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MetaFusion: Controlled False-Negative Reduction of
Minority Classes in Semantic Segmentation

Robin Chan1 and Matthias Rottmann1 and Fabian Hüger2 and Peter Schlicht2 and Hanno Gottschalk1

Abstract. In semantic segmentation datasets, classes of high impor-
tance are oftentimes underrepresented, e.g., humans in street scenes.
Neural networks are usually trained to reduce the overall number of
errors, attaching identical loss to errors of all kinds. However, this is
not necessarily aligned with human intuition. For instance, an over-
looked pedestrian seems more severe than an incorrectly detected
one. One possible remedy is to deploy different decision rules by in-
troducing class priors which assign larger weight to underrepresented
classes. While reducing the false-negatives of the underrepresented
class, at the same time this leads to a considerable increase of false-
positive indications. In this work, we combine decision rules with
methods for false-positive detection. We therefore fuse false-negative
detection with uncertainty based false-positive meta classification.
We present proof-of-concept results for CIFAR-10, and prove the ef-
ficiency of our method for the semantic segmentation of street scenes
on the Cityscapes dataset based on predicted instances of the ’hu-
man’ class. In the latter we employ an advanced false-positive detec-
tion method using uncertainty measures aggregated over instances.
We thereby achieve improved trade-offs between false-negative and
false-positive samples of the underrepresented classes.

1 INTRODUCTION

Deep learning has improved the state-of-the-art in a broad field of
applications such as computer vision, speech recognition and natural
language processing by introducing deep convolutional neural net-
works (CNNs). Although class imbalance is a well-known problem
of traditional machine learning models, little work has been done to
examine and handle the effects on deep learning models, see how-
ever [23] for a recent review. Class imbalance in a dataset occurs
when at least one class contains significantly less examples than an-
other class. The performance of CNNs for classification problems
has empirically been shown to be detrimentally affected when ap-
plied on skewed training data [3, 30] by revealing a bias towards
the overrepresented class. Being an classification problem at pixel-
level, semantic segmentation therefore is exhibited to the same set of
problems when class imbalance is present. As the imbalance natu-
rally exist in most datasets for “real world” applications, finding the
underrepresented class is of highest interest.

Methods for handling class imbalance have been developed and
can be divided into two main categories: sampling-based and
algorithm-based techniques [3, 23, 28]. While sampling-based meth-
ods operate directly on a dataset with the aim to balance its class dis-
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tribution, algorithm-based methods include a cost scheme to modify
the learning process or decision making of a classifier.

In the simplest form, balancing data is done by randomly discard-
ing samples from frequent (majority) groups and/or randomly du-
plicating samples from less frequent (minority) groups. These tech-
niques are known as oversampling and undersampling [38], respec-
tively. They can lead to performance improvement, in particular with
random oversampling [3, 30, 32] unless there is no overfitting [9]. A
more advanced approach called SMOTE [8] alleviates the latter issue
by creating synthetic examples of minority classes.

Oversampling methods are difficult to apply on semantic segmen-
tation datasets due to naturally occurring class frequencies on single
input frames. Considering the Cityscapes [13] dataset of urban street
scenes for instance, the number of annotated road pixels exceeds the
number of annotated person pixels by a factor of roughly 25 despite
the fact that persons already are strongly represented in this datatset
as street scenarios are shown from a car driver’s perspective.

The training approach is to assign costs to different classifica-
tion mistakes for different classes and include them in the loss func-
tion [4, 5, 39]. Instead of minimizing the total error, the average mis-
classifcation cost is minimized. In addition, methods have been pro-
posed learning the cost parameters throughout training [26, 40] and
thus eliminating the ethical problem of predefining them [6]. These
methods require only little tuning and outperform sampling-based
approaches without significantly affecting training time. Modifying
the loss function however biases the CNN’s output.

One approach to correct class imbalance during inference is output
thresholding, thus interchanging the standard maximum a-posteriori
probability (MAP) principle for an alternate decision rule. Dividing
the CNN’s output by the estimated prior probabilities for each class
was proposed in [3, 7] which is also known as Maximum Likelihood
rule in decision theory [17]. This results in a reduced likelihood of
misclassifying minority class objects and a performance gain in par-
ticular with respect to the sensitivity of rare classes. Output thresh-
olding does neither affect training time nor the model’s capability to
discriminate between different groups. It is still a suitable technique
for reducing class bias as it shifts the priority to predicting certain
classes that can be easily added on top of every CNN.

