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BLOCK KRYLOV SUBSPACE METHODS FOR FUNCTIONS OF
MATRICES II: MODIFIED BLOCK FOM*

ANDREAS FROMMERT', KATHRYN LUND¥, AND DANIEL B. SZYLD$

Abstract. We analyze an expansion of the generalized block Krylov subspace framework of
[Electron. Trans. Numer. Anal., 47 (2017), pp. 100-126]. This expansion allows the use of low-rank
modifications of the matrix projected onto the block Krylov subspace and contains, as special cases,
the block GMRES method and the new block Radau-Arnoldi method. Within this general setting, we
present results that extend the interpolation property from the non-block case to a matrix polynomial
interpolation property for the block case, and we relate the eigenvalues of the projected matrix to the
latent roots of these matrix polynomials. Some error bounds for these modified block FOM methods
for solving linear system are presented. We then show how cospatial residuals can be preserved in the
case of families of shifted linear block systems. This result is used to derive computationally practical
restarted algorithms for block Krylov approximations that compute the action of a matrix function
on a set of several vectors simultaneously. We prove some error bounds and present numerical results
showing that two modifications of FOM, the block harmonic and the block Radau-Arnoldi methods
for matrix functions, can significantly improve the convergence behavior.

Key words. generalized block Krylov methods, block FOM, block GMRES, restarts, families
of shifted linear systems, multiple right-hand sides, matrix polynomials, matrix functions

AMS subject classifications. 65F60, 65F50, 65F10, 65F30

1. Introduction and motivation. Block Krylov subspace methods for solving
s simultaneous linear systems

AX =B, where Ac C"", B =[by| -|b,] € C"**

bear the potential to be faster than methods that treat individually the systems
Ax; =b;, 1 =1,...,s, for two reasons. One is that a block Krylov subspace contains
more information than the individual subspaces, so that one can extract more accu-
rate approximations for the same total investment of matrix-vector multiplications.
Furthermore, the multiplication of A with a block vector B can be implemented more
efficiently than s individual matrix-vector multiplications, requiring less memory ac-
cess and, in a parallel environment, allowing for batch communication.

In this work, we present and analyze a general framework for block Krylov sub-
space methods. We build on the approach introduced in [22], which allows for the
treatment of various variants of block Krylov subspaces via corresponding block in-
ner products and the related block Arnoldi process to generate a block orthogonal
basis. We extend the block FOM method considered in [22] to a general framework
for extracting approximations from the block Krylov subspace. These approxima-
tions can all be expressed via a matrix polynomial, and we completely characterize
the situations in which a block Krylov subspace approximation satisfies an important
matrix polynomial exactness property, thus generalizing [21, Lemmas 1.3 and 1.4] for
the single right-hand side case. For the “classical” block inner product, our analysis
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2 A. FROMMER, K. LUND, D.B. SZYLD

includes the block FOM method [42], a special case of which is block CG [38], the
block GMRES method [26, 51], and the block Radau-Arnoldi method, which arises
from the corresponding method for the single right-hand side case for Hermitian ma-
trices from [21]. For a different block inner product, our analysis also comprises the
respective so-called global methods; see, e.g., [1, 6, 9, 29, 32, 36, 40, 53].
We then turn to methods for families of shifted linear systems with multiple
right-hand sides, i.e.,
(A+tH)X(t) = B. (1.1)

Such problems arise, e.g., in lattice quantum chromodynamics [18, 50], hydraulic
tomography [3, 44], the PageRank problem [52], and in the evaluation of matrix func-
tions when approximated via a rational function— for example, the matrix exponential
for time-dependent differential equations [2, 5, 27, 31]. An important requirement in
this context is that the block Krylov subspaces be independent of ¢ and thus have
to be built only once for all ¢. A prominent challenge is to preserve this fact when
having to perform restarts, meaning that we must require that the column spans of
the block residuals do not depend on the shift ¢. We present a complete analysis of
how to obtain this kind of “shift invariance” and discuss to what extent known results
on convergence in the presence of restarts for the non-block case (s = 1) carry over
to s > 1.

The analysis and implementation of approximations to (1.1) are crucial in devel-
oping block Krylov methods for matrix functions, which is the last topic we address:
the approximation of f(A)B. Here f(A) € C"*" is defined for f : D C C — C such
that D contains the spectrum of A and f is £ — 1 times differentiable at every eigen-
value with multiplicity ¢ in the minimal polynomial of A. When f can be expressed in
integral form as f(z) = [, % dt, then we can equivalently define f(A) as the integral
over the resolvent (A —tI)~1, i.e.,

f(A) ::/Fg(t)(A—tI)_ldt.

Furthermore, we use the results for shifted linear systems to derive a representation of
the error which is mandatory to efficiently perform restarts. Our analysis allows for
different block Krylov subspace extraction approaches corresponding to block FOM,
block GMRES, block Radau-Arnoldi, etc. We consider in some detail the special case
where f is a Stieltjes function, i.e., f(z) = [;~(z — )  dpu(?).

The paper is organized as follows. In Section 2, we summarize the generalized
block Krylov framework, consider how block iterates and residuals can be expressed
using matrix polynomials, and develop the polynomial exactness result, which is im-
portant for the subsequent sections. We also prove a result on the latent roots of
the residual matrix polynomial, generalizing results from [16, 46]. Section 3 sum-
marizes how known and new block Krylov subspace methods fit into our general
framework, with a particular emphasis on block GMRES and the new block Radau-
Arnoldi method. In Section 4 we treat restarts for families of shifted linear systems
and matrix functions. Illustrative numerical experiments are presented in Section 5
before we finish with our conclusions.

2. The block Krylov framework. In this section we recall the concept of
a general block inner product introduced in [22] and its relation to block Krylov
subspaces and matrix polynomials. New results include the polynomial exactness
property, Theorem 2.7, and a result on the latent roots of the matrix polynomial
expressing the block residual, Theorem 2.9.
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 3

2.1. General block Krylov subspaces and the block Arnoldi process. To
clarify our notation, let I,,, denote the m x m identity matrix. Then the kth canonical
unit vector 7' € C™ is the kth column of I,,,, and the kth canonical block unit vector
is

ElrcnsXs — é?@[s _ [00 I, OO]T c Qmsxs
1k

9

where ® denotes the Kronecker product. We drop the superscripts for E,TSXS when
the dimensions are clear from context, and likewise for the identity, in which case we
may drop the subscript.

Let S be a *-subalgebra of C**¢ with identity; that is, with S,T € S, a € C,
we have aS + T,5T,S* € S, along with I € S. General block inner products as
introduced in [22] take their values in S.

DEFINITION 2.1. A mapping (-, -)s from C"** x C"** to S is called a block inner
product onto S if it satisfies the following conditions for all X, Y ,Z € C"** and
Ces:

(i) S-linearity: (X +Y,ZC)g = (X, Z);C+ (Y, Z)C;
(ii) symmetry: (X,Y )s = (Y, X )a;
(i) definiteness: (X, X)) is positive definite if X has full rank, and (X, X)s =0
if and only if X = 0.

Note that since ol € S for all a € C, (i) implies in particular that
(X,aY)s = a(X,Y)s, (aX,Y)s=a(X,Y ).

DEFINITION 2.2. A mapping N which maps all X € C"** with full rank on a
matriz N(X) € S is called a scaling quotient if for all such X, there exists Y € C"**
such that X = Y N(X) and (Y,Y ))g = I;.

Let us mention that since (X, X)) = N(X)*N(X) is positive definite, and if X
has full rank, then the scaling quotient N(X) is nonsingular.

These definitions give rise to block-based notions of orthogonality and normaliza-
tion.
DEeFINITION 2.3. (i) X,Y € C"**® are block orthogonal, if (X,Y ))g = 0,.
(i1) X € C"** is block normalized if N(X) = I.
(ii1) {X;}7L, C C"** is block orthonormal if (X, X;)g = 6i;Ls-
We say that a set of vectors {Xj};?lzl C C™*% S-spans a space £ C C™*% and
write " = span®{X;}7.,, if # is given as

spanS{Xj}}":1 = {ZXij :I'yjeSforj= 1,...,m}.
j=1

The set { X}, constitutes a block orthonormal basis for .2 = span®{X;}7, if it
is block orthonormal. Clearly, S-spans are vector subspaces of C"**, and we define
the mth block Krylov subspace for A and B (with respect to S) as

HES(A,B) :=span®{B, AB,..., A" B}.

Table 2.1 summarizes combinations of S, (-, ))s, and N that lead to established
block Krylov subspaces. Note that {als; : « € C} and C*** are the smallest and
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4 A. FROMMER, K. LUND, D.B. SZYLD

S (X, Y)q N(X)
. R, where X = QR, and
SX 8 * ) '
classical (Cl) C XY QeC®,Q*Q =1
global (GI) CI, | Ltrace(X*Y)I, T I X 1
loop-interchange (Li) I, @C diag(X*Y) diag([[l1lly,-- -, [|zs]l5))

Table 2.1: Choices of S, (-, -))g, and N in common block paradigms. Here the diag
operator works in two ways: when the argument is a matrix, it returns a diagonal
matrix taken from the diagonal of the input; when the argument is a vector, it builds
a diagonal matrix whose diagonal entries are those of the vector.

Algorithm 2.1 Block Arnoldi process
If A is block self-adjoint, the process simplifies to block Lanczos, since in line 6 we would
then have that H;, =0 for j <k —1and Hr—1,x = Hf;k_l.

Given: A, B, S, (-, -)s, N, m
Compute B = N(B) and V; = BB~}
for k=1,...,mdo
Compute W = AV},
for j=1,...,k do
Hj, = {V;, W)y
W=W-V;H,;
end for
Compute Hyy1, = N(W) and Viyq = WHk_J:UC
end for
: return B, V,,, = [Vi| ... Vi, Hon = (Hj k)T %—15 Vint1, and Hipp1m

— =
= O

largest possible *-subalgebras with identity, respectively. It then holds, with obvious
notation, that for any *-algebra S with identity
sClcs, s¥ s and # (A, B) C #5(A, B), #H(A, B) C #5Y(A,B), (2.1)

m m m

a fact which will be useful later when establishing comparison results.

Algorithm 2.1 formulates the block generalization of the Arnold process. It
computes a block orthonormal basis {V;}7L; C C"** of the block Krylov subspace
H,5(A, B). Tt simplifies to the block Lanczos processs if A is block self-adjoint with
respect to (-, -))g according to the following definition; see also [22].

