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COMPUTING ENCLOSURES FOR THE MATRIX EXPONENTIAL∗1

ANDREAS FROMMER† AND BEHNAM HASHEMI‡2

Abstract. We present a review of old and develop new interval arithmetic techniques for3
computing enclosures for all entries of the exact exponential of a matrix. This means that all the4
rounding and truncation errors committed in the course of computation are rigorously taken into5
account and the result is mathematically guaranteed to contain the correct matrix exponential. We6
consider algorithms relying on verified spectral decomposition, two variants relying on Taylor series7
expansion, a Padé approximation and a contour integration approach together with a Chebyshev8
approximation based method which is designed for Hermitian matrices. Most of our methods use9
the scaling and squaring framework and are examined when applied to both the original matrix as10
well as to an approximate diagonalization. In addition to a comparative study of algorithms, several11
illustrative numerical examples are given.12

Key words. matrix exponential, interval arithmetic, automatic result verification, INTLAB,13
scaling and squaring14

AMS subject classifications. 65F60, 65F30, 65G2015

1. Introduction. The task of computing the exponential exp(A) of a matrix A ∈16

Cn×n arises in a variety of applications such as in exponential integrators for ODEs17

and semi-discretizations of PDEs, in network analysis or in continuous-time Markov18

models. The development of stable and efficient methods for computing exp(A) has19

thus been a topic of intensive research, see the survey paper [26] from 1978 and its20

update [27] from 2003. Presently, a Padé approximation type method [13] combined21

with a scaling and squaring approach recently improved in [1] may be considered state22

of the art. This approach is, in particular, implemented in MATLAB’s expm function.23

Roughly speaking, the approach determines a scaling parameter s and a degree q with24

the ultimate goal that the backward error in computing exp(A) via squaring a (q, q)25

type Padé approximation of the scaled matrix is in the order of the unit round-off u1.26

Specifically, it is shown in [1] how to choose s and q ∈ {3, 5, 7, 9, 13} to achieve this27

goal in double precision.28

An important question is now how well the result of a computation indeed approx-29

imates exp(A). In this paper, we develop new approaches which, together with the30

approximation to exp(A), also compute mathematically guaranteed error bounds for31

each entry of the matrix. Such approaches will be termed verified computations. We32

compare them with existing ones with respect to the tightness of the bounds obtained33

and the computational complexity. Conceptually, all these verified computations rely34

on theoretical results on approximation errors as well as on the use of (machine) in-35

terval arithmetic to control the rounding errors related to the use of floating point36

arithmetic.37

The paper is organized as follows: Section 2 briefly reviews those properties of38

interval arithmetic which matter in our setting. Section 3 presents known and develops39

new approaches to the verified computation of exp(A). Section 4 shows how these40
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‡Department of Mathematics, Faculty of Basic Sciences, Shiraz University of Technology, Modar-
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1Denoting εmach the difference between the smallest floating point number > 1 and 1, the

unit roundoff u is εmach/2 when the rounding mode is rounding to nearest and εmach for directed
roundings.
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2 A. FROMMER AND B. HASHEMI

approaches can be combined with approximate diagonalization. We then present a41

variety of numerical experiments and comparisons in Section 5. Some conclusions are42

formulated in Section 6.43

2. Interval arithmetic. This section summarizes those aspects of interval arith-44

metic which are most important for this paper. For a more thorough treatment we45

refer to the textbooks [23, 28] and the review paper [39].46

Let IR denote the set of all compact intervals x = [x,x] on the real line. (Interval47

quantities will always be denoted in boldface.) The (standard) interval arithmetic48

operations +,−, ·, / on IR are defined in the set theoretic sense. They again yield49

an element from IR, the bounds of which can be obtained from the bounds of the50

interval operands. One way to extend the interval concept to the complex plane is to51

take ICdisc as the set of all compact disks z in the complex plane with center mid (z)52

and radius rad (z) and to define the result of an arithmetic operation z1 ◦ z2 as the53

disk with center mid (z1) ◦ mid (z2) and smallest radius such that it still contains54

{z1 ◦ z2 : z1 ∈ z1, z2 ∈ z2}. This radius can be computed from the midpoints and55

radii of the operands. This circular interval arithmetic can also be used on IR by56

restriction to the real axis. The results of multiplication and division are then, in57

general, supersets of what one gets from the standard interval arithmetic on IR.58

In a floating point environment, it is important that for any arithmetic operation59

◦ ∈ {+,−, ·, /} interval arithmetic preserves the very crucial enclosure property60

(2.1) {x ◦ y : x ∈ x, y ∈ y} ⊆ x ◦ y.61

This means that in the floating point computation of the lower and upper bound of62

the result (or its midpoint and radius), we have to use different directed rounding63

modes. On a given modern hardware, changing the rounding mode is a very time64

consuming operation as compared to the floating point computation itself. Efficient65

implementations of machine interval arithmetic as in the MATLAB Toolbox INTLAB66

[37] or the C++ library C-XSC [18, 16] therefore try to do as few changes of the67

rounding mode as possible, and this can be achieved by using an operator concept68

which works on whole arrays in the same spirit as the well-known BLAS (basic linear69

algebra subprograms). On IR, circular arithmetic has then to be used, see [36]. It70

cannot be emphasized enough that these savings in switchings of the rounding modes71

affect run times very substantially: Interval computations then perform comparably72

fast than floating point computations, whereas without these techniques they are73

likely to be slower by at least two orders of magnitude.74

Trivially, the enclosure property (2.1) carries over to any rational expression75

r(x1, . . . , xn),76

{r(x1), . . . , r(xn) : xi ∈ xi for i = 1, . . . , n} ⊆ r(x1, . . . ,xn).77

If any of the variables xi appears several times in r we typically encounter the phe-78

nomenon of overestimation inherent in the use of interval arithmetic, which treats79

each occurence of a variable as being independent of its other occurrences. A very80

simple case is the expression r(x) = x ∗ x, which for an interval x ∈ IR with 0 ∈ x81

gives82

r(x) = [−|xx|,max{x2,x2}] ) [0,max{x2,x2}] = {r(x) : x ∈ x}.83

We face a similar situation when we use interval arithmetic to compute the square84
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COMPUTING ENCLOSURES FOR THE MATRIX EXPONENTIAL 3

B = A ·A of an interval matrix A = (aij)
n
i,j=1. In the expression85

bij =
n∑

k=1

aik · akj86

the entry aij is the only one which occurs more than once, either in aijajj and87

aiiaij if i 6= j or in aiiaii if i = j. INTLAB as well as virtually any other interval88

software provides a function (·)2 for intervals which returns (up to roundings) the89

exact range of the second power for any interval argument. Using this and replacing90

aijajj + aiiaij by (aii + ajj)aij in case i 6= j will thus give, in general, narrower91

intervals for the diagonal of B, but for computational efficiency it is important that92

the whole computation can still be cast into operations on arrays without explicit93

loops and case distinctions. The following self-explaining MATLAB-INTLAB code94

shows how this can be achieved using pointwise multiplication:95

96
function S = square(A)97
n = size(A,1);98
c = diag(A);99
A(1:n+1:end) = intval(0); % A(i,i) = intval(0) = [0,0];100

101
C = ones(n,1)*c' + c * ones(1,n);102
C = C.*A;103
C(1:n+1:end) = c.ˆ2; % C(i,i) = c(i)ˆ2;104

105
S = A*A + C;106
end107108

As was observed in [19], proceeding this way we obtain, up to roundings, the interval109

hull S of the set S := {A2 : A ∈ A}, i.e. the intersection of all interval matrices110

containing S. Note that S itself is not an interval matrix. So if we perform another111

squaring with S, we will get the interval hull of all the squares of matrices from S112

which is in general more than the interval hull of the squares of the matrices from S113

and is thus larger than the interval hull of the set {A4 : A ∈ A}. It will be important114

to be aware of this wrapping effect when considering scaling and squaring approaches115

in this paper.116

If the two end-points of an interval coincide it is termed a point interval. Perform-117

ing machine interval arithmetic with point intervals yields non-point intervals which118

contain the exact value of the computation. Interval arithmetic can thus be used as119

a tool for an automated forward error analysis yielding lower and upper bounds for120