In the field of semantic segmentation of street scenes the over-
all performance metric intersection over union (IoU) [16] is mainly
used. This metric is highly biased towards large and therefore major-
ity class objects such as street or buildings. Currently, state-of-the-art
models achieve class IoU scores of 83% for Cityscapes [13] and 73%
for Kitti [19]. Further maximizing global performance measures is
important but does not necessarily improve the overall system per-
formance. The priority shifts to rare and potentially more important
classes, where the lack of reliable detection has potentially fatal con-
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sequences in applications like automated driving.
In this context, uncertainty estimates are helpful as they can be

used to quantify how likely an incorrect prediction has been made.
Using the maximum softmax probability as confidence estimate has
been shown to effectively identify misclassifications in image clas-
sification problems which can serve as baseline across many other
applications [21]. More advanced techniques include Bayesian neu-
ral networks (BNNs) that are supposed to output distributions over
the model’s weight parameters [33]. As BNNs come with a pro-
hibitive computational cost, recent works developed approximations
such as Monte-Carlo dropout [18] or stochastic batch normaliza-
tion [2]. These methods generate uncertainty estimates by sampling,
i.e., through multiple forward passes. These sampling approaches are
applicable for most CNNs as they do not assume any specific network
architecture, but they tend to be computationally expensive during
inference. Other frameworks include learning uncertainty estimates
via a separate output branch in CNNs [14, 25] which seems to be
more appropriate in terms of computational efficiency for real-time
inference.

In semantic segmentation, uncertainty estimates are usually visu-
alized as spatial heatmaps. Nevertheless, it is possible that CNNs
show poor performance but also high confidence scores [1]. There-
fore, auxiliary machine learning models for predicting the segmen-
tation quality [27, 40] have been proposed. While some methods
built upon hand-crafted features, some other methods apply CNNs
for that task by learning a mapping from the final segmentation to
its prediction quality [15, 22]. A segment-based prediction rating
method for semantic segmentation was proposed in [34] and ex-
tended in [35, 31]. They derive aggregated dispersion metrics from
the CNN’s softmax output and pass them through a classifier that dis-
criminates whether one segment intersects with the ground truth or
not. These hand-crafted metrics have shown to be well-correlated to
the calculated segment-wise IoU. The method is termed “MetaSeg”
which we use from now on to refer to that procedure.

In this work, we present a novel method for semantic segmenta-
tion in order to reduce the false-negative rate of rare class objects and
alleviate the effects of strong class imbalance in data. The proposed
method consists of two steps: First, we apply the Maximum Like-
lihood decision rule that adjusts the neural network’s probabilistic /
softmax output with the prior class distribution estimated from the
training set. In this way, less instances of rare classes are overlooked
but to the detriment of producing more false-positive predictions of
the same class. Afterwards, we apply MetaSeg to extract dispersion
measures from the balanced softmax output and, based upon that,
discard the additional false-positive segments in the generated seg-
mentation mask.

This work mainly builds on methods already presented in [7]
and [34]. Our main contribution is the fusion of these two compo-
nents providing an additional segmentation mask that is more sensi-
tive to finding rare class objects, but keeps false-positive instances in
check. Compared to different class weightings for decision thresh-
olding, we obtain a more favorable trade-off between error rates. As
inference post-processing tool, our method does not touch the under-
lying CNN architecture used for semantic segmentation, it is compu-
tationally cheap, easily interpretable and can be seamlessly added on
top of other CNNs for semantic segmentation.

This work is structured as follows: In sections 2 and 3, we recall
the building blocks of our approach, namely the Maximum Like-
lihood decision rule for the reduction false-negatives and MetaSeg
for false-positive segments detection, respectively. In section 4, we
combine the latter components and show proof-of-concept results for

CIFAR-10 in section 5. We complement this work by extending our
approach to the application-relevant task of semantic segmentation
and show numerical results for the Cityscapes data in section 6.

2 MAXIMUM LIKELIHOOD DECISION RULE
Neural Networks for semantic segmentation can be viewed as sta-
tistical models providing pixel-wise probability distributions that ex-
press the confidence of predicting the correct class label y within a
set Y := {1, . . . , l} of predefined classes. The classification at pixel
location z ∈ Z is then performed by applying the argmax function
to the posterior probabilities / softmax output pz(y|x) ∈ [0, 1] after
processing image x ∈ X . In the field of Deep Learning, this deci-
sion principle, called the maximum a-posteriori probability (MAP)
principle, is by far the most commonly used one:

dBayes(x)z := argmax
y∈Y

pz(y|x) . (1)

In this way, the overall risk of incorrect classifications is minimized,
i.e., for any other decision rule d : [0, 1]|Z| 7→ Y |Z| and with