DEFINITION 2.4. A € C™*™ 4s block self-adjoint if for all X, Y € C"**,
(AX,Y)s = (X, AY))s.

Note that if A = A*, then A is block self-adjoint for the three block inner products
shown in Table 2.1.
We always assume that Algorithm 2.1 runs to completion without breaking down,

i.e., that we obtain

(i) a block orthonormal basis {V;}7",! € C"**, such that each V; has full rank

and #5(A, B) = span®{V} }" |, and

(ii) a block upper Hessenberg matrix H,, € S"*"™ and Hy,41.m € S,

all satisfying the block Arnoldi relation

~

Avm = vam + Vm+1Hm+1,mE:;l = vm+1ﬂm7 (22)

This manuscript is for review purposes only.
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 5
where V,,, = [V1|...|V,] € C**™3 and

Hl,l HLQ c.. Hl,m
H271 H272 . H27m Hm
R N S

Him = .
" . : Hm-l—l,mE:,H-l

Hm,m—l Hm,m
By construction, the block Arnoldi vectors V; S-span the block Krylov subspace
H,5(A, B). As in the scalar case, any element X € #,5(A, B) has a unique represen-

tation in terms of these block Arnoldi vectors in the sense that in the representation

X =Y Vi, T, €S, (2.3)

i=1

the “block coefficients” T'; are unique.
PROPOSITION 2.5. The representation (2.3) is unique.

Proof. Taking block inner products with the basis vectors V; gives
(V3 XD =T j = Lo..com. :

2.2. Matrix polynomials over S. We denote as P, (S) the space of all polyomi-
als P of degree at most m and with coefficients Ty € S, P: C — S, P(z) = ", 2*T,
and use the notation P(A) o B introduced in [33] to denote

P(A)o B := iAkBFk. (2.4)
k=0

When regarded as a mapping from C to S, P is often termed a A-matriz [11, 12,
13, 24, 34]. In (2.4), P is considered a mapping from C"*" x C"** to C"**. This
interpretation allows for the characterization of block Krylov subspaces using matrix
polynomials as

HE(A,B)={Q(A)oB:Q cP,,_1(S)}.

As a consequence, we have the following characterization of the block residual,
which will be used later.

Remark 2.6. For any block vector X = Q(A)oB € #3(A, B), the corresponding
residual R = B — AX can be written as R = P,,(A) o B, with P,, € P,,,(S) and
P,,(0) = I. Indeed, P,,(z) = I — 2Q(z), for some Q € P,,_1(S).

For a given element X,, = Q(A) o B of #,5(A,B), Q € P,,_1(S), a natural
question is how this element is represented in terms of the block Arnoldi basis V,,,
ie., as X,, = ViEp,, for block coefficients E,,,. The polynomial exactness property
formulated in the following theorem shows that =,, arises from evaluating () on the
block Hessenberg matrix H,, or a modification thereof that changes only the last block
column. The theorem will be useful in the context of restarts for families of shifted
linear systems and for matrix functions in Section 4. We use the notation introduced
with the block Arnoldi process, Algorithm 2.1.

This manuscript is for review purposes only.
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6 A. FROMMER, K. LUND, D.B. SZYLD

THEOREM 2.7.

(i) For any matriz of the form H,, + M, where M = Mﬁfn, M € S™, we have

Q(A) 0 B =V,,Q(Hum + M) 0 E1B for all Q € Py, (S).

(2.5)

(ii) If (2.5) holds for some matriz M € S™ ™ then M = ME;, with M € S™.

Proof. To prove (i), observe first that H,, +M Efn is still block upper Hessenberg.
So in its j-th power all block subdiagonals beyond the j-th are zero. In particular,

for the bottom left block,
EX(Hm+ME:)E, =0, j=1,...,m—2.
To obtain (2.5) it is sufficient to show that

AB =V, (Hpm +MVEB, j=0,...,m—1.

(2.6)

(2.7)

This certainly holds for j = 0, since A’B = B = ViB = V,,, E,B. If (2.7) holds for
some j € {0,...,m — 2}, then A7"'B = AA'B = AV,,(H,, + M) E, B. Using the

block Arnoldi relation (2.2) we then obtain that

A B = (VHu + Vg1 Hotm Bl Mo + M) EL B
= Vo Hon (Mo + MY E\B + Vi 1 Hyp oy m B (H + M) EL B

(2.8)

Herein, the second term vanishes due to (2.6) and, again due to (2.6), M(H,, +
M) E\B = ME},(H,, + M)E;B =0 for j = 1,...,m — 2. Thus, equation (2.8)

becomes

AB =V, H, (Hm + M) E, B
=Vt (Hm + MY E B + YV, M(H,, + M) E,B
=V (Hm + MY T E B,

completing the proof for (i). Note that by taking M = 0, (i) gives that
AB=V, M EB, j=0,... m-1.
To prove (ii), by assumption we now have that in particular
AB=V,,(Hm+MJIEB, j=0,...,m—1,
as well as, by (2.9),
AIB=V,H E\B, j=0,....m—1,

giving A R
V. H! EiB = Vo(Hpm + MYYE B, j=0,...,m—1.

Since V,, has full rank and B is nonsingular, all this implies that HJ, E;
M) E; for j =0,...,m — 1, yielding

HI By = (Hp + MYHIT'Ey, forj=1,...,m—1.

This manuscript is for review purposes only.
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 7

We thus have o
MHIZIE, =0 forj=1,...,m— 1. (2.10)

For j =1 (2.10) directly gives that ME; = 0. Inductively now, assume that ME, = 0
for £ =0,...,7 for some j > 0, j < m — 1. The relation (2.10), with j — 1 replaced
by j, can be written as

m Jj+1
0=MH,E = M> EEH,E =M> EE;H),E,
=1 £=1

with the last equality holding since all block subdiagonals beyond the j+1-st are zero
in Hj,. With the inductive assumption we thus obtain ME; 1 E7 H], E1 = 0. We
now note that R R

Ej M, By = Hjy jHjjo1 - Hay,
and herein all factors Hy,1 ¢ are nonsingular, since they arise as scaling quotients in
the block Arnoldi process, Algorithm 2.1. This relation implies that MEj+1 =0,
thus completing the inductive proof of (ii). d

Theorem 2.7 generalizes to blocks what is known in the case s = 1; see, e.g., [21,
Lemmas 1.3 and 1.4], as well as [4, 14, 19, 39, 41, 50].
The block FOM approximation X,, for a block linear system AX = B is given
as (see [42])
Xfom .— v HVEB =V, 1, E\B.
Note that X% is indeed in %> _; (A, B), because H,,} can be expressed as a poly-
nomial in H,,, and is thus in S™*™,

More generally, we can consider a whole family of approximations from
X5 (A, B) of the form

X =V (Hm + M)_lﬁlB, where M = Mﬁfn

We will see in Section 3 that, for example, block GMRES approximations are con-
tained in this family. In light of Theorem 2.7, such types of X, satisfy

X = vm(Hm + M)ilﬁlB = Qm—l(A) oB = vam—l(Hm + M) o ElB (2~11)

for some @Q,,—1 € Pp,—1(S). This observation motivates the following definition.
DEFINITION 2.8. Given H € S™*™ B € S™, and f : D C C — C such that
f(H) € S™*™ s defined, we say that Q € Pp,—1(S) interpolates f on the pair (H, =)
if
QM) o E=f(H)E.
With the block Vandermonde matrix
W:=[E|HE| - |H" 'E] e S™*™, (2.12)

we see that Q(z) = Z;n:_ol 2IT; interpolates f on the pair (H,E) if and only if
L'=[To| - |Ty-1]" € S™ solves

WI = f(H)E. (2.13)

Consequently, an interpolating polynomial exists if YV is nonsingular.

This manuscript is for review purposes only.
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8 A. FROMMER, K. LUND, D.B. SZYLD

The matrix polynmial @,,_; from (2.11) interpolates the function f : 2 — 271
on the pair (H,, + M, ElB) since V,, has full rank. Our last contribution in this
section relates the eigenvalues of H,, + M to the latent roots of the “residual matrix
polynomial” P, (z) = I — 2Qm-1(2) € Pn(S). Recall that the latent roots of a
matrix polynomial P are the zeros of the function det(P(z)) : z € C — C; see, e.g.,
[13, 24, 34].

THEOREM 2.9. Let H € S™*™ be nonsingular and let 2 € S™ be such that the
block Vandermonde matriz (2.12) is nonsingular. Let Q-1 € Pp—1(S) be the matriz
polynomial interpolating f(z) = 2~% on the pair (H,Z) and let x(z) be the character-
istic polynomial of H. Then the residual matriz polynomial Pp,(2) = I — 2Qm—1(z) =
S 2T satisfies

det(P(2)) = x(2)/x(0). (214)

In particular, the latent roots of P,, coincide with the eigenvalues of H including
(algebraic) multiplicity.

Proof. We first prove the result under the following additional assumptions:

(i) H is diagonizable and all its eigenvalues are distinct, i.e., we have

H=XAX"1,

where A = diag(A1,. .., Ams), A # Aj for ¢ # j, X € C™°*™° nonsingular.
(ii) All rows in X ~'= are non-zero.
With these assumptions, let z7 # 0 denote row j of X~ lie, x
for the eigenvalue \; of H:

*

7 is a left eigenvector

T
TiH = \jz;.

