822

itive real with respect to the standard inner product and M = 0 (block FOM) or823

M = Mgmr = H�⇤
m ( bEmH⇤

m+1,mHm+1,m
bE⇤

m) (block GMRES).824

Proof. Let �i 2 C+, i = 1, . . . , ms, denote the eigenvalues of Hm + M. By the825

result on the latent roots from Theorem 2.9 we have det(P (z)) =
Qms

i=1(1� z
�i

), which826

gives that827

| det(P (�t))| =
msY

i=1

|1 + t
�i

|.828

For t > 0, since Re(�i) > 0, we have Re( t
�i

) > 0 and thus |1 + t
�i

| > 1 for all i. This829

gives | det(P (�t)| > 1 and thus | det(Cm(t))| = | det(P (�t)�1)| < 1.830

To prove the remaining part of the corollary, assume that A is positive real. By831

the block Arnoldi relation (2.2) we have for x 2 Cms832

x⇤Hmx = x⇤V⇤
mAVmx = (Vmx)⇤A(Vmx).833

Since Vm has full rank and thus Vmx 6= 0 for x 6= 0, this shows that Hm is posi-834

tive real. An eigenpair (x, �) of Hm therefore satisfies � = x⇤Hmx
x⇤x 2 C+, which is835

the assertion for M = 0 (block FOM). For block GMRES, where M = Mgmr =836
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24 A. FROMMER, K. LUND, D.B. SZYLD

H�⇤
m ( bEmH⇤

m+1,mHm+1,m
bE⇤

m), let (Hm + Mgmr)x = �x for some x 2 Cms, x 6= 0.837

Then (H⇤
mHm + H⇤

mMgmr)x = �H⇤
mx and thus838

x⇤H⇤
mHmx| {z }
>0

+ x⇤( bEmH⇤
m+1,mHm+1,m

bE⇤
m)x

| {z }
�0

= �x⇤Hmx| {z }
2C+

,839

which gives � 2 C+.840

Theorem 4.3 covers block FOM and block GMRES for the global,841

loop-interchange, and classical paradigms if A is positive real with respect to the842

standard inner product. In particular, it also applies for global, loop-interchange, and843

classical block CG if A is Hermitian and positive definite real with respect to the844

standard inner product.845

Corollary 4.4 has a geometric interpretation: the volume of the parallelepiped846

spanned by the columns of Rm(0) is det(D) for any D 2 Cs⇥s in a representation847

Rm(0) = QD with Q 2 Cn⇥s having orthonormal columns. The volume of the848

parallelepiped spanned by Rm(t) is det(D) det(Cm(�t)), and thus smaller than that849

for Rm(0). Note that this does not exclude that some columns of Rm(t) can have850

arbitrarily larger length than those of Rm(0), provided angles between the columns851

of Rm(t) are su�ciently acute.852

When specialized to the non-block case, Corollary 4.4 delivers a strong result:853

Cm(�t) is now a scalar, which is less than 1 in modulus by the corollary, implying854

that for positive shifts the norms of the shifted residuals are all smaller than the norms855

of the non-shifted residuals. For the CG method this observation relies on [39], and856

for shifted GMRES for positive real matrices it can be found in [17]. That this also857

holds for FOM for positive real matrices seems to not have been observed before.858

⇢ k·kF k·k2 max k·k2

block FOM 16,841 117 121 123
block GMRES 10,092 98 93 105

(a) Number of instances (out of 104 samples, each for
m = 1, . . . , 9) refuting monotonicity conjectures. ⇢: spec-
tral radius of Cm(t) larger than 1; k·kF , k·k2 max , k·k2:
kRm(t)k > kRm(0)k for the respective norm, all for t = 0.1.

0 0.5 1 1.5 2
t

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4 R(t)
R(tmax)
R(tbad) = 0

0 0.5 1 1.5 2
t

-0.5

0

0.5 R(t)
R(tmax)
R(tbad) = 0

(b) Relative di↵erence of the residual Frobenius norms as a function of t for selected samples

Fig. 4.1: Results of experiments on residuals of shifted systems
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 25