(arithmetic) expressions involving point quantities. For a more involved computation,121

though, such a naive use of interval arithmetic will typically end up with quite wide122

intervals. To obtain narrow enclosures, specific interval methods have to be used.123

For example, rather than just performing Gaussian elimination in interval arithmetic124

to solve a linear system Ax = b, a narrow enclosure for the solution is obtained by125

a correction x, an interval vector, to an approximate solution x̃, obtained via some126

floating point computation. The vector x is determined in a such a way that127

(2.2) −R(Ax̃− b) + (I −RA)x ⊆ intx128

with R being an approximate inverse for A, again computed in standard floating129

point arithmetic. By a result from [20, 35], based on Brouwer’s fixed point theorem,130

A is non-singular then and A−1b ∈ x̃ + x. As a side remark let us mention that it131

This manuscript is for review purposes only.
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4 A. FROMMER AND B. HASHEMI

was recently shown in [2] that if one uses the restriction of circular arithmetic to the132

reals to evaluate the left hand side in (2.2), a much simpler fixed point theorem than133

Brouwer’s can be used to show that A−1b ∈ x̃+ x. The outlined method is the basis134

of the INTLAB function verifylss.m, see also [41], which will be heavily used in our135

algorithms.136

As a final remark in this section, let us note that when computing a higher power137

Ak, k ≥ 3 of an interval matrix, the result will typically depend on the order that we138

choose for its evaluation. This means that in general we have139

(A ·A) ·A 6= A · (A ·A),140

with both sets containing {A3;A ∈ A}. In order to reduce wrapping effects, higher141

powers of interval matrices should be computed in a way to minimize the number142

of matrix multiplications. For example, for k = 2s we need just s multiplications if143

we work recursively S = A,S ← S2 for i = 1, . . . , s, and if k is not a power of 2,144

the Patterson-Stockmeyer approach [32] also aims at keeping the number of matrix145

multiplications small.146

3. Enclosure methods for the matrix exponential. We start this section147

with a detailed discussion in the scaling and squaring approach which turns out to be148

crucial for the enclosure methods, too. We then proceed by introducing the different149

enclosure methods, grouping them by the respective approaches they use to approxi-150

mate the exponential of the scaled matrix and discussing the variants resulting from151

different ways to perform the interval arithmetic operations involved.152

3.1. The scaling and squaring framework. It is easier to well approximate153

exp(A) when ‖A‖ is small. This is why scaling and squaring is an ingredient to the154

majority of methods to compute exp(A). It relies on the simple identity155

exp(A) =

(
exp

(A
2s

))2s

.156

Higham [15] notes that the main issue in the accuracy of a scaling and squaring157

method is the significant rounding errors which might occur as a result of severe158

numerical cancellation in the squaring phase. The fundamental problem can be seen159

in the result [12, sec. 3.5]160

‖A2 − fl(A2)‖p ≤ γn‖A‖2p,161

in which p ∈ {1,∞, F} and γn := nu
1−nu . Here u is the unit roundoff and fl denotes162

the result obtained in floating point arithmetic. This shows that the errors in the163

computed squared matrix are small compared with the square of the norm of the164

original matrix but not necessarily small compared with the matrix being computed.165

It is therefore important to keep the number s of squaring steps small. The current166

state of the art is the algorithm called expm_new from [1] used in MATLAB’s expm167

function. It improves over the classical approach which chooses s based on ‖A‖ alone168

by now also involving ‖Ak‖1/k for modest powers k. Since ρ(A) ≤ ‖Ak‖1/k ≤ ‖A‖ for169

k = 1, . . . ,∞ this new approach tends to yield smaller values for s.170

From our experiments and the results in [10] it is apparent that enclosure methods171

for the matrix exponential have to rely on the scaling and squaring technique, too.172

For two reasons we use the classical scaling and squaring strategy, based solely on173

‖A‖ in our enclosure methods: First, in a guaranteed, interval-arithmetic method we174

This manuscript is for review purposes only.
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COMPUTING ENCLOSURES FOR THE MATRIX EXPONENTIAL 5

also have to involve bounds on the approximation error. The second reason is related175

to the fact that we consider two variations of each algorithm as explained in the176

beginning of section 4 below; we have observed that in the second variation, where we177

apply our algorithms to a transformation Ã of A, the old and new scaling strategies178

compute the same scaling factor s, and so the second variation of our algorithms179

already prevents overscaling.180

3.2. Spectral decomposition for diagonalizable matrices. Assume that A181

is diagonalizable, i.e.182

A = V DW,183

where VW = I and D = diag(d1, . . . , dn) is diagonal. The exponential of A is then184

given as185

exp(A) = V exp(D)W.186

An enclosure method results if we are able to compute interval matrices V and W187

such that V ∈ V ,W ∈ W and intervals di containing the eigenvalues di. We then188

have189

(3.1) exp(A) ∈ V · diag(exp(d1), . . . , exp(dn)) ·W ,190

where we assume that we are able to evaluate the exponential function on intervals191

in a way that the result is guaranteed to contain its range over that interval. This is192

possible with the standard function implementations for intervals present in INTLAB193

or C-XSC, e.g.194

The approach outlined here is taken by the vermatfun.m routine of the VERSOFT195

package [34], which, by calling the verifyeig.m function of INTLAB [37], uses interval196

arithmetic to first compute enclosures (vi,di) for all eigenpairs (vi, di), i = 1, . . . , n197

and then obtains W by computing an interval matrix W which is guaranteed to198

contain all solutions W̃ to all linear systems of the form Ṽ W̃ = I for Ṽ ∈ V :=199

[v1 | · · · | vn]. This is done using the INTLAB function verifylss.m. Note that200

vermatfun.m is applicable to general matrix functions, not just the exponential.201

This approach has two drawbacks. First, since computing an enclosure for just202

one eigenpair has complexity O(n3), its overall complexity is O(n4). Second, if the203

eigenvector matrix is ill conditioned, W will consist of relatively wide intervals such204

that the right hand side of (3.1) will have wide interval entries, too. As illustrated in205

section 5, the same issue arises in the presence of eigenvalue clusters.206

Recently, Miyajima [25] presented an enclosure method which requires an ap-207

proximate spectral decomposition A ≈ V DV −1 only, and then constructs an interval208

matrix M which uses an enclosure S for the residual quantity V −1(AV − V A) ob-209

tained using interval arithmetic and additional bounds for other quantities to obtain210

the enclosure exp(A) ∈ V −1 exp(D)MV . This algorithm has complexity O(n3), and211

its accuracy crucially depends on the quality of the enclosure S, for which evaluat-212

ing AV − V A in interval arithmetic is not sufficient. We will discuss this somewhat213

more in section 5. The paper [25] also presents an extension to defective matrices,214

where the spectral decomposition is replaced by what is called a numerical Jordan215

decomposition. The complexity then increases to O(n4).216

3.3. Taylor approximations. Since for any matrix A ∈ Cn×n we have217

exp(A) =

∞∑

k=0

1

k!
Ak,218

This manuscript is for review purposes only.
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6 A. FROMMER AND B. HASHEMI

we can use the first d+ 1 terms of this Taylor expansion to obtain the approximation219

(3.2) Td(A) := I +A+
1

2!
A2 + · · ·+ 1

d!
Ad.220

The following results on bounds for the truncation error hold, where the first part is221

due to Liou [21] and the second to Suzuki, see [14, 45].222

Theorem 3.1. Let ‖ ·‖ be the operator 1-, 2- or ∞-norm ad assume d+2 > ‖A‖.223

Then we have224

(3.3) ‖ exp(A)− Td(A)‖ ≤ ϑ(d, ‖A‖) :=
‖A‖d+1

(d+ 1)!(1− ‖A‖d+2 )
.225

Moreover, Td,s(A) :=
(
Td(A/s)