From 0 = P,,,(H) 0o & = 1" i H'EY;, we obtain, multiplying with 27 from the left,
that

0=> NaiBY; =23BY XY= (2;8) Pn(\)).
=0 =0

By assumption (ii), 272 # 0, so it is a left eigenvector to the eigenvalue 0 of Pp,(););
i.e., det(Py,(A;)) = 0. Since this holds for all j and det(P(z)) is a polynomial of
degree ms, we have det(P(z)) = cH?fl(z — ), and since det(P(0)) = det(I) = 1 we
ms — 1

have ¢ = [T} (=X;) "' = 0

We now turn to the situation where (i) and (ii) do not necessarily hold and use an
argument based on continuity. Let H = T J7 ' with J being the Jordan canonical
form of H. Then J is a bidiagonal matrix with the eigenvalues \; of H on the
diagonal according to their algebraic multiplicity. Let ¢y > 0 denote the minimal
distance between the distinct eigenvalues

eo :=min{|A\; — Aj| 1 Ay # A},

€ .. 11 1
$j+2dlag<[1,2,,m]>

Then for 0 < € < ¢y the diagonal elements of 7., which are the eigenvalues )\l(-e) of 7T,
are all different. For all such e we therefore have that H. = 7.7.7 ! is diagonizable
with ms pairwise different eigenvalues,

and let

M= XAXT, A, = g0\,

This manuscript is for review purposes only.
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 9

and that |He — H|2 < §[|T|2)|7 2. For 6 > 0 consider now X5 = X +

S[L...] I)*E*. Then

[

X sBE=XE+0[1,...| L=

The block vector E has full rank since the Vandermonde matrix W from (2.12) is

ok

nonsingular. So for all ¢ the i-th row e]E*E of Z*E is non-zero. Therefore, for
0<d<di(e) := miin{||e;-kX€EH2 cef X2 # 0}/ mlax{He;kE*EHg},

we have that all rows in X, ;= are non-zero. Choose § > 0 small enough such that,
in addition,
Hes = Xe s Xy

satisfies ||He,s — Hell2 < €. Then, since ||Hes — Hl|l2 < 5|7 |2l|7 ]2 + €, the Vander-
monde matrix
[EH Bl H B

is nonsingular if € is small enough. For such ¢, let Qf,’f_l be the polynomial interpolat-
ing f(z) = z=! on the pair (H.s,Z). By part (i), the corresponding residual matrix
polynomial PS%(z) = I — 2Q5° ,(2) satisfies

det(P5°(2)) = x“°(2)/x°(0), (2.15)

where x%%(z) is the characteristic polynomial of H®%.  As solutions of the
system (2.13), the matrix coefficients of Qinil(z) and thus the coefficients of the
polynomial det(P5°(z)) depend continuously on the entries of H¢°, as well as the
coefficients of the characteristic polynomial x%(z). By continuity then, and since
|7 = HO 2 < S| T||2lI7 12 + €, taking the limit € — 0 in (2.15) gives (2.14). O

IftH=Hn,+ M with M = ME:,L, M € S™, where H,, arises from the Arnoldi
process with starting block vector B, the block Vandermonde matrix (2.12) is

[E\B| (Hm + M)E1B| -+ | (M + M)" ' E, B].

This matrix is block upper triangular, with H;;ll H;_;j11,-;B as its i-th diagonal
block. Since we assume the Arnoldi process runs without breakdown until step m, all
matrices H;4; ; exist and are nonsingular, since they are the scaling quotients from
the block Arnoldi process. Therefore, the block Vandermonde matrix is nonsingular,
and we obtain the following corollary to Theorem 2.9.

COROLLARY 2.10. Let H = Hyp + M € S™™ M = ME}, with M € S™ be
nonsingular. Let Q,,_1 € P,_1(S) interpolate f(z) = z=1 on the pair (H,,+M, ElB)
and let x(z) be the characteristic polynomial of H., + M. Then the residual matriz
polynomial Py, (z) = I — 2Qm-1(z) satisfies det(Py,(z)) = x(z)/x(0).

Parts of this corollary have been observed in various constellations in the litera-
ture before. For example, for block GMRES—where the assumptions on H are fulfilled,
as we will see in section 3.2-it was shown in [46, Theorem 3.3] that for the classical
block inner product, the latent roots are exactly the roots of the characteristic poly-
nomial; see also [45]. This result does not, however, contain the result on the algebraic

multiplicities. The same result for the global inner product was formulated in [16,
Theorem 3.1].
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3. Block FOM and its low-rank modifications. Given a block inner prod-
uct (-, -))s and the output of the corresponding block Arnoldi process, the common
property of the block Krylov subspace methods to be discussed in this section is that
they take their m-th iterate, approximating the solution of the block linear system
AX = B, as R R

X =V (" + ME?,) ' E| B with M € S™. (3.1)

Theorem 2.7 shows that these are iterates for which the defining polynomial X, =
Qm—1(A)oB is the one interpolating (H,,+M E?,)~! on the pair (H,,+ ME?,, E,B).

3.1. Block FOM. The m-th block FOM approximation X,f;b’m is variationally
characterized by the Galerkin condition

(B—AXI™ y). =0forall Y € %, (A, B). (3.2)
As was shown in [22], (3.2) is satisfied if we take M =0 in (3.1),
Xfom —y 4-'E B,
and the residual RE™ = B — AX[™ is cospatial to the next block Arnoldi vector,
R™ =V, 1 C,, with C,, €S; (3.3)

see also Theorem 4.1 below. If H,, is singular, the block FOM approximation does
not exist. To state results on convergence, we introduce the scalar inner product (-, -)s

(X,Y)g = trace (¥, X ). (3.4)

The properties of (-, -))5 from Definition 2.1 guarantee that (3.4) is a true inner product
on C"*%, Naturally, it induces the norm

1X|ls == (X, X)&/°.

For the classical, global, and loop-interchange paradigms from Table 2.1, ||-||s is the
familiar Frobenius norm in all three cases.

As a complement to the notion of block self-adjointness, we use the following
notion of positive definiteness.

DEFINITION 3.1. A € C™*" 4s block positive definite with respect to the block
inner product (-, ) if (AX, X)) is Hermitian and positive definite for all full rank
X € C™"** and positive semidefinite and non-zero for all rank-deficient X # 0.

We immediately obtain the following: if A is block self-adjoint with respect to
(- -)s according to Definition 2.4, then A is also self-adjoint with respect to (-,-)s.
If, in addition, A is block positive definite according to Definition 3.1, then A is also
positive definite with respect to (-, -)s.

If A is block self-adjoint and block positive definite with respect to (-,-))g, the
block FOM iterates can be computed efficiently using short recurrences. The resulting
block CG method was first described and analyzed in [38] for the classical paradigm.
Several authors have considered various aspects of numerical stability and strategies
for “deflation” corresponding to the case that a block Lanczos vector becomes numer-
ically rank-deficient; for a thorough discussion of the literature, see [7]. The following
convergence result for a general block inner product (-, -))s was basically proven in
[22, Theorem 3.7]. It uses the scalar A inner product (X,Y)as = (AX,Y)s and
transports the standard CG error bound to the general block case.
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THEOREM 3.2. Let A € C™"*™ be self-adjoint and positive definite with respect to
(-,-)s. Then the error Efo™ := Xfom _ X where X, = A1 B, satisfies

fom _ .
[Em™ | 4s = xe i X = X5 < &mlIBllas (3.5)
with VR \
2 K—1 max
= = = 36
Em cm+c—m’c \/E—|-]_7H >\min, ( )

and Amin 0nd Apax denoting the smallest and largest eigenvalues of A, respectively.

We note that the theorem applies in particular for a matrix A which is block
self-adjoint and block positive definite with respect to the block inner product (-, ).

If A is Hermitian and positive definite with respect to the standard inner prod-
uct, it is also block self-adjoint and block positive definite with respect to the block
inner products corresponding to the classical, the global and the loop-interchanged
paradigm from Table 2.1. Moreover, all three paradigms yield the same induced scalar
inner product (V, Wg = trace V*W, termed the Frobenius inner product. The corre-
sponding common A-norm (-,-) as is || X|| 4, p := trace X*AX. Given the nestedness
of the block Krylov subspaces (2.1), the optimality property of Theorem 3.2 yields
the following additional result.

THEOREM 3.3. Let ES!, EL' and ES! denote the errors of the m-th block FOM
approximations corresponding to the global, loop-interchange, and classical paradigms,
respectively. Moreover, let (-, -)s be a block inner product for which the corresponding
scalar inner product satisfies (V,W)s = trace VW and denote E§n the error of the
corresponding block FOM iterate. Then

1B ar < 1B aps Bl s < 1B 4p-

3.2. Block GMRES. The m-th block GMRES iterate from .#,5(A, B) is de-
fined via the Petrov-Galerkin condition

(B - AXE™ AY ) =0 for all Y € #5(A, B). (3.7)
This is equivalent to requiring

(B— AXE™ AY)s =0 forall Y € .%,5(A, B)
for the derived scalar inner product (-,-)s. Since for any Y € .#,5(A, B) we have that

(B-AXZ" -Y),B—-AXZ" -Y))s
= (B — AXE™ B — AXE")s — (B — AX5™ AY)s
—(AY, B — AX5™)s + (AY, AY )g
= (B - AXE"™, B — AX&8")s + (AY ,AY )s,

we then see that the Petrov-Galerkin condition (3.7) is equivalent to the block GMRES
iterate minimizing the S-norm of the block residual. That is,

X5 = argminy ¢ 54 p) [[B - AX|lg. (3.8)

For the classical paradigm, this equivalence has been observed in [46, Section 1], and
for the global paradigm in [29, Section 3.2] and [16, Section 2.2].
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Representing Xg" = V,,,E8™" with the coeflicient block vector E&"" € S§™, the
block Arnoldi relation (2.2) and the (-, -)s-orthogonality of the block Arnoldi basis
show that the minimizing property (3.8) turns into a least squares problem for Zg™r,
expressed via the Frobenius norm ||-||p:

=gmr
=

— argminggn |[E1B — H,,Z| r.

This is the approach of choice for obtaining X2&™ computationally. On the more
theoretical side, it is of interest to see that the block GMRES iterates can be regarded
as modified block FOM iterates in the sense of (3.1).

THEOREM 3.4. Assume that H,, is nonsingular. Then the m-th block GMRES

iterate X&™" is given as Xg™ = V,,,Z2&", where

BB = (Hy, + ME™)TLE, B with M™ = H, "By Hry o Ho B, (3.9)
Proof. We have to show that the Petrov-Galerkin condition (3.7) is satisfied, i.e.
(AV,,©,B — AV,,,E*"") =0 for all ® € S™.

From the block Arnoldi relation (2.2), we have for any ® € S™
(4V1,0, B = AV, EE™)g = (Vins18,,0, Vi1 (B1 B — H,, E5™))s.