For the block case, rather than having a result just on the determinant, we would859

prefer a result which shows kCm(t)k < 1 for an appropriate norm. After several860

unfruitful attempts in this direction, we performed some numerical experiments to861

find counterexamples. We generated self-adjoint block tridiagonal 20⇥20 matrices H862

where each diagonal and o↵-diagonal block is a randomly generated Hermitian and a863

positive definite 2 ⇥ 2 matrix. These matrices H are then scaled and shifted so that864

their spectral interval is exactly [0.1, 10]. For these matrices H, the block Lanczos865

process for the classical block inner product and with bE1 as a starting block vector866

just reproduces H as the block upper Hessenberg matrix. We take t = 0.1 as our shift867

parameter. Within 10, 000 samples and the values m = 1, . . . , 9, we found a significant868

number of instances for which Cm(t) has an eigenvalue larger than 1 in modulus. So869

kCm(t)k < 1 cannot hold for whatever norm we choose. Moreover, we also found870

instances for which kRm(t)k > kRm(0)k for the S-norm (which is the Frobenius norm871

in this case), the 2-norm, and the norm k·k2 max given by the maximum of the 2-norms872

of individual columns. Similar observations hold for block GMRES. Detailed numbers873

are given in Figure 4.1(a). To illustrate this further, for block FOM as well as for874

block GMRES, we picked one sample each for which kRm(0.1)kF > kRm(0)kF and875

computed Rm(t) for many values of t, so as to be able to plot the relative di↵erence876

1�kRm(t)kF / kRm(0)kF as a function of t. These graphs are given in Figure 4.1(b).877

4.5. Block Radau-Arnoldi for shifted systems and matrix functions.878

For block Radau-Arnoldi, fix a step m and denote by P the m-th residual polynomial879

of the non-shifted system, Rra
m = P (A) � B. By Theorem 4.3, the residuals Rra

m(t) of880

the shifted block Radau-Arnoldi iterates Xra
m (t) = Vm⌅ra

m, with ⌅ra
m = (Hm + tI +881

Mra)�1 bE1B, satisfy882

Rra
m(t) = Pt(A + tI) � B,883

where Pt(z) = P (�t)(z)P (�t)�1 and P (�t) is defined in (4.12). Thus, P (S) = 0884

implies Pt(S + tI) = 0, and we see that the shifted block Radau-Arnoldi iterates885

are precisely the iterates of the block Radau-Arnoldi method for the shifted system886

prescribing S + tI as a solvent for the residual polynomial. It is this property that887

allows us to prove a convergence result for Stieltjes functions of matrices in the same888

spirit as that of the non-block result in [21].889

Theorem 4.5. Assume that A is block self-adjoint with respect to hh·, ·iiS and890

positive definite with respect to h·, ·iS. Let 0 < �min  �max denote the smallest and891

largest eigenvalue of A, respectively, and let S = �Is with � > �max. Finally, let892

A�,t = (A + tI)(�I �A)�1 and let h·, ·iA�,t-S denote the inner product hX, Y iA�,t-S =893

hA�,tX, Y iS with associated norm k·kA�,t-S. Assume that we perform a restart after894

every cycle of length m, and denote E
(k)
m (t) the error of the Radau-Arnoldi iterate895

X
(k)
m (t) for shift t after k such cycles. Then896

(i) With ⇠m(t) := 2
c(t)m+c(t)�m , c(t) :=

p
(t)�1p
(t)+1

, (t) := �max+t
�min+t we have897

���E(k)
m (t)

���
A�,t-S


⇣
1 � �min+t

�+t

⌘k

· ⇠m�1(t)
k ·

��(A + tI)�1B
��

A�,t-S .898

(ii) For a Stieltjes function f =
R1

t=0
(z + t)�1 dµ(t), the error f(A)B � F

(k)
m of899

the block Arnoldi-Radau method, where F
(k)
m =

R1
t=0

X
(k)
m (t) dµ(t), satisfies900

���f(A)B � F (k)
m

���
A�-S

 C · ⇠m�1(0)k · kBkA�-S,901

This manuscript is for review purposes only.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt
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with C = �max(���min)2

�min(���max) f(�).902

Proof. Part (i) is just Theorem 3.10 for the matrices A+ tI, extended to restarts.903

To prove (ii) we use the norm comparison result formulated in [22, Lemma 4.4], which904

states that for every rational function g that is positive on R+ and the associated norm905

kXkg(A)-S := hg(A)X, Xi1/2
S , we have906

p
gmin kXkS  kXkg(A)-S  p

gmax kXkS ,907

where gmin and gmax are the minimum and maximum, respectively, of g on spec(A).908

Applying this result twice we obtain909

kXkA�-S 
q

max{�/(���):�2spec(A)}
min{(�+t)/(���):�2spec(A)} ·kXkA�,t-S 

q
�max/(���max)

(�min+t)/(���min) kXkA�,t-S ,

(4.14)910

and, similarly,911

kXkA�,t-S 
q

max{(�+t)/(���):�2spec(A)}
min{�/(���):�2spec(A)} ·kXkA�-S 

q
(�max+t)/(���max)

�min/(���min) kXkA�-S .

