
AM
C M

Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 19/40

Karsten Kahl and Nils Kintscher

Automated Local Fourier Analysis (aLFA)

December 17, 2019

http://www.math.uni-wuppertal.de

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

Automated Local Fourier Analysis (aLFA)∗

Karsten Kahl† Nils Kintscher†

December 17, 2019

Abstract

Local Fourier analysis is a commonly used tool to assess the quality and aid in
the construction of geometric multigrid methods for translationally invariant oper-
ators. In this paper we automate the process of local Fourier analysis and present
a framework that can be applied to arbitrary, including non-orthogonal, repetitive
structures. To this end we introduce the notion of crystal structures and a suitable
definition of corresponding wave functions, which allow for a natural represen-
tation of almost all translationally invariant operators that are encountered in ap-
plications, e.g., discretizations of systems of PDEs, tight-binding Hamiltonians of
crystalline structures, colored domain decomposition approaches and last but not
least two- or multigrid hierarchies. Based on this definition we are able to automate
the process of local Fourier analysis both with respect to spatial manipulations of
operators as well as the Fourier analysis back-end. This automation most notably
simplifies the user input by removing the necessity for compatible representations
of the involved operators. Each individual operator and its corresponding structure
can be provided in any representation chosen by the user.

1 Introduction
Local Fourier analysis (LFA) is a powerful tool used in the construction and analysis
of multigrid methods introduced in [4]. The fundamental idea of LFA is to leverage
the connection between position space and frequency space via the Fourier transform.
That is, in case the involved operators can be described by stencils in position space,
meaning that they are translationally invariant, their Fourier transform yields so-called
symbols, which can be handled much more easily. In the context of multigrid methods
LFA can be used to obtain precise approximations of the asymptotic convergence rate
by assessing the spectral radius of the corresponding error propagation operator [23].
This approximation of the convergence rate is (asymptotically) still valid if the transla-
tional invariance is slightly violated, as for example when lexicographic Gauss-Seidel
type smoothers are used, or in the case of certain non-periodic boundary conditions
∗This work was partially funded by Deutsche Forschungsgemeinschaft (DFG) Transregional Collabora-

tive Research Centre 55 (SFB/TRR55)
†School of Mathematics and Natural Sciences, University of Wuppertal, 42097 Germany,

{kkahl,kintscher}@math.uni-wuppertal.de

1

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

[5, 20, 27]. In other cases a similar convergence rate can usually be obtained by ad-
ditional processing [12, 29]. Due to these facts, LFA is one of the main tools in the
quantitative analysis of two- and multigrid methods.
An introduction to LFA including several examples can be found in [29, 30]. Multigrid
methods have first been considered for the solution of the linear systems of equations
originating in the discretization of (elliptic) partial differential equations (PDEs) [29].
Due to the fact that the simplest tiling of space is rectangular and discretizations are
particularly simple to carry out on such tilings, the usual multigrid components and the
LFA have originally been designed and tailored for such discretizations (cf. [29, 30]).
Several other geometries, including systems of PDEs, have been considered in the past
as well. LFA has been carried out for operators defined on triangular tilings in [7] and
on hexagonal tilings in [32]. Further, it has been applied to edge-based quadrilateral
discretizations [3], regular Voronoi meshes associated with acute triangular grids [21],
edge-based discretizations on triangular grids [22] and jumping coefficients on rectan-
gular grids [2, 18]. These papers do a complete two-grid analysis, and in some cases
even a three-grid analysis, which was first introduced in [31].
While the concept of LFA is well understood, its application quickly becomes com-
plex and involved the more frequencies get intermixed, e.g., by block smoothers, in
a three-grid analysis, or in higher dimensional problems (n > 2). Thus, there exists
software that automates the application of the LFA [19, 30]. In contrast to the software
described in [30], which basically consists of a collection of templates corresponding
to certain smoother and restriction/prolongation strategies for specific problems, the
software [19], freely available on GitHub,1 can be used to analyze arbitrary transla-
tionally invariant operators on rectangular grids. This software has for example been
used to analyze colored block Jacobi methods in combination with aggressive coarsen-
ing applied to PDEs with jumping coefficients in [2, 18]. As the number of frequencies
which get intermixed increases with the block-size of the smoother and the growing
coarsening rate, a manual analysis of this problem would be laborious.
In contrast to the approach developed in this paper, the bulk of the analysis in the
previously mentioned references is mainly carried out in frequency space. LFA with an
emphasize on position space is rare in the literature. In [11] under the name compact
Fourier analysis, a position space oriented LFA is introduced where block Toeplitz
matrices are used in order to capture the different classes of unknowns. This work has
some aspects in common with the approach to LFA we develop in this paper, but lacks
generality as it is limited to simple systems on rectangular grids.
The LFA presented in this paper unifies the position space oriented approaches and
allows the treatment of operators on arbitrary repetitive structures. To do so we intro-
duce a mathematical framework for the analysis of translationally invariant operators
which alter value distributions on lattices and crystals [1, 24]. These structures can
be based on arbitrary sets of primitive vectors, including non-orthogonal ones, i.e.,
non-rectangular structures. These crystal structures, which naturally occur in the tight-
binding descriptions of solid-state physics [1] or discretizations of systems of PDEs,
enable the convenient and concise description of the resulting operators and allow for
the automatic generation of their representations when enlarging their translational in-

1github.com/hrittich/lfa-lab

2

https://github.com/hrittich/lfa-lab

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

variance, e.g., coarsening in the context of multigrid methods. Furthermore, they are
very helpful in the representation of overlapping and non-overlapping block smoothers.
Our framework is developed to such an extent that the only task required of the user
is to provide a description of the occurring operators with respect to (potentially non-
matching) descriptions of the underlying repetitive structures, i.e., each operator can be
supplied in the simplest or most convenient representation. The remainder of the anal-
ysis can then be carried out automatically. In contrast to previously developed LFA,
this is achieved by explicitly including a connection of the operator to its underlying
structure. This allows us on one hand to automate the transformation of operators in
position space, e.g., by finding a least common lattice of translational invariance of
two operators and to rewrite their representations accordingly. On the other hand, this
focus on structure yields a natural representation and discretization of the dual space
that enables the automation of the frequency space part of the analysis as well. All
these tasks can be carried out using basic principles and normal forms of integer linear
algebra [24]. In combination these developments alleviate the use of LFA by removing
any manual calculations. That is, neither a mixing analysis nor transformations of op-
erators to common (and rectangular) translational invariances have to be carried out by
hand. While our automated LFA does not necessarily enlarge the set of methods that
are analyzable by conventional LFA, it enables the reliable and easy-to-use analysis
of complex methods on complicated structures (e.g., overlapping block smoothers and
discretizations of systems of PDEs). An open-source Python implementation of the
automated LFA framework [13] is freely available on GitLab.2

The automation presented in this paper does have some limitation in terms of the
smoothers that can be analyzed. Any sequential, i.e., lexicographic, smoother with
overlapping update regions changes values in the overlap multiple times in one appli-
cation. This cannot be easily translated to the structures introduced in this paper. While
such smoothers have been analyzed in frequency space before (cf. [16, 17, 25]), this
particular treatment of sequential overlap is momentarily not covered in our frame-
work. Note, that the mere presence of overlap is not the problem here. By introducing
a coloring, such that the complete sweep can be split into a sequence of updates where
each one of them only changes values at most once, automated LFA can be applied as
we are going to demonstrate in this paper. Due to the fact that a coloring in overlapping
approaches also favors parallelism over their sequential counterparts, we feel that this
limitation is relatively minor when targeting actual applications.
The paper is organized as follows. In section 2 we introduce basic notation to describe
the underlying structures of the operators we want to analyze: lattices and crystals. In
the context of LFA we are interested in translationally invariant operators which alter
value distributions on crystals. These kind of operators and their properties are spec-
ified in section 3. After that, section 4 illustrates the introduced notation by means of
the discretized Laplacian and the red-black Gauss-Seidel method, which is the simplest
method where a difference to the conventional LFA becomes apparent. In here, we
manually rewrite the discretized Laplacian with respect to the translational invariance
of the red-black splitting, such that the method can be analyzed via the results of sec-
tion 3. Section 5 contains the general theoretical results which are used to automate the

2gitlab.com/NilsKintscher/alfa

3

https://gitlab.com/NilsKintscher/alfa

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t

complete procedure, removing the need to manually modify operators. In here, several
results of integer linear algebra are used, which we review in section 2.1. Using these
results we obtain the algorithms given in appendix B which, in combination with the
arithmetic of multiplication operators given in appendix A, realize the automated LFA.
Finally, section 6 contains selected examples to demonstrate the merits of the devel-
oped approach. First, we analyze a 4-color overlapping block Gauss-Seidel smoother
for the tight-binding Hamiltonian of the carbon allotrope graphene and give some two-
grid convergence results. Second, we reproduce the two-level analysis for the curl-curl
problem found in [3] as a further illustration of how our approach is applied to complex
error propagators and to double-check its results.

2 Lattices and Crystals
In order to be able to automate the process of LFA within a unified framework we first
have to review some basic definitions of integer linear algebra and crystallography [1,
24]. An (ideal) crystal is an infinite repetition, defined by a lattice, of a structure
element.

Definition 2.1. Let a1,a2, . . . ,an ∈ Rn be linearly independent. An n-dimensional
lattice L is the set of points

L= {x =
n

∑
`=1

j`a` ∈ Rn : j1, j2, . . . , jn ∈ Z}.

The vectors a1,a2, . . . ,an are known as the primitive vectors or lattice basis. Using
matrix notation, i.e., A :=

[
a1 a2 . . . an

]
, we can abbreviate the notation by

L(A) :=AZn = L.

Without loss of generality we restrict the definition of the second component of a crys-
tal, the structure element, to primitive cells of the lattice.

Definition 2.2. A primitive cell Ξ = Ξ(A) ⊂ Rn of a lattice L(A) is a (connected)
volume of space that, if translated by all vectors of L, fills up Rn completely without
any overlap, i.e.,

∪̇x∈L{x+ξ : ξ ∈ Ξ}= Rn.

A common choice of primitive cells is given by

P(A) :=A[0,1)n = {y ∈ Rn : y =
n

∑
`=1

α`a`, 0≤ α` < 1},

i.e., parallelotopes spanned by the primitive vectors of L(A).

The structure element of a crystal is now defined to consist of points s1, . . . ,sm that are
contained in a particular primitive cell Ξ.