Using square brackets []; to denote the i-th block component E’:‘ V € S of a block
vector V' € S™, the basic properties of (-,-)g from Definition 2.1 and the block
orthonormality of the block Arnoldi vectors V; give

(V41,00 Vini1 (BB — H,, EF™ )
= (0 VilH,, 8L, S VILE B — H,,,B5™ ) g
= Y M, Ol [Ey B — H,, B
= ©"H;,(E\B — H,,B5™)
= ©"(H;,EB — M} H,,EE™).
So the proof is accomplished once we have shown that 2, H,  S&" = ﬂfnﬁlB. To

this end, note that

~

which gives HH,, = Hi Hum + En H: i t.mHmy1.mEy,. Together with (3.9) this
shows
My H B8 = (Mo Mo + By g Hon1, i By )ZE™ = H;, B B

= ﬂ;ﬁimH)B, (superscripts in E, indicate the dimension)

where the last equality follows from (3.10). 0

Recall that a matrix A € C"*" is termed positive real, if Re(z*Azx) > 0, for
all z # 0, and that this concept trivially extends to other inner products than the
standard one. A positive real matrix has all of its, possibly non-real, eigenvalues in
C™, the open right half-plane. For the non-block case (s = 1), an important result
from [15] (see also [43] and the improvement in [48]), states that if A is positive
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real, the norm of the m-th GMRES residual is reduced by at least a constant factor
independent of m. Our next theorem shows that this extends to the general block
case. It uses the following quantities which are well defined and positive if A is positive
real with respect to (-, -)s:

_ . [Re((V,AV)q)
T { V., V)s
{<AV,AV>S

<VaV>S

:VG(C”XS,V;//éO}7
:VE(C”XS,V#O}.

THEOREM 3.5. Assume that A is positive real with respect to the inner product
(,)s. Then form =1,2,... the block GMRES residuals RE™ = B — AXE™ satisfy

2 1/2
RS |ls < (1 - VV > | RE™ | - (3.11)

max

Proof. Let P,,—1 € Pp,—1(S) be the residual matrix polynomial for RS™, i.e.,
R3™, = P,_1(A) o B, and let R be the matrix polynomial R(z) = I — z(al),
where a € R is yet to be determined. Because the matrix coefficients in R are scalar
multiplies of the identity, we have (RQ)(A) oV = R(A) - (Q(A) o V) for all matrix
polynomials @ and all V' € S™. Since by (3.8) the S-norm of R,, = P, (A) o B is

minimal over all polynomials P in P,,(S) with P(0) = I, we have that
IR [ls < |(RPm-1)(A) 0 Bllg = [|R(A) - (Pm-1(A) 0 B)|ls < [|R(A)]lg || RE™ || -
Morover, for all V- € C***

(R(AV,R(A)V)s = (V —aAV,V — aAV)g
=(V,V)s —2aRe((V,AV)s) + a*(AV, AV )g,

which gives
HR(A)H; <1 =20y + & Vmax.

With & = 4/Vmax minimizing the right-hand side, the inequality (3.11) follows. 0

As a side remark, let us note that A is positive real with respect to (-, -)g if it is
block positive real according to the following definition.

DEFINITION 3.6. A € C"*" is called block positive real if (AV,V)q € S is
positive real with respect to the standard inner product for all full rank block vectors
V' and has at least one eigenvalue with positive real part for all V # 0.

If A is positive real with respect to the standard inner product, then it is also pos-
itive real for the block inner products corresponding to the global, loop-interchange,
and classical paradigms and, more generally, to any derived scalar inner product (-, -)s
for which (V,W)gs = trace V*W. Thus, Theorem 3.5 applies particularly to that
case. Since ||-||g then reduces to the Frobenius norm in all these cases, the minimiza-
tion property (3.8) together with the nestedness of the respective Krylov subspaces
gives the following analogue to what was formulated in Theorem 3.3 for block FOM.
See also [16, Theorem 2.4].

THEOREM 3.7. Let RS!, RY, and RS denote the residuals of the m-th block
GMRES approximations corresponding to the global, loop-interchange, and classical

paradigms, respectively. Moreover, let (-, -))g be a further block inner product for which
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14 A. FROMMER, K. LUND, D.B. SZYLD

the corresponding scalar inner product satisfies (V,W)s = trace VW, and let RS,
denote the corresponding block GMRES residual. Then
1R < (1R

m

e [ Boallp < 1B

3.3. Block Radau-Arnoldi. The idea of the Radau-Arnoldi approach is to
modify the FOM approach by imposing an additional constraint on the residual that
is also independent of B. This can be useful, for instance, as a means to use previously
built-up information such as in the case of restarts and thus in particular when dealing
with matrix functions; see Section 4. Here, we describe the method for linear systems.'

We need the polynomials P;_1 € P;_1(S), j = 1,...m, which describe the block
Arnoldi vectors Vj, j =1,...,m, as

‘/j:ﬁjfl(A)OB, j:1,7m

The block Arnoldi relation (2.2), AV,, = V1M, directly turns into a correspond-
ing relation for these matrix polynomials

2 [P [ | Paca(2)] = [Bo() |-+ | Pu(®)] - B, (3.12)

with Py = B~

We now fix an S € S, and require the residual R;% of the m-th block Radau-
Arnoldi approximation X* € 5 (A, B) to be (-, -)g-orthogonal to .#,>_, (A, B)
(rather than to J#5(A, B) as in block FOM),

Ru=PR(A)oB Ly y A5 (A, B), (3.13)

and ask P'?(z) € P, (S) to satisfy the additional constraints
P>2(S) =04 and P:*(0) = I. (3.14)

A matrix polynomial P is regular if there exists some z € C such that
det(P(z)) # 0. Residual polynomials are always regular, since they are the iden-
tity at 0. A matrix S € C*** is called a solvent for P,, € P,,(C**) if P,,(5) = 0.
It is known for regular matrix polynomials that then P, can be factored as P,,(z) =
(21 —S)PS_|(2) with PS_| € P,,_1(C***); see [34, Theorem 3.3] and its corollary, as
well as [37, Theorem 2.17]. The constraints (3.14) can thus equivalently be formulated
as

P e By (9), (3.15)
where
BS (S) i= {P € Ppu(S) : P(2) = (:I-S)PS_,(2), P5_, € Ppu_1(S) and P(0) = I,}.

The following theorem shows that, just as for block GMRES, the block Radau-
Arnoldi iterates are modified block FOM iterates in the sense of (3.1).

IThe method was introduced for the non-block case in [21] as the “Radau-Lanczos” method,
wherein the name reflects the relationship between GauB-Radau quadrature and the Lanczos pro-
cedure for symmetric matrices; see [25, Chapter 6]. Inspired by these earlier results, we use the
name “Radau-Arnoldi” here but note that this more general modification lacks the connection with
Gaufl quadrature unless the matrix A is symmetric; see, e.g., [25, Chapter 8] or [35, Section 5.6.2].

This manuscript is for review purposes only.
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 15
THEOREM 3.8. Assume that ﬁm,l(S) is nonsingular and define

Pp(2) = Ppu(2) — Pp_1(2)T, where T = Pp_1(S)"'P,,(S) €. (3.16)

~ ~

Moreover, assume that H,, + M" is nonsingular, where M'® = E,,(THpt1.m)E},.
Then we have

X =V, (Hyy + M™) ' E, B (3.17)
and
R™® =B — AX™ = P™(A) o B with P’ = P,, - P,,(0)"*, (3.18)

where P,,(0) is nonsingular.

Proof. If we use B, instead of ISm, an analogue of the block Arnoldi relation
(3.12) holds if we add I'H,, 41, to the (m,m) block entry of H,,,

2Byl P = (Bl | P | B B

with

Hm N , Hm — Hm +Mra.

H o =
-m [Hm+1,mE;

Evaluating all matrix polynomials on (A4, B) with the o operator induces a block
Arnoldi-type relation for the block vectors V11 = P;j(A)o B, j=0,...,m—1, and
the block vector V;,,11 = P, (A) o B:

With this we see that for X'* defined in (3.17) we have

B - AX™ =B - AV, H,;'E\B

Hem

— B — [Vm | Vm+1] H +1 E*

] H'E\B

B~V E\B— Vi 1(Hpy1 mESH B B)
= - ~m+1<Hm+1,mE:nﬁ;~LlE1B)v

showing that R = Pr*(A)oB with P™ = P,,-Cy, and Cy, = —Hyy i1 m E%, H; L By B.

To see that C,y, = ng(O)’l, or, equivalently, that Pr2(0) = I, we first note that by
Remark 2.6, there exists P, € P, (S), with P,,(0) = I such that R[> = P,,,(A) o B.
Now, the uniqueness property stated in Proposition 2.5, reformulated in terms of
matrix polynomials, shows that when expressed as ZZ’;O P;T';, the two polynomials
Pr? and P, have identical coefficients I';. In particular, their values at 0 coincide,
thus Pr(0) = P, (0) = 1.

By the block Arnoldi process, the block vectors Vi, 1 and V;, are (-, -))s-orthogo-
nal to #5_,(A, B) and so is P,,(A)oB = Py, (A)oB+(Py,_1(A)oB)T = V1 + VL.
Moreover, Pp,(S) = 0. The scaled version P™ = P, - P,,(0)~! of P,, then satisfies
(3.13) as well as (3.14). 0
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16 A. FROMMER, K. LUND, D.B. SZYLD

Remark 3.9. Since P™(z) = (2I—S)P3_,(2), see (3.15), every eigenvalue of S is a
latent root of P;* ~and thus, by Theorem 2.9, is also an eigenvalue of
H,, + M™ ) including algebraic multiplicity. The block Radau-Arnoldi method can
thus be regarded as a modified block FOM method which prescribes the eigenvalues
of S as eigenvalues for the modified matrix H,, + M.

It is always possible to compute M™ by evaluating ﬁm,l(S) and ﬁm(S ) using
the recurrences (3.12). In the non-block case s = 1, there is a more elegant and stable
way to obtain M™ as is described in [25, 21], for the case that A is self-adjoint. An
analogue for the block case holds if S commutes with ﬁl(S) fori =1,...,m—1, which
is the case, e.g., if S is a multiple of the identity. Indeed, then, the polynomial block
Arnoldi relation (3.12), evaluated at S,

S [Po(S) |+ | Pua($)] = [Po(S) |+ | Pua(S)] - 2o, (3.19)
can be rewritten as
[PU(S) [+ | Puca(9)] (i ©.8) = [Po(S) |-+ | Pra(S)] - Hy-
This gives
[130(5) B ﬁm_l(sﬂ (o — I ® 8) = — P (S)Hyr1.m B, (3.20)

showing that I~ = P,,(S)"1P,,_(S) is the last block entry of the solution X of the
linear system. Written in transposed form, X (H,, — I, ® S) = Hypp1.m B, i€,

Po(S) P 1(S) = Hyy 1 m B, (M — LIy @ S) " Ep.