)s
for s ∈ N satisfies226

‖ exp(A)− Td,s(A)‖ ≤ ‖A‖d+1

sd(d+ 1)!
exp(‖A‖).227

A consequence of (3.3) is228

(3.4) exp(A) ∈ Td(A) + ϑ(d, ‖A‖)E,229

where here as in the sequel E denotes the interval matrix with all entries equal to230

[−1.1].231

In Oppenheimer’s PhD thesis [30], it was suggested to use the centered form of232

the truncated Taylor series (3.2) in order to enclose exp(A). The algorithm, published233

later in [31], bounds the truncation error by Liou’s error bound (3.3). Taylor series234

are also used in [43] for the accurate computation of the exponential of essentially235

nonnegative matrices.236

Goldsztejn and Neumaier [10] proposed an enclosure method using scaling and237

squaring based on the truncated Taylor series, the enclosure (3.4) and a variant of238

Horner’s scheme to evaluate Td(A) in interval arithmetic according to239

Td(A) = I +A
(
I + 1

2A(I + · · ·+ 1
d−1A(I + 1

dA) · · · )
)
.(3.5)240

We formulate their method as Algorithm 3.1.241

Algorithm 3.1 Outline of the truncated Taylor series based enclosure method [10]

1: Scale the matrix so that ‖ 1
2sA‖ ≤ 0.1, i.e. s = max{0, dlog2(10 · ‖A‖)e}

2: Determine the smallest integer d such that the truncation error bound from The-
orem 3.1 is less than εmach. (d = 9 in double precision.)

3: Obtain the interval matrix T d by evaluating Td for the (scaled) matrix using
interval arithmetic (to account fo rounding errors).

4: Use interval arithmetic to compute an upper bound ϑ for for ϑ(d, 1
2s ‖A‖) from

(3.4) and compute C = T d + ϑE.
5: Perform s repeated squarings starting with C. The final result is an enclosure for

exp(A).

In [10], ‖ · ‖ is taken to be the ∞-norm and T d is obtained via Horner’s scheme242

(3.5). The squarings are done in an optimal way according to the function square from243

section 2. The choice for the∞-norm is in particular motivated by the fact that for this244

This manuscript is for review purposes only.
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COMPUTING ENCLOSURES FOR THE MATRIX EXPONENTIAL 7

norm one can show that the radii of the computed enclosures decrease monotonically245

with d, the degree of the truncated Taylor approximation. Interestingly, if the norm246

of the scaled matrix is less than 0.1, d = 9 already achieves ϑ < εmach in double247

precision. It is also shown in [10] that the Horner scheme (3.5) yields substantially248

narrower intervals as compared to a “standard” interval arithmetic evaluation of Td(A)249

which first computes all powers of A and then their scaled sum.250

In an attempt to obtain smaller radii for the computed enclosures, we implemented251

Algorithm 3.1 with the following two modifications:252

(3.6)

{
replace the ∞-norm by the 2-norm
evaluate Td(A) using the Paterson-Stockmeyer approach

253

Using the 2-norm is motivated by the fact that, typically, the 2-norm is smaller254

than the∞-norm – it is certainly not larger than the∞-norm for Hermitian matrices –255

so that using ‖A‖2 is likely to require less scalings and also to yield a smaller value for256

ϑ from (3.3). In INTLAB, an interval enclosure, and thus an upper bound, for ‖A‖2 is257

computed with O(n3) operations, see [40], and thus at a cost comparable to the other258

computations of the algorithm. Using the Paterson-Stockmeyer approach reduces the259

number of matrix-matrix multiplications and thus the number of wrappings in interval260

arithmetic. Details on the Paterson-Stockmeyer approach can be found in [32]; here261

we just give it for the case d = 9 where T9(A) is evaluated according to262

T9(A) = I +A+ 1
2!A

2 +A3
( (

1
3!I + 1

4!A+ 1
5!A

2
)

+A3
(

1
6!I + 1

7!A+ 1
8!A

2 + 1
9!A

3
) )
,263

which requires just one squaring (for A2) and three matrix-matrix multiplications264

(including one for A3 = A ·A2). Note that evaluation of T9(A) according to Horner’s265

scheme (3.5) requires nine matrix-matrix multiplications.266

3.4. Padé approximation. The type (k,m) Padé approximation to the scalar267

exponential function is given as268

exp(z) =
pk(z)

qm(z)
+ rkm(z),269

where pk(z) and qm(z) are polynomials of degree k and m, respectively, with qm(0) =270

1, and the remainder term rkm(z) satisfies rkm(x) = O(xk+m+1), see [14, p. 79].271

In the matrix case, the type (k,m) Padé approximation to exp(A) is thus272

exp(A) ≈ Pkm(A) = qm(A)−1pk(A),273

and we have274

qm(A) · exp(A) = pk(A) + tkm(A),275

where tkm(A) = qk(A)rkm(A). The following theorem gives bounds for every entry276

of the matrix T km := tkm(A).277

Theorem 3.2. Let ‖ · ‖ be any submultiplicative matrix norm. Then278

(3.7) ‖T km‖ ≤ π(k,m, ‖A‖) :=
k! m!

(k +m)! (k +m+ 1)!
‖A‖k+m+1 exp(‖A‖),279

and if ‖ · ‖ is the 1-, 2- or ∞-norm, then T km satisfies280

T km ∈ π(k,m, ‖A‖)E.281

This manuscript is for review purposes only.
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8 A. FROMMER AND B. HASHEMI

Proof. A classical result from [49] (see also [14, p. 241]) establishes the represen-282

tation283

(3.8) rkm(A) =
(−1)m

(k +m)!
Ak+m+1 qm(A)−1

∫ 1

0

exp(tA)(1− t)ktmdt.284

Multiplying both sides of (3.8) by qm(A) and using the fact that rational functions of285

the same matrix commute (see, e.g., [14, Thm. 1.13]), we get286

(3.9) T km = qm(A) rkm(A) =
(−1)m

(k +m)!
Ak+m+1

∫ 1

0

exp(tA)(1− t)ktmdt.287

Since the Taylor series of the exponential has positive coefficients only, we have that288

‖ exp(A)‖ ≤ exp(‖A‖) for any submultiplicative matrix norm. Taking norms in (3.9)289

thus gives290

‖T‖ ≤ ‖A‖
k+m+1

(k +m)!

∫ 1

0

exp(t‖A‖)(1− t)ktmdt291

=
‖A‖k+m+1

(k +m)!
exp(θ‖A‖)

∫ 1

0

(1− t)ktmdt, θ ∈ [0, 1]292

=
‖A‖k+m+1

(k +m)!
exp(θ‖A‖) k! m!

(k +m+ 1)!
293

≤ k! m!

(k +m)! (k +m+ 1)!
‖A‖k+m+1 exp(‖A‖) = π(k,m, ‖A‖).294

The equality in the second line holds by the generalized mean value theorem. We295

thus have established the first part of the theorem, and its second part holds because296

the 1-, 2- and ∞ norms of a matrix are all larger than or equal to the absolute value297

of any of the matrix entries.298

An important aspect of Padé approximation is its efficiency compared to Taylor299

series, see the discussion in [14], e.g. Since we work with IEEE double precision in300

all our numerical computations, we choose m = k = 7 which gives π ≈ 6.06 × 10−16301

for ‖A‖ ≤ 1 which is our target value for the scaling phase. The coefficients b =302

(b0, . . . , b7) of the polynomial p7(x) =
∑7
i=0 bix

i are the integers303

b =
[
17, 297, 280 8, 648, 640 1, 995, 840 277, 200 25, 200 1, 512 56 1

]
,304

see [14, p. 246]. Moreover, qm(x) = pm(−x) for all m. Our implementation represents305

an interval arithmetic extension of the method outlined in [14, p. 244] to compute the306

interval matrices P 3 pk(A) and Q 3 qm(A). To be specific, we take P = V +U and307

Q = V −U where308

(3.10)

{
U := A(b7A6 + b5A4 + b3A2 + b1I),
V := b6A6 + b4A4 + b2A2 + b0I,

309

and A2 is the (optimal) enclosure for A2 obtained via the function square from sec-310

tion 2 applied to A, and, similarly, A4 is an enclosure for A4 computed as the square311

of A2, while A6 is an enclosure for A6 computed as A2 ·A4. In this way, P and Q are312

computed with only two interval matrix-matrix multiplications and two squarings.313