(4.15)912

From (4.9), and using (4.14), we obtain913

���f(A)B � F (k)
m

���
A�-S

=

����
Z 1

0

E(k)
m (t) dµ(t)

����
A�-S

914


Z 1

0

���E(k)
m (t)

���
A�-S

dµ(t)915


Z 1

0

q
�max(���min)

(�min+t)(���max) ·
���E(k)

m (t)
���

A�,t-S
dµ(t).916

Using (i), the fact that ⇠m(t)  ⇠m(0) =: ⇠m for t � 0, and (4.15), we have917

���f(A)B � F (k)
m

���
A�-S

918


Z 1

0

q
�max(���min)

(�min+t)(���max)

⇣
1 � �min+t

�+t

⌘k

⇠k
m�1 kBkA�,t-S dµ(t)919


Z 1

0

q
�max(���min)

(�min+t)(���max) ·
⇣
1 � �min+t

�+t

⌘k

⇠k
m�1

q
(�max+t)/(���max)

�min/(���min) kBkA�-S dµ(t)920

=

Z 1

0

q
�max+t
�min+t ·

q
�max

�min
· ���min

���max
·
⇣

���min

�+t

⌘k

⇠k
m�1 kBkA�-S dµ(t).921

Since (�max + t)/(�min + t)  �max/�min for all t � 0 and 0 
⇣

���min

�+t

⌘k

 ���min

�+t ,922

this finally gives923

���f(A)B � F (k)
m

���
A�-S

 �max(���min)2

�min(���max) ⇠
k
m�1 ·

Z 1

0

1

� + t
dµ(t) · kBkA�-S924

= �max(���min)2

�min(���max) f(�) · ⇠k
m�1 · kBkA�-S .925

A secret trick for keeping the rascally proof box where it belongs!926

Note that this proof makes no e↵ort to keep the constant C small.927
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5. Numerical experiments. We report numerical results obtained with a928

Matlab 2019a implementation run on a Thinkpad X1 Carbon with Windows 10929

64-bit, an Intel Core i7 processor, and 16GB of RAM; more di�cult tests were run930

in Matlab 2018a on the Fidis cluster at EPFL.2 All code is publicly available at931

https://gitlab.com/katlund/bfomfom-main/.932

We start with an academic example that illustrates the theoretical results for933

linear systems from the previous sections.934

Example 5.1. A is a diagonal matrix of dimension n = 5000, the s = 10 right-935

hand sides are generated randomly using Matlab’s rand command and normalized936

with qr, and the initial block vector X0 is zero.937

a) The diagonal entries of A are linearly spaced in the interval [10�2, 102], i.e.,938

aii = 10�2 + (i � 1)d where d = (102 � 10�2)/(n � 1).939

b) The diagonal entries of A are logarithmically spaced in the interval [10�2, 102], i.e.,940

aii = 10ei , where ei = �2 + 4(i � 1)/(n � 1).941

c) The diagonal elements of A come in complex conjugate pairs. Their n/2 di↵er-942

ent real parts are linearly spaced in [10�2, 102], their imaginary parts are taken943

randomly with uniform distribution in [0, 1].944

The matrices A from Example 5.1a and b are Hermitian and positive definite, and945

thus the comparison results for the methods based on the classical, loop-interchange,946

and global block inner products hold for block FOM (Theorem 3.3), block GMRES947

(Theorem 3.7) and block Radau-Arnoldi (Theorem 3.11). This is illustrated in Fig-948

ure 5.1 where we plot the respective norms of the error for the first 50 inner iterations949

(i.e., the first cycle, without restarts). We observe that for both matrices, the meth-950

ods relying on the loop-interchange or global block inner products perform almost951

indistinguishably, whereas the classical approach yields faster convergence for Exam-952

ple 5.1a, but only marginal improvement for classical GMRES in the same example953

and in Example 5.1b.954

As an aside, we note that the error and residual bounds guaranteed by Theo-955

rems 3.2, 3.5, and 3.10 are all nearly constant for the spectra of the matrices consid-956

ered in Figure 5.1, thus underlining the limitations of such spectral-based results for957

predicting convergence behavior. Nevertheless, such results allow for a comparison958

between inner products for a given method, (i.e., Theorems 3.3, 3.7, and 3.11).959