Rsym(d) :=
1

|Z|
∑

z∈Z

∑

y∈Y
1{d(x)z 6=y}pz(y|x) ∀ x ∈ X (2)

it holds Rsym(dBayes) ≤ Rsym(d). In decision theory, this principle
is also known as Bayes decision rule [17] and it incorporates knowl-
edge about the prior class distribution p(y). As a consequence, in
cases of large prediction uncertainty the MAP / Bayes rule tends to
predict classes that appear frequently in the training dataset when ap-
plied in combination with CNNs. However, classes of high interest
might appear less frequently. Regarding highly unbalanced datasets
the Maximum Likelihood (ML) decision rule oftentimes is a good
choice as it compensates for the weights of classes induced by pri-
ors:

ŷz = dML(x)z := argmax
y∈Y

pz(x|y) = argmax
y∈Y

pz(y|x)

pz(y)
. (3)

Instead of choosing the class with the largest a-posteriori probability
pz(y|x), the ML rule chooses the class with the largest conditional
likelihood pz(x|y). It is optimal regarding the risk function

Rinv (d) :=
1

|Z|
∑

z∈Z

∑

y∈Y
1{d(x)z 6=y}pz(x|y) ∀ x ∈ X (4)

and in particular Rinv (dML) ≤ Rinv (dBayes) is satisfied. The ML
rule corresponds to the Maximum Likelihood parameter estimation
in the sense that it aims at finding the distribution that fits best the
observation. In our use case, the ML rule chooses the class that is
most typical for a given pattern observed in an image independently
of any prior belief, such as the frequency, about the semantic classes.
Moreover, the only difference between these two decision rules lies
in the adjustment by the priors pz(y) (see equation (3) and Bayes’
theorem [24]).

Analogously to [7], we approximate pz(y) in a position-specific
manner using the pixel-wise class frequencies of the training set:

p̂z(y) =
1

|X |
∑

x∈X
1{yz(x)=y} ∀ y ∈ Y, z ∈ Z . (5)

After applying the ML rule, the amount of overlooked rare class ob-
jects is reduced compared to the Bayes rule, but to the detriment of
overproducing false-predictions of the same class. Hence, our ulti-
mate goal is to discard as many additionally produced false-positive
segments as possible while keeping almost all additionally produced
true-positive segments.
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predict

= 0

> 0

adjust with priors

argmax

argmax

ML segments with

IoU(ML,Bayes) = 0

Softmax
Probabilities

Balanced
Probabilities

Bayes mask

ML mask

MetaSeg IoU(ML,GT)

derive uncertainty metrics

believe Bayes

believe ML

Output

Figure 1. Overview of our method for controlled false-negative reduction of minority classes which we term “MetaFusion”. Note that IoU denotes the
intersection over union measure of two segmentation masks.

3 PREDICTION ERROR CLASSIFICATION
In order to decide which additional segments predicted by ML but
not by Bayes to discard in an automated fashion, we train a binary
classifier performing on top of the CNN for semantic segmentation
analogously to [34, 35]. Given the conditional likelihood (softmax
output adjusted with priors), we estimate uncertainty per segment
by aggregating different pixel-wise dispersion measures, such as en-
tropy

Ez(x) = − 1

log(|Y|)
∑

y∈Y
pz(x|y) log(pz(x|y)) ∀ z ∈ Z, (6)

probability margin

Mz(x) = 1− pz(x|ŷz) + max
y∈Y\{ŷz}

pz(x|y) ∀ z ∈ Z (7)

or variation ratio

Vz(x) = 1− pz(x|ŷz) ∀ z ∈ Z . (8)

As uncertainty is typically large at transitions from one class to an-
other (in pixel space, i.e., at transitions between different predicted
objects), we additionally treat these dispersion measures separately
for each segment’s interior and boundary. The generated uncertainty
estimates serve as inputs for the auxiliary “meta” model which clas-
sifies into the classes {IoU = 0} and {IoU > 0}. Since the clas-
sification is employed on segment-level, the method is also termed
“MetaSeg”.

We only add minor modifications to the approach for prediction
error classification, in the following abbreviated as “meta” classifi-
cation, compared to [34]. For instance, instead of computing logistic
least absolute shrinkage and selection operator (LASSO [37]) regres-
sion fits, we use gradient-boosting trees (GB [20]). GB has shown to
be a powerful classifier on binary classification problems and struc-
tured data with modest dataset size which both match our problem
setting.

Additionally to the uncertainty measures, we introduce further
metrics indicating incorrect predictions. For localization purposes we
include a segment’s geometric center

Gh(k) =
1

|k|

|k|∑

i=1

hi , Gv(k) =
1

|k|

|k|∑

j=1

vj (9)

ML B GT Ground
Truth

Predic-
tion

Figure 2. Graphical illustration of the relation between Bayes and ML pre-
diction segments for rare classes.

with k = {(hs, vs) ∈ Z, s = 1, . . . , |k|} ∈ K̂x being the pixel
coordinates of one segment / connected component in the predicted
segmentation mask, i.e., a set consisting of neighboring pixel loca-
tions with the same predicted class. The geometric center is the mean
of all coordinates of a segment in all directions, in our case in hori-
zontal and vertical direction.