Once P and Q are computed, we use Theorem 3.2, which shows that exp(A) is314

contained in the solution set of the interval linear system315

(3.11) QX = P + πE,316
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P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

COMPUTING ENCLOSURES FOR THE MATRIX EXPONENTIAL 9

where π is an upper bound for π(k,m, ‖A‖) from (3.7) obtained using an interval317

arithmetic evaluation. We take INTLAB’s function verifylss.m to compute an318

interval enclosure for the solution set of (3.11).319

Algorithm 3.2 summarizes the enclosure method based on Padé approximation320

when working in double precision where a (7, 7) Padé approximation is sufficient to321

bound the approximation error by εmach for matrices with norm ≤ 1.322

Algorithm 3.2 Outline of the Padé approximation based enclosure method

1: Scale the matrix so that ‖ 1
2sA‖ ≤ 1, i.e. s = max{0, dlog2(‖A‖)e}

2: Compute enclosures P = U + V and Q = U − V for the two polynomials in the
(7, 7) Padé approximation, with U ,V computed according to (3.10)

3: Compute an upper bound π for π(7, 7, 1
2s ‖A‖) via an interval arithmetic evaluation

of (3.7)
4: Use INTLAB’s function verifylss.m to obtain an interval matrix C containing

the solution set of the interval linear system (3.11)
5: Perform s repeated squarings starting with C. The final result is an enclosure for

exp(A).

For the same reasons as in the Taylor series approach, we chose the norm to be323

the 2-norm in our computations.324

It should be noted that Bochev [5] has already applied a Padé-based algorithm325

for enclosing exp(A) which also uses the representation (3.8) of the error. The Padé326

approach we present here is different in at least two important aspects: Our approach327

relies directly on Theorem 3.2 and does thus not need to compute a rough enclosure328

for exp(A) which is required in [6, 5] in a preliminary step. Moreover, [6, 5] has329

to use the computationally expensive staggered correction format [44] to accurately330

bound the polynomials pk and qk and to enclose solutions of the interval linear system331

(3.11). Staggered correction formats or other (expensive) means to enhance floating332

point accuracy are not required in our approach.333

3.5. Contour integration. For the exponential as for any other analytic func-334

tion, Cauchy’s formula335

(3.12) exp(a) =
1

2πi

∫

Γ

exp(z)

z − a dz,336

where Γ is a contour in the complex plane that encloses the point a, carries over to337

the matrix function case as338

(3.13) exp(A) =
1

2πi

∫

Γ

exp(z)(zI −A)−1dz,339

provided the spectrum of A is enclosed by Γ, see [14]. We now develop an enclosure340

method based on quadrature for (3.12) and a rigorous bound for the remainder term.341

We will scale A such that ‖A‖ < 1, and therefore take Γ to be the unit circle342

eiθ, θ ∈ [0, 2π].343

Then (3.12) becomes344

exp(a) =

∫ 2π

0

v(θ)dθ, where v(θ) =
exp(eiθ)

2π(eiθ − a)
eiθ (with |a| < 1).345
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10 A. FROMMER AND B. HASHEMI

The function v is 2π-periodic, which is why the standard trapezoidal rule346

exp(a) =
2π

N

N∑

k=1

v(θk)

︸ ︷︷ ︸
:=IN (v)

+RN (v)347

with N ∈ N and θk = 2πk/N, k = 1, . . . , N , has a small error RN . Indeed, the348

following result holds, see [48, Thm. 3.2],[51].349

Lemma 3.3. Suppose v is 2π-periodic and analytic and satisfies |v(θ)| ≤M(c) in350

the strip −c < =(θ) < c for some c > 0. Then for any N ≥ 1,351

∣∣∣∣
∫ 2π

0

v(θ)dθ − IN (v)

∣∣∣∣ ≤
4πM(c)

ecN − 1
,352

and the constant 4π is as small as possible.353

In order to use this result for the matrix case, recall that by Banach’s lemma (see354

[7, p. 33], e.g.), we have that for any operator norm ‖ · ‖355

(3.14) |z| > ‖A‖ ⇒ ‖(zI −A)−1‖ ≤ 1

|z| − ‖A‖ .356

If ‖ · ‖ is the 1-, 2- or ∞-norm, this implies in particular357

(3.15)
∣∣[(zI −A)−1]ij

∣∣ ≤ 1

|z| − ‖A‖ , i, j = 1, . . . , n for |z| > ‖A‖.358

Theorem 3.4. Let ‖A‖ < 1 where ‖ · ‖ is the 1-,2- or ∞-norm, let c be such that359

e−c > ‖A‖, and let N ∈ N. Let zk = e2πik/N , k = 1, . . . , N . Then with360

(3.16) γ(c,N, ‖A‖) :=
2ec exp(ec)

(ecN − 1)(e−c − ‖A‖)361

we have362

(3.17) exp(A) ∈ 1

N

N∑

k=1

zk exp(zk)(zkI −A)−1 + γ(c,N, ‖A‖) ·E,363

In particular, if e−c > 2‖A‖, we have364

(3.18) exp(A) ∈ 1

N

N∑

k=1

zk exp(zk)(zkI −A)−1 + γ(c,N) ·E,365

where366

(3.19) γ(c,N) :=
4e2c exp(ec)

ecN − 1
.367

Proof. We first note that (3.18) follows directly from (3.17), since e−c > 2‖A‖368

implies 1
e−c−‖A‖ ≤ 2ec. With Γ the unit circle z = eiθ, θ ∈ [0, 2π], Cauchy’s formula369

(3.13) expresses each entry [exp(A)]ij of the matrix exp(A) as370

[exp(A)]ij =

∫ 2π

0

1

2π
exp(eiθ)[(eiθI −A)−1]ije

iθ

︸ ︷︷ ︸
=:vij(θ)

dθ.371
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COMPUTING ENCLOSURES FOR THE MATRIX EXPONENTIAL 11
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Fig. 1. Bounds for the quadrature error of the periodic trapezoidal rule. The blue line represents
2.2 × 10−15.

Herein, by (3.14), vij is defined and analytic on an open superset of the strip Dc =372

−c ≤ =(θ) ≤ c for c with e−c > ‖A‖, and it is 2π periodic. Using (3.15), one then373

obtains374

max
θ∈Dc

|vij(θ)| ≤
exp(ec)

2π

1

e−c − ‖A‖e
c =: M(c).375

By Lemma 3.3, we thus get376

∣∣∣∣∣[exp(A)]ij −
1

N

N∑

k=1

zk exp(zk)
[
(zkI −A)−1

]
ij

∣∣∣∣∣ ≤
2M(c)

ecN − 1
,377

which gives (3.17).378

The enclosure method based on contour integration will have to compute an379

enclosure for each of the inverses (zkI − A)−1. Using verifylss.m to that purpose380

will for each k give results where each entry has at least a relative width of εmach.381

Since we expect to have O(10) of these systems to solve, it is adequate to require382

the bound on the quadrature error to be approximately 10εmach. In order to keep383

the computational cost low, in our algorithm we therefore choose c such that N is384

minimal under all pairs (N, c) which satisfy385

4e2c exp(ec)

(ecN − 1)
≤ 10εmach ≈ 2.2× 10−15.386

Figure 1 illustrates that this is (approximately) achieved for c = 2.5 with N = 21,387

implying that A is scaled such that ‖ 1
2sA‖ ≤ 0.03. This might seem restrictive, but388

note that if we relax the scaling to just satisfy ‖ 1
2sA‖ ≤ 0.18, for example, then we389

would need c = 1 and N = 40, thus doubling the computational cost. Also note that390

in our numerical experiments other choices than c = 2.5, N = 21 gave comparable if391

not larger radii for the enclosure obtained for exp(A).392

Algorithm 3.3 summarizes our approach based on contour integration. In Step 2393

we use INTLAB’s verifypoly.m to obtain as narrow as possible enclosures zk for the394

roots zk of the polynomial zN − 1; see [29, 38] for an overview of relevant techniques.395

Let us also note that in case that A is real we have that zkI − A = (zN−k−1I −A),396
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12 A. FROMMER AND B. HASHEMI

Algorithm 3.3 Outline of the contour integration based enclosure method

1: Choose c = 2.5 and scale the matrix so that ‖ 1
2sA‖ ≤ 1

2e
−c, i.e. s =

max{0, dlog2(2ec‖A‖)e}
2: Put N = 21 and compute interval enclosures zk for the roots of unity zk =
e2πik/N , k = 1, . . . , N .