Note that if S does not commute with all the ﬁi(S), it is not possible to cast (3.12)
into a block system with a matrix from S™*” and a block right-hand side from S™.

If A is block self-adjoint with respect to (-, -))g, the block Radau-Arnoldi method
simplifies to the block Radau-Lanczos method. Theorems 2.2 and 2.3 in [21] for the
non-block case induce the following convergence result for block Radau-Lanczos. It
is formulated using the errors E'* = A~1B — X! = A1 R'™ = P'(A) o X, where
X,.=A"'B.

THEOREM 3.10. Assume that A is block self-adjoint with respect to (-,-)s and
positive definite with respect to (-,-)s. Let 0 < Amin < Amax denote the smallest and
largest eigenvalues of A, respectively, and let S = oly with 0 > Apax- Finally, let
Ay = A(cI—-A)"t and let (-, -) 4, s denote the inner product (X,Y)a, s = (A, X,Y)s

with associated norm |||, . Then

r . =S
B4, s =min{||Pn(A) o Xil[4, ¢t Pm € P, (S)} (3.21)
and
ra )\min . . p
HEmHA(,-S <(1- . Em_1 ||X*HA,,-S with &n—1 as in (3.6). (3.22)
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 17

Proof. Since for any P € P,,(S) and X € C"** we have A(P(A) o X) =
P(A) o (AX), we obtain
1P (4) 0 Xl s =
= (AP, (A) o X,, (0] — A)P AT AP, (A) 0 X.)s
= (P (A) oAX*,(aI A)TPATIP, (A) o AX,)s
= (Pn(A)o B, (0 — A)"*A7'P,,(A) o Bs.

A(ol — AP, (A) o X, P(A) o X,)s

Now observe that P, € ﬁi(S) can be written as P,, = P} + T, where T, =
P,, — P satisfies T,,,(S) = 0 and T,,,(0) = 0, implying T}, (z) = (2I — S)2T5 _,(2)
with T3 _, € P,,_o(S). Also note that for any Q € P,,(S) and P(z) = (21, — o1)Q(z)
we have that P(A)oB = (oI, — A)-(Q(A) o B), an equality which has no counterpart
if S is not of the form oI. Given this, for any P,,(z) = P:(2) + (21 — o1)2T5 _5, W
obtain that

(Pp(A)o B, (oI — A)"*A™Y(P,,(A) o B))g
= (P (A)o B, (d1 — A) " AN (PI2(A) 0 B))g
+ (P™(A)o B, (ol — A) A7 (oI — A)A(TS _,(A) o B))s

(01 = AYA(TS 5(4) o B, (o1 = A) A PR B
(0 = AYA(TS _y(A) 0 B), (o] — A A (0] — AJA(TS _,(A) 0 B))s.

Herein, the second summand (P:2(A) o B,T ,(A) o B)g vanishes due to the vari-
ational characterization (3.13) of the block Radau-Arnoldi method, and so does the
third summand, which is equal to (T3 _,(A) o B, P'*(A) o B)g. Finally, the fourth
summand equals (o] — A)A(TS_,(A)o B), TS5 _,(A) o B)s and is thus non-negative,
since (oI — A)A is self-adjoint and positive definite with respect to (-, -)s. This proves
(3.21).

The estimate (3.22) follows from results in [21] and [22]. The proof of Theo-
rem 2.3 in [21] constructs a scalar polynomial p,,(z) of degree m with p,, (o) = 0 and
pm(0) = 1 for which maxjegpec(a) [pm (V)] < (1 — A“T) &m—1. Associating with
pm(2) =Y it ;2" the matrix polynomial

Pu(z) =Y 2t (eily) € P (S),
i=0
we have that P,,(A)o X, = p,,,(A4)X,, and Lemma 3.6 in [22] shows that the operator
norm ||pi(A)| 4, s is given as [[pm(A) 4, s = maXrespec(a) [Pm(A)]. Putting things
together gives (3.22). 0

The variational characterization (3.21), together with the nestedness of the re-
spective block Krylov subspaces, gives the following comparison result in analogy to
Theorems 3.3 and 3.7.

THEOREM 3.11. Under the assumptions of Theorem 3.10, let EG!, EX and EC!
denote the errors of the m-th block Radau-Arnoldi approzimations corresponding to
the global, loop-interchange, and classical paradigms, respectively. Moreover, let (-, )
be a block inner product for which the corresponding scalar inner product satisfies
(V,W)s = trace VW and denote ES, the error of the corresponding block Radau-
Arnoldi iterate. Then

1B 4, < 1B

ayso 1Bmlla,s < 1254,
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18 A. FROMMER, K. LUND, D.B. SZYLD

As a last remark we note that a result similar to Theorem 3.10 holds if we take
0 < 0 < Amin, where A(cl — A)~! is replaced by A(A — oI)~!, and the factor
(1 = Amin/0) in (3.22) by |1 — Apax/o| (which is larger than 1).

4. Shifted systems and matrix functions. We now turn to the task of com-
puting solutions for a family of shifted block linear systems

(A+tIHX(t) = B, t from some finite subset of C, (4.1)
and the evaluation of a matrix function acting on a block vector
F = f(A)B.

The introductions in [47, 49] offer a thorough discussion of the literature pertain-
ing to (4.1). We refer to the book [30] for a general treatment of matrix functions
and recall that for f: D C C — C and A € C"*", the matrix function f(A) € C"*"
is defined if D contains the spectrum of A and f is £ — 1 times differentiable at every
eigenvalue with multiplicity ¢ in the minimal polynomial of A. Often f(A) can be
expressed as an integral, and we here concentrate on the case of a Stieltjes function,
meaning that f that can be written as a Riemann-Stieltjes integral

1
24+t

f:C\ (~00,0] =+ C, f@W—Aw dpu(t), (4.2)

where 1 is monotonically increasing and nonnegative on [0, co) and fooo 154%1 du(t) < oco.
Note in particular that f(z) = 2~ is a Stieltjes function for o € (0,1)[28], and that
f(A) is defined if A has no eigenvalue in (—o0,0]; see, e.g.,[19]. Given a Stieltjes

function f, we have that
B = [ (A Bau),
0

thus establishing the close connection with (4.1). This connection is also present if
f is holomorphic on a domain D containing the spectrum of A, since by Cauchy’s
integral theorem we then have for a contour I" in D enclosing the spectrum of A that

1
L[S0,
21 Jp z —t

f(z) = f(AB= i/ f)(A—tI)'Badt.
2mi Jr

4.1. Block Krylov subspace approximations. The block Arnoldi process
Algorithm 2.1 is shift-invariant in the sense that if we start with the same block vector
B but with matrix A + tI instead of A we retrieve exactly the same block Arnoldi
vectors Vi, k = 1,..., m, with the block upper Hessenberg matrix changing from #,,
to Hy, +tI. For a family of shifted linear systems (4.1) we can thus perform the block
Arnoldi process only once (for A and B) and then compute the block Krylov subspace
approximations for the various ¢t simultaneously. Within our general framework from
Section 3, the respective iterates X,,(t) are then given as

X, (t) = Vou(Hm + tI + M;) " "EyB, where M; = MyE,, M, € S™.  (4.3)

If M, does not depend on t, M; = M, we can use this in the integral representation
for the matrix function case to obtain the block Krylov subspace approximation F,
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MODIFIED BLOCK FOM FOR FUNCTIONS OF MATRICES 19
for f(A)B, namely,

F, ;:/ Vo (Hon + 1 + M)~ By B dp(t)
0

o0

=V | My +tI+ M) du(t) EsB = Vo f(Him + M)E; B.
0
For M = 0 this reduces to the standard block Arnoldi approximation V,, f (Hm)ﬁlB ,
termed B(FOM)? (block FOM for functions of matrices) in [22].

4.2. Restarts and cospatiality. A crucial question now is whether we can
perform restarts efficiently for shifted systems as well as for matrix functions. If
convergence is not very fast, restarts become mandatory in the matrix function case,
since there the entire block Krylov basis V,, is always needed to obtain F,,,. A similar
situation holds for the shifted system case, except when A is block self-adjoint and
positive definite. In such a case, we can arrange a block CG method in a manner
which uses short recurrences in both, the block Lanczos process as well as the update
of the iterates.

To take advantage of the shifted nature of our systems for a restart after m
iterations, we here aim for cospatial block residuals in the sense that

R, (t)=B — (A+tI)X,,(t) = Ru(0)Cy(t), where Cy,(t) €S, (4.4)

Then, after a restart, the block Arnoldi process for the new cycle needs again to
be computed only once for all ¢, now starting with the vector R,,(0) (or any other
block vector which is cospatial to R,,(0)). In the shifted system case, the computed
approximations for (A +tI)~'R,,(t) are to be multiplied with the cospatiality factor
Cin(t) from the right to obtain the correction to be added to X,,(t) from the first
cycle, and we can proceed similarly for all further cycles, updating the products of the
cospatiality factors. This approach was also pursued in [49] for block GMRES; more
involved approaches which side-step the need for cospatial residuals include [47].

