

Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational Mathematics (IMACM)

Preprint BUW-IMACM 19/38

Christian Budde, Retha Heymann

Extrapolation of operator-valued multiplication operators

December 16, 2019

http://www.math.uni-wuppertal.de

EXTRAPOLATION OF OPERATOR-VALUED MULTIPLICATION OPERATORS

CHRISTIAN BUDDE AND RETHA HEYMANN

ABSTRACT. We discuss L^p fiber spaces which appear, e.g., as extrapolation spaces of unbounded multiplication operators which in turn are motivated, for instance, by non-autonomous evolution equations.

INTRODUCTION

Nagel-Nickel-Romanelli studied extrapolation spaces for unbounded operators in their paper [10] in Quaest. Math. in 1996. This paper extends this work by considering another scenario where extrapolation spaces occur.

It is motivated by non-autonomous Cauchy problems. Such a problem can be treated as an abstract Cauchy problem on a Banach space X. It takes the form

(nACP)
$$\begin{cases} \dot{u}(t) = A(t)u(t), & t, s \in \mathbb{R}, t \ge s, \\ u(s) = x, \end{cases}$$

where $(A(t), D(A(t)))_{t \in \mathbb{R}}$ is a family of linear operators on X (see [3, Chapter VI, Section 9]). The solution of such a problem, if it exists, is given by a so-called evolution family $(U(t, s))_{t \geq s}$, see [4, Chapter VI, Def. 9.2]. One of the problems of evolution families is that, in contrast to C_0 semigroups, they do not yield a differentiable solution, e.g., it is possible that the map $t \mapsto U(t, s)x$ is differentiable only for x = 0. However, if we have a solution by means of an evolution family, we obtain a differentiable structure by means of a strongly continuous semigroup $(T(t))_{t\geq 0}$ on the Bochner space $L^p(\mathbb{R}, X)$ $(1 \leq p < \infty)$ by

$$(T(t)f)(s) := U(s, s-t)f(s-t), \quad t \ge 0, \ f \in \mathcal{L}^p(\mathbb{R}, X), \ s \in \mathbb{R}$$

(see [3, Chapter 9, Part b., especially Remark 9.12)]). One important challenge is to determine the exact domain of the corresponding generator (G, D(G)), since it determines the space of differentiability for the semigroup, cf. [4, Chapter II, Lemma 1.3]. By [11, Thm. 3.4.7] operator-valued multiplication operators now arise naturally. Indeed, the evolution family provides a solution to (nACP) if and only if there exists an invariant core $D \subseteq W^{1,p}(\mathbb{R}, X) \cap D(\mathcal{A})$ with

$$Gf = \mathcal{A}f - f$$

for $f \in D$. Here \mathcal{A} is the multiplication operator on $L^p(\mathbb{R}, X)$ defined by

$$(\mathcal{A}f)(\cdot) = A(\cdot)f(\cdot)$$
 for $f \in L^p(\mathbb{R}, X)$ with $A(\cdot)f(\cdot) \in L^p(\mathbb{R}, X)$,

where $A(t), t \in \mathbb{R}$, is the family of linear operators in (nACP). One answer, in the special case where $A(t) \equiv A$ for some semigroup generator (A, D(A)), is due to Nagel, Nickel and Romanelli [10, Sect. 4]. In [6] T. Graser studied bounded and unbounded operator-valued multiplication operators on the space of continuous functions $C_0(\mathbb{R}, X)$ as well as their extrapolation spaces. We will see that extrapolation spaces of multiplication operators on $L^p(\mathbb{R}, X)$ can be constructed similarly. Later on, S. Thomaschewski studied properties of such multiplication operators on Bochner L^p spaces [11, Sect. 2.2 & 2.3] in connection with non-autonomous problems. In particular, she

²⁰¹⁰ Mathematics Subject Classification. 47D06, 37B55, 47B38, 58D25.

Key words and phrases. extrapolation spaces, multiplication operators, L^p -fiber spaces, strongly continuous oneparameter operator semigroups, non-autonomous problems, evolution semigroups.