Another metric to be included makes use of a segment’s sur-
rounding area to determine if an object prediction is misplaced. Let
knb = {(h′, v′) ∈ [h± 1]× [v± 1] ⊂ Z : (h′, v′) /∈ k, (h, v) ∈ k}
be the neighborhood of k ∈ K̂x. Then, regarding segment k,

N(k|y) =
1

|kbd|
∑

z∈kbd

1{ŷz=y} ∀ y ∈ Y (10)

expresses the ratio of the amount of pixels in the neighborhood pre-
dicted to belong to class y to neighborhood size.

4 COMBINING MAXIMUM LIKELIHOOD
RULE AND META CLASSIFICATION

After describing the key components of our method for controlled
false-negative reduction in the preceding sections, we now present
our approach as combination of the Maximum Likelihood decision
rule and prediction error meta classification for semantic segmenta-
tion in more detail. For the most underrepresented class c ∈ Y in an
unbalanced semantic segmentation dataset, in many real-world ap-
plications often also the class of highest interest, all predicted Bayes
segments are inside ML segments [7], see figure 2. Consequently, for
c we assume that a non-empty intersection between an ML segment
and any Bayes segment (predicted to belong to c) indicates a confir-
mation for the presence of a minority class object that was already
detected by Bayes. In this case we say the decision rules agree. More
crucial are predicted ML segments that do not intersect with any
Bayes segment of the same class, i.e., the decision rules disagree,

3
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as these indicate a CNN’s uncertain regions where rare instances are
potentially overlooked.

The observation whether the decision rules agree or not builds the
basis for segment selection for further processing. Let k ∈ K̂x,ML be
the pixel coordinates of one connected component in the ML mask.
Then, given input x,

Dx = {k ∈ K̂x,ML : dML(x)z 6= dBayes(x)z ∀ z ∈ k} (11)

denotes the set of segments in which Bayes and ML disagree. Re-
stricting Dx to a single minority class c ∈ Y , we obtain the sub-
set Dx|c = {kc ∈ Dx : dML(x)z = c ∀ z ∈ kc}. The ob-
tained subset contains the candidates we process with MetaSeg. Let
µk : [0, 1]|Z|×|Y| 7→ Rq be a vector-valued function that returns a
vector containing all generated input metrics for MetaSeg restricted
to segment k ∈ Dx|c. We derive aggregated uncertainty metrics per
segment

Uk := µk((p̂(x|y))y∈Y) ∀ k ∈ Dx|c (12)

that serve as input for the meta classifier, see also section 3 and
cf. [34, 35]. The classifier we use in our meta model is gradient-
boosting tree algorithm (GB [20]) and it is trained to discriminate
between true-positive and false-positive segment prediction. Thus,
we seek a function f̂ : Rq 7→ {0, 1} that learns the mapping

f(Uk) =

{
1, if ∃ z ∈ k : dML(x)z = yz

0, else
(13)

with one connected component k ∈ Dx|c being considered as true-
positive if there exists (at least) one pixel assigned to the correct class
label and as false-positive otherwise. In the latter case, we remove
that segment from the ML mask and replace it with the Bayes pre-
diction. For the remaining connected components k′ ∈ K̂x,ML\Dx|c,
whether or not they are minority class segments, we stick to the
Bayes decision rule as well as it is optimal with respect to the ex-
pected total number of errors, see equation (2). Therefore, the final
segmentation output

dFusion(x)z =

{
dML(x)z, if f̂(Uk) = 1 ∧ z ∈ k ∈ Dx|c
dBayes(x)z, else

(14)

fuses Maximum Likelihood and Bayes decision rule. In this way,
compared to standard MAP principle, we sacrifice little in overall
performance but significantly improve performance on segment re-
call. We term our approach “MetaFusion” and provide a summary as
graphical illustration in figure 1.

5 NUMERICAL RESULTS FOR CIFAR-10
In order to test the general concept of MetaFusion, we perform exper-
iments with CIFAR-10 [29]. The dataset is commonly used for image
classification and contains 60k color images of resolution 32 × 32
pixels in 10 classes, each class having the same amount of samples.
The CNN architecture we use in our experiments for this task (fig-
ure 3) is adopted from the Keras documentation [12], the network is
reported to achieve a validation accuracy of 79% after 50 epochs of
training.