Figure 5.2 gives further results for Example 5.1a. Its top row shows convergence960

plots for a cycle length of m = 25 displaying the Frobenius norm of the block residual961

for all methods. The bottom row presents a study for di↵erent cycle lengths m,962

giving the number of cycles necessary to decrease the initial Frobenius norm of the963

residual by a factor of 10�10. The top row shows that block FOM, block GMRES and964

block Radau-Arnoldi converge for all block inner products considered here, that the965

convergence speed is quite similar between FOM, GMRES and Radau-Arnoldi, that966

the loop-interchange and global inner product give almost identical results, and that967

the classical block inner product methods converge the faster the larger m. One should968

be aware, though, that the arithmetic work that comes in addition to the matrix-vector969

multiplications is substantially larger for the classical block inner product than for the970

others: each block inner product has cost O(ns2) whereas this cost is only O(sn) for971

the loop-interchange and global block inner products. Moreover, as opposed to the972

other two block inner products, there is no additional sparsity structure other than973

block upper Hessenberg that one can take advantage of when working with Hm. So,974

2https://scitas.epfl.ch/hardware/fidis/
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Fig. 5.1: Error norms for 50 inner iterations of the first cycle for Example 5.1a (top
row) and b (bottom row), with cycle length m = 25. FOM error is measured in
k·kA-F, GMRES in k·kA⇤A, and RA in k·kA(�I�A)�1�F. The RA solvent is chosen as
1.01�max · Is.

the accelerated convergence comes at the price of extra arithmetic work.975

Figure 5.3 deals with Example 5.1c. The matrix A is not Hermitian but positive976

real. The convergence plots in the top row show that now restarted block FOM977

diverges, that convergence is restored when using the block Radau-Arnoldi approach978

and that the block GMRES methods all converge.979

We now turn to matrix functions and first consider the inverse square root z�1/2,980

which is a Stieltjes function, since z�1/2 = 1
⇡

R1
0

t�1/2

z+t dt. In order to evaluate the981

matrix function and the subsequent error representations (4.11) we proceed as in [20]982

and [22], using the Cayley transform t = �� 1�x
1+x with � = trace(A) to map the infinite983

integration interval [0,1) onto (�1, 1], where we then use Gauß-Legendre quadrature984

with an adaptive strategy to determine the number of quadrature nodes.985

Figure 5.4 shows convergence plots for the matrices from Example 5.1a and c and986

a random right-hand side that now has imaginary components. We observe that the987

various methods perform similarly as in the linear system case. In particular, the988

classical inner product yields faster convergence than loop-interchange and global,989

which are again nearly indistinguishable. However, in terms of wall-clock times, the990

global methods converged much more quickly than the other methods– 30 minutes991

versus hours– and the quadrature tolerance had to be set two orders of magnitude992

lower than the desired error tolerance for convergence to be achieved at all. For993

the non-Hermitian matrix, the block FOM methods do not converge while the block994

GMRES and the block Radau-Arnoldi methods do. Note that since A is diagonal,995

we can compute A�1/2B directly which allows us to easily compute the error of the996

various approximations.997

We consider another Stieltjes function as well, log(z+1)
z =

R1
0

1
z+t dµ(t), where998
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Fig. 5.2: Top row: error norm versus cycle index for Example 5.1a, m = 25. Bottom
row: number of cycles needed to converge versus cycle length for Example 5.1a. FOM
error is measured in k·kA-F, GMRES in k·kA⇤A, and RA in k·kA(�I�A)�1�F. The RA
solvent is chosen as 1.01�max · Is.
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Fig. 5.3: Error norm versus cycle index for Example 5.1c, m = 25, s = 10. All errors
are measured in the Frobenius norm.

dµ(t) = t�1H(t+1) and H(t) is the Heaviside function. The matrix logarithm arises,999

for example, in Markov models and the solution of linear dynamical systems; see, e.g.,1000

[30, Chapter 2]. Figure 5.5 shows convergence curves for log(z+1)
z on Example 5.1c;1001

since the matrix is positive real, the principal logarithm is defined. We see that1002

only the classical and loop-interchange harmonic and Radau methods converge, with1003

the Radau methods converging with the fewest cycles. The largest real part of the1004

spectrum times 1.01 · Is is chosen as the prescribed solvent. For m = 25, all methods1005

converge in roughly 28 cycles, except the modified global methods, which stagnate. We1006

also considered the logarithmic function on Example 5.1a and b. All methods converge1007

in just 5 cycles, except for the modified global methods, which again stagnate. We1008

do not show the convergence curves for these additional tests.1009
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Fig. 5.4: Error norm versus cycle index for the inverse square root of Example 5.1a
(top row) and c (bottom row). All errors are measured in the Frobenius norm. m = 25,
s = 10.
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Fig. 5.5: Error norm versus cycle index for log(z+1)
z of Example 5.1 c. All errors are

measured in the Frobenius norm. m = 15, s = 10.