4

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

a2

a1
s1

s2

a) System of PDEs

s1 s2

a
2

a1

b) Natural

a2

a1

s1 s2

c) Artificial

Figure 1: Illustration of the crystal representation of three repetitive structures of dif-
ferent origin each consisting of primitive vectors a1,a2, a shaded primitive cell P(A)
and a structure element (s1,s2). a) Staggered discretization of the curl-curl system of
PDEs with unknowns on the edges of a rectangular lattice. b) Hexagonal lattice of the
carbon allotrope graphene. c) Checkerboard coloring of a rectangular lattice as it is
encountered in the red-black Gauss-Seidel smoother.

Definition 2.3. Let L(A) be a lattice and s ∈ Ξ(A)m, m ∈N be the structure element.
A crystal is defined as the set of tuples

Ls(A) := {(x+ s1,x+ s2, . . . ,x+ sm) : x ∈ L(A), s= (s1, . . . ,sm)}.

The elements of Ls(A) are collectively written as x+ s= (x+ s1,x+ s2, . . . ,x+ sm).

Remark 1. We define a crystal and the associated structure element to be a tuple
instead of a set as we want to study value distributions on crystals and particular
operators which manipulate them. For this purpose, the order of a structure element is
of importance.

To give an idea of the various occurrences of crystal structures in numerical applica-
tions we illustrate typical examples in fig. 1 together with their crystal representation.
There are three main sources of repetitive structures that are well suited for crystal
representations. First, the discretization of systems of PDEs on lattices lead to crystal
structures, where the different species of unknowns typically constitute the structure
element. Second, tight-binding Hamiltonian formulations in solid state physics for
crystalline materials naturally imply a crystal representation based on the atomic struc-
ture. Last, colored domain decomposition approaches (e.g., red-black Gauss-Seidel)
can be easily represented using crystals, where the smallest structure element typically
consists of the union of one domain of each color.

2.1 Sublattices and quotient spaces
There are infinitely many representations of a crystal Ls(A). On one hand, the repre-
sentation of any lattice in n > 1 dimensions is non-unique, i.e., there exist different sets
of primitive vectors that yield the same lattice structure. On the other hand, different
representations of the crystal can be obtained by shifting the structure element or ma-
nipulating the underlying lattice structure, e.g., by using integer linear combinations of
the primitive vectors and adjusting the structure element accordingly.

5

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t

a2

a1

s1 s2

â2

â1

ŝ1

ŝ2 ŝ3

ŝ4 ŝ5 ŝ6

ã2

ã1

s̃1

s̃2

Figure 2: The structure of graphene: Illustration of three choices of primitive vectors
A, Â and Ã with associated structure elements s, ŝ and s̃ such that Ls(A)=Lŝ(Â)=

Ls̃(Ã). Furthermore, three different primitive cells are illustrated: The corresponding
parallelotopes P(A), P(Â) as well as a hexagon corresponding to the Voronoi cell of
L(Ã).

In order to cope with this lack of uniqueness of the representation of crystals, illustrated
in fig. 2, we introduce basic results from integer linear algebra [24], which resolve the
relationship of lattice structures.3 An important tool in this is the notion of a sublattice.

Definition 2.4. Let L(A) and L(C) be two lattices, if L(A) ⊃ L(C) then L(C) is
called sublattice of L(A).

Lemma 2.1. A lattice L(C) is a sublattice of L(A) if and only if A−1C ∈ Zn×n.

A key-role in the computational comparison of lattices play the Hermite and Smith
normal forms. The Hermite normal form defines a canonical choice of primitive vec-
tors, whereas the Smith normal form allows us to find least common sublattices. Using
these canonical forms is a crucial ingredient in both the theoretical analysis and the
automation of the LFA.

Definition 2.5. A matrix U ∈ Zn×n is called unimodular if det(U) ∈ {±1}.
Definition 2.6. A matrix H ∈ Rn×n is in Hermite normal form (HNF) if it is upper
triangular, elementwise non-negative and its row-wise maximum is located on the di-
agonal.

Definition 2.7. A matrix S ∈ Rn×n is in Smith normal form (SNF) if it is a diagonal
matrix and the diagonal entries satisfy si+1/si ∈ Z for all i = 1, . . . ,n−1. These entries
are called the elementary divisors.

Theorem 2.1. Let A ∈Qn×n, then
3All proofs of lemma 2.1 and theorems 2.1 and 2.2 can be found in [24].

6

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t

(i) there exists a unimodular U ∈ Zn×n such that H =AU is in HNF,

(ii) there exist unimodular U,V ∈ Zn×n such that S =VAU is in SNF.

In addition both normal forms H and S are unique with respect to A.

Remark 2. Polynomial algorithms to compute the HNF and SNF can for example
be found in [8]. Implementations for the computation of these normalforms are for
example part of the PARI software package [28].

Using these definitions and results one obtains a precise statement about the equality
of two lattices.

Theorem 2.2. Let L(A) and L(C) be two lattices then the following statements are
equivalent.

(i) L(A) = L(C).

(ii) A−1C ∈ Zn×n and C−1A ∈ Zn×n.

(iii) There exists a unimodular matrix U, such that C =AU.

(iv) A and C have the same HNF.

Instead of analyzing infinite lattice/crystal structures, we limit ourselves to analyze
finite dimensional periodic structures due to the fact that we are ultimately aiming to
analyze finite dimensional problems. To this end, another helpful tool is the definition
of crystal tori which are defined as quotient groups.

Definition 2.8. Let Ls(A) be a crystal and L(C) ⊂ L(A) be a sublattice. We define
the crystal torus T s

A,C by

T s
A,C := Ls(A)

/
L(C) .

For every x+ s ∈ Ls(A), their equivalence class [x+ s] is in T s
A,C. Furthermore, the

elements of T s
A,C are defined by the equivalence

[x+ s] = [y+ s] ⇐⇒ there exists z ∈ L(C), such that x = y+ z.

For theoretical and practical reasons, e.g., in theorem 3.2 and algorithm B.3, it is nec-
essary to be able to list all elements of a torus T s

A,AM = {[x] ∈ T s
A,AM : x ∈P(AM)∩

Ls(A)}, M ∈ Zn×n, uniquely.
To illustrate this point, consider for example an arbitrary lattice L(A) with A ∈R2×2,
and the lattice torus TA,AM with

M =
[
m1 m2

]
=

[
2 3
2 −2

]
, m1,m2 ∈ Z2,

as depicted in fig. 3. Even though we know that the quotient space consists of |TA,AM|=
|det(M)|= 10 different elements, there is no apparent canonical list of these elements.
Fortunately, a canonical ordering of the lattice points on a torus can be formulated
using the Hermite or Smith normal form of M.

7

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

Theorem 2.3. Let TA,C be arbitrary, i.e., C =AM for some M ∈ Zn×n.

• Let H ∈ Zn×n be the HNF of M with entries Hi j (cf. definition 2.6). Defining the
index set I = I1× I2× . . .× In by I` := {0,1, . . . ,H``−1}, we then obtain

T s
A,C = {[x j + s] : x j =A j, j ∈ I}

with [x j + s] 6= [x j′ + s] ⇔ j 6= j′ ∈ I.

• Let S = U−1MV ∈ Zn×n denote the Smith decomposition of M with diagonal
entries si (cf. definition 2.7) and unimodular matrices U,V . Defining the index
set Ĩ = Ĩ1× Ĩ2× . . .× Ĩn by Ĩ` := {0,1, . . . ,s`−1}, we then obtain

T s
A,C = {[x j + s] : x j = Ã j, j ∈ Ĩ}

with [x j + s] 6= [x j′ + s] ⇔ j 6= j′ ∈ Ĩ, where Ã := AU denotes the altered
lattice basis.

Proof. Both statements are a direct consequence of the triangular or diagonal shape
of the normal forms and theorem 2.2, i.e., lattices are not changed by unimodular col-
umn transformations. On the one hand we have T s

A,C = T s
A,AM = T s

A,AH . The second
statement follows from ÃS = CV and hence T s

A,C = T s
AU,CV = T s

Ã,ÃS.

In terms of the example of fig. 3 we obtain:

• The Hermite normal form H of M is given by

H =
[
h1 h2

]
=

[
5 2
0 2

]
, h1,h2 ∈ Z2.

Thus, a unique list of all representatives of TA,AM is given by

TA,AM = TA,AH = {[x] = [j1a1 + j2a2] : (j1, j2) ∈ {0,1,2,3,4}×{0,1}}.

• The Smith decomposition of M is given by

S =

[
s1 0
0 s2

]
=

[
1 0
0 10

]
=

[
1 0
−4 −1

]
M
[
−1 −3

1 2

]
.

Thus, another unique list of all representatives of TA,AM is given by

TA,AM = TÃ,ÃS = {[x] = [j1ã1 + j2ã2] : (j1, j2) ∈ {0}×{0,1, . . . ,9}},

where Ã =
[
ã1 ã2

]
=A

[
1 0
−4 −1

]
.

All tori representations TA,AM , TA,AH and TÃ,ÃS are depicted in fig. 3. In the remain-
der we drop the bracket notation for reasons of readability.

8

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t

a1

a2

Am1

Am2

Ah2

Ah1

ã2

ã1

ã2s2

ã1s1

Figure 3: The Hermite normal form H and the Smith normal form S of M yield lattice
bases which allow us to define a canonical lexicographic ordering of the lattice points
of a crystal torus TA,AM = TA,AH = TÃ,ÃS.

3 Operators on Crystals
Now that the basic notation of the underlying structure is in place we introduce no-
tation for value distributions and operators on these structures. For aforementioned
reasons, we restrict ourselves to the finite dimensional setting by only considering quo-
tient groups of lattices

T s
A,Z := Ls(A)

/
L(Z)

with L(Z)⊂L(A) being an arbitrary sublattice of L(A). While it is significantly eas-
ier to be mathematically precise in this general finite setting than in an infinite setting
it is also much closer to the targeted applications, namely finite dimensional approxi-
mations of PDEs and Hamiltonians. Eventually we only work with operators as part
of numerical simulations, i.e., we face only a finite number of unknowns/lattice points
anyway. The quotient group T s

A,Z , L(Z) ⊂ L(A), precisely describes such an arbi-
trarily large but finite torus. To shorten notation we use T s

A instead of T s
A,Z whenever

we do not specify Z explicitly.

Definition 3.1. A crystal-operator is a linear function

L : L(Td
A)−→L(T c

A),

where Td
A corresponds to the crystal of the domain and T c

A corresponds to the crystal
of the codomain. The function spaces are defined by

L(T s
A) = { f = (f1, . . . , f|s|) : TA −→ C|s|}.