The first author was supported by the DAAD-TKA Project 308019 "Coupled systems and innovative time integrators".

connects multiplication semigroups with unbounded operator-valued multiplication operators. In order to construct our extrapolation spaces, the notion of fiber integrable functions is essential and leads to so-called L^p fibre spaces, see [8].

We start this paper with some preliminaries on fiber integrable functions and continue with unbounded multiplication operators in the second section. In Section 3 we discuss multiplication semigroups whose generators are multiplication operators. Furthermore, we determine the extrapolation spaces of such multiplication operators by means of L^p -fiber spaces. We remark that the results of this paper appear in similar fashion in [1, Chapter 3].

1. L^p -FIBER SPACES

Firstly, we recall the notion of a measurable Banach fiber bundle as it was introduced by R. Heymann, cf. [8, Def. VI.1.i]. To do so, let (Ω, Σ, μ) be a σ -finite measure space. Furthermore, let V be a complex vector space together with a family of seminorms $\{||\cdot||_s : s \in \Omega\}$ on V. Assume that there exists a countable set of elements $\mathcal{B} := \{b_k : k \in \mathbb{N}\} \subseteq V$ such that \mathcal{B} is a vector space over $\mathbb{Q} + i\mathbb{Q}$ and such that for each $k \in \mathbb{N}$ the map $s \mapsto |||b_k|||_s$ is measurable as a map from Ω to \mathbb{R} . For every $s \in \Omega$ we define the set $N_s := \{b_k \in \mathcal{B} : |||b_k|||_s = 0\}$ and take the completion of the quotient space \mathcal{B}/N_s with respect to the induced norms $\|\cdot\|_s$ on \mathcal{B}/N_s . This Banach space is denoted by X_s .

Definition 1.1. The family of Banach spaces $(X_s, \|\cdot\|_s)_{s \in \Omega}$ is called a *measurable Banach fiber* bundle.

Next, we follow [8, Def. VI.1.iii] in order to define what it means for a function $f: \Omega \to \bigcup_{s \in \Omega} X_s$ to be measurable.

Definition 1.2. Let $(X_s, \|\cdot\|_s)_{s \in \Omega}$ be a measurable Banach fiber bundle. We define a function $f: \Omega \to \bigcup_{s \in \Omega} X_s$ with $f(s) \in X_s$ for μ -almost every $s \in \Omega$ to be *fiber measurable* if it is almost everywhere a pointwise limit with respect to $\left\|\cdot\right\|_s$ of measurable simple functions with values in \mathcal{B} . More precisely, this means that there exists a sequence $(f_j)_{j\in\mathbb{N}}$ of functions $f_j:\Omega\to\bigcup_{s\in\Omega}X_s$ such that

- 1. $f_j = \sum_{i=1}^{n-j} (b_{\pi(i)} + N_s) \mathbf{1}_{\Omega_i}$, where $\pi : \mathbb{N} \to \mathbb{N}$, $n_j \in \mathbb{N}$, $\Omega_i \in \Sigma$, $\Omega_i \cap \Omega_j = \emptyset$, $i \neq j$, and $b_i \in \mathcal{B}$ for each $1 \le i \le n_j$, 2. $f(s) = \lim_{i \to \infty} f_j(s)$ with respect to $\|\cdot\|_s$ for μ -almost every $s \in \Omega$.

The set of fiber measurable functions on Ω together with the pointwise addition and scalar multiplication is a C-vector space, which we will call a measurable Banach fiber bundle.

Having the concept of measurability we continue with the notion of integrability for functions from Ω to measurable Banach fiber bundles, see [8, Def. VI.1.vi]. Especially, we define what it means to be p-integrable for $1 \le p < \infty$. To do so, we remark that, for a fiber-measurable function f, the map $s \mapsto \|f(s)\|_s^p$ is measurable, since, by construction, the map $s \mapsto \|f(s)\|_s$ is a pointwise limit of measurable functions.