To evaluate our method, we construct a rare class setup with ten
CNNs. In this setup, the i-th CNN is trained on a CIFAR-10 (training
data) subset assembled by randomly leaving out 90% of the sam-
ples of class i. In [3] it already has been shown empirically that
the application of the Maximum Likelihood decision rule positively

3 32

32

Input

32 32

conv1

32

conv2+pool1

30

32 64 15

drop1+conv3

64

conv4+pool2

13
64 64 6

drop2+flatten

1 23
04

fc1

1 51
2

drop3+fc2

1

fc3+softmax

10

Figure 3. Convolutional neural network architecture applied in our tests on
CIFAR-10. Each convolution is followed by a ReLU (rectified linear unit)
activation. The dropout rate is 0.25 for the first two dropout layers and 0.50
for the third one, respectively.

affects the classification performance, not only increasing area un-
der the receiver operating characteristic curve (AUROC) but also to-
tal accuracy. In particular, compensating for prior class probabilities
increases the number of properly classified minority class samples.
Based on this finding, we examine MetaFusion’s behavior.

We evaluate the ten CNNs on one and the same CIFAR-10 val-
idation set consisting of 10k images with balanced class distribu-
tion. Each CNN is trained 50 epochs with categorical cross-entropy
loss. After adjusting the softmax probabilities by the priors (cf. equa-
tion (3)) to perform the ML decision rule subsequently, we derive
three dispersion measures, namely entropy E, probability margin M
and variation ratio V . Note that, since CIFAR-10 is an image clas-
sification task, the priors as well as the metrics are on the level of
full images (e.g., consider Z = {1}). For each CNN, the candidate
images for MetaFusion are samples predicted by ML to belong to the
trained subset’s minority class, but not by Bayes. As meta classifier
we use GB that, based onE,M, V , classifies if an image is predicted
correctly or incorrectly. For GB we employ 15 boosting stages with
maximum depth of 3 per tree and exponential loss function. In case
an image’s classification result is meta classified to be incorrect, we
replace it with the class prediction obtained by the Bayes rule. Meta-
Fusion is leave-one-out cross-validated.

The main evaluation metrics that serve for our evaluation are the
numbers of false-positives (FP ) and false-negatives (FN ) with re-
spect to the minority class. In figure 4 we see that, averaged over the
ten CIFAR-10 subsets we obtain roughly 611 FNs and 39 FPs with
Bayes whereas ML produces 271 FNs and 432 FPs. As a baseline
we interpolate the priors between these two decision rules in order to
understand how they translate into each other, i.e., we use the priors

pz,α(y) = (1− α)1 + αpz(y) ∀ y ∈ Y, z ∈ Z, (15)

with α ∈ [0, 1], resulting in the adjusted decision rule

dadj (x, α)z := argmax
y∈Y

pz(y|x)

pz,α(y)
(16)

with dadj (x, 0) = dBayes(x) and dadj (x, 1) = dML(x). By varying
the coefficient α we obtain the blue line in figure 4 that may serve as
an intuitive approach to balance FNs and FPs. For each of the points
given on the blue curve we apply MetaFusion (green line). Thus,
many of the overproduced FPs are removed, however we also have to
sacrifice some of the highly desired FNs at the same time. The diago-
nal gray lines visualizes level sets with respect to the sum of FNs and
FPs which is the absolute number of errors, i.e., on each of these line
the sum is constant. In our experiments, we choose equidistant inter-
polation degrees α. Due to lack of data for MetaFusion the smaller α
and/or the more confident the underlying image classification model,
the smallest interpolation degree we use is α = 0.9. We notice that
calibrating the class weightings leads to better average performance

4
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Table 1. Performance comparison of Bayes, ML and MetaFusion on minor-
ity classes in CIFAR-10. In total, the performance of ten CNNs are reported,
each CNN trained with a different minority class. To generate the unbalanced
training dataset, 90% of one class’ samples were randomly removed.

Bayes Maximum Likelihood MetaFusion
y F1 FP FN F1 FP FN ∆ F1 FP FN ∆

0 0.66 85 461 0.70 619 132 1.62 0.72 175 332 0.70
1 0.58 21 585 0.78 169 253 0.45 0.79 103 280 0.27
2 0.41 39 729 0.54 698 367 1.82 0.50 112 629 0.73
3 0.15 17 915 0.53 502 452 1.05 0.42 138 691 0.54
4 0.46 70 682 0.60 852 203 1.63 0.63 195 452 0.54
5 0.34 35 787 0.61 528 330 1.08 0.56 207 532 0.67
6 0.67 41 473 0.75 336 202 1.09 0.77 137 293 0.53
7 0.65 24 506 0.74 248 261 0.91 0.73 106 368 0.60
8 0.69 29 459 0.79 183 234 0.68 0.79 126 260 0.49
9 0.64 31 516 0.76 185 273 0.63 0.76 132 309 0.49

ȳ 0.52 39 611 0.68 432 271 1.09 0.67 143 415 0.56

Averaged total accuracy score on validation set

ȳ 0.75451 0.76563 0.76707

with respect to the sum of false-positives and false-negatives. We ob-
serve that applying MetaFusion reduces the sum of errors once more,
nearly throughout all of investigated interpolation degrees (green line
lying below blue line in figure 4). In order to further analyze this test,
we state numbers for single runs in table 1, complemented with ad-
ditional evaluation metrics.