9

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

A value f j(x), x ∈ L(A), corresponds to a value at the position x+ s j. The function
space is equipped with the scalar product

〈 f ,g〉 :=
1

|TA,Z | ∑
x∈TA,Z

〈 f (x),g(x)〉2,

where 〈 f (x),g(x)〉2 := ∑
|s|
`=1 f`(x)g`(x) denotes the Euclidean scalar product on C|s|.

In the context of LFA we are interested in operators which can be represented in (block)
stencil notation. That is, translationally invariant operators that can be written as mul-
tiplication operators. As these two properties are in fact equivalent (cf. [26, Theorem
3.16]), we can connect those operators to the notation of crystal structures.

Theorem 3.1. Let L : L(Td
A) −→L(T c

A) be a crystal operator. The following state-
ments are equivalent.

1. L is a multiplication operator, i.e., there exist matrices m(y)
L ∈ C|c|×|d| such that

for each x ∈ TA and f ∈L(Td
A) we have

(L f)(x) = ∑
y∈TA

m(y)
L f (x+ y).

2. L is (A)-translationally invariant, i.e.,

LTa −TaL = 0 for all (primitive) vectors a ∈ L(A),

where the translation operator is defined by (Ta f)(x) = f (x+a).

For the analysis of such operators the concept of the dual lattice comes in handy as
already considered in similar form in [7, 32].

Definition 3.2. Let L(A) be a lattice. Its dual lattice L(B) = L(A)∗ is the set

L(A)∗ := {k ∈ Rn : 〈k,x〉2 ∈ Z for all x ∈ L}.

A lattice basis of the dual lattice is given by B =A−T . The elements of L(A)∗ may
also be referred to as wave vectors.

In addition to the dual space we introduce an orthonormal basis of wave functions
that are compatible with the crystal structure introduced in section 2. This basis is an
extension of the basis used in [15] to analyze the red-black Gauss-Seidel relaxation.
Furthermore, similar basis functions have been used in the context of LFA, e.g. in [2,
3, 6, 9, 14].

Theorem 3.2. An orthonormal basis for the function space L(T s
A,Z) with a structure

element s= (s1, . . . ,sm) is given by the wave functions e1,k,e2,k, . . . ,em,k defined by

(
e`,k(x)

)
j :=

{
e2πi〈k,x〉2 if j = `,

0 else,

with k ∈ T ∗A,Z := L(Z)∗
/
L(A)∗ .

10

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t

z1

z2

a1

a2

a∗
1

a∗
2

z∗1

z∗2

Figure 4: A lattice torus TA,Z (left) and its dual torus T ∗A,Z (right). In here, the lattices
bases are denoted by A =

[
a1 a2

]
, Z =

[
z1 z2

]
and A−T =

[
a∗1 a∗2

]
, Z−T =[

z∗1 z∗2
]
.

Proof. The statement follows by a straightforward, but lengthy calculation, by assum-
ing without loss of generality that A−1Z is given in Smith normal form, making use
of theorem 2.3 and the geometric sum formula.

An illustration of a lattice torus TA,Z along with its dual T ∗A,Z is given in fig. 4.
The orthonormal basis of theorem 3.2 can be split into subsets with respect to the wave
vector k, i.e., L(T s

A,Z) = ∪k∈T ∗A,Z
span(Hk) with

Hk = span{e`,k : `= 1, . . . ,m}. (1)

Theorem 3.3. Let L : L(T s
A,Z)→ L(T s

A,Z) be a multiplication operator. Then the
subspaces Hk of eq. (1) are L-invariant, i.e., L(Hk)⊆ Hk.

Proof. Let ek(x) denote an arbitrary value distribution in Hk. That is, there exist
α1, . . . ,αm ∈ C such that

ek(x) = ∑
`

α`e`,k = (α1e2πi〈k,x〉2 , . . . ,αme2πi〈k,x〉2)T ∈ span(Hk).

Then we obtain by direct calculation

(Lek)(x) = ∑
y

m(y)
L ek(x+ y) =

(
∑
y

m(y)
L e2πi〈k,y〉2

)
ek(x). (2)

Due to their L-invariance the subspaces Hk are oftentimes referred to as spaces of har-
monics. Thus we can easily represent any A-translationally operator via its symbols,
which are formally defined as follows.

Definition 3.3. Let L : L(T s
A,Z)→L(T t

A,Z) be a multiplication operator with

(L f)(x) = ∑
y∈TA,Z

m(y)
L f (x+ y), m(y)

L ∈ C|t|×|s|.

11

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

We define the symbol of L according to eq. (2) by

Lk := ∑
y∈TA,Z

m(y)
L m(y)

k with m(y)
k := e2πi〈k,y〉2 .

In case s= t the spectrum of L can then be extracted from its symbols Lk.

Theorem 3.4. Let L : L(T s
A,Z)→L(T s

A,Z) be a multiplication operator with

(L f)(x) = ∑
y∈TA,Z

m(y)
L f (x+ y), m(y)

L ∈ C|s|×|s|.

Then spec(L) = ∪k∈T ∗A,Z
spec(Lk).

Proof. Follows immediately due to the orthonormality of the basis e`,k (cf. theorem 3.2)
and the L-invariance of the subspaces Hk (cf. theorem 3.3).

Remark 3. The main purpose of Z, i.e., the set of primitive vectors that define an
arbitrary sublattice L(Z) of L(A), is to simplify the theory developed in section 3
by turning an infinite dimensional setting to an (arbitrarily large) finite one. Though
there is another interpretation to it as well. In theorem 3.4 Z explicitly specifies the
resolution of the frequency space as seen in fig. 4, i.e.,

T ∗A,Z = L(Z−T)∩P(A−T),

where the spectrum of the multiplication operator is sampled. Due to the reciprocal
nature of the dual space, the larger |det(Z)| is, the finer the resolution becomes.

With these tools at hand we are able to fully analyze a single multiplication operator,
but typically we are interested in analyzing a composition of several operators using
LFA. As long as the corresponding domains and codomains of these operators are com-
patible we can use the rules of computation given in appendix A on the level of multi-
plication operators and/or on the level of the corresponding symbols. While computing
the sum, a product and taking the transpose can easily be done on both levels, taking
the (pseudo-)inverse is simple only on the level of symbols. The (pseudo-)inverse of a
multiplication operator may have an arbitrarily large number4 of multipliers m(y)

L−1 6= 0
and thus there is no simple rule to compute it. In case a pseudo-inverse has to be used
in the following we opt to employ the Moore-Penrose pseudo-inverse, which we denote
by S† for a multiplication operator S.
In our framework, which tries to automate as much of the LFA as possible, we would
like to allow for user friendly descriptions of all occurring operators. That is, it should
be possible to describe operators in terms of their individual translational invariance
and ordering of the structure element without having to worry about compatibility is-
sues with other operators on the input level of the analysis. The process how to au-
tomatically make crystal representations of operators compatible is explained in detail
in section 5. Before diving into the gritty details of this automation process we would
like to illustrate the developments made so far with an example in order to convey the
introduced notation.

4Bounded by the number of lattice points on the (arbitrarily large) torus.

12

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

4 An example
Consider the red-black Gauss-Seidel method applied to the discretized Laplacian on the
unit square with periodic boundary conditions. The most fundamental representation
of the discretized unit square with periodic boundary conditions is given by the torus
TA,Z with

Z =

[
1 0
0 1

]
,A =

[
a1 a2

]
=

1
h

[
1 0
0 1

]
for some h =

1
N
,N ∈ N.

Then, the discretized Laplacian Lh : L(T (0)
A,Z)−→L(T (0)

A,Z) using finite differences is

given by (Lh f)(x) := ∑y∈L(A) m(y)
Lh

f (x+ y) with non-zero multipliers:

=m(0)
Lh

4
h2

=m(a2)
Lh

− 1
h2

=m(−a2)
Lh

− 1
h2

=m(a1)
Lh

− 1
h2=m(−a1)

Lh
− 1

h2

The error propagator G of the red-black Gauss-Seidel method can be written with re-
spect to the crystal T (0)

A,Z via

G = (I−S†
bLh)(I−S†

r Lh) : L(T (0)
A,Z)−→L(T (0)

A,Z)

with

(Sr f)(x) :=

{
4
h2 f (x) x ∈ Xred

0 x ∈ Xblack
and (Sb f)(x) :=

{
0 x ∈ Xred
4
h2 f (x) x ∈ Xblack

,

where Xred and Xblack correspond to the red and black unknowns of the torus T (0)
A,Z as

illustrated in fig. 5, b). In order to analyze this composite operator in our framework,
we write all occurring operators as multiplication operators. It is now important that
the red-black splitting of T (0)

A,Z = Xred∪Xblack implies the crystal T s
C,Z with

c1 = a1 +a2, c2 = a1−a2, s := (0,a1) = L(A)∩P(C)

such that T (0)
C,Z = Xred, T (a1)

C,Z = Xblack and T (0)
A,Z = Xred ∪Xblack ∼= T s

C,Z (cf. fig. 5, b)).
With respect to this crystal the operators Sr and Sb can be written as multiplication
operators Ŝr, Ŝb : L(T s

C,Z)−→L(T s
C,Z) with

(Ŝr f)(x) =
[4

h2 0
0 0

]
f (x) and (Ŝb f)(x) =

[
0 0
0 4

h2

]
f (x).