3: Use INTLAB’s verifylss.m to compute an interval matrix Sk containing {(zI−
A)−1 : z ∈ zk}.

4: Compute an upper bound γ for γ(N, c) via an interval arithmetic evaluation of

(3.19) to get the enclosure C =
∑N
k=1 Sk + γE for the exponential of the scaled

matrix
5: Perform s repeated squarings starting with C. The final result is an enclosure for

exp(A).

so (zkI − A)−1 = (zN−k−1I −A)−1) which can be used to approximately halve the397

computational cost. Specifically, we then invert only 11 interval matrices rather than398

N = 21.399

As the Padé approach, the contour integration approach is based on a rational400

approximation. In the Padé scheme we have to once enclose the solution of the interval401

linear system (3.11) where all entries of the system matrix and of the right hand side402

are intervals. In the contour integration approach we have to enclose the inverses of403

several matrices where only the diagonals contain non-point quantities, and we need404

more squarings.405

3.6. Chebyshev approximation. The Chebyshev polynomials Tk for the in-406

terval [−1, 1] are the orthogonal polynomials with respect to the inner product 〈f, g〉 =407 ∫ 1

−1
1√

1−x2
f(x)g(x)dx on the space of continuous functions on [−1, 1]. They satisfy408

Tk(x) = cos(k arccosx) for x ∈ [−1, 1] and obey the recurrence409

(3.20)

{
T0 = 1, T1 = x,
Tk = 2xTk−1 − Tk−2, k = 2, 3, . . . ,

410

and the (formal) Chebyshev series of a Lipschitz continuous function f on [−1− 1] is411

given as412
∞∑

k=0

〈f, Tk〉
〈Tk, Tk〉

Tk.413

For f = exp the coefficients of the Chebyshev series are given via the modified Bessel414

functions of the first kind Ik(t) = 1
π

∫ π
0

exp(t cos(θ)) cos(kθ) dθ as415

〈exp, T0〉
〈T0, T0〉

= I0(1),
〈exp, Tk〉
〈Tk, Tk〉

= 2Ik(1), k = 1, 2, . . . ,416

see [22, p. 109] and [46, p. 23] e.g.417

The use of Chebyshev series for approximating exp(A)b where A is Hermitian418

and b is a vector was suggested by Druskin and Knizhnerman [9]. In [3], exp(A) is419

computed for sparse A using the degree 17 truncated Chebyshev series. Its advantage420

is that, typically, for the same degree, the polynomial approximation given by the421

truncated Chebyshev series will give a more accurate approximation than a Taylor422

polynomial if one considers the whole interval [−1, 1]. For interval arithmetic based423

enclosure methods this means that we can scale less and thus save some squarings424
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COMPUTING ENCLOSURES FOR THE MATRIX EXPONENTIAL 13

and the associated wrappings as compared to the Taylor approach. This motivates425

our investigation of Chebyshev approximation in this work. Its use is restricted to426

Hermitian matrices A, however, because we do not have a useable error bound for427

generalA. To state an enclosure result for the Hermitian case, recall that the Bernstein428

ellipse Eρ is an ellipse with center at zero and foci at ±1 whose parameter ρ > 1 is429

the sum of its semi-axis lengths. The following result can be found in [46, Thm. 8.2],430

e.g.431

Lemma 3.5. Let f be analytic in [−1,+1] and analytically continuable to the open432

Bernstein ellipse Eρ, where it satisfies |f(z)| ≤ M(ρ). Then, for each d ≥ 0, the433

truncated Chebyshev series pd =
∑d
k=0

〈f,Tk〉
〈Tk,Tk〉Tk satisfies434

|f(x)− pd(x)| ≤ 2M(ρ)ρ−d

ρ− 1
for x ∈ [−1, 1].435

Theorem 3.6. Let A be Hermitian with spectrum in [−1, 1] and let pd(A) be the436

degree d truncated Chebyshev series approximation437

(3.21) pd(A) = I0(1)I +
d∑

k=1

2Ik(1) · Tk(A)438

for exp(A). Then, with τ(ρ, d) defined for ρ ≥ 1 as439

(3.22) τ(ρ, d) := 2e
ρ+ρ−1

2
ρ−d

ρ−1440

we have441

exp(A) ∈ pd(A) + τ(ρ, d)E.442

Proof. Since A is Hermitian we have A = V DV −1 with V being orthonormal443

and D = diag(λi) is the diagonal matrix containing the eigenvalues. Also, Tk(A) =444

V Tk(D)V −1 for all k and, thus, pd(A) = V pd(D)V −1. We thus have445

|rij | ≤ ‖R‖2 = ‖ exp(A)− pd(A)‖2 = ‖V (exp(D)− pd(D))V −1‖2446

= ‖ exp(D)− pd(D)‖2 = ‖ exp(D)− pd(D)‖∞447

= max
i
| exp(λi)− pd(λi)|.448

The fact that the maximum value of the exponential on Eρ is e
ρ+ρ−1

2 , see [47], together449

with Lemma 3.5 now completes the proof.450

In an algorithm, we want to choose ρ and d such that τ(ρ) ≈ εmach for d as451

small as possible. Figure 2 reports a Chebfun-enabled [8] experiment. It suggests452

that d = 14 (and ρ = 32) is an appropriate choice when working in double precision.453

Also, in an interval arithmetic based enclosure method we need to use intervals454

enclosing the exact values Ik(1) of the Bessel functions, and these should be as narrow455

as possible. We have used the Arb package [17], a C library for arbitrary-precision456

interval arithmetic to obtain enclosures Ik of relative radii of about εmach in double457

precision for the exact values of Ik(1) for k = 0, 1, . . . , 14. Note that those must be458

computed only once and can then be stored for every later use.459

Before summarizing our approach in Algorithm 3.4, we discuss how we evaluate460

the truncated Chebyshev sum pd(A). The direct way to evaluate pd(A) would be to461

precompute Tk(A) for k = 0, . . . , d using the recurrence (3.20) and to subsequently462
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Fig. 2. Truncation error in chopping Chebyshev series.

evaluate the sum I0(1)I +
∑d
k=1 2Ik(1)Tk(A). For the scalar case, and a general463

Chebyshev approximation pd(x) =
∑d
k=0 akTk(x), it is known that the use of the464

Clenshaw recurrence, which interleaves the evaluation of the Chebyshev polynomials465

with the summation,466

{
bd+2 = bd+1 = 0,
bj = 2xbj+1 − bj+2 + aj , j = d, d− 1, · · · , 0,467

and then pd(x) = b0 − xb1, is more stable, see [33, p. 173], e.g. Both, the direct468

way and the Clenshaw recurrence rely on three-term recurrences. When applied on469

matrices and using interval arithmetic, we thus not only experience the wrapping effect470

but also the fact that interval arithmetic treats the same variable occurring several471

times as being independent variables, thus having the tendency to further increase472

the width of the computed intervals. Analogous phenomena have been observed when473

enclosing scalar Chebyshev expansions of high-degree [11]. To alleviate this problem474

we suggest to use the matrix analogue of the product formulae475

(3.23)

{
T2k(x) = 2T 2

k (x)− 1
T2k+1(x) = 2Tk+1(x)Tk(x)− x , k = 1, 2, . . .476

with T0 = 1, T1 = x to evaluate Tk(A) using interval arithmetic. Therein, the squares477

can be computed using the method from section 2. This approach makes the total478

number of multiplications, and thus of the associated wrappings, small. For example,479