Example 5.2. We take A = Q2 and compute A�1/2, where Q is the kernel matrix1010

for the overlap operator arising in simulations from lattice QCD, see [23]. Lattice QCD1011

is the most widely used discretization of quantum chromodynamics (QCD) which is1012

the fundamental physical theory of the quarks as the constituents of matter. Here,1013

Q is the “symmetrized” Wilson-Dirac matrix, a discretization of the Dirac operator1014

on a 4-dimensional equispaced space-time lattice in presence of a stochastic “gauge”1015

background field. As opposed to other discretizations, the overlap operator preserves1016

the important property of chiral symmetry on the lattice at the price of requiring the1017

action of the sign function sign(Q) on vectors to be evaluated. We compute sign(Q)1018

as Q · (Q2)�1/2. At zero chemical potential, µ = 0, the matrix Q is Hermitian, but1019

for µ > 0 the matrix Q starts to deviate from hermiticity; see [8] for details. We used1020
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the matrix conf6 0-8x8-30, available at the SuiteSparse Matrix Collection [10], and1021

took the right-hand side B as the first 12 canonical unit vectors. This corresponds1022

to a typical situation when computing quark propagators, where one has to take all1023

combinations of the four spin and three color quantum numbers into account. The1024

dimension of the resulting matrix is n = 12 · 84 = 49, 152.1025

Table 5.1 shows results for µ = 0.3. The reference value for an “exact” evaluation1026

of (Q2)�1B was determined beforehand using the harmonic method and stopping1027

when the Frobenius norm of the correction computed in one cycle was less than1028

10�12. The table reports the number of iterations required to reduce the initial error1029

by a factor of ✏ = 10�6 for di↵erent cycle lengths m = 2, 5, 10. We see that for all1030

values of m the harmonic method with the classical block inner product needs the1031

fewest iterations. For m = 2 the advantages of the harmonic method are substantial,1032

and as m increases, they become less pronounced. For m = 10 all (modified) FOM1033

methods for all block inner products need almost the same number of cycles. We note1034

also that for these methods to converge, the quadrature tolerance was set to 10�3✏1035

for m = 2 and 10�2✏ for m = 5, 10.1036

m = 2 m = 5 m = 10
Cl Li Gl Cl Li Gl Cl Li Gl

B(FOM)2 613 627 628 103 106 107 29 31 31
harmonic 453 577 504 89 103 105 29 31 31
Radau-Arnoldi 731 733 734 106 110 110 30 31 31

Table 5.1: Inverse square root for QCD matrix (Example 5.2 with chemical potential
µ = 0.3): number of iterations required to reduce the initial error by a factor of 10�6.
s = 12.

6. Conclusions. In this paper we have contributed several results to the theory1037

of block Krylov subspace methods for linear systems and for matrix functions. These1038

results hold for general block inner products, and thus in particular for the classical1039

block methods and the so-called global methods. We have completely characterized1040

those modifications of the basic block FOM approach for which the polynomial exact-1041

ness property–which is the natural extension of the polynomial interpolation property1042

from the non-block case–holds. This result is crucial to obtaining restart procedures1043

for computing the action of a matrix function on a block vector, just as is the possi-1044

bility for keeping block residuals for shifted linear systems cospatial.1045

We have shown how cospatiality can be maintained algorithmically and con-1046

tributed theoretical results on the convergence of these shifted system methods. The1047

situation turns out to be more complex than in the non-block case. Our main result1048

shows that the modulus of the determinant of the cospatiality matrix factor for the1049

shifted residual matrix polynomials is smaller than one. This result uses a further re-1050

sult on the connection between latent roots of residual polynomials and the (modified)1051

block upper Hessenberg matrix, for which we have completed partial characterizations1052

known from the literature.1053

We have presented a series of numerical experiments, which tend to indicate that,1054

in the presence of restarts, the benefits of using a block Krylov subspace are mostly1055

visible only when using the classical inner product; even then, a reduction in wall-1056

clock time still depends on how far the decrease in cycles is outweighed by the larger1057

arithmetic costs per cycle. The numerical experiments also show several situations1058
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in which the new harmonic block FOM approach performs better than the standard1059

block FOM approach and where fixing a solvent in the new Radau-Arnoldi methods1060

can restore convergence in cases where standard block FOM diverges.1061
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[18] A. Frommer, S. Güsken, T. Lippert, B. Nöckel, and K. Schilling, Many Masses on One1111
Stroke: Economic Computation of Quark Propagators, Int. J. Mod. Phys. C, 6 (1995),1112
pp. 627–638, https://doi.org/10.1142/S0129183195000538.1113
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