In the matrix function case, having cospatial residuals allows us to find an ex-
pression for the error of the block Krylov subspace approximation as

F—-F, = /OO(A + 1) B = V(Mo + t1 + M) E, Bdp(t)
0
:/OO(AthI)*lRm(t) du(t) (4.5)
0

- /OO(AHI)*RWL(O)Om(t) dp(t).
0

Interestingly, the latter expression does not represent a standard matrix function
applied to a block vector. Rather, the situation is analogous to the matrix polynomial
case: using the matriz integral J(z) : C\ (—00,0] = S, J(2) = [~ z%—tCm(t) du(t) we
can express F' — F,, above as

F — F, = J(4) o Ry (0) := / (A D) R (0)Cn (0 ).
0

The following theorem shows that we indeed have cospatial residuals if M; in
(4.3) does not depend on t. It also shows that the shifted residuals are cospatial to
the block vector

(4.6)

Um = vm+1 [ M :|

_Hm—i-l,m
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with cospatiality factors that are easily available. The theorem thus also suggests
that algorithmically one should build restarts upon U, rather than R,,(0), since the
former is easily computed. We again use square brackets to denote block components,

—
=

specifically [E],, := E;"nE for E € S™.
THEOREM 4.1. Let M = Mﬁfn with M € S™ and let
En(t) = M + M +t)"'E\B

be the block coefficient vector for the block Krylov subspace approzimation X, (t) =
Vi Bm(t) of the linear system (4.1). Then with U, as in (4.6) it holds that

R, (t) = UnlEm(t)]m- (4.7)
Proof. The block Arnoldi relation (2.2) gives

Ron(t) = B= Vit (Hmﬂ it H

=V ([57] = (2t +4[1] ) 200)

E\B — (M + tI)Em(t)}
- m+1,m[Em(t)]m '

Herein, BB — (Hp + t1) B (t) = M[Zy, ()] m, since by the definition of Z,, (t)
E\B — (M + tDEp(t) — M[Ep(t)]m = E1B — (M + tI + ME?)E,,.(t) = 0.
This shows (4.7). |

A consequence of this theorem is that the cospatiality factors C, (t) for the resid-
uals from (4.4) are given as Cp,(t) = [E,(0)],, [ ()] -

Assume now that we solve the block linear system AX = B with a restarted
modified block FOM method, performing cycles of length m. We use an upper
index (k) to denote quantities belonging to cycle k. At the end of cycle k + 1

we update the iterate X\ (0) by an approximate solution VAR (0) of the residual
equation AZ*)(0) = RY (0) := B — AXr(,f)(O) which, given (4.7), we obtain as
Z,gf)(O)[ng) (0)]sn, with A% (0) being the modified block FOM approximation for the
solution of AZ®(0) = U,

X (0) = XB(0) + 20 (0)[EE (0)]m

Likewise, the iterates for the restarted method for the shifted linear system
(A4 tI)X = B are obtained as

XG0 (0) = XD (0) + Z0 =D (1),
and the block residuals R (t)=B — Ang)(t) are given as
RO (1) = UG (1) with GL () = [ER (0)]m - [EG Y On -+ [ER) (O (4.8)

Taking integrals over t, we define

F = [ X0 dutt
0
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as the restarted modified block FOM approximation for the matrix Stieltjes function
f(A)B. The above results directly give

f(AB - F® = / OO(A +t)7'B — X P (4) dpu(t) (4.9)
0
- /OO(A O (B —(A+ tI)X§f>(t)) du(t)
0

= [+ URED @) dutt
0

as a representation for the error. We summarize all this in the following theorem,
where we use the matrix integrals

JO () = /Ooo(ert)lIsd,u(t), T (5) = /Ooo(zH)1G5§>(t)du(t),k_1,2,...,

with Gﬁ,’f)(t) € S from (4.8).
THEOREM 4.2. Let f be a Stieltjes function, f(z) = fooo(z +t)"tdp and put
7(,?) =0. Fork=0,1,..., set the k-th modified block FOM correction to be

DY .= Ykt (k) (k4D o p(k+D)) o f B, (4.10)

such that F,(nk—H) = F,(nk) + D,(,’f). Then for k = 0,1,..., the k + 1-st modified block
FOM error D#+1) .= f(A)B — FF™ is given as

D&Y = k1) 4y o k+D), (4.11)

Algorithm 4.1 summarizes how to implement a modified block FOM method for
functions of matrices, from now on termed modified B(FOM)?. Tt encounters the same
preallocation issues as [22, Algorithm 2] in the case that the nodes of the quadrature
are not fixed a priori.

Algorithm 4.1 Modified B(FOM)? for functions of matrices with restarts

1. Given f, A, B=UY,'S, (-,-)s, N, m, tol

2: for kK =0,1,..., until convergence do {cycle k + 1}

3:  Run Algorithm 2.1 with inputs A, UT(f), S, {-,-)g:» IV, and m, store Vfﬁii) in
place of the previous basis foj}rl, store B(+1)

4:  Compute 157(7]:) = vﬁ,’jﬂ)ﬂf) (H$+1)+M(k+1))oﬁl, where J,(,]f) is evaluated via
quadrature. This requires the computation of the cospatial factors Ggf)(t) =
[E%)(t)]m[Eg,’f_l)(t)]m e [Eﬁ}) (t)]m (see (4.8)) at a set of quadrature nodes,
which could be variable

5. Update F,(fﬂ) = F,(f) + ﬁr(r]f)

6:  Store HFFD - Aq(k+D)

m—+1,m>

(k+1)
7. Compute U,Sf'H) = vg\l;—&-l) [—Aj;l(kﬂ) }

m+1,m
8: end for

9: return F,(nkH)

In the following sections, we discuss special instances of Algorithm 4.1 for the
different modifications analyzed in Section 3.

This manuscript is for review purposes only.



-~

U o W N

I e

oo

I N N RN B RN BN

R e e e e

780
781
782
783
784
785
786
787
788
789

790

22 A. FROMMER, K. LUND, D.B. SZYLD

4.3. Shifted block FOM and B(FOM)Z2. For any t, the block FOM iter-
ates that approximate the solution of (4.1) are given by X°m(t) = V,,Bfom (1) with
Efom () = (H,, +t1)~LE B, so we have that M = 0 for all t. Theorem 4.1 shows that
the residuals R™(¢) are all cospatial to U™ = —V,, 1 Hyyi1,m, i€, to Viiq. If A
is self-adjoint and positive definite with respect to (-, -)s, [22] uses the bound (3.5) for
every shift ¢ > 0 to obtain a convergence result for restarted block FOM for families
of shifted linear systems as well as for unmodified B(FOM)? for Stieltjes functions
of matrices; see [22, Theorem 4.5]. (Note that unmodified B(FOM)? is equivalent to
Algorithm 4.1 with M = 0; cf. [22, Algorithm 2].)

4.4. Shifted block GMRES and harmonic block Arnoldi for matrix
functions. The situation is different for block GMRES: From (3.9) we have
XEM(t) = V28 (t) with

EE(t) = (Hy + t1 + ME™(t)) " E, B,
where

Mgmr(t) _ Mgmr(t)E*

m>s

and M&™(t) = (Hm + tI)**EmH;H,mHmH,ma

showing that M8™"(¢) indeed depends on t. In order to maintain cospatial residuals
for shifted linear systems, one thus has to pick one value for ¢, typically t = 0, for
which “true” block GMRES is performed, giving the block vector M. This same block
vector is then used for all the other shifts to obtain the block iterates according to
(3.1). These block iterates are not the block GMRES iterates for the shifted system,
so their block residuals do not satisfy the minimization property (3.8). They are,
however, all cospatial to U, from (4.6) with M = M#™"(0).

In this manner we can efficiently perform restarts for families of shifted linear
systems as well as for Stieltjes functions of matrices. In the non-block case, this
approach goes back to [17] for families of shifted systems and to [19] for Stieltjes func-
tions of matrices. In accordance with [19], the resulting method for matrix functions
is referred to as the harmonic block Arnoldi method.

If we were to transfer the convergence analysis from [22] to the shifted block
GMRES case, we would need a result analogous to Theorem 3.5 for the iterates of the
shifted systems, which are not “true” block GMRES iterates. It seems hard to find the
right analogue, and we could obtain only partial results based on the following theorem
which is also of interest on its own. The theorem uses shifted matrix polynomials,
where for P(2) = >, 2T its shifted counterpart P®)(z) is defined as

m m
PO(z) =Pz +1) =Y 2T with T\ =3~ ()=, (4.12)
i=0 =i
Note that for V € C"** we have
PEY(A4tH oV =P(A)o V.

The following theorem gives an alternative representation of the cospatiality factors
Cpn(t) in terms of the residual matrix polynomial.

THEOREM 4.3. Let P(z) € P,,(S) be the matriz polynomial expressing the residual
R,,(0) = B—AX,,(0) with X,,(0) = YV (Hm+M) " E\B as R, (0) = P(A)oB and
assume that for some t € C the matriz P(—t) € S is nonsingular. Then H,, + M +tI
is nonsingular, and the block residual R,,(t) = B — (A 4+ t1) X, () with X, (t) =
Vo (Hm + M+ tI)_lﬁlB satisfies
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(i) Ry (t) = Pi(A+tI)o B with Pi(z) := PCY(2) - P(—t)~L.
(ii) Rpy(t) = Ry (0)Crn(t) with Cy,(t) = P(—t)~L.

Proof. We first note that (ii) follows immediately once (i) is established, since

P(A+tl)oB = (PCO(A+t)- P(-) ) o B
= (P(A)- P(-t)™") o B = (P(A)o B)- P(-t)™".

To prove (i), we systematically use the polynomial exactness property formulated in
Theorem 2.7. We have X,,,(0) = Q(A)B, where the matrix polynomial Q € P,,_1(S)
interpolates f(z) = z~! on the pair (H,, + M, E, B). The matrix residual polynomial
P(z) is thus given as P(z) = I — 2Q(z) and we have that

P(Hm + M) o (E\B) = 0.
Now, the matrix polynomial P;(z) defined in (i) satisfies

Pi(Hm + M+ tI) o (E1B) = (P(Hp + M) - P(—t)Y) o (E1B)
- (P(Hm+M)o(E1B)> P(—t)"t =0,  (413)

and since P; € P,,,(S) with P;(0) = I, we can represent it as Pi(z) = I — 2Q(z) with
Q¢ € Pru_1(S). Equation (4.13) then shows that @ interpolates f(z) = z~! on the
pair (Hpm + M + tI, By B), which means that X, (t) = Vi (Hm + M +tI)"LE\ B is
given as X,,(t) = Q1(A) o B and thus R,,(t) = P,(A) o B. d

COROLLARY 4.4. Assume that H,, + M has all its eigenvalues in C* and let
t > 0. Then the cospatiality factors C,,(t) € S from Theorem 4.3 satisfy

| det(Chn(1))] < 1.

Irrespective of the block inner product ((-,-)g, this holds in particular if A is pos-
itive real with respect to the standard inner product and M = 0 (block FOM) or

M = M = U (B Hry g i Hon1,m E2) (block GMRES).

m

Proof. Let \; € CT,i = 1,...,ms, denote the eigenvalues of H,, + M. By the
result on the latent roots from Theorem 2.9 we have det(P(z)) = []:*" (1— ), which
gives that

ms
| det(P(—t))| = H 1+ 5|
i=1
For ¢t > 0, since Re()\;) > 0, we have Re(%ﬁ_) > 0 and thus |1+ /\%| > 1 for all 4. This
gives |det(P(—t)| > 1 and thus | det(C,,(¢))| = | det(P(—t)~1)| < 1.