Definition 1.3. Let $1 \leq p < \infty$. We call a fiber measurable function $f: \Omega \to \bigcup_{s \in \Omega} X_s$ fiber *p*-integrable if the integral

$$\int_{\Omega} \|f(s)\|_s^p \, \mathrm{d}\mu(s),$$

exists and is finite. In this case, we call

$$\left\|f\right\|_{p} := \left(\int_{\Omega} \left\|f(s)\right\|_{s}^{p} \mathrm{d}\mu(s)\right)^{\frac{1}{p}}$$

the L^p -fiber norm of f.

Remark 1.4. (i) Observe that the set of fiber *p*-integrable functions with pointwise addition and scalar multiplication is a vector space.

- (ii) The relation defined by $f \sim g \Leftrightarrow f = g \mu$ -almost everywhere is an equivalence relation on the set of fiber *p*-integrable functions.
- (iii) The set of equivalence classes of fiber *p*-integrable functions with the canonical vector space structure is called a L^p -fiber space and is denoted by $L^p(\Omega, (X_s)_{s \in \Omega})$.
- (iv) By [8, Prop. VI.1.xi] the space $L^p(\Omega, (X_s)_{s \in \Omega})$ is a Banach space with respect to the L^p -fiber norm.
- (v) The notion of L^p-fiber spaces is closely related to the one of measurable Banach bundles, cf.
 [7] and [5].

2. Operator-valued multiplication operators

The main objects of this section are operator-valued multiplication operators, cf. [11, Def. 2.3.1].

Definition 2.1. Let X be a Banach space and let $(M(s), D(M(s)))_{s \in \Omega}$ be a family of (possibly) unbounded linear operators on X, i.e., $M(s) : D(M(s)) \subseteq X \to X$ for $s \in \Omega$. The operator $(\mathcal{M}, D(\mathcal{M}))$ on $L^p(\Omega, X)$ defined by

$$D(\mathcal{M}) := \{ f \in L^p(\Omega, X) : f(s) \in D(M(s)) \ \mu\text{-a.e.}, (s \mapsto M(s)f(s)) \in L^p(\Omega, X) \} \}$$

 $(\mathcal{M}f)(s) := M(s)f(s), \quad f \in D(\mathcal{M}), s \in \Omega, \ \mu\text{-almost everywhere},$

is called the corresponding operator-valued multiplication operator. The operators (M(s), D(M(s))), $s \in \Omega$, are called *fiber operators*.

As already mentioned in the beginning, the concept of unbounded multiplication operators was studied by S. Thomaschewski [11] on Bochner L^p -spaces in connection with non-autonomous Cauchy problems. Here we summarize some important results.

Firstly, the closedness of the fiber operators implies the closedness of the multiplication operator, see [11, Lemma 2.3.4].

Lemma 2.2. If (M(s), D(M(s))) is closed for μ -almost every $s \in \Omega$, then $(\mathcal{M}, D(\mathcal{M}))$ is closed.

In what follows we assume that $(\mathcal{M}, D(\mathcal{M}))$ is a closed operator-valued multiplication operator with closed fiber operators $(M(s), D(M(s)))_{s \in \Omega}$. The following result [11, Lemma 2.3.5] shows that the resolvent operator of $(\mathcal{M}, D(\mathcal{M}))$ also gives rise to a multiplication operator. For this we remind the reader of the following definition [11, Def. 2.2.3]:

$$\mathcal{L}^{\infty}(\Omega, \mathscr{L}_{\mathbf{s}}(X)) := \{ M : \Omega \to \mathscr{L}(X) : s \mapsto M(s) x \in \mathcal{L}^{\infty}(\Omega, X) \text{ for all } x \in X \}.$$

Lemma 2.3. Let $(\mathcal{M}, \mathcal{D}(\mathcal{M}))$ be a multiplication operator and assume that $\lambda \in \rho(\mathcal{M})$ where $\rho(\mathcal{M})$ denotes the resolvent set of \mathcal{M} . Then $R(\lambda, \mathcal{M})$ is a bounded multiplication operator, i.e., there exists $M \in L^{\infty}(\Omega, \mathscr{L}_{s}(X))$ such that $(R(\lambda, \mathcal{M})f)(s) = M(s)f(s)$ for all $f \in L^{p}(\Omega, X)$.