As an overall performance measure, although being skewed to-
wards majority classes, we report the score F1 = 2TP/(2TP +
FP + TP ) with TP being the number of true-positives. Another
measure for MetaFusion is the ratio between prediction errors. For
any decision rule dadj : [0, 1]|Y| × R 7→ Y , the slope

∆(dadj ) =
FP (dadj )− FP (dBayes)

FN(dBayes)− FN(dadj )
(17)

with dadj such that FN(dBayes) − FN(dadj) 6= 0 describes how
many additional FPs we have to accept for removing a single FN
compared to the Bayes decision rule. The smaller ∆, the more fa-
vorable the trade-off between the two error rates. In fact, ∆ < 1
indicates that for the considered minority class the total number of
errors is decreased by dadj compared to dBayes (whereas it may in-
crease for the other classes).

The average F1 score is 67%, marginally less than with ML
(68%). This outcome is mainly caused by the class 3 (cat) where
ML considerably outperforms MetaFusion by 11 percent points. For
the remaining classes the exchange is at most 5 percent points with
either MetaFusion achieving a higher score than ML or vice versa.
MetaFusion is superior to ML in average ∆ by taking roughly only
one FP in order to reduce two FNs. Hence, with respect to aver-
age error rates, MetaFusion outperforms Bayes and ML. On aver-
age ∆(dML) = 1.09, i.e., ML produces slightly more than one FP
to reduce one FN in comparison to Bayes. Moreover, also compared
to Bayes, the amount of predicted minority class instances is signif-
icantly increased, leading to an improved performance per minority
class by 16% on average and also in total accuracy by 1.11%. This
result confirms the finding from [3].

Summarizing this test, we have shown empirically that the basic
concept of MetaFusion works for image classification by implement-
ing a minimal version of the method and reporting numerical results.
Next, we aim at extending our method to the application-relevant and
more complex task of semantic segmentation.
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Figure 4. False-positives vs. false-negatives on CIFAR-10. The blue line is
an interpolation between the Bayes and ML. Different points indicate equidis-
tant interpolation degrees starting from 0.9, i.e., different degrees of decision
thresholding. MetaFusion (green points) is applied in accordance to the in-
terpolated class weightings. The diagonal lines denote level sets in which the
sum of both errors equals the same value.

6 NUMERICAL RESULTS FOR CITYSCAPES

Semantic segmentation is a crucial step in the process of perceiving
a vehicle’s surroundings for automated driving. Therefore, we per-
form tests on the Cityscapes dataset [13] which consists of 2,975
pixel-annotated street scene images of resolution 2048 × 1024 pix-
els used for training and further 500 images for validation purposes.
CNNs can be trained either on 19 classes or 8 aggregated coarse cat-
egories. Our main focus lies in avoiding non-detected humans (ide-
ally without producing any false-positive predictions). As all images
are recorded in urban street scenes (thus naturally boosting the oc-
currence of persons), classes like wall, fence or pole are as rare as
pedestrians in terms of pixel frequency in the dataset. This would
lead to class priors, when estimating via pixel-wise frequency, con-
flicting with human common sense due to the possible preference of
static objects over persons. Therefore, we use category priors treat-
ing objects more superficially (by aggregrating all clases into the 8
predefined categories), with pedestrians and rider aggregated to “hu-
man” class then being significantly underrepresented relative to all
remaining categories.

We perform the Cityscapes experiments using DeeplabV3+ net-
works [10] with MobileNetV2 [36] and Xception65 [11] backbones.
We apply MetaFusion per predicted human segment as presented
in section 4 and evaluate only the human class in the Cityscapes
validation data. As meta classifier we employ GB with 27 boost-
ing stages, maximum depth of 3 per tree, exponential loss and 5
features to consider when looking for the best split. MetaFusion is
5-fold cross-validated. Numerical results are listed in table 2.

Similar to the experiments in section 5, we interpolate between
Bayes and ML priors according to equation (15) but now for every
pixel location z ∈ Z . We again observe that an interpolation degree
of α < 0.9 for the adjusted decision rules (see equation (16)) leads to
a lack of meta training data. Moreover, we choose unevenly spaced
steps α ∈ {0.9, 0.95, 0.975, 0.99, 0.995, 1} due to a drastic increase
in error rates the bigger the interpolation degree.