To prove the remaining part of the corollary, assume that A is positive real. By
the block Arnoldi relation (2.2) we have for x € C™*

T Hmr ="V, AV px = (Vi) " A(Vimz).
Since V,,, has full rank and thus V,,x # 0 for z # 0, this shows that #,, is posi-

tive real. An eigenpair (z,\) of H,, therefore satisfies A = "’”;{% € C*, which is
the assertion for M = 0 (block FOM). For block GMRES, where M = M8™ =
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H;@*(E\mH;;H’mHmH’mE;;), let (M, + M8 )z = Az for some z € C™* x # 0.
Then (H}, Hp + Hi, M8 )z = X} = and thus

T HE Ht + 2 (B H oy Honi1 m B & = A" Hop,
———— i ——

eC+

>0 >0

which gives A € C*. 0

Theorem 4.3 covers block FOM and block GMRES for the global,
loop-interchange, and classical paradigms if A is positive real with respect to the
standard inner product. In particular, it also applies for global, loop-interchange, and
classical block CG if A is Hermitian and positive definite real with respect to the
standard inner product.

Corollary 4.4 has a geometric interpretation: the volume of the parallelepiped
spanned by the columns of R,,(0) is det(D) for any D € C5* in a representation
R,.(0) = QD with Q € C"™**® having orthonormal columns. The volume of the
parallelepiped spanned by R,,(t) is det(D) det(C,,(—t)), and thus smaller than that
for R,,(0). Note that this does not exclude that some columns of R,,(t) can have
arbitrarily larger length than those of R,,(0), provided angles between the columns
of R, (t) are sufficiently acute.

When specialized to the non-block case, Corollary 4.4 delivers a strong result:
Cpm(—t) is now a scalar, which is less than 1 in modulus by the corollary, implying
that for positive shifts the norms of the shifted residuals are all smaller than the norms
of the non-shifted residuals. For the CG method this observation relies on [39], and
for shifted GMRES for positive real matrices it can be found in [17]. That this also
holds for FOM for positive real matrices seems to not have been observed before.

[RIP

‘ P ||HF H'||2max
block FOM 16,841 117 121 123

block GMRES | 10,092 98 93 105

(a) Number of instances (out of 10* samples, each for
m = 1,...,9) refuting monotonicity conjectures. p: spec-
tral radius of Cp,(t) larger than 1; [|‘|lg, [Illg max» IIll2:
[[Rm (t)|| > || Rm (0)| for the respective norm, all for ¢ = 0.1.

o [R@ls — [Re@lls
‘ R(t) := \\{?j(n)\\s 1 ‘ ‘ R(t) := \\{?:(O)HZ
0.4r —R() ] 05} —R(t)
0.2 Rl « Rt
0 » Rlt,g)=0 » Rlt,y) =0
-0.2¢ 0
-0.4r1
0.6 1 0.5¢
-0.8+
0 0.5 1 1.5 2 0 0.5 1 1.5 2
t t

(b) Relative difference of the residual Frobenius norms as a function of ¢ for selected samples

Fig. 4.1: Results of experiments on residuals of shifted systems
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For the block case, rather than having a result just on the determinant, we would
prefer a result which shows ||C,,(t)|| < 1 for an appropriate norm. After several
unfruitful attempts in this direction, we performed some numerical experiments to
find counterexamples. We generated self-adjoint block tridiagonal 20 x 20 matrices H
where each diagonal and off-diagonal block is a randomly generated Hermitian and a
positive definite 2 x 2 matrix. These matrices H are then scaled and shifted so that
their spectral interval is exactly [0.1,10]. For these matrices H, the block Lanczos
process for the classical block inner product and with El as a starting block vector
just reproduces H as the block upper Hessenberg matrix. We take t = 0.1 as our shift
parameter. Within 10, 000 samples and the values m = 1,...,9, we found a significant
number of instances for which C,,(t) has an eigenvalue larger than 1 in modulus. So
ICm(®)|l < 1 cannot hold for whatever norm we choose. Moreover, we also found
instances for which || R, (t)|| > || Rm (0)| for the S-norm (which is the Frobenius norm
in this case), the 2-norm, and the norm || ||2 max given by the maximum of the 2-norms
of individual columns. Similar observations hold for block GMRES. Detailed numbers
are given in Figure 4.1(a). To illustrate this further, for block FOM as well as for
block GMRES, we picked one sample each for which ||R,,(0.1)||z > || R (0)|p and
computed R,,(t) for many values of ¢, so as to be able to plot the relative difference
1—|Rm(@®)|lg /| Rm(0)|¢ as a function of ¢t. These graphs are given in Figure 4.1(b).

4.5. Block Radau-Arnoldi for shifted systems and matrix functions.
For block Radau-Arnoldi, fix a step m and denote by P the m-th residual polynomial
of the non-shifted system, R} = P(A) o B. By Theorem 4.3, the residuals R2(t) of
the shifted block Radau-Arnoldi iterates X'3(t) = V,, B2, with B2 = (H,,, + tI +
M)~ E, B, satisfy

where Py(z) = P9(2)P(—t)~! and P(-" is defined in (4.12). Thus, P(S) = 0
implies P;(S + tI) = 0, and we see that the shifted block Radau-Arnoldi iterates
are precisely the iterates of the block Radau-Arnoldi method for the shifted system
prescribing S + tI as a solvent for the residual polynomial. It is this property that
allows us to prove a convergence result for Stieltjes functions of matrices in the same
spirit as that of the non-block result in [21].

THEOREM 4.5. Assume that A is block self-adjoint with respect to (-,-)s and
positive definite with respect to (-,-)s. Let 0 < Apin < Amax denote the smallest and
largest eigenvalue of A, respectively, and let S = ols with 0 > Apax. Finally, let
Asi = (A+tI) (ol — A)~' and let (-,-)a, s denote the inner product (X,Y)a, ,s =
(Aot X, Y )s with associated norm |||, ,s- Assume that we perform a restart after

every cycle of length m, and denote Ey(,lf)(t) the error of the Radau-Arnoldi iterate

x® (t) for shift t after k such cycles. Then
. . K(t)—1 ;
(i) With &, (t) := W, ct) == WrGEEE K(t) == iL"E we have

min

k
< (1-288) -+ o) B,

HEqu)(t)’ Ag S

i) For a Stieltjes function f = [~ (z + )" du(t), the error f(A)B — F,S{“) of
t=0
the block Arnoldi-Radau method, where FY = [ X W) () du(t), satisfies

|fAB - FP| <O (0 |1Blla, o

As-S
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with C = Jeex(0=min)” f(g).

Amin (0 —Amax)

Proof. Part (i) is just Theorem 3.10 for the matrices A+ tI, extended to restarts.
To prove (ii) we use the norm comparison result formulated in [22, Lemma 4.4], which
states that for every rational function g that is positive on Rt and the associated norm
1/2
1 X1ly(ays = <g(A)X,X>S/ , we have

Vmin [ X|lg < ”X”g(A) s < V9max [ X s ;

where gmin and gmax are the minimum and maximum, respectively, of g on spec(A).
Applying this result twice we obtain

max{\/(c—MX):\ A max0'>\max
1X14, 5 < /mmplieNacsmeldl x|, o< /Rl

min{(A\ 1)/ (o ) Aespec(A e o 1 X4, s

(4.14)
and, similarly,

max{(A+t)/(c—N): A€ A Amax+t)/(o— )\nnx
1Xlla, o < /=AM x|, g < o/ Cetflsiued x|, .
(4.15)
From (4.9), and using (4.14), we obtain
H | EP@au
S 0 As-S
< EM(t ‘ du(t
_/O |e®@)|, |, au
Oo Amasx (0 —Amin) H (k) ’
< E (¢ du(t).
_/O (Amin+t)(0—Amax) m (t) Ag S p(t)

Using (i), the fact that &, (t) < &,,(0) =: &, for t > 0, and (4.15), we have

| (0B - F

oo k
max( )\mln) Amin t k
<[ Vi + ) (1= datt) b 1B, s dplt)
o0
max( )\mu\) Amin+t ()\max"!‘t /( )\max
< [V (1t O 1B dutt)

k
= [t e 2 (22 b 1B, 5 dute)

k
Since (Amax + t)/(Amin + 1) < Amax/Amin for all £ > 0 and 0 < (%ﬁr‘) << 0_;;‘“,

this finally gives

|7c4)

Amax (0= Amin)? ¢k /°° 1
S Tl | B
= Amin (0 —Amax) Em—1 o Tt u(t) - |l HAa_g

A

A
= R TR 1(0) Gt 1Bl s

Note that this proof makes no effort to keep the constant C' small.
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5. Numerical experiments. We report numerical results obtained with a
MATLAB 2019a implementation run on a Thinkpad X1 Carbon with Windows 10
64-bit, an Intel Core i7 processor, and 16GB of RAM; more difficult tests were run
in MATLAB 2018a on the Fidis cluster at EPFL.? All code is publicly available at
https://gitlab.com/katlund /bfomfom-main/.

We start with an academic example that illustrates the theoretical results for
linear systems from the previous sections.

Ezample 5.1. A is a diagonal matrix of dimension n = 5000, the s = 10 right-
hand sides are generated randomly using MATLAB’s rand command and normalized
with gqr, and the initial block vector X is zero.

a) The diagonal entries of A are linearly spaced in the interval [1072,102], i.e.,
a;; = 1072 + (i — 1)d where d = (10> — 1072)/(n — 1).

b) The diagonal entries of A are logarithmically spaced in the interval [1072,102], i.e.,
a;; = 10%, where e; = =2+ 4(i — 1)/(n — 1).

¢) The diagonal elements of A come in complex conjugate pairs. Their n/2 differ-
ent real parts are linearly spaced in [1072,10%], their imaginary parts are taken
randomly with uniform distribution in [0, 1].

The matrices A from Example 5.1a and b are Hermitian and positive definite, and
thus the comparison results for the methods based on the classical, loop-interchange,
and global block inner products hold for block FOM (Theorem 3.3), block GMRES
(Theorem 3.7) and block Radau-Arnoldi (Theorem 3.11). This is illustrated in Fig-
ure 5.1 where we plot the respective norms of the error for the first 50 inner iterations
(i.e., the first cycle, without restarts). We observe that for both matrices, the meth-
ods relying on the loop-interchange or global block inner products perform almost
indistinguishably, whereas the classical approach yields faster convergence for Exam-
ple 5.1a, but only marginal improvement for classical GMRES in the same example
and in Example 5.1b.