Unfortunately, since the proof of the above lemma uses a characterization of bounded multiplication operators, the converse cannot be proved in a similar way and has not been proved in general, cf. [11, Thm. 2.2.17]. However, the following result [11, Thm. 2.3.6] holds.

Theorem 2.4. Let $(\mathcal{M}, \mathcal{D}(\mathcal{M}))$ be a densely defined closed von $L^p(\Omega, X)$. Assume that there exists an unbounded sequence $(\lambda_n)_{n \in \mathbb{N}}$ in $\rho(\mathcal{M})$ such that for all $f \in L^p(\Omega, X)$ one has

 $\lim_{n\to\infty} \lambda_n R(\lambda_n, \mathcal{M}) f = f. \quad If \ R(\lambda_n, \mathcal{M}) \text{ is a bounded multiplication operator for every } n \in \mathbb{N},$ then there exists a family $(M(s), \mathbb{D}(M(s)))_{s\in\Omega}$ of densely defined closed operators on X such that $(\mathcal{M}, \mathbb{D}(\mathcal{M}))$ is a multiplication operator with fiber operators $(M(s), \mathbb{D}(M(s)))_{s\in\Omega}$. Furthere there exists a μ -null-set \mathcal{N} such that for every $s \in \Omega \setminus \mathcal{N}$ and for each $n \in \mathbb{N}$ one has $\lambda_n \in \rho(M(s))$.

Finally, if $(\mathcal{M}, D(\mathcal{M}))$ is already supposed to be a multiplication operator on $L^p(\Omega, X)$, then the resolvent of \mathcal{M} and the resolvents of the fiber operators are related by the following result [11, Prop. 2.3.7].

Proposition 2.5. Let $(\mathcal{M}, \mathcal{D}(\mathcal{M}))$ be a closed multiplication operator with closed fiber operators $(M(s), \mathcal{D}(M(s)))_{s \in \Omega}$.

(a) If $\lambda \in \rho(M(s))$ for μ -almost every $s \in \Omega$ and $R(\lambda, M(\cdot)) \in L^{\infty}(\Omega, \mathscr{L}_{s}(X))$, then $\lambda \in \rho(\mathcal{M})$ and $(R(\lambda, \mathcal{M})f)(s) = R(\lambda, M(s))f(s)$ for all $f \in L^{p}(\Omega, X)$ and μ -almost every $s \in \Omega$. (b) If there exists an unbounded sequence $(\lambda_n)_{n\in\mathbb{N}}$ in $\rho(\mathcal{M})$ such that for all $f \in L^p(\Omega, X)$ one has $\lambda_n R(\lambda_n, \mathcal{M}) f \to f$ for $n \to \infty$, then for μ -almost all $s \in \Omega$ and all $n \in \mathbb{N}$ one has $\lambda_n \in \rho(M(s))$ and $(R(\lambda_n, \mathcal{M})f)(s) = R(\lambda_n, M(s))f(s)$ for all $f \in L^p(\Omega, X)$ and μ -almost every $s \in \Omega$.

In [11, Sect. 2.2.3] S. Thomaschewski studies multiplication semigroups on $L^p(\Omega, X)$. The definition is as follows.

Definition 2.6. A C_0 -semigroup $(\mathcal{T}(t))_{t\geq 0}$ on $L^p(\Omega, X)$ is called a *multiplication semigroup* if for every $t \geq 0$ the operator $\mathcal{T}(t)$ is a bounded multiplication operator, i.e., for every $t \geq 0$ there exists $T_{(\cdot)}(t) \in L^{\infty}(\Omega, \mathscr{L}_s(X))$ such that $(\mathcal{T}(t)f)(s) = T_s(t)f(s)$ for μ -almost every $s \in \Omega$.

By [11, Thm. 2.3.15], stated below, these multiplication semigroups have unbounded multiplication operators as generators.

Theorem 2.7. Let $(\mathcal{M}, D(\mathcal{M}))$ be the generator of a strongly continuous semigroup $(\mathcal{T}(t))_{t\geq 0}$ on $L^p(\Omega, X)$ such that $||\mathcal{T}(t)|| \leq M e^{\omega t}$ for some $M \geq 0$, $\omega \in \mathbb{R}$ and for all $t \geq 0$. The following are equivalent.