For MobileNetV2, see also figure 5, we observe that the num-
ber of false-positives increases from 865 up to 4885 when applying
ML instead of Bayes while the number of false-negatives decreases
from 839 down to 476. This results in large ∆ = 11.07 expressing
that roughly 11 FPs are produced in order to remove one single FN.
Clearly, there is an overproduction of predicted human segments that
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Table 2. Performance comparison of different decision rules and MetaFu-
sion for DeeplabV3+ with MobileNetV2 [36] and Xception65 backbones on
Cityscapes. Different adjusted decision rules are obtained according to equa-
tion (16).

Priors interpol. Adjusted Decison Rule MetaFusion
degree α mIoU FP FN ∆ mIoU FP FN ∆

DeeplabV3+ MobileNetV2 on Cityscapes validation set

0.000 (Bayes) 0.684 865 839 - 0.684 865 839 -

0.900 0.675 1644 631 3.735 0.683 1167 720 2.538
0.950 0.668 1988 571 4.190 0.682 1169 670 1.799
0.975 0.661 2352 533 4.860 0.681 1191 648 1.701
0.990 0.653 2827 496 5.720 0.680 1247 611 1.676
0.995 0.649 3155 485 6.469 0.680 1329 586 1.834

1.000 (ML) 0.600 4885 476 11.074 0.680 1606 553 2.590

DeeplabV3+ Xception on Cityscapes validation set

0.000 (Bayes) 0.753 774 679 - 0.753 774 679 -

0.900 0.746 1314 530 3.624 0.752 1055 614 4.323
0.950 0.742 1579 487 4.193 0.752 1079 583 3.177
0.975 0.737 1783 458 4.566 0.751 1118 571 3.185
0.990 0.732 2068 433 5.260 0.751 1103 549 2.531
0.995 0.731 2219 425 5.689 0.750 1154 532 2.585

1.000 (ML) 0.705 3003 421 8.640 0.750 1272 508 2.912
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Figure 5. False-positives vs. false-negatives of person segments for Mo-
bileNetV2 on Cityscapes. The diagonal lines denote level sets in which the
sum of both errors equals the same value.

we want to keep under control using MetaFusion.
By applying MetaFusion, the number of false-positives is reduced

to a third of ML false-positives while keeping more than two thirds
(78.79%) of additional true-positives. This results in ∆ = 2.59
which is a significant decrease compared to plain ML without Meta-
Fusion. With respect to the overall performance, measured by mean
IoU, MetaFusion sacrifices 0.4% and ML 8.4% for detecting the
false-negatives additionally to Bayes. In our experiments we observe
that our approach works better the more segments are available for
which the decision rules disagree. Therefore, the performance gain
with respect to the total number of errors is most significant for
α = 1.0. For decreasing interpolation degrees, we observe a succes-
sive reduction of total number errors for the adjusted decision rules.
Different to the findings for CIFAR-10, the class weightings’ adjust-
ment does not lead to a better performance than Bayes with respect to
the absolute number of errors. However, when avoiding FNs is con-
sidered to be more important than FPs, our method proposes alterna-
tive decision rules that are more attractive than plain decision rules
for a large set of error weightings. Just like for CIFAR-10, for every
investigated α MetaFusion is superior to ML regarding the failure
trade-off ∆ producing 1.68 additional FPs for removing one single

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Feature Importance Score

N(k|18)
Gv(k)

Gh(k)

N(k|17)
Ebd(k)

N(k|13)

N(k|2)

E(k)

N(k|1)
Mbd(k)

Figure 6. Feature importance scores of the gradient-boosting classifier for
MobileNetV2 applied on all disjoint ML and Bayes human segments. The
score is averaged over all random cross-validation splits and only the ten
features with the highest score are depicted. In total we used 56 metrics as
meta model input. N and G are defined in section 3. E and M denotes the
segment-wise averaged entropy and probability margin, respectively, with bd

indicating the restriction on the segment’s boundary.

FN as its best performance. In addition, we can conclude that our ap-
proach outperforms probability thresholding with respect to the error
rates on human segments.

For the stronger DeeplabV3+ model with Xception65 network
backbone, we observe similar effects in general. Compared to Mo-
bileNetV2, MetaFusion’s performance gain over adjusted decision
rules is not as great. This is primarily due to the higher confidence
scores in the softmax output of the underlying CNN. They prevent
the adjusted decision rules from producing segments for which the
decision rules disagree. Therefore, the training set size for the meta
classifier is rather small even resulting in a worse ∆ for MetaFusion
than for the adjusted decision rule when α = 0.90. Nevertheless,
the latter does not hold for the remaining investigated interpolation
degrees. Indeed, MetaFusion accepts in average 2.8 FPs for remov-
ing one single FN which is more than half of the average ∆ for the
adjusted decision rules.