As an aside, we note that the error and residual bounds guaranteed by Theo-
rems 3.2, 3.5, and 3.10 are all nearly constant for the spectra of the matrices consid-
ered in Figure 5.1, thus underlining the limitations of such spectral-based results for
predicting convergence behavior. Nevertheless, such results allow for a comparison
between inner products for a given method, (i.e., Theorems 3.3, 3.7, and 3.11).

Figure 5.2 gives further results for Example 5.1a. Its top row shows convergence
plots for a cycle length of m = 25 displaying the Frobenius norm of the block residual
for all methods. The bottom row presents a study for different cycle lengths m,
giving the number of cycles necessary to decrease the initial Frobenius norm of the
residual by a factor of 1071°. The top row shows that block FOM, block GMRES and
block Radau-Arnoldi converge for all block inner products considered here, that the
convergence speed is quite similar between FOM, GMRES and Radau-Arnoldi, that
the loop-interchange and global inner product give almost identical results, and that
the classical block inner product methods converge the faster the larger m. One should
be aware, though, that the arithmetic work that comes in addition to the matrix-vector
multiplications is substantially larger for the classical block inner product than for the
others: each block inner product has cost O(ns?) whereas this cost is only O(sn) for
the loop-interchange and global block inner products. Moreover, as opposed to the
other two block inner products, there is no additional sparsity structure other than
block upper Hessenberg that one can take advantage of when working with H,,. So,

2https://scitas.epfl.ch/hardware/fidis/
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Fig. 5.1: Error norms for 50 inner iterations of the first cycle for Example 5.1a (top
row) and b (bottom row), with cycle length m = 25. FOM error is measured in
[l 4., GMRES in [|-[| 4. 4, and RA in ||| 4(;7_4)-1_p- The RA solvent is chosen as
101 Ay - s

the accelerated convergence comes at the price of extra arithmetic work.

Figure 5.3 deals with Example 5.1c. The matrix A is not Hermitian but positive
real. The convergence plots in the top row show that now restarted block FOM
diverges, that convergence is restored when using the block Radau-Arnoldi approach
and that the block GMRES methods all converge.

We now turn to matrix functions and ﬁl"bt consider the inverse square root z /2,
which is a Stieltjes function, since z~1/2 = Ooo £ 1/2 dt. In order to evaluate the
matrix function and the subsequent error representatlons (4.11) we proceed as in [20]
and [22], using the Cayley transform t = — 3% 7. With 8 = trace(A) to map the infinite
integration interval [0, 00) onto (—1, 1], where we then use Gauf-Legendre quadrature
with an adaptive strategy to determine the number of quadrature nodes.

Figure 5.4 shows convergence plots for the matrices from Example 5.1a and ¢ and
a random right-hand side that now has imaginary components. We observe that the
various methods perform similarly as in the linear system case. In particular, the
classical inner product yields faster convergence than loop-interchange and global,
which are again nearly indistinguishable. However, in terms of wall-clock times, the
global methods converged much more quickly than the other methods— 30 minutes
versus hours— and the quadrature tolerance had to be set two orders of magnitude
lower than the desired error tolerance for convergence to be achieved at all. For
the non-Hermitian matrix, the block FOM methods do not converge while the block
GMRES and the block Radau-Arnoldi methods do. Note that since A is diagonal,
we can compute A~/2B directly which allows us to easily compute the error of the
various approximations.

10g(z+1)

We consider another Stieltjes function as well, ), where

0 z+t
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Fig. 5.2: Top row: error norm versus cycle index for Example 5.1a, m = 25. Bottom
row: number of cycles needed to converge versus cycle length for Example 5.1a. FOM
error is measured in ||-[| , p, GMRES in [|-[| 4. 4, and RA in [|-]| s ;7 — 4)-1_p- The RA
solvent is chosen as 1.01Aax - Is.

o 10%; ———
107 [~ I —cl-GMRES

5
10 10
——cl-FOM
fffff gl-FOM
10_10 li-FOM 10.10
0 20 40 0 50 100 150 0 200 400
cycle index cycle index cycle index

Fig. 5.3: Error norm versus cycle index for Example 5.1c, m = 25, s = 10. All errors
are measured in the Frobenius norm.

du(t) =t 'H(t+1) and H(t) is the Heaviside function. The matrix logarithm arises,
for example, in Markov models and the solution of linear dynamical systems; see, e.g.,
[30, Chapter 2]. Figure 5.5 shows convergence curves for % on Example 5.1c;
since the matrix is positive real, the principal logarithm is defined. We see that
only the classical and loop-interchange harmonic and Radau methods converge, with
the Radau methods converging with the fewest cycles. The largest real part of the
spectrum times 1.01 - I is chosen as the prescribed solvent. For m = 25, all methods
converge in roughly 28 cycles, except the modified global methods, which stagnate. We
also considered the logarithmic function on Example 5.1a and b. All methods converge
in just 5 cycles, except for the modified global methods, which again stagnate. We
do not show the convergence curves for these additional tests.

This manuscript is for review purposes only.



30 A. FROMMER, K. LUND, D.B. SZYLD

0
0 10
0. 107§ ——cl-
10 —— cI-BFOMFOM —cl-Harmonic| [\ | ___ CIl ?at(:ljau
,,,,, gl-BFOMFOM -----gl-Harmonic g -hadau
li-BFOMFOM li-Harmonic 2 li-Radau
102 1072 10
10 10 10
-6 >, -6 ™, 6 N,
10 10 10
0 50 100 0 50 100 0 50 100
cycle index cycle index cycle index
0
100+ 1007 10 —cl-Radau
| | —cl-Harmonic| | |
gl-Harmonic 9"Ra"a”
li-Harmonic li-Radau
107
—cl-BFOMFOM
————— g-BFOMFOM
li-BFOMFOM .
106 - .
0 20 40 60 80 0 50 100 0 100 200
cycle index cycle index cycle index

Fig. 5.4: Error norm versus cycle index for the inverse square root of Example 5.1a
(top row) and ¢ (bottom row). All errors are measured in the Frobenius norm. m = 25,
s = 10.
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Fig. 5.5: Error norm versus cycle index for == of Example 5.1 c. All errors are

measured in the Frobenius norm. m = 15, s = 10.

Ezample 5.2. We take A = Q? and compute A~1/2, where Q is the kernel matrix
for the overlap operator arising in simulations from lattice QCD, see [23]. Lattice QCD
is the most widely used discretization of quantum chromodynamics (QCD) which is
the fundamental physical theory of the quarks as the constituents of matter. Here,
Q is the “symmetrized” Wilson-Dirac matrix, a discretization of the Dirac operator
on a 4-dimensional equispaced space-time lattice in presence of a stochastic “gauge”
background field. As opposed to other discretizations, the overlap operator preserves
the important property of chiral symmetry on the lattice at the price of requiring the
action of the sign function sign(Q) on vectors to be evaluated. We compute sign(Q)
as Q- (Q?)~'/2. At zero chemical potential, i = 0, the matrix @ is Hermitian, but
for u > 0 the matrix @ starts to deviate from hermiticity; see [8] for details. We used
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the matrix conf6_0-8x8-30, available at the SuiteSparse Matrix Collection [10], and
took the right-hand side B as the first 12 canonical unit vectors. This corresponds
to a typical situation when computing quark propagators, where one has to take all
combinations of the four spin and three color quantum numbers into account. The
dimension of the resulting matrix is n = 12 - 8* = 49, 152.

Table 5.1 shows results for 4 = 0.3. The reference value for an “exact” evaluation
of (Q?)"!B was determined beforehand using the harmonic method and stopping
when the Frobenius norm of the correction computed in one cycle was less than
10712, The table reports the number of iterations required to reduce the initial error
by a factor of ¢ = 1076 for different cycle lengths m = 2,5,10. We see that for all
values of m the harmonic method with the classical block inner product needs the
fewest iterations. For m = 2 the advantages of the harmonic method are substantial,
and as m increases, they become less pronounced. For m = 10 all (modified) FOM
methods for all block inner products need almost the same number of cycles. We note
also that for these methods to converge, the quadrature tolerance was set to 10~ 3¢
for m = 2 and 10~ 2¢ for m = 5, 10.

m =2 m=>5 m =10
Cl Li Gl Cl Li Gl | Cl Li GI
B(FOM)2 613 627 628 | 103 106 107 | 29 31 31
harmonic 453 577 504 | 89 103 105 | 29 31 31
Radau-Arnoldi | 731 733 734 | 106 110 110 | 30 31 31

Table 5.1: Inverse square root for QCD matrix (Example 5.2 with chemical potential
p = 0.3): number of iterations required to reduce the initial error by a factor of 1076.
s =12.

6. Conclusions. In this paper we have contributed several results to the theory
of block Krylov subspace methods for linear systems and for matrix functions. These
results hold for general block inner products, and thus in particular for the classical
block methods and the so-called global methods. We have completely characterized
those modifications of the basic block FOM approach for which the polynomial exact-
ness property—which is the natural extension of the polynomial interpolation property
from the non-block case-holds. This result is crucial to obtaining restart procedures
for computing the action of a matrix function on a block vector, just as is the possi-
bility for keeping block residuals for shifted linear systems cospatial.

We have shown how cospatiality can be maintained algorithmically and con-
tributed theoretical results on the convergence of these shifted system methods. The
situation turns out to be more complex than in the non-block case. Our main result
shows that the modulus of the determinant of the cospatiality matrix factor for the
shifted residual matrix polynomials is smaller than one. This result uses a further re-
sult on the connection between latent roots of residual polynomials and the (modified)
block upper Hessenberg matrix, for which we have completed partial characterizations
known from the literature.

We have presented a series of numerical experiments, which tend to indicate that,
in the presence of restarts, the benefits of using a block Krylov subspace are mostly
visible only when using the classical inner product; even then, a reduction in wall-
clock time still depends on how far the decrease in cycles is outweighed by the larger
arithmetic costs per cycle. The numerical experiments also show several situations
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in which the new harmonic block FOM approach performs better than the standard
block FOM approach and where fixing a solvent in the new Radau-Arnoldi methods
can restore convergence in cases where standard block FOM diverges.
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