- (a) $(\mathcal{T}(t))_{t>0}$ is a multiplication semigroup.
- (M, D(M)) is an unbounded operator-valued multiplication operator with fiber operators (M(s), D(M(s)))_{s∈Ω}. Moreover, for μ-almost every s ∈ Ω, λ ∈ ρ(M(s)) whenever Re(λ) > ω, (R(λ, M)f)(·) = R(λ, M(·))f(·) and (M(s), D(M(s))) is the generator of a C₀-semigroup (T_s(t))_{t≥0} such that (T(t)f)(s) = T_s(t)f(s) for all t ≥ 0.

3. Extrapolation of unbounded multiplication operators

We recall the construction of extrapolation spaces of unbounded operators, as described, for example, in [4, Chapter II, Sect. 5(a)], [9] or in a more general framework in [2]: Let $(T(t))_{t\geq 0}$ be a C_0 -semigroup on a Banach space X with generator (A, D(A)). Without loss of generality one may assume that $0 \in \rho(A)$. On X one defines a new norm $\|\cdot\|_{-1}$ by

$$||x||_{-1} := ||A^{-1}x||, \quad x \in X.$$

The completion of X with respect to $\|\cdot\|_{-1}$ is called the *(first) extrapolation space* and will be denoted by X_{-1} . The original space X is densely embedded in X_{-1} . By continuity one can extend the original semigroup $(T(t))_{t\geq 0}$ to a C_0 -semigroup $(T_{-1}(t))_{t\geq 0}$ on X_{-1} . The corresponding generator is denoted by $(A_{-1}, D(A_{-1}))$. As a matter of fact, one obtains $D(A_{-1}) = X$ and $A_{-1}: X \to X_{-1}$ becomes an isometric isomorphism.

We now consider a multiplication operator $(\mathcal{M}, \mathcal{D}(\mathcal{M}))$ generating a multiplication semigroup $(\mathcal{T}(t))_{t\geq 0}$, cf. Theorem 2.7. By $(M(s), \mathcal{D}(M(s)))_{s\in\Omega}$ we denote the fiber operators corresponding to $(\mathcal{M}, \mathcal{D}(\mathcal{M}))$, i.e., $(\mathcal{M}f)(s) = M(s)f(s), f \in \mathcal{D}(\mathcal{M})$ and $s \in \Omega$. By Theorem 2.7 the operator $(M(s), \mathcal{D}(\mathcal{M}(s))), s \in \Omega$, generates a C_0 -semigroup $(T_s(t))_{t\geq 0}$. We assume without loss of generality that $0 \in \rho(M(s))$ for μ -almost every $s \in \Omega$. The extrapolated operators will be denoted by $(M_{-1}(s), \mathcal{D}(M_{-1}(s))), s \in \Omega$. The extrapolation space of $L^p(\Omega, X)$ corresponding to the operator $(\mathcal{M}, \mathcal{D}(\mathcal{M}))$ will be denoted by $\mathcal{X} := (L^p(\Omega, X))_{-1}(\mathcal{M})$. By the extrapolation procedure described above, \mathcal{X} is formally given by

$$\mathcal{X} = \left\{ f \in \prod_{s \in \Omega} X_{-1,s} : \exists g \in \mathcal{L}^p(\Omega, X) : f = M_{-1}(\cdot)g \right\}$$

The norm $||f||_{\mathcal{X}} := \left(\int_{\Omega} ||f(s)||_{-1,s}^p \, \mathrm{d}\mu(s)\right)^{1/p}$ turns \mathcal{X} into a Banach space.