T8(A) is computed with just 3 squarings (for T8, T4 and T2), and T14 is computed480

with 3 squarings (for T14, T4 and T2) and two matrix multiplications (for T7 and T3).481

4. Approximate diagonalization. If V is non-singular and482

D = V −1AV ⇐⇒ A = V DV −1,483

we have, in exact arithmetic, exp(A) = V exp(D)V −1. In floating point arithmetic,484

if we compute an enclosure W for V −1 and then D as D = WAV using interval485

arithmetic, we have486

(4.1) exp(A) ∈ VEW ,487
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COMPUTING ENCLOSURES FOR THE MATRIX EXPONENTIAL 15

Algorithm 3.4 Outline of the Chebyshev-based enclosure algorithm (A Hermitian)

1: Scale the matrix so that ‖ 1
2sA‖ ≤ 1, i.e. s = max{0, dlog2(‖A‖)e}

2: Use interval arithmetic to compute enclosures for Tk(A) for k = 0, . . . , 14 via

(3.23) and to then subsequently evaluate S = I0 +
∑14
k=1 2IkT k(A), an enclosure

for the value of the truncated Chebyshev series for the scaled matrix.
3: Compute an upper bound τ for τ(32, 14) via an interval arithmetic evaluation of

(3.22) to get the enclosure C = S + τE for the exponential of the scaled matrix
4: Perform s repeated squarings starting with C. The final result is an enclosure for

exp(A)

where E is enclosure for {exp(D) : D ∈D}, and to compute E, we can rely on any of488

the techniques presented in the previous section, replacing A by the interval matrix489

D.490

This observation can be used in an attempt to reduce the wrapping effect. Indeed,491

if D were diagonal, there would be no wrapping effect at all when computing powers492

of D, and when the off-diagonal elements of D are small compared to the diagonal,493

the wrapping effect is also small. The price we pay are additional wrappings due to494

the multiplications with V and W , and here the wrapping effect becomes large when495

V is ill-conditioned.496

In our numerical examples we used two variants of this transformation approach.497

The first takes V as a computed approximation of the eigenvector matrix if we can498

expect A to be diagonalizable and V to have small condition, e.g. when A is Her-499

mitian. The second uses the MATLAB routine bdschur from the Control System500

Toolbox which, for a general matrix A, produces a block diagonal matrix D and a well501

conditioned matrix V , computed in floating point arithmetic, such that A ≈ V DV −1;502

see [4]. In either case we ue verifylss.m to compute an interval enclosure W for503

V −1. Note that the matrix D = WAV will in general have small non-zero enries504

outside its (block) diagonal.505

5. Numerical examples. We compare the performance of the various algo-506

rithms for different classes of matrices with dimensions ranging from n = 50 to507

n = 600. Table 1 lists all methods together with their acronyms used in the fig-508

ures to come. For the methods SpecDec and PadéBM we use the MATLAB-INTLAB509

implementations of Miyajima [24].510

We report two quantities for all methods. The first is the average relative precision511

(arp) of X defined by512

(5.1) arp(X) :=
( ∏

i,j=1,n

(rp(Xij))
)1/n2

,513

where514

rp(x) := min(relerr(x), 1),515

is the relative precision of an interval a with relerr defined as516

relerr(x) =

{
rad (x)
|mid (x)| , 0 /∈ x,

rad (x), 0 ∈ x.
517

as an indicator of the quality of the computed enclosures. Roughly speaking, the quan-518

tity − log10(arp(X)) represents the average number of known correct digits within X.519
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16 A. FROMMER AND B. HASHEMI

acronym corresponding enclosure method
TayH Taylor-Horner: Alg. 3.1, Horner’s scheme to evaluate the polynomial [10]
TayPS Taylor-Patterson-Stockmeyer: Alg. 3.1 with the modifications from (3.6)
Padé Alg. 3.2
Cont Contour integration: Alg. 3.3
Cheb Chebyshev: Alg. 3.4

SpecDec Miyajima’s method relying on spectral decomposition [25]
PadéBM Padé-based method of Bochev and Markov [6], q = 7 as implemented in [24]
VER VERSOFT’s routine vermatfun.m [34]

Acronym-ad is method Acronym using approximate diagonalization; see section 4
Table 1

Acronyms used in figures.

The second reported quantity is wall clock time (in seconds) as an indicator for the520

efficiency of the method. Note that we undertook quite some efforts in our imple-521

mentations to obtain good (interval) arithmetic performance, using built-in INTALB522

functions systematically and casting operations as matrix operations whenever possi-523

ble.524

All numerical results were obtained using INTLAB Version 11 and MATLAB525

R2017a on a Mac OS X with 2.5 GHz Intel Core i7 processor and 16 GB of RAM. The526

random number generator mode is always fixed by the command rng(1,’twister’)527

for all the tests involving matrices with random entries. Most of our examples are528

from MATLAB’s gallery of test matrices, accessible via gallery.m.529

5.1. Nonsymmetric matrices. We compare the performance of all the eleven530

methods from Table 1 which are applicable to non-symmetric matrices.531

Example 1. A is the n × n Helmert matrix, which is a permutation of a lower532

Hessenberg matrix, whose first row is ones(1:n)/sqrt(n). It is in MATLAB’s gallery533

as the orthog matrix of type 4.534

The results are depicted in Figure 3. The most narrow enclosures are obtained535

by TayPS and the second most accurate results are obtained by Padé. TayPS is not536

only the most accurate but also among the fastest. Methods applied to the original537

matrix provide more accuracy as compared to the corresponding method applied to538

the approximately diagonalized matrix, and the difference is the more pronounced539

the larger the dimension. While SpecDec is ranked third with respect to accuracy,540

it is up to almost 600 times slower than TayPS. This drawback of SpecDec and VER541

as well as, to a lesser extent, also PadéBM will be visible in all other experiments,542

too, just as the fact that VER typically yields the poorest enclosures. We will not543

repeat this observation explicitly for the other examples. Note that SpecDec has to544

use INTLAB’s accurate dot product AccDot.m to obtain sufficiently narrow enclosures545

for the entries of some matrix-matrix product, an approach which is not recommended546

in [42] because of the interpretation overhead. For VER, the long run times result from547

its complexity being O(n4) rather than, as in all the other methods, O(n3). The bad548

timings for PadéBM, finally, result from the method requiring an “exponent safe bound549

evaluation” step that, as implemented in [24], has to enclose solutions for up to
√
n550

linear systems with a matrix right hand side using verifylss.m. Finally, we note551

that Cont the contour integral approach is about one order of magnitude slower than552

the best performing method, and that its accuracy is substantially less than that of553

TayPS, TayH and Padé.554
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TayH
TayPS
TayH-ad
TayPS-ad

200 400 600

10-13

10-11

10-9
arp vs. dimension

6e-12

3e-14

1e-09

200 400 600

0.10
0.20
0.30

time vs. dimension
0.41

200 400 600
10-13
10-11
10-9
10-7

arp vs. dimension 7e-07

6e-14

1e-08

7e-13
3e-11

200 400 600
10-1
100
101
102

time vs. dimension 285.8

0.44

259.1

Fig. 3. Average relative precision versus dimension (left) and time versus dimension (right) for
the Helmert matrix, Example 1.