We now have described all individual operators of G, each one defined with respect
to its own (minimal) translational invariance, but the domains and codomains are not

13

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

a) Lh : L(T (0)
A,Z)→L(T (0)

A,Z) b) L̂h : L(T s
C,Z)→L(T s

C,Z)

Figure 5: The discretized Laplace operator with respect to two different crystal repre-
sentations. In a) the operator is illustrated with respect to the primitive vectors a1,a2
and in b) with respect to c1,c2.

identical, i.e., A 6=C, such that we cannot directly use the computation rules described
in appendix A. In order to carry on with the analysis we have to rewrite the operators
with respect to a common crystal structure. In this example we construct this structure
by hand, but this process can be automated as explained in section 5.
As the crystal T s

C,Z is yet another representation of T (0)
A,Z , the operator Lh can be

rewritten with respect to this crystal (cf. fig. 5) as L̂h : L(T s
C,Z) −→ L(T s

C,Z) with

(L̂h f)(x) := ∑y∈L(C) m(y)
L̂h

f (x+ y) and non-zero multipliers:

=m(0)
L̂h

1
h2

[
4 −1
−1 4

]
=m(−c2)

L̂h

1
h2

[
0 0
−1 0

]
=m(c1)

L̂h

1
h2

[
0 −1
0 0

]

=m(−c1)

L̂h

1
h2

[
0 0
−1 0

]
=m(c2)

L̂h

1
h2

[
0 −1
0 0

]
=m(c1+c2)

L̂h

1
h2

[
0 −1
0 0

]
=m−(c1+c2)

L̂h

1
h2

[
0 0
−1 0

]

Thus, the spectrum of the error propagator of the red-black Gauss-Seidel method ap-
plied to the Laplacian

Ĝ = (I− Ŝ†
bL̂h)(I− Ŝ†

r L̂h) (3)

can now be obtained elementwise for each fixed k ∈ T ∗C,Z =P(C−T)∩L(Z−T) by first
computing the individual symbols Ik,(Ŝr)k,(Ŝb)k and (L̂h)k and assembling the symbols
Ĝk according to eq. (3) and the rules in appendix A, followed by the computation of the
eigenvalues of the matrices Ĝk. The resulting spectral information of the discretized
Laplace operator L̂h and the error propagator Ĝ is illustrated in fig. 6, where it is sam-
pled on the dual lattice T ∗C,Z . Note, that one naturally obtains two eigenvalues per
sampled wave vector k. In case of the spectrum of the red-black Gauss-Seidel error
propagator, one of the two eigenvalues is equal to zero for all wave vectors k.

14

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

spec((L̂h)k)h
2

4

8

y

− 1
2
h

0

1
2
h

x

1h

b1

b2

ρmax = 8

a) L̂h : L(T s
C,Z)→L(T s

C,Z)

spec(Ĝk)

1
2

1

y

− 1
2
h

0

1
2
h

x

1h

b1

b2

ρmax = 1

b) Ĝh : L(T s
C,Z)→L(T s

C,Z)

Figure 6: The spectra of a) the discretized Laplace operator and b) the red-black Gauss-
Seidel smoother with respect to the red-black crystal structure. In here, b1 and b2 denote
the columns of C−T .

5 Crystal representations and natural isomorphisms
In general, we are given several multiplication operators which make up the error prop-
agator of an iterative method, each defined with respect to its own (minimal) transla-
tional invariance. In order to analyze the method we thus need to find a common de-
nominator, i.e., a lattice basis corresponding to the collective translational invariance,
and rewrite the operators accordingly. The following theorem yields a set of primitive
vectors of such a collective translational invariance for two arbitrary lattices, if it exists.

Theorem 5.1. Given two n-dimensional lattices L(A), L(B). If there exists an r ∈ Z,
such that M = rA−1B ∈ Zn×n, then there is a lattice L(C) with L(C) ⊂ L(A) and
L(C)⊂ L(B) with |det(C)| as small as possible. A lattice basis of L(C) is given by

C = BT−1NB,

where NB is a diagonal matrix with (NB)i,i := r ·gcd(r,si)
−1, where S =V−1MT−1 =

diag(s1, . . . ,sn) is the SNF of M (cf. definition 2.7) and gcd(r,si) denotes the greatest
common divisor of r and si. Consequently, we write L(C) = lcm(L(A),L(B)) and
call it the least common multiple of L(A) and L(B).

Proof. Due to lemma 2.1 it is sufficient to find integral matrices NA ,NB , such that

L(C) = L(ANA) = L(BNB)

with |det(NA)| and |det(NB)| as small as possible. Using theorem 2.2, i.e., L(B) =
L(BV1), L(C) = L(CU1), for any unimodular matrices U1,V1, we can assume the
equality

ANA = BUNB

15

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t

for any unimodular U and NB in Hermite normal form (cf. theorem 2.1). Plugging in
the Smith decomposition V ST of M = rA−1B and defining U := T−1, we find

NA = A−1BT−1NB = 1
r V SNB.

Both matrices

NB =



(NB)1,1 . . . (NB)1,n

. . .
...

(NB)n,n


 and

1
r

SNB =




s1
r (NB)1,1 . . . (NB)1,n

s1
r

. . .
...

(NB)n,n
sn
r




have to be integral with

|det(NB)|= |
n

∏
i=1

(NB)i,i| and |det(
1
r

SNB)|= |
n

∏
i=1

(NB)i,i
si

r
|

as small as possible. It can easily be verified that

(NB)i,i :=
r

gcd(r,si)

is the optimal choice for the diagonal entries. With this choice, the off-diagonal entries
(NB)i, j have to be integral multiples of (NB)i,i. Due to the fact that NB is in Hermite
normal form, the off-diagonal entries are zero.

We now study different representations of the same crystal structure in order to derive
a general way to rewrite a multiplication operator with respect to some coarser crystal
structure corresponding to a sublattice, as has been done manually in section 4 for the
discretized Laplacian.

Theorem 5.2 (Rewriting a crystal with respect to a sublattice). Let Ls(A) be a crystal
and L(C)⊂ L(A) a sublattice. Denoting TA,C = {t1, . . . , tp},5 the set

Ξ(C) := {x+δ ∈ Rn : δ ∈P(A),x ∈ {t1, . . . , tp}}
defines a primitive cell of L(C), and the tuple

u= (t1 + s1, . . . , t1 + sm, t2 + s1, . . . , tp + sm) ∈ Ξ(C)p·m

defines a structure element of Lu(C) such that Lu(C) ∼= Ls(A), meant as a one-to-p
correspondence.

Proof. Without loss of generality we may assume t j ∈P(C), j = 1, . . . , p. Then, each
element in Ls(A) can be written as

z = (Ax+ s1, . . . ,Ax+ sm)

and there is a unique y, such that Ax =Cy =Cbyc+C(y−byc) with Cbyc ∈L(C) and
C(y−byc) = t j ∈P(C)∩L(A). Thus, we find z as a unique part of the element

Cbyc+u= (. . . ,Cbyc+ t j + s, . . .) = (. . . ,z, . . .).

This argument works in the other direction in the same way.
5Recall that a unique list of representatives TA,C = {t1, . . . , tp} can be found via theorem 2.3.

16

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

Remark 4. Note, that u, as defined in theorem 5.2, is an explicit representation of
T s
A,C, thus using this explicit representation theorem 5.2 implies a congruence of the

function spaces

L(T s
A,Z)

∼=L(T
Ts
A,C

C,Z)

given by the natural isomorphism η : L(T s
A,Z)→L(T

Ts
A,C

C,Z),

L(T s
A,Z) 3 f (·) 7→ (η f)(·) = (f (·+ t1), . . . , f (·+ tp)) ∈L(T

Ts
A,C

C,Z),

as (f) and (η f) describe the same value distribution on the crystal. This congruence
in turn implies that the coarsest possible crystal interpretation, i.e., u∼= T s

A,Z , is simply
the complex coordinate space

Cmn =L(T
Ts
A,Z

Z,Z)∼=L(T s
A,Z)

with n := |TA,Z |. The scalar product on L(T s
A,Z) then corresponds to the Euclidean

scalar product on Cmn up to a factor of n.

Using the natural isomorphism of function spaces in remark 4, we can derive the trans-
formations of multiplication operators when coarsening the underlying crystal repre-
sentation corresponding to a sublattice.

Theorem 5.3 (Rewriting a multiplication operator with respect to a sublattice). Con-
sider crystals Ld(A), Lc(A), a sublattice L(C)⊂L(A) and a multiplication operator

L : L(Td
A)→L(T c

A), (L f)(x) := ∑
y∈TA

m(y)
L f (x+ y), m(y)

L ∈ C|c|×|d|.

Then, using TA,C = {t1, . . . , tp}, the multiplication operator

G : L(T d̂
C)→L(T ĉ

C), (Gg)(x) = ∑
y∈TC

m(y)
G g(x+ y), m(y)

G ∈ Cp|c|×p|d|,

with block matrices (m(y)
G)i,k := m(y−ti+tk)

L ∈ C|c|×|d| fulfills the commutative diagram:

L(Td
A) L(T c

A)

L(T d̂
C) L(T ĉ

C).

L

ηd
ηc

G

Here, the mappings for s ∈ {d,c},

η
s : L(T s

A)→L(T ŝ
C), f (·) 7→ (f (·+ t1), . . . , f (·+ tp)),

denote the natural isomorphisms between the congruent crystal representations.

17

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t

Proof. A straightforward calculation for each block-row i yields

[(ηcL f)(x)]i = (L f)(x+ ti) =
p

∑
k=1

∑
y∈TC

m(y+tk)
L f (x+ y+ ti + tk)

=
p

∑
k=1

∑
y∈TC

m(y−ti+tk)
L f (x+ y+ tk) = ∑

y∈TC

p

∑
k=1

(m(y)
G)i,k f (x+ y+ tk)

= [G(f (x+ t1), . . . , f (x+ tp))]i = [(Gηd f)(x)]i.

Using theorem 5.3 we now know how to rewrite multiple multiplication operators with
respect to some common crystal structure with a coarser translational invariance. Due
to the fact that we do not make any assumption on the initial representation of the
crystal structures, the resulting structure elements of theorem 2.3 might differ in their
orderings and might contain shifts with respect to the common shift invariance. To
automatically remove these differences and determine the corresponding transforma-
tions of the associated multiplication operators we first define the notion of congruent
structure elements.

Definition 5.1. Two crystal tori T s
A
∼= T t

A , A ∈Rn are congruent with respect to L(A)
if the structure elements are of the same size, i.e., |s| = |t| = m, and there is a permu-
tation π : {1, . . . ,m}→ {1, . . . ,m} as well as shifts y j ∈ L(A), such that

s j = y j + tπ(j)

In order to introduce a unique representation for the sake of automation, we introduce
the following normal form and the required transformations to transfer any operator to
this form.

Definition 5.2. Let L : L(Td
A)→L(T c

A) be a multiplication operator. We say L is in
normal form if

• the coordinates of the structure elements are found in the primitive cell spanned
by the primitive vectors, i.e., di,c j ∈P(A) =A[0,1)n for each i, j,

• the structure elements d and c are sorted lexicographically.6

We now derive the implications of definition 5.1 for multiplication operators when
the structure element is element wise shifted or permuted. We do so in two steps,
theorem 5.4 and theorem 5.5. First, we show that a shift of an entry of the structure
element in the codomain or domain results in a modification of the corresponding row
or column of the non-zero multipliers, respectively.

Theorem 5.4 (Shifted structure elements). Consider the two multiplication operators
L : L(T s

A)→L(T t
A) and G : L(T t

A)→L(Tu
A) defined by

(L f)(x) = ∑
y∈TA

m(y)
L f (x+ y), m(y)

L ∈ C|t|×|s|,

(Gg)(x) = ∑
y∈TA

m(y)
G g(x+ y), m(y)

G ∈ C|u|×|t|.