Lemma 3.1. Let $(\mathcal{M}, \mathcal{D}(\mathcal{M}))$ be a multiplication operator on $\mathcal{L}^p(\Omega, X)$ with fiber operators $(M(s), \mathcal{D}(M(s)))_{s \in \Omega}$. Moreover, let $(\mathcal{T}(t))_{t \geq 0}$ the multiplication semigroup of type (M, ω) generated by $(\mathcal{M}, \mathcal{D}(\mathcal{M}))$. Moreover, denote by $(T_s(t))_{t \geq 0}$ the C_0 -semigroups of type (M, ω) generated by the fiber operators $(M(s), \mathcal{D}(M(s)))_{s \in \Omega}$. The associated extrapolated semigroups are denoted by $(T_{-1,s}(t))_{t \geq 0}$, $s \in \Omega$. Define

$$(\mathcal{S}(t)f)(s) := T_{-1,s}(t)f(s), \quad t \ge 0, \ f \in \mathcal{X}, \ s \in \Omega.$$

This defines a C_0 -semigroup on \mathcal{X} which is generated by the operator $(\mathcal{M}_{-1}, D(\mathcal{M}_{-1}))$ defined by

(3.1)
$$(\mathcal{M}_{-1}f)(s) = M_{-1}(s)f(s), \quad \mathcal{D}(\mathcal{M}_{-1}) = \mathcal{L}^p(\Omega, X).$$

Proof. First of all, to see that $(\mathcal{S}(t))_{t\geq 0}$ is indeed a semigroup is easy, since $(T_{-1,s}(t))_{t\geq 0}$ is a semigroup for each $s \in \Omega$. As a matter of fact, $(T_{-1,s}(t))_{t\geq 0}$ is an extension of $(T_s(t))_{t\geq 0}$ for each $s \in \Omega$ and hence $(\mathcal{S}(t))_{t>0}$ extends $(\mathcal{T}(t))_{t>0}$. Since, by construction, $L^p(\Omega, X)$ is dense in \mathcal{X} , the semigroup $(\mathcal{S}(t))_{t>0}$ is strongly continuous. In order to show that the generator of $(\mathcal{S}(t))_{t\geq 0}$ is of the form mentioned in the lemma, let us denote the generator of $(\mathcal{S}(t))_{t\geq 0}$ by $(\mathcal{A}, \mathcal{D}(\mathcal{A}))$. We will show that $(\mathcal{A}, \mathcal{D}(\mathcal{A})) = (\mathcal{M}_{-1}, \mathcal{D}(\mathcal{M}_{-1}))$. Firstly, assume that $f \in \mathcal{D}(\mathcal{A})$, then since $\lambda \in \rho(M_{-1}(s))$ for all $\lambda > \omega$ and almost every $s \in \Omega$ we conclude that $\lambda \in \rho(\mathcal{M}_{-1})$. By assumption $(\mathcal{A}, \mathcal{D}(\mathcal{A}))$ is the generator of $(\mathcal{S}(t))_{t\geq 0}$ with $\|\mathcal{S}(t)\| \leq M e^{\omega t}$ meaning that $\lambda \in \rho(\mathcal{A})$. From surjectivity one obtain $f \in D(\mathcal{A}), g \in \mathcal{X}$ and $h \in D(\mathcal{M}_{-1})$ satisfying the following equality

$$f = R(\lambda, \mathcal{A})g = R(\lambda, \mathcal{A})(\lambda - \mathcal{M})h = R(\lambda, \mathcal{A})(\lambda - \mathcal{A})h = h \in \mathcal{D}(\mathcal{M}_{-1}),$$

showing that $\mathcal{A} \subseteq \mathcal{M}_{-1}$. For the converse, let $f \in D(\mathcal{M}_{-1})$ and observe that from the fact $f(s) \in D(M_{-1}(s))$ for almost every $s \in \Omega$ one conclude that

$$(\mathcal{S}(t)f)(s) - f(s) = T_{-1,s}(t)f(s) - f(s) = \int_0^t T_{-1,s}(t)M_{-1}(s)f(s) \, \mathrm{d}\mu(s) = \int_0^t (\mathcal{S}(t)\mathcal{M}_{-1}f)(s) \, \mathrm{d}\mu(s)$$

showing that $\mathcal{M}_{-1} \subset \mathcal{A}$, which concludes the proof.

showing that $\mathcal{M}_{-1} \subseteq \mathcal{A}$, which concludes the proof.