Example 2. A is the forsythe matrix [50] from MATLAB’s gallery. A consists555

of one single n × n Jordan block with eigenvalue zero except that its (n, 1) entry is556

equal to
√
εmach.557

This time, Padé gives the narrowest enclosures. The second most accurate results558

are obtained via TayH and TayPS which perform very similarly and are not easy to559

distinguish in the middle of Figure 4 (left). Padé gives about one more digit of560

accuracy compared with both TayH and TayPS. Also, like Example 1, the methods561

applied to A generally give enclosures that are narrower than those obtained when562

applied to the approximately diagonalized matrix D. The fastest method is TayH,563

but TayPS and Padé are comparable with respect to speed.564

Example 3. A is the lesp matrix from MATLAB’s gallery. It has the property565

that the condition of its eigenvalues increases exponentially with the dimension n.566

Because of the ill-conditioned eigenvalues SpecDec and VER fail, returning NaNs567

for any n > 50 and n > 100, respectively. Figure 5 shows that the most accurate568

enclosures are obtained either with Padé or PadéBM obtaining one to two more digits of569

accuracy compared with TayH and TayPS which are the next most accurate approaches.570

Padé-ad looses about one digit in accuracy compared to Padé. The computing time571

of Padé, TayH and TayPS are of the same order.572

Example 4. We take n× n matrices A of the form A := WDW−1, where W is573

a matrix with normally distributed random entries and D is the diagonal matrix with574

its diagonal entries taken as n equidistant points in the interval [−1, 1].575

Much to the opposite of Example 3, the matrices of this example fit particularly576

well the SpecDec approach. Figure 6 shows that this is indeed the most accurate577

algorithm. The much faster approaches TayPS-ad, Padé-ad and Cont-ad which are578

the second most accurate, but their accuracy is significantly lower (up to 7 decimal579
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TayH
TayPS
TayH-ad
TayPS-ad

200 400 600

10-9

10-8

arp vs. dimension

1e-101e-10

4e-08

200 400 600

0.10

0.20
0.30

time vs. dimension

0.400.41

200 400 600
10-11

10-9

10-7
arp vs. dimension

2e-07

5e-12

9e-07

3e-09

8e-08

200 400 600
10-1
100
101
102

time vs. dimension
291.7

0.45

323.9

Fig. 4. Average relative precision versus dimension (left) and time versus dimension (right) for
the forsythe matrix, Example 2.

TayH
TayPS
TayH-ad
TayPS-ad

200 400 600

10-7

10-6
arp vs. dimension

4e-074e-074e-07

200 400 600

0.2
0.3
0.6

time vs. dimension

0.87
0.90

200 400 600
10-10
10-9
10-8
10-7
10-6
10-5

arp vs. dimension

1.8e-08
6.6e-08

4e-05

1.6e-08

200 400 600
10-1
100
101
102

time vs. dimension 285.8

0.92
2.45

100.3

Fig. 5. Average relative precision versus dimension (left) and time versus dimension (right) for
the lesp matrix, Example 3.

digits). Approaches without approximate diagonalization yield very poor accuracy.580

The reason is that W has a high condition number, so that ‖A‖∞ and ‖A‖2 are large.581

This implies that the algorithms perform quite many scaling steps (s = 14, . . . , 16582

for n = 400, e.g.), whereas with approximate diagonalization this goes down to583
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TayH
TayPS
TayH-ad
TayPS-ad

200 400 600

10-8
10-6
10-4
10-2

arp vs. dimension
2e-01
5e-02

3e-06

200 400 600

0.1
0.2
0.4

time vs. dimension

0.47
0.79

200 400 600
10-12
10-10
10-8
10-6
10-4
10-2

arp vs. dimension

1e-02
1e-01

4e-06

3e-13
200 400 600

10-1
100
101
102

time vs. dimension 291.6

0.77
0.48

100.4

Fig. 6. Average relative precision versus dimension (left) and time versus dimension (right) for
the random diagonalizable matrix whose eigenvalues are equispaced points on [−1, 1]. See Example 4.

s = 1, . . . , 4. So approximate diagonalization allows to save a significant number584

of squarings and thus reduces the otherwise predominant wrapping effect.585

Example 5. A is the triw matrix from MATLAB’s gallery. A is upper triangular586

and ill-conditioned both with respect to inversion and eigenvalue computation.587

Here, Padé gives the narrowest enclosures and most of the time it is the fastest588

method as well, see Figure 7. The quality of enclosures computed via approximate589

diagonalization is the same as that obtained when applied to the original matrix.590

SpecDec fails, returning NaNs, for all sizes n due to the ill-conditioning, and similarly591

for VER for n = 100, . . . , 400. Since VER already takes more than 19 minutes for592

n = 400 we did not run it for n = 500 and n = 600. VER is therefore not at all593

depicted in Figure 7, while we kept the run times for SpecDec.594

Example 6. We take the point analogue of the matrices considered in [10] and595

define An ∈ R3n×3n as the 3n× 3n block diagonal matrix which for each k = 1, . . . , n596

has one diagonal block of size 1 with entry 2k+1 and one diagonal block of size 2 with597

entries 2k · [ 1 −1
1 1 ] and eigenvalues 2k(1± i). Then A is taken as A = P−1AnP where598

P is a random orthogonal matrix, obtained as the Q-factor in the QR decomposition599

of a random 3n× 3n matrix with normally distributed entries.600

The numerical results in Figure 8 show that the most accurate methods are TayPS601

and Padé, and these are the fastest methods as well. This is a quite extreme example602

for larger dimensions n, since the moduli of the eigenvalues of exp(A) range from e603

to e2n.604

5.2. Symmetric matrices. If A is symmetric, then so is exp(A). In our algo-605

rithms, whenever we know that a point matrix for which we compute an enclosure is606

symmetric we can thus “symmetrize”, and at the same time narrow, this enclosure607

This manuscript is for review purposes only.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

20 A. FROMMER AND B. HASHEMI

TayH
TayPS
TayH-ad
TayPS-ad

200 400 600
10-10

10-8

arp vs. dimension

2e-08
9e-089e-08

200 400 600
0.1

0.2

0.4

time vs. dimension
0.75

200 400 600

10-10

10-8

10-6

arp vs. dimension

2e-09

5e-05

3e-07

200 400 600
10-1

100

101

time vs. dimension

0.76

75.84

Fig. 7. Average relative precision versus dimension (left) and time versus dimension (right) for
the triw matrices, Example 5.

TayH
TayPS
TayH-ad
TayPS-ad

200 400 600

10-13

10-11

10-9
arp vs. dimension

6e-12

3e-14

1.41e-09
1.47e-09

200 400 600

0.1
0.2
0.3

time vs. dimension 0.85
0.75

200 400 600
10-13
10-11
10-9
10-7

arp vs. dimension 7e-07

6e-14

2e-09

7e-13
3e-11

200 400 600
10-1
100
101
102

time vs. dimension 285.8

0.44

259.1
31.9

Fig. 8. Average relative precision (left) and time (right) for the (point) matrix from [10],
Example 6.

by replacing it by the intersection with its adjoint. We do this whenever adequate in608

our implementations involving symmetric matrices.609

The tested methods for symmetric matrices now also include those based on the610

truncated Chebyshev series.611
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TayH
TayPS
Cheb
TayH-ad
TayPS-ad
Cheb-ad

200 400 600
10-13
10-12
10-11
10-10
10-9

arp vs. dimension

2e-12

1e-13

1e-09

200 400 600

0.1
0.2
0.4
0.6

time vs. dimension

0.61
1.00

200 400 600
10-13
10-11
10-9
10-7
10-5

arp vs. dimension 9e-01

1e-12
1e-09

7e-13

1e-06

200 400 600
10-1
100
101
102

time vs. dimension 473.0

0.59

101.9

Fig. 9. Average relative precision versus dimension (left) and time versus dimension (right) for
the symmetric matrix ris. See Example 7.