6In case di = d j or ci = c j for any i 6= j a consistent ordering of i, j has to be defined a priori.

18

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t

Further let t̂ be a structure element which is obtained from t when shifted element-wise
along L(A), i.e.,

t= (t1, . . . , tm) = (t̂1 + y1, . . . , t̂m + ym) = t̂+(y1, . . . ,ym),

where y1, . . . ,ym ∈ L(A) and m = |t|. Then, the operators L̂ and Ĝ given by

(L̂ f)(x) = ∑
y∈TA

m(y)
L̂

f (x+ y), m(y)
L̂
∈ C|t|×|s| with (m(y)

L̂
)i, j := (m(y+yi)

L)i, j,

(Ĝ f)(x) = ∑
y∈TA

m(y)
Ĝ

f (x+ y), m(y)
Ĝ
∈ C|u|×|t| with (m(y)

Ĝ
)i, j := (m

(y−y j)
G)i, j

fulfill the commutative diagram:

L(T s
A) L(T t

A) L(Tu
A)

L(T t̂
A)

L

L̂

G

T
Ĝ

Proof. The natural isomorphism between the two corresponding function spaces is
given by

T : L(T t
A)→L(T t̂

A), f = (f1, . . . , fm) 7→ (f1(·− y1), . . . , fm(·− ym)) = T f

as f and (T f) describe the same value distribution on the crystal.7 Again, a straight-
forward calculation yields

[(TL f)(x)]i = [(L f)(x− yi)]i = ∑
y∈TA

|s|
∑
j=1

(m(y)
L)i, j f j(x− yi + y)

= ∑
y∈TA

|s|
∑
j=1

(m(y+yi)
L)i, j f j(x+ y) = [∑

y∈TA

m(y)
L̂

f (x+ y)]i.

Analogously we find [(GT−1g)(x)]i = [∑y∈TA (m
(y)
Ĝ
)g(x+ y)]i.

Finally, we show that permutations of the entries of the structure element result in a
transformation of the non-zero multipliers by corresponding permutation matrices.

Theorem 5.5 (Permuted structure elements). Consider the two multiplication opera-
tors L : L(T s

A)→L(T t
A) and G : L(T t

A)→L(Tu
A) defined by

(L f)(x) = ∑
y∈TA

m(y)
L f (x+ y), m(y)

L ∈ C|t|×|s|,

(Gg)(x) = ∑
y∈TA

m(y)
G g(x+ y), m(y)

G ∈ C|u|×|t|.

7The left-hand side of [(T f)(x)]i = fi(x− yi) corresponds to the value at position x+ t̂i = (x− yi)+ ti
which coincides with the position of the value of the right-hand side.

19

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

Let further t̂ be a structure element which is a permuted version of t, i.e.,

t̂= (t̂1, . . . , t̂m) = (tπ(1), . . . , tπ(m)) = mπ t

where m = |t|, π : {1, . . . ,m} → {1, . . . ,m} is a permutation and mπ ∈ {0,1}m×m the
corresponding permutation matrix. Then, the operators L̂ and Ĝ given by

(L̂ f)(x) = ∑
y∈TA

m(y)
L̂

f (x+ y), m(y)
L̂
∈ C|t|×|s| with m(y)

L̂
:= mπ m(y)

L ,

(Ĝ f)(x) = ∑
y∈TA

m(y)
Ĝ

f (x+ y), m(y)
Ĝ
∈ C|u|×|t| with m(y)

Ĝ
:= m(y)

G m−1
π

fulfill the commutative diagram:

L(T s
A) L(T t

A) L(Tu
A)

L(T t̂
A)

L

L̂

G

p Ĝ

Proof. Due to the fact that the natural isomorphism p : L(T t
A)→L(T t̂

A) is a multi-
plication operator defined by (p f)(x) = mπ f (x) for all x ∈ L(A), the statement is true
due to the rules of computation in lemma A.1.

Theorem 2.3 and theorems 5.1 to 5.5 allow for the automatic adjustment of crystal
representations within the LFA. The corresponding detailed algorithms which make
use of these results are given in appendix B.

6 Application
Before demonstrating the application of aLFA to some selected examples let us briefly
recapitulate the individual parts of the framework. The introduction of crystal struc-
tures in section 2 allow for a canonical description of translationally invariant operators
introduced in section 3. Combined with the definition of the dual of a crystal structure
in definition 3.2 and a corresponding orthonormal basis in theorem 3.2, the symbol
of any single multiplication operator that is translationally invariant with respect to an
arbitrary lattice structure, can be expressed (cf. definition 3.3). This combination of
choice of basis functions and the explicit connection of operators to their underlying
structure enables an automated mixing analysis. This part of the framework can thus be
seen on one hand as a unification of positional approaches to LFA by introducing struc-
tures that allow for the native treatment of arbitrary translational invariances and on the
other hand as a general strategy for the automation of the frequency part back-end of
LFA. In order to deal with compositions of operators as encountered in the analysis of
iterative methods, the tools provided in section 5 allow for an automatic transformation
of the underlying crystal structures into compatible representations and the correspond-
ing transformations of the operators. Thus, the only task remaining for the user is to

20

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

provide any, i.e., the simplest or most convenient, crystal representation of the opera-
tors. The following examples show how such a construction can be carried out and as
such serve as a tutorial for the use of the algorithms in appendix B. Annotated Jupyter
Notebooks of the presented examples can be found in [13].

6.1 Multicolored block smoother for the tight-binding Hamilto-
nian of graphene

In [12] a multigrid method for the tight-binding Hamiltonian of the carbon allotrope
graphene based on Kaczmarz smoothing is constructed and analyzed using conven-
tional LFA. Due to the hexagonal structure of graphene, the lexicographic ordering of
Kaczmarz and the mixing analysis of the coarse grid correction which involved a mix-
ing of eight frequencies, the analysis turned out to be quite lengthy. In this subsection
we now want to analyze a two-grid method for this problem where we replace Kacz-
marz by an overlapping colored Gauss-Seidel method that allows for better parallelism
in the application of the multigrid method. Thus, the goal of this example is two-fold,
first we want to show that the tight-binding Hamiltonian can be easily expressed using
the native crystal structure of graphene and second that even the analysis of an overlap-
ping block smoother can be carried out with ease using aLFA due to the fact that only
a representation of the involved operators is needed.
The graphene structure can be described as a crystal Ls(A) where the underlying
lattice is triangular, i.e., any three nearby lattice points form an equilateral triangle. We
have

Ls(A), a1 = (
3
2
,

√
3

2
)a, a2 = (

3
2
,−
√

3
2

)a,

with the structure element

s= (s1,s2), s1 = (a,0) =
1
3
(a1 +a2), s2 = (2a,0) =

2
3
(a1 +a2).

The parameter a = 1.42Å which denotes the distance of two neighboring atoms can
be omitted as it does not occur in the tight-binding formulation. An illustration of the
crystal has already been given in fig. 2.
The (nearest neighbor) tight-binding Hamiltonian is a multiplication operator

L : L(T s
A)→L(T s

A), (L f)(x) := ∑
y∈TA

m(y)
L f (x+ y)

with non-zero multipliers

=m(0)
L

[
0 −1
−1 0

]
=m(−a2)

L

[
0 −1
0 0

]
=m(a1)

L

[
0 0
−1 0

]

=m(−a1)
L

[
0 −1
0 0

]
=m(a2)

L

[
0 0
−1 0

]

21

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

c c

a)

c1

c2

t1 t2

t3 t4

t5 t6

t7 t8

b)

Figure 7: a) Schematic stencil of the tight binding Hamiltonian L[t0,t1] of graphene. b)
Illustration of the domain decomposition into hexagons. Each unknown belongs to 3
different colors.

as illustrated in fig. 7, a).

Overlapping Hexagons We now present an overlapping block smoother for the tight-
binding Hamiltonian L. Consider the non-disjoint splitting (or coloring) of the crystal
into hexagons as depicted in fig. 7, b). This splitting has a translational invariance of
C = 2A. Rewriting the graphene crystal T s

A with respect to this coarser lattice L(C),
we find T s

A
∼= T t

C with the structure element

t= (t1, . . . , t8) = (s,s+a1,s+a2,s+a1 +a2).

The splitting is then given by the structure elements

t(1) = (t
(1)
1 , . . . , t

(1)
6) = (t2, t3, t4, t5, t6, t7),

t(2) = t(1)+a1, t
(3) = t(1)+a2, and t(4) = t(1)+a1 +a2,

such that T t(1)

C =̂ , T t(2)

C =̂ , T t(3)

C =̂ and T t(4)

C =̂ . In the case of the nearest
neighbor Hamiltonian any two hexagons of the same color do not interact. Thus, a
relaxed sweep on the unknowns of one color is cheap and, in addition, yields a good
degree of parallelism.
There are two options to describe the multiplication operators of the multicolored block
smoother. On the one hand, we can construct them from scratch by defining the mul-
tiplication operator structure as well as the non-zero multipliers. On the other hand,
we can derive the structure and non-zero multipliers of the operators corresponding to
the colored blocking from the tight-binding Hamiltonian L by exploiting the fact that
a colored block corresponds to the operator L restricted to this block. In order to pro-
ceed with the latter approach, we first need to find the description L̂ of the underlying
operator, the tight-binding Hamiltonian L, with respect to the translational invariance
of the splitting C. After that the structure element needs to be adjusted such that all

22

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

unknowns and their couplings among each other are found within the central multiplier
m(0)

L̂
. Consider the structure element t. As can be seen in fig. 7, b), the coupling among

the unknowns t(`) which we want to update simultaneously are found in the multipliers:

t(1) t(2) t(3) t(4)

m(0)
L̂

m(0)
L̂
, m(±c1)

L̂
m(0)

L̂
, m(±c2)

L̂
m(0)

L̂
, m(±c1)

L̂
, m(±c2)

L̂
, m(±(c1−c2))

L̂

Thus, in order to obtain suitable descriptions for t(`), ` ∈ {2,3,4}, we need to consider
shifted versions t+ τ(`). For example

[
τ(1), τ(2), τ(3), τ(4)

]
:=
[
0, a1, a2, a1 +a2

]
. (4)

Finally, the error propagator corresponding to a single color relaxed block Gauss-Seidel
update can be written as

G(`) = (I−ω(S(`))†L̂) : L(T t+τ(`)

C)→L(T t+τ(`)

C)

with (S(`) f)(x) := (mPm(0)
L̂

mP) f (x) where mP is the diagonal matrix

(mP)ii =

{
1 for i ∈ {2,3,4,5,6,7}
0 else.