The previous result shows actually that the extrapolated multiplication operator is again a multiplication operator. In this case the fiber operators are the extrapolated fiber operators $(M_{-1}(s), \mathcal{D}(M_{-1}(s)))_{s \in \Omega}$, i.e., (3.1) holds. We now characterize the space $\mathcal{X} := (\mathcal{L}^p(\Omega, X))_{-1}(\mathcal{M})$. Assume that the Banach space X we are working with is separable, i.e., there exists a countable dense set in X. Denote the extrapolation spaces corresponding to the fiber operator (M(s), D(M(s)))by $(X_{-1,s}, \|\cdot\|_{-1,s})$, $s \in \Omega$. The following result prepares for the extrapolation procedure.

Lemma 3.2. Suppose X is a separable Banach space. If $0 \in \rho(M(s))$ for almost every $s \in \Omega$ and $s \mapsto M(s)^{-1}x$ is measurable for each $x \in X$, then the family $\left(X_{-1,s}, \|\cdot\|_{-1,s}\right)_{s \in \Omega}$ is a measurable Banach fiber bundle.

Proof. We make use of the separability of X and take a dense countable subset of X and make a $\mathbb{Q} + i\mathbb{Q}$ vector space \mathcal{B} out of it. Observe that \mathcal{B} is still countable, i.e., $\mathcal{B} := \{b_k : k \in \mathbb{N}\} \subseteq X$. We define a family of seminorms $\{\|\|\cdot\|\|_s : s \in \Omega\}$ on X by

$$|||x|||_s := ||M(s)^{-1}x||, \quad x \in X, \ s \in \Omega.$$

Then $\|\cdot\|_s$ is actually a norm on X. By the assumption $s \mapsto M(s)^{-1}x$ is measurable for each $x \in X$ and hence so is the map $s \mapsto \|b_k\|_s$ for each $k \in \mathbb{N}$. Since $N_s = \{0\}$ for each $s \in \Omega$ we obtain $\mathcal{B}/N_s = \mathcal{B}$. Finally, the completion of \mathcal{B} with respect to $\|\|\cdot\|\|_s$ is just the space $X_{-1,s}$, $s \in \Omega$. By Definition 1.1 we therefore obtain that $\left(X_{-1,s}, \|\cdot\|_{-1,s}\right)_{s \in \Omega}$ is a measurable Banach fiber bundle.

Since we know that $(X_{-1,s}, \|\cdot\|_{-1,s})_{s\in\Omega}$ is a measurable Banach fiber bundle, we can consider the space of fiber *p*-integrable functions over this set of Banach spaces. In what follows we relate this space to the extrapolation space of $L^p(\Omega, (X_s)_{s \in \Omega})$ with respect to the operator-valued multiplication operator $(\mathcal{M}, D(\mathcal{M}))$.

Theorem 3.3. Let $1 \leq p < \infty$ and consider the unbounded multiplication operator $(\mathcal{M}, \mathcal{D}(\mathcal{M}))$ on $L^p(\Omega, X)$, induced by the family of unbounded operators $(M(s), D(M(s)))_{s \in \Omega}$ on X. Let (M(s), D(M(s))) be a semigroup generator for μ -almost every $s \in \Omega$. Suppose that $0 \in \rho(M(s))$ for μ -almost every $s \in \Omega$ and that $s \mapsto M(s)b$ and $s \mapsto M(s)^{-1}b$ are measurable for each $b \in \mathcal{B}$. Then

$$[\mathrm{L}^{p}(\Omega, X)]_{-1}(\mathcal{M}) = \mathrm{L}^{p}(\Omega, (X_{-1,s})_{s \in \Omega}).$$

Proof. Let $f \in [L^p(\Omega, X)]_{-1}(\mathcal{M})$ and find $g \in L^p(\Omega, X)$ such that $f = \mathcal{M}_{-1}g$, where \mathcal{M}_{-1} : $L^p(\Omega, X) \to L^p(\Omega, X)_{-1}(\mathcal{M})$. Since g is measurable, we can find a sequence $(g_n)_{n \in \mathbb{N}}$ of simple functions approximating g pointwise, i.e.,

$$g_n := \sum_{i=1}^{m_n} x_{n,i} \mathbf{1}_{\Omega_{n,i}}$$
 and $g_n \to g \ \mu$ -almost everywhere.