Example 7. A is the Hankel matrix ris from MATLAB’s gallery. A is a normal612

matrix whose eigenvalues cluster around −π/2 and π/2.613

Figure 9 shows that while the narrowest enclosures are obtained by Cheb, the614

fastest method is usually Padé with the Taylor approaches, Cheb being less than a615

factor of 2 off. Even though A is symmetric, VER gives wide enclosures because, due616

to the clustering of the eigenvalues, the computed enclosures for the eigenvalues used617

in VER are already wide; see also Example 10. As a further illustration, for n = 400618

we report the relative radii of all entries of the computed enclosing interval matrix619

for exp(A). For six different methods this is depicted in the left part of Figure 10,620

where the ordinate represents the 160, 000 entries in ascending order of their relative621

radii. The figure shows that most of the entries have similar relative width and only622

a few have substantially larger or smaller width. This is a quite typical situation thus623

justifying that “arp” is indeed a good way of measuring the quality of enclosures.624

The right part of Figure 10 gives a histogram reporting a comparison of the625

number of “konwn correct digits” of the floating point approximation C = expm(A)626

obtained using MATLAB’s expm function and of the mid point midC of the interval627

matrix C obtained with Cheb. For an entry midCij , the number of its known correct628

digits is the number to which the upper and lower bounds coincide. Similarly, the629

number of known correct digits of an entry Cij is the number of digits which coincide630

with those of both, the lower and the upper bound of Cij . If an entry Cij of C is not631

contained in Cij , its number of correct digit is guaranteed to be smaller than or at632

most equal to that of midCij , and for these cases we report the difference between the633

known exact digits of midCij and the number of exact digits of Cij in the right-most634

histogram. For this example, this difference is 1 or 2 for about 60% of the entries.635

So the results obtained with the enclosure method not only give intervals which are636

guaranteed to contain the exact values, but their midpoints are also (slightly) more637
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     expm
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8 10 12 14 16

1

2

3

4

5

6

7

8

9

10

11 104        difference

0 1 2 3

1

2

3

4

5

6

7

8

9

10

11 104

Fig. 10. Relative radii of the 160, 000 entries of the computed enclosure for the symmetric
matrix ris of size 400 × 400 for six different approaches (left), histogram of known correct digits in
MATLAB’s expm, midpoint of the interval matrix computed via Cheb, and increase in correct digits
obtained by Cheb (right), Example 7

TayH
TayPS
Cheb
TayH-ad
TayPS-ad
Cheb-ad

200 400 600

10-13
10-12
10-11
10-10

arp vs. dimension
1e-10

1e-12
2e-13

3e-10

200 400 600

0.1
0.2
0.4
0.6

time vs. dimension

0.44
0.52
0.82

200 400 600
10-13
10-11
10-9
10-7

arp vs. dimension

2e-08

5e-12

7e-14

1e-06

200 400 600
10-1
100
101
102

time vs. dimension 229.4

0.45

106.8

Fig. 11. Average relative precision versus dimension (left) and time versus dimension (right)
for the symmetric matrix orthog of type two, Example 8.

accurate than the values obtained with expm.638

Example 8. A is the symmetric orthog matrix of type 2 from MATLAB’s gallery.639

Figure 11 shows that for this example Cheb appears as the best method. Its640

accuracy is second best, only marginally lower than that of SpecDec, and slightly641

better than Padé. We also observe a better quality of the enclosures computed by642

TayPS compared with TayH.643

Example 9. A is generated as a symmetric random matrix by filling the upper644

triangle of a matrix with normally distributed random entries and complementing the645
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TayH
TayPS
Cheb
TayH-ad
TayPS-ad
Cheb-ad

200 400 600
10-11
10-10
10-9
10-8
10-7

arp vs. dimension 1e-07
5e-08

3e-09

5e-11

200 400 600
0.1
0.2
0.4
0.6

time vs. dimension

0.72
1.14
0.70

200 400 600
10-13
10-11
10-9
10-7
10-5

arp vs. dimension

8e-09
4e-08

6e-11

1e-14

8e-04

200 400 600
10-1
100
101
102

time vs. dimension 302.1

0.72

105.2

Fig. 12. Average relative precision (left) and time (right) for the symmetric random matrix,
Example 9.

lower triangle symmetrically.646

Figure 12 shows that among the methods with acceptable run time, those with647

approximate diagonalization (Pade-ad, TayH-ad, TayPS-ad and Cheb-ad) perform648

similarly and obtain about 2 additional digits of accuracy when compared with their649

counterparts without approximate diagonalization.650

Example 10. A is the symmetric positive definite prolate matrix from MAT-651

LAB’s gallery. It was also used as a test case in [25]. The matrix is Toeplitz and652

perfectly well conditioned with respect to the eigenvalues but ill-conditioned with re-653

spect to inversion or matrix multiplication.654

The results in Figure 13 show that this time the most accurate results are ob-655

tained either by Cheb or TayPS which show comparable speed. The eigenvalues of656

the prolate matrix tend to cluster around 0 and 1 which is why, as in Example 7,657

VER obtains poor enclosures. The cluster at 0 also explains why approximate diago-658

nalization deteriorates the quality of the enclosures significantly: When we compute659

the almost diagonal matrix D, the size of the off-diagonal entries is comparable to660

that of the eigenvalues clustering at 0. Then the computed enclosure for exp(D)661

will have off-diagonal entries which are not small relative to the diagonal elements,662

too, and this will spoil the relative accuracy when performing the two matrix-matrix663

multiplications in the back transformation (4.1).664

Example 11. We take A as the symmetric and positive definite poisson ma-665

trix from MATLAB’s gallery. It represents the finite difference discretization of the666

Laplace operator on an equispaced N×N grid with Dirichlet boundary conditions. This667

example is also considered in [25]. We took matrices of size n = 100 = 102, 196 =668

142, 289 = 172, 400 = 202, 484 = 222 and n = 625 = 252.669

Figure 14 shows that the most accurate results are obtained with Padé. The670

This manuscript is for review purposes only.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

24 A. FROMMER AND B. HASHEMI

TayH
TayPS
Cheb
TayH-ad
TayPS-ad
Cheb-ad

200 400 600

10-13
10-12
10-11
10-10
10-9

arp vs. dimension

1e-12

8.2e-14
9.6e-14

2e-09

200 400 600

0.1
0.2
0.4
0.6

time vs. dimension

0.51

0.97
0.56

200 400 600
10-13
10-11
10-9
10-7
10-5

arp vs. dimension 5e-01

2e-13

4e-102e-09

3e-12

4e-09

200 400 600
10-1
100
101
102

time vs. dimension 372.1

0.54

104.3

Fig. 13. Average relative precision (left) and time (right) for the prolate matrix, Example 10.

TayH
TayPS
Cheb
TayH-ad
TayPS-ad
Cheb-ad

200 400 600

10-11
10-9
10-7
10-5

arp vs. dimension

1.89e-08
1.82e-08

2.1e-08

1e-05

200 400 600

0.1
0.2
0.4
0.6

time vs. dimension

0.65
0.68
0.93

200 400 600
10-13
10-11
10-9
10-7
10-5

arp vs. dimension

2e-10

1e-05

1e-07
1e-06

200 400 600
10-1
100
101
102

time vs. dimension 288.9

0.65

110.2
34.1

Fig. 14. Average relative precision (left) and time (right) for the poisson matrix, Example 11.

results with SpecDec are not as accurate as those for Cheb, TayPS and TayH. The671

fastest methods are Taylor-type techniques, but Padé is not significantly slower. VER672

returns NaNs for all dimensions.673

6. Conclusions. We have presented improvements of several known and some674

new methods for computing enclosures for the exponential of a matrix. The methods675
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TayH, TayPS, Cheb rely exclusively on matrix-matrix multiplications so that, as a rule,676

the methods which require the less of those yield the tightest enclosures since they677

reduce the wrapping effect. The methods Padé and Cont involve a linear system solve678

with a (interval) matrix right hand side. For this task, state-of-the-art interval meth-679

ods are available (implemented as verifylss.m of INTLAB, e.g.), which compute680

tight enclosures for the solution set.681

We performed a number of numerical experiments comparing the quality of the682

computed enclosure and the run time of theses methods for a variety of test matrices.683

For general matrices, our new Padé is typically the best compromise in terms of ac-684

curacy and speed, closely followed by our Patterson-Stockmeyer variant TayPS of the685

Taylor approximation approach. For symmetric matrices, the new Cheb or Padé are686

generally superior to all other methods. The methods which rely on an either verified687

(VER) or approximate (SpecDec) spectral decomposition of the matrix suffer from a688

much higher wall clock time and do not, in general, provide tighter enclosures than689

Padé and Cheb. Moreover, these methods may fail completely for non-diagonalizable690

matrices. Method Cont requires the computation of enclosures for several linear sys-691

tems which results in higher computational cost and less accurate overall enclosures692

than Padé. Finally, approximate diagonalization can be beneficial or detrimental to693

the quality of the computed enclosures, and it seems hard to characterize classes of694

matrices for which either of these observations would hold in general.695
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