(5)

We summarize the algorithmical steps to obtain the error propagators.

Obtaining error propagators corresponding to splitting methods

Obtain the description of the tight-binding Hamiltonian L with respect to the trans-
lational invariance of the splitting via algorithm B.4:

(L̂) = LatticeCoarsening(L,C).

Adjust the structure elements, such that the connections among the unknowns up-
dated simultaneously are found within the central multiplier via algorithm B.6:

(L̂(`)) = ChangeStructureElement(L̂, t+ τ
(`), t+ τ

(`)),

where τ(`) is defined according to eq. (4). Using mP as defined in eq. (5) define the
operators

S(`) : L(T (t+τ(`))
C)→L(T (t+τ(`))

C), m(0)
S(`)

:= mPm(0)
L̂(`)

mP.

The error propagator of a successive update of the four colors corresponds to the prod-
uct of the error propagators G(`) = (I−ω(S(`))†L̂(`)).

23

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

ρ

1
2

1

y

0

x

b1
2

b2
2

ρmax ≈ 1.003

a)

ρ

1
2

1

y

0

x

b1
2

b2
2

ρmax ≈ 0.167

b)

Figure 8: a) Plot of the spectral radii of the four-color hexagonal overlap block
smoother ∏

4
`=1 G(`)

ω with under-relaxation of ω = 1
2 for the tight-binding Hamiltonian

L = L[0,−1] plotted along P(1
2B) = P((2A)−T). b) Plot of the spectral radii of the

two-grid method using the overlap smoother.

Now that all operators of the overlapping colored block Gauss-Seidel smoother are
defined, we can compute its spectrum. The computation of the eigenvalues of the error
propagator is carried out with algorithm B.1 via

ComputeSpectrum(g, I,L,S(1), . . . ,S(4)).

The function g denotes the composition of the error propagators

(I,L,S(1), . . . ,S(4))
g7−−→

4

∏
`=1

(I−ω(S(`))†L) =: G.

Note, that in this algorithm all operators are checked for compatibility and any incom-
patibility with respect to domains and codomains is dealt with using the transforma-
tions introduced in section 5.
For ω = 1

2 we obtain the plot in fig. 8, a). As the largest spectral radius is greater than
one, this method cannot be used as a standalone solver.

Coarse grid correction In [12] a Galerkin coarse grid correction is used with a cor-
responding coarse grid correction operator that is defined by

E = (I−P(Lc)
†RL)

with Lc = RLP and P = RT . Just as in the description of the smoother, the shift invari-
ance of the coarse grid is C = 2A. Defining the coarse structure element by 2s, and
with t denoting the structure element of the fine crystal according to the coarse lattice
basis, the restriction operator can be described as

R : L(T t
2A)→L(T 2s

2A).

The multipliers of the restriction operator according to [12] then read

24

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

=m(0)
R

[
0 1 0 − 1

2 0 − 1
2 0 1

4
1
4 0 − 1

2 0 − 1
2 0 1 0

]

=m(2a1−2a2)
R

[
0 0 0 0 0 1

4 0 0
0 0 0 0 1

4 0 0 0

]

=m(−2a2)
R

[
0 0 0 1

4 0 − 1
2 0 − 1

2
0 0 0 0 0 0 0 0

]
=m(2a1)

R

[
0 0 0 0 0 0 0 0
− 1

2 0 1
4 0 − 1

2 0 0 0

]

=m(−2a1−2a2)
R

[
0 0 0 0 0 0 0 1

4
0 0 0 0 0 0 0 0

]
=m(2a1+2a2)

R

[
0 0 0 0 0 0 0 0
1
4 0 0 0 0 0 0 0

]

=m(−2a1)
R

[
0 0 0 − 1

2 0 1
4 0 − 1

2
0 0 0 0 0 0 0 0

]
=m(2a2)

R

[
0 0 0 0 0 0 0 0
− 1

2 0 − 1
2 0 1

4 0 0 0

]

=m(−2a1+2a2)
R

[
0 0 0 1

4 0 0 0 0
0 0 1

4 0 0 0 0 0

]

This coarse grid correction is constructed in a way, such that it preserves the kernel of
the tight-binding Hamiltonian L, where with B =

[
b1 b2

]
=A−T ,

ker(L) = span{
[

e2πi〈K,x〉2
0

]
,

[
0

e2πi〈K,x〉2

]
: K ∈ {1

3
b1 +

2
3
b2,

2
3
b1 +

1
3
b2}}.

The frequencies corresponding to the kernel modes are known as the Dirac points.
The two-grid analysis can now be carried out using algorithm B.1 via

ComputeSpectrum(f , I,L,S(1), . . . ,S(4),R).

The function f denotes the composition of the two-grid error propagator

(I,L,S(1), . . . ,S(4),R)
f7−−→ GEG.

A plot of the spectral radii of the two-grid error propagator is given in b) of fig. 8 which
shows that the two-grid method converges with a convergence rate of ρmax ≈ 0.167.
Thus, this new method with overlapping colored block Gauss-Seidel smoothing not
only yields opportunities for parallel computations, but also converges faster than the
old approach which used Kaczmarz smoothing.
In order to double-check the results of the developed theory, we show in table 1 that
the asymptotic convergence rate of the two-grid method with random initial guess x0
and right-hand-side 0 coincides with the convergence rate obtained in the LFA with a
relative accuracy of roughly .002%. This comes as no surprise as the theory is exact
for this problem with periodic boundary conditions and we have chosen the sampling
of the frequency space in accordance with the problem size (cf. remark 3).

6.2 Two-level analysis for the curl-curl equation
In [3] a complete two-level analysis is carried out for the 2-dimensional curl-curl for-
mulation of Maxwell’s equations using conventional LFA. In this subsection we want
to reproduce the results of the two-grid method discussed in this paper making use of
the native crystal structure of the staggered discretization of the curl-curl equations.
The method consists of a so-called half-hybrid smoother, introduced in [10], and a
Galerkin coarse grid correction.
The degrees of freedom of the discrete curl-curl equation

(
1
h2 Kcc +σM)x = b (6)

25

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

iteration i ||ri||2 := ||b−Axi||2 ρi := ||ri||2
||ri−1||2

|ρi−ρanalytic|
ρanalytic

398 1.161369e-312 0.16685534 0.00220%
399 1.937806e-313 0.16685539 0.00217%
400 3.233335e-314 0.16685545 0.00213%

Table 1: Convergence history of the two-grid method applied to the tight-binding
Hamiltonian of graphene with (41× 41) · 23 unknowns/atoms and periodic boundary
conditions. The reported asymptotic convergence rate ρi coincides with high precision
to the convergence estimate ρanalytic = supk∈T ∗2A,41·2A

{|λ | : λ eigenvalue of GkEkGk}=
0.16685901 obtained in aLFA.

a2

a1
eh

ev

a)

2a2

2a1

b)

Figure 9: a) Crystal structure of the curl-curl discretization. b) Illustration of the coarse
crystal and the restriction operator; dashed lines correspond to restriction weight 1

4 ,
solid lines to 1

2 .

are associated with the edges of a quadrilateral lattice L(1
hA) with

A =
[
a1 a2

]
=

[
1 0
0 1

]
.

By multiplying eq. (6) with h2, the grid size can be incorporated into the material
parameter σh := h2σ . Then the discrete operator K = Kcc +σhM can be expressed as a
multiplication operator by

K : L(T e
A)→L(T e

A) with e= (eh,ev) = (
1
2
a1,

1
2
a2),

where the elements L(A)+eh and L(A)+ev correspond to the (midpoints of the) hor-
izontal and the vertical edge, respectively (cf. fig. 9). According to [3] the multipliers
are given by:

26

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

m(−a1+a2)
K =

[
0 0
−1 0

]
m(a2)

K =

[
−1+ 1

6 σh 0
1 0

]

m(−a1)
K =

[
0 0
1 −1+ 1

6 σh

]
m(0)

K =

[
2+ 2

3 σh −1
−1 2+ 2

3 σh

]
m(a1)

K =

[
0 1
0 −1+ 1

6 σh

]

m(−a2)
K =

[
−1+ 1

6 σh 1
0 0

]
m(a1−a2)

K =

[
0 −1
0 0

]

Hybrid smoother The (half) hybrid smoother uses an auxiliary space correction.
That is, it can be seen as a two-grid method itself where smoothing replaces the exact
inversion of the auxiliary space operator. The construction of this operator is as follows.
As already stated, we want to reproduce the results in [3]. Due to the fact that lexico-
graphic Gauss-Seidel smoothers are used, we introduce the exact same ordering of the
lattice points used in this paper, that is, the coordinates y∈L(A) are ordered from bot-
tom to top and left to right which leads us to the following definition for x,y ∈ L(A):

x = (x1,x2)< y = (y1,y2) :⇔ x2 < y2 or (x2 = y2 and x1 < y1) .

The error propagator of the smoother on the original crystal T e
A is a node-based lexi-

cographic Gauss-Seidel iteration. When updating a horizontal edge x+ eh, x ∈ L(A)
it is assumed that all edges y+ eh and y+ êv, êv := ev + a1− a2, with y < x are al-
ready updated. When updating the edge y+ êv, it is additionally assumed that x+ eh
is already updated (cf. [3, Figure 6.1]). In order to obtain the error propagator which
exactly represents this ordering, it is convenient to rewrite the operator K with respect
to this representation of the structure element, that is

K ∼= K̂ : L(T ê
A)→L(T ê

A) with ê= (eh, êv)∼= e,

which can be obtained with algorithm B.6 via

K̂ = ChangeStructureElement(K, ê, ê).

The corresponding error propagator is then given by

GE = (I−S†
EK) : L(T e

A)→L(T e
A)

with the multipliers

m(y)
SE

=





m(y)
K̂

if y < 0,

tril(m(y)
K̂
) if y = 0,

0 else.

In here, only the lower triangular part tril(m(0)
K̂
) of the central multiplier is used due

to the fact that it represents a Gauss-Seidel sweep where a horizontal edge is updated
before a vertical edge.
The crystal, where the auxiliary space system is formulated, is given by T (0)

A , i.e., the
nodal points between the edges. The transfer operator to this crystal is the discrete
gradient operator defined by RN : L(T e

A)→L(T (0)
A) with non-zero multipliers

m(−a1)
RN

=
[
1 0

]
m(0)

RN
=

[
−1 −1

]

m(−a2)
RN

=
[
0 1

]
.