In order to find out which of the constructed metrics contribute
most to meta classification performance, we analyze our trained GB
with respect to feature importance. The latter is a measure indicating
the relative importance of each feature variable in a GB model. In a
decision tree the importance is computed as

In(t) = n(t)Q(t)− nleft(t)Qleft(t)− nright(t)Qright(t) (18)

with Q(t) the Gini impurity [20] and n(t) the weighted number of
samples in node t ∈ T (the weighting corresponds to the portion of
all samples reaching node t). Moreover, by left and right we denote
the respective children nodes. Then the importance of f̂ of feature /
uncertainty metric m ∈ [0, 1] is computed as

I(m) =

∑

t∈T
χ(t|m)In(t)

∑

t∈T
In(t)

(19)

with

χ(t|m) =

{
1, if node t splits on feature m
0, else

. (20)

The ten features of highest importance (in experiments with Mo-
bileNetV2) are reported in figure 6. By a large margin, a segment’s
neighborhood including class id 18, which corresponds to bicycles,
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(i) Bayes prediction (ii) Maximum Likelihood prediction (iii) MetaFusion prediction

(iv) Original raw input image (v) Ground truth segmentation mask (vi) Image zoom into region of interest

Figure 7. Example of generated segmentation masks with MobileNetV2. In the top row: prediction mask using Bayes (i), ML (ii) and MetaFusion (iii). In the
bottom row: raw input image (iv), corresponding annotated ground truth mask (v) and zoomed views into the region of interest marked in the latter images (vi).
By comparing the prediction masks, we observe couple of person segments (red color) for which the decision rules disagree and which are correctly identified as
false-positive, according to the ground truth, using MetaSeg. In the end, with MetaFusion we obtain a segmentation mask similar at large to the standard Bayes
mask but with some additionally detected person instances that are rather small and barely visible in the original image.

has the strongest effect on GB. This is plausible since a bicycle seg-
ment adjacent to a human segment can be viewed as an indicator
that this human segment is indeed present, i.e., a true-positive. Hav-
ing less than half the importance score, the geometric center still has
a relatively high impact on GB. We notice that ML produces many
(false-positive) segments close to the image borders. This is a conse-
quence of applying pixel-wise ML which GB takes into account. The
dispersion measures entropy and probability margin are considered
as important features as well expressing the CNN’s uncertainty about
its prediction. In [34], it already has been shown that these two met-
rics are well-correlated to the segment-wise IoU. GB also uses these
correlations to perform the meta classification. In contrast to the find-
ings in [34], dispersion measures at segment boundaries have greater
impact than the dispersion of the interior. This high uncertainty at the
boundaries can be interpreted as disturbances for class predictions in
a segment’s surrounding and may indicate that the investigated seg-
ment is a false-positive. Moreover, the remaining features in the top
ten of highest importance are neighborhood statistics for the classes
(in descending order) motocycle, car, building and sidewalk.

7 CONCLUSION

In this work, we presented a novel post-processing approach for se-
mantic segmentation. As minority classes are often of highest interest
in many real-world applications, the non-detection of their instances
might lead to fatal situations and therefore must be treated carefully.
In particular, the class person is one minority class in street scene
datasets. We compensate unbalanced class distributions by applying
the Maximum Likelihood decision rule that detects a significantly
larger number of humans, but also causes an overproduction of false-
positive predictions of the same class. By deriving uncertainty mea-
sures per predicted segment and passing them through a gradient-
boosting classifier, we are able to detect false-positive segment pre-

dictions in the ML mask in an automated and computationally cheap
fashion. We remove these segments which are identified as incorrect
and replace them with the Bayes mask. In this way, we significantly
reduce the number of false-positives, at the same time only sacrific-
ing a small number of detected false-negatives and also only resulting
in a minor overall performance loss in comparison to the standard
Bayes decision rule in the Cityscapes dataset. In fact, our method,
which we term “MetaFusion”, outperforms decision rules with dif-
ferent class weightings obtained by interpolating between Bayes and
ML rule, i.e., MetaFusion outperforms pure probability thresholding
with respect to both error rates, false-positive and false-negative, of
class human. This result holds for the investigated DeeplabV3+ mod-
els with MobileNetV2 and Xception65 backbones whereby the per-
formance gain is more substantial the greater the difference between
the Bayes and ML mask. Furthermore, we tested the basic concept
of MetaFusion on an image classification problem as well. Although
we applied only a minimal version on the CIFAR-10 dataset, we ob-
served similar results to Cityscapes demonstrating the method’s gen-
eralization capabilities for various tasks. MetaFusion can be viewed
as a general concept for trading improved false-positive detection for
additional performance on rare classes.

For future work we plan to improve our meta classification
approach with further heatmaps, metrics as well as component-
sensitive to time dynamics. Our approach might also be suitable
to serve for query strategies in active learning. Our source code
for reproducing experiments is publicly available on GitHub, see
https://github.com/robin-chan.
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