27

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

Using a Galerkin construction, i.e., PN = RT
N , the coarse grid operator KN = RNKPN can

be obtained using the computation rules in lemma A.1. Inversion of this auxiliary space
operator is then approximated by Gauss-Seidel. Thus, the auxiliary space correction
with a single smoothing step on the auxiliary space is given by

GN = (I−PNS†
NRNK) : L(T e

A)→L(T e
A),

where SN : L(T (0)
A)→L(T (0)

A) consists of the scalar multipliers

m(y)
SN

=

{
m(y)

KN
if y≤ 0,

0 else.

With this definition of the auxiliary space correction, the half-hybrid smoother consists
of the following steps.

1. Smooth on Kx = b: x← (I +S†
EK)x+S†

Eb,

2. Restrict the residual: rN ← RN(b−Kx),

3. Smooth on KNxN = rN with zero initial guess: xN ← S†
NrN ,

4. Prolongate to the primal crystal x← x+PNxN .

The smoother is analyzed analogously to section 6.1 with algorithm B.1 by computing
the spectral radii via

ComputeSpectrum(g, I,K,SE ,RN ,SN),

where g denotes the composition of the error propagators

(I,K,SE ,RN ,SN)
g7−−→ GNGE =: G.

In fig. 10 a) a contour plot of ρ(Gk) with σh = 0.01, with respect to k ∈A−T [− 1
4 ,

3
4)

2

is given. It corresponds to the result given in [3, Figure 6.2, right].

Coarse grid correction In [3] a Galerkin coarse grid correction is used correspond-
ing to the error propagator

E = (I−P(Kc)
†RK)

with Kc = RKP and P = RT . In here, the coarse crystal is L2e(2A) and the original
crystal Le(A) with respect to the lattice 2A is given by Lf(2A) with

f= (e,e+a1,e+a2,e+a1 +a2).

Then, according to [3] the restriction operator is given as R : L(T f
2A)→L(T 2s

2A) with
the multipliers:

28

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

−1/4 0 1/4 2/4 3/4
k1

−1/4

0

1/4

2/4

3/4
k

2

0.
1

0.1

0.1

0.
1

0.
2

0.2

0.
2

0.
2

0.2

0.3

0.3

0.
3

0.3

0.
4

0.4

0.
4

0.4

0.5

0.6

0.
7

0.8

0.9

a)

0 1/4 2/4 3/4 4/4 5/4 6/4
real(σh)

−.7

−.35

0

.35

.7

im
ag

(σ
h
)

0.
16

0.18

0.18

0.2

0.2

0.22

0.22

0.24

0.24

0.26

0.26

0.28

0.28

0.3

0.3

b)

Figure 10: a) Contour plot of ρ(Gk) for the hybrid smoother with respect to k ∈
A−T [− 1

4 ,
3
4)

2, σh = 0.01. b) Contour plot of the convergence estimates of the two-
grid method supk ρ(Mk) with respect to σh. The plots correspond to the results [3,
Figure 6.2, right] and [3, Figure 8.1, left], respectively.

m(−2a1)
R =

[
0 0 0 0 0 0 0 0
0 0 0 1

4 0 0 0 1
4

]
m(0)

R =

[1
2 0 1

2 0 1
4 0 1

4 0
0 1

2 0 1
4 0 1

2 0 1
4

]

m(−2a2)
R =

[
0 0 0 0 1

4 0 1
4 0

0 0 0 0 0 0 0 0

]

Here, each coarse horizontal and vertical edge is connected to its six nearest edges of
the same type (cf. fig. 9 b)). The prolongation and coarse grid operator P and Kc can
be obtained via lemma A.1.
The spectral radii of the two-grid method can then be obtained via

ComputeSpectrum(f , I,K,SE ,RN ,SN ,R)

where f denotes the composition of the two-grid error propagator

(I,K,SE ,RN ,SN ,R)
f7−−→ GEG =: M.

Figure 10 b) shows the spectral radii, supk ρ(Mk), of the two-grid error propagator as
a function of σh. We used exactly the same orderings in pre- and post-smoothing, as
described in [3]. Furthermore, we double-checked the results with convergence tests
similar to table 1. However, the obtained results show major differences to the one in [3,
Figure 8.1, left], which leads us to believe that our assumptions on the lexicographic
orderings employed in pre- or post-smoothing in [3] are wrong, as these have a large
impact on the convergence rates.

7 Conclusion
In this paper we present an LFA framework that is applicable to arbitrary crystal struc-
tures, which are encountered in many applications, e.g., systems of partial differential

29

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t–

P
re

pr
in

t–
P

re
pr

in
t

equations, block smoothers or tight-binding formulations. This was achieved by in-
troducing a rigorous notion of crystal structures and translationally invariant operators
that manipulate value distributions on crystal structures. Based on these structures
we introduced a complete framework to modify and transform these operators with
respect to different crystal representations by using normal forms of integer linear al-
gebra. This allowed us to automate the LFA in both position space, i.e., in terms of
multiplication operators/stencils, and frequency space, i.e., in terms of canonical basis
functions and samplings. In two examples we showed that the approach can be used
for complicated operators, i.e., hexagonal grids, overlapping block smoothers and hy-
brid smoothers, without requiring insight into the frequency space back-end of LFA.
An explicit mixing calculation is no longer needed, and the user only has to provide
any representation of the individual operators. The transformation of the individual
operators to a compatible representation and the subsequent frequency analysis is then
carried out automatically. Even though we have limited ourselves in the examples in
this paper to 2-dimensional problems our automated LFA can be applied to operators
in higher dimension, where the difference is a larger set of primitive vectors defining
the underlying lattice.
The automation presented in this paper does have some limitation. Each individual op-
erator in the analysis is only allowed to change each value of the value distribution at
most once. This limitation solely restricts the class of smoothers that can be analyzed
with this approach. Any sequential, i.e., lexicographic, smoother with overlapping
update regions changes values in the overlap multiple times in one application. This
cannot be easily translated to a corresponding local multiplication operator, but it can
be dealt with in frequency space (cf. [16, 17, 25]). This particular treatment of sequen-
tial overlap is momentarily not covered in our framework. Note, that the mere presence
of overlap is not the problem here. By introducing a coloring, such that the complete
sweep can be split into a sequence of updates where each one of them only changes
values at most once, automated LFA can be applied (cf. section 6.1). Due to the fact
that a coloring in overlapping approaches also favors parallelism over their sequential
counterparts, we feel that this limitation is relatively minor when targeting actual ap-
plications. An open-source implementation of the automated LFA framework [13] is
freely available on GitLab8. Jupyter Notebooks for all examples from sections 4, 6.1,
and 6.2 are included in this software package as well.

A Rules of computation
Calculus of multiplication operators plays a key-role in local Fourier analysis. In this
section we list all elementary operations, such as addition and multiplication. Proofs
for these rules can be obtained by straightforward calculation.

8gitlab.com/NilsKintscher/alfa

30

https://gitlab.com/NilsKintscher/alfa

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

Lemma A.1. Let two multiplication operators be given by

L : L(T s
A,Z)→L(T t

A,Z), (L f)(x) = ∑
y∈TA,Z

m(y)
L f (x+ y), m(y)

L ∈ C|t|×|s|,

G : L(Tu
A,Z)→L(Tv

A,Z), (G f)(x) = ∑
y∈TA,Z

m(y)
G f (x+ y), m(y)

G ∈ C|v|×|u|.

Then the following operators are multiplication operators as well:

(i) If s= u and t= v, then L+G : L(T s
A,Z)→L(T t

A,Z) with m(y)
L+G = m(y)

L +m(y)
G .

(ii) If v= s, then LG : L(Tu
A,Z)→L(T t

A,Z) with m(z)
LG = ∑

y+w=z
m(y)

L ·m
(w)
G .

(iii) The adjoint is given by L∗ : L(T t
A,Z)→L(T s

A,Z) with m(y)
L∗ = (m(−y)

L)∗.

Theorem A.1. Let two multiplication operators be given by

L : L(T s
A,Z)→L(T t

A,Z), (L f)(x) = ∑
y∈TA,Z

m(y)
L f (x+ y), m(y)

L ∈ C|t|×|s|,

G : L(Tu
A,Z)→L(Tv

A,Z), (G f)(x) = ∑
y∈TA,Z

m(y)
G f (x+ y), m(y)

G ∈ C|v|×|u|

with corresponding symbols Lk and Gk. Then we have the following statements.

(i) Assuming that s= u and t= v, the symbols of L+G are given by Lk +Gk.

(ii) Assuming that v= s, the symbols of L ·G are given by Lk ·Gk.

(iii) The symbols of L∗ are given by L∗k .

(iv) The symbols (L†)k are given by (Lk)
†.

B Algorithms

Algorithm B.1: Spectrum of a composition of multiplication operators.

Input: L(j) : T s(j)

A(j) → T t(j)

A(j) ,m
(x)
L(j) ∈ C|t(j)|×|s(j)|,x ∈ L(A(j)) and composition function f .

Output: Spectra of f (L(1)
k , . . . ,L(K)

k), k ∈P(A−T)

1 Function ComputeSpectrum(f ,L(1), . . . ,L(K))

2 (L̂(1), . . . , L̂(K)) = MakeOperatorsCompatible(L(1), . . . ,L(K)) . See algorithm B.5
3 Sample the dual lattice to obtain k ∈P(A−T) . See remark 3
4 Compute the spectra of the composition operator of symbols

f (L(1)
k , . . . ,L(K)

k) . See theorem A.1

31

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

Algorithm B.2: Normalize a multiplication operator.

Input: L : T s
A → T t

A ,m(x)
L ∈ C|t|×|s|,x ∈ L(A).

Output: G∼= L in normal form with G : Tu
A → Tv

A ,m(x)
G ∈ C|v|×|u|,x ∈ L(A).

1 Function G = Normalize(L) . See definition 5.2
2 u j = s j−AbA−1s jc for all j = 1, . . . , |s| . Shift into P(A) =A[0,1)n

3 v j = t j−AbA−1t jc for all j = 1, . . . , |t| . Shift into P(A) =A[0,1)n

4 Sort u and v lexicographically
5 G = ChangeStructureElement(L,u,v) . See algorithm B.6

Algorithm B.3: Find all elements in the quotient space of two lattices.
Input: Two n-dimensional lattices with L(C),L(A) with L(C)⊂ L(A).

Output: Structure element s∼= TA,C = L(A)
/
L(C)

1 Function s= ElementsInQuotientSpace(A,C) . See theorem 2.3
2 H = Hermite normal form of A−1C . See theorem 2.1
3 m = ∏

n
i=1 hi,i . Size of s

4 si = 0 for all i = 0, . . . ,m . Initialize s
5 for i = 1,2, . . . ,m
6 k = i−1
7 for j = 1,2, . . . ,n
8 t = mod(k,h j, j) . Shift in direction a j

9 k = k−t
h j, j

10 si = si + ta j

Algorithm B.4: Rewrite a multiplication operator w.r.t. a coarser lattice.

Input: L : T s
A → T t

A ,m(x)
L ∈ C|t|×|s|,x ∈ L(A), and a sublattice L(C)⊃ L(A)

Output: G∼= L with G : Tu
C → Tv

C ,m(x)
G ∈ C|v|×|u|,x ∈ L(C).

1 Function G = LatticeCoarsening(L,C) . See theorem 5.3
2 e= ElementsInQuotientSpace(A,C) . See algorithm B.3
3 u= (e1 + s, . . . ,e|e|+ s),v= (e1 + t, . . . ,e|e|+ t) . Define structure elements

4 (m(y)
G) = 0 ∈ C|v|×|u| for all y ∈ L(C) . Initialize new multipliers

5 for m(y)
L 6= 0

6 for (i, j) ∈ {1, . . . , |e|}2

7 (m
(CbC−1(y+ei−e j)c)
G)i, j = m(y)

L . Define multipliers block-wise

Algorithm B.5: Rewriting multiplication operators w.r.t. a single lattice.

Input: L(j) : T s(j)

A(j) → T t(j)

A(j) ,m
(x)
L(j) ∈ C|t(j)|×|s(j)|,x ∈ L(A(j))

Output: L̂(j) ∼= L(j) in normal form, L̂(j) : Tu(j)

A → Tv(j)

A ,m(x)
L̂(j) ∈ C|v(j)|×|u(j)|,x ∈ L(A).

1 Function (L̂(1), . . . , L̂(K)) = MakeOperatorsCompatible(L(1), . . . ,L(K))

2 A =A(1)

3 for j = 2, . . . ,K
4 A = LeastCommonMultiple(A,A(j)) . See algorithm B.7
5 for j = 1, . . . ,K
6 L̂(j) = LatticeCoarsening(L(j),A) . See algorithm B.4
7 L̂(j) = Normalize(L̂(j)) . See algorithm B.2

32

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

Algorithm B.6: Changing the structure elements.

Input: Structure elements u∼= s, v∼= t w.r.t. L(A) and L : T s
A → T t

A , m(x)
L ∈ C|t|×|s|,x ∈ L(A).

Output: L̂∼= L with L̂ : Tu
A → Tv

A ,m(x)
L̂
∈ C|v|×|u|,x ∈ L(A).

1 Function L̂ = ChangeStructureElement(L,u,v) . See theorems 5.4 and 5.5
2 mπ = 0 ∈ {0,1}|s|×|s|, mσ = 0 ∈ {0,1}|t|×|t| . Initialize permutation matrices
3 for (i, j) ∈ {1, . . . , |s|}2 . Compute changes in d
4 if A−1(si−u j) is integral then
5 ei = si−u j . Save shift
6 (mπ) j,i = 1 . Save permutation
7 for (i, j) ∈ {1, . . . , |t|}2 . Compute changes in c
8 if A−1(ti−v j) is integral then
9 fi = ti−v j . Save shift

10 (mσ) j,i = 1 . Save permutation

11 (m(y)
L̂
) = 0 ∈ C|t|×|s| for all y ∈ L(A) . Initialize new multipliers

12 for m(y)
L 6= 0

13 for (i, j) ∈ {1, . . . , |t|}×{1, . . . , |s|}
14 (m

(y−e j+fi)

L̂
)i, j = (m(y)

L)i, j . Incorporate shifts e and f, see theorem 5.4

15 m(y)
L̂

= mσ ·m(y)
L̂
·m−1

π for all y ∈ L(A) . Incorporate permutations, see theorem 5.5

Algorithm B.7: Find a least common multiple of two lattices.
Input: Lattice basis B,A ∈ Rn×n

Output: Lattice basis C, s.t. L(C)⊂ L(A) and L(C)⊂ L(B)

1 Function C = LeastCommonMultiple(A,B) . See theorem 5.1
2 Find an integer r, s.t. M = rA−1B is integral
3 Compute Smith normal form S =V−1MT−1 of M . See theorem 2.1
4 (NB)i,i = r ·gcd(r,si)

−1, C = BT−1NB . Define the lattice basis

33

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

References
[1] Ashcroft, N., Mermin, N.: Solid State Physics. Saunders College (1976)

[2] Bolten, M., Rittich, H.: Fourier Analysis of Periodic Stencils in Multigrid Meth-
ods. SIAM J. Sci. Comput. 40(3), A1642–A1668 (2018)

[3] Boonen, T., Van Lent, J., Vandewalle, S.: Local Fourier Analysis of Multigrid for
the Curl-Curl Equation. SIAM J. Sci. Comput. 30(4), 1730–1755 (2008)

[4] Brandt, A.: Multi-Level Adaptive Solutions to Boundary-Value Problems. Math.
Comp. 31(138), 333–390 (1977)

[5] Brandt, A.: Rigorous Quantitative Analysis of Multigrid, I. Constant Coefficients
Two-Level Cycle with $L_2 $-Norm. SIAM J. Numer. Anal. 31(6), 1695–1730
(1994)

[6] Brown, J., Yunhui, H., MacLachlan, S.: Local Fourier analysis of BDDC-like
algorithms (2018)

[7] Gaspar, F., Gracia, J., Lisbona, F.: Fourier Analysis for Multigrid Methods on
Triangular Grids. SIAM J. Sci. Comput. 31(3), 2081–2102 (2009)

[8] Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.): Computer Algebra Hand-
book. Springer Berlin Heidelberg (2003)

[9] Greenfeld, D., Galun, M., Kimmel, R., Yavneh, I., Basri, R.: Learning to Opti-
mize Multigrid PDE Solvers (2019)

[10] Hiptmair, R.: Multigrid method for maxwell’s equations. SIAM J. Numer. Anal.
36(1), 204–225 (1998)

[11] Huckle, T.: Compact Fourier Analysis for Designing Multigrid Methods. SIAM
J. Sci. Comput. 31(1), 644–666 (2008)

[12] Kahl, K., Kintscher, N.: Geometric Multigrid for the Tight-Binding Hamiltonian
of Graphene. SIAM J. Numer. Anal. 56(1), 499–519 (2018)

[13] Kahl, K., Kintscher, N.: aLFA: automated local Fourier analysis. https://
gitlab.com/NilsKintscher/alfa (2019)

[14] Kumar, P., Rodrigo, C., Gaspar, F., Oosterlee, C.W.: On local fourier analysis of
multigrid methods for pdes with jumping and random coefficients. SIAM J. Sci.
Comput. 41(3), A1385–A1413 (2019)

[15] Kuo, C.C., Levy, B.C.: Two-color fourier analysis of the multigrid method
with red-black Gauss-Seidel smoothing. Applied Mathematics and Computation
29(1), 69–87 (1989)

[16] MacLachlan, S.P., Oosterlee, C.W.: Local Fourier Analysis for Multigrid with
Overlapping Smoothers Applied to Systems of PDEs. Numer. Linear Algebra
Appl. 18(4), 751–774 (2011)

34

https://gitlab.com/NilsKintscher/alfa
https://gitlab.com/NilsKintscher/alfa

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

[17] Molenaar, J.: A two-grid analysis of the combination of mixed finite elements
and Vanka-type relaxation. In: W. Hackbusch, U. Trottenberg (eds.) Multigrid
Methods III, pp. 313–323. Birkhäuser Basel (1991)

[18] Rittich, H.: Extending and Automating Fourier Analysis for Multigrid Methods.
PhD Thesis, University of Wuppertal (2017)

[19] Rittich, H.: LFA Lab. https://github.com/hrittich/lfa-lab (2018)

[20] Rodrigo, C., Gaspar, F.J., Zikatanov, L.T.: On the validity of the local Fourier
analysis. J. Comput. Math. 37(3), 340–348 (2019)

[21] Rodrigo, C., Salinas, P., Gaspar, F., Lisbona, F.: Local Fourier Analysis for Cell-
Centered Multigrid Methods on Triangular Grids. J. Comput. Appl. Math 259,
35–47 (2014). Proceedings of the Sixteenth International Congress on Compu-
tational and Applied Mathematics (ICCAM-2012), Ghent, Belgium, 9-13 July,
2012

[22] Rodrigo, C., Sanz, F., Gaspar, F.J., Lisbona, F.J.: Local Fourier Analysis for
Edge-Based Discretizations on Triangular Grids. Numer. Math. Theory Me. 8(1),
78–96 (2015)

[23] Saad, Y.: Iterative Methods for Sparse Linear Systems, second edn. Society for
Industrial and Applied Mathematics (2003)

[24] Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons,
Inc. (1986)

[25] Sivaloganathan, S.: The use of local mode analysis in the design and comparison
of multigrid methods. Comput. Phys. Commun. 65(1), 246–252 (1991)

[26] Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces.
Princeton University Press (1971)

[27] Stevenson, R.: On the Validity of Local Mode Analysis of Multi-Grid Methods.
PhD Thesis, Utrecht University (1990-12)

[28] The PARI Group, Univ. Bordeaux: PARI/GP version 2.9.5 (2018). Available
from http://pari.math.u-bordeaux.fr/

[29] Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid, Texts in Applied Math-
ematics. Bd., vol. 33. Academic Press (2001). With contributions by A. Brandt,
P. Oswald and K. Stüben

[30] Wienands, R., Joppich, W.: Practical Fourier Analysis for Multigrid Methods.
CRC press (2004)

[31] Wienands, R., Oosterlee, C.: On Three-Grid Fourier Analysis for Multigrid.
SIAM J. Sci. Comput. 23(2), 651–671 (2001)

[32] Zhou, G., Fulton, S.: Fourier Analysis of Multigrid Methods on Hexagonal Grids.
SIAM J. Sci. Comput. 31(2), 1518–1538 (2009)

35

https://github.com/hrittich/lfa-lab
http://pari.math.u-bordeaux.fr/

	Introduction
	Lattices and Crystals
	Sublattices and quotient spaces

	Operators on Crystals
	An example
	Crystal representations and natural isomorphisms
	Application
	Multicolored block smoother for the tight-binding Hamiltonian of graphene
	Two-level analysis for the curl-curl equation

	Conclusion
	Rules of computation
	Algorithms