Without loss of generality, we assume that $x_{n,i} \in \mathcal{B}$ for every $i = 1, 2, \ldots, m_n$ and $n \in \mathbb{N}$. In order to show that $f \in L^p(\Omega, (X_{-1,s})_{s \in \Omega})$ define $f_n := \mathcal{M}_{-1}g_n$. Then

$$f_n(s) := (\mathcal{M}_{-1}g_n)(s) = \sum_{i=1}^{m_n} M_{-1}(s) x_{n,i} \mathbf{1}_{\Omega_{n,i}}(s),$$

where we use Lemma 3.1 as well as the fact that $M_{-1}(s)x_{n,i} \in X_{-1,s}$, $s \in \Omega$. Since the function $\Omega \to X$; $s \mapsto M(s)b$ is measurable for each $n \in \mathcal{B}$, it is easy to see that f_n is fiber-measurable for each $n \in \mathbb{N}$.

Furthemore,

$$\|f\|_{\mathcal{L}^{p}(\Omega,(X_{-1,s})_{s\in\Omega})}^{p} = \int_{\Omega} \|f(s)\|_{-1,s}^{p} ds = \int_{\Omega} \|g(s)\|^{p} ds = \|g\|_{\mathcal{L}^{p}(\Omega,X)}^{p} < \infty,$$

showing that f is a fiber p-integrable function, i.e., $f \in L^p(\Omega, (X_{-1,s})_{s \in \Omega})$.

For the converse inclusion, suppose that $f \in L^p(\Omega, (X_{-1,s})_{s \in \Omega})$. We have to show that there exists $g \in L^p(\Omega, X)$ such that $f = \mathcal{M}_{-1}g$. Since f is fiber measurable, there exists a sequence $(f_j)_{j \in \mathbb{N}}$ of simple functions $f_j : \Omega \to \bigcup_{s \in \Omega} X_{-1,s}$ with $f(s) \in X_{-1,s}$ for μ -almost every $s \in \Omega$ and

$$f_j = \sum_{i=1}^{n_j} b_{k_i} \mathbf{1}_{\Omega_i},$$

where $b_{k_i} \in \mathcal{B}, \, \Omega_i \in \Sigma, \, \Omega_i \cap \Omega_j = \emptyset, \, i \neq j, \, \text{for } 1 \leq i \leq n_j, \, \text{and}$

(3.2) $||f(s) - f_j(s)||_{-1,s} \to 0,$

for $j \to \infty$ and μ -almost every $s \in \Omega$. By the assumption that $0 \in \rho(M(s))$ for μ -almost every $s \in \Omega$ we conclude by Proposition 2.5 that $0 \in \rho(\mathcal{M})$. So we define

$$g_j := (\mathcal{M}_{-1}^{-1} f_j)(\cdot) = \sum_{i=1}^{n_j} \left(M_{-1}^{-1}(\cdot) b_{k_i} \right) \mathbf{1}_{\Omega_i}(\cdot).$$

We observe that $M_{-1}^{-1}(s)b_{k_i} \in X$ for μ -almost every $s \in \Omega$ and hence g_j is a simple function. By (3.2) we conclude that $(g_j(s))_{j \in \mathbb{N}}$ is a Cauchy sequence with respect to $\|\cdot\|_s$ for μ -almost every $s \in \Omega$ and hence convergent. This yields a measurable function $g : \Omega \to X$ by taking the pointwise limit, i.e.,

$$g(s) := \lim_{i \to \infty} g_j(s), \quad s \in \Omega.$$

By the continuity of $M_{-1}(s)$, $s \in \Omega$, on X and the fact that $M_{-1}(s)M_{-1}^{-1}(s) = I$ for μ -almost every $s \in \Omega$, we directly obtain that $\mathcal{M}_{-1}g = f$. Moreover,

$$\|g\|_{\mathrm{L}^{p}(\Omega,X)}^{p} = \int_{\Omega} \|g(s)\|^{p} \, \mathrm{d}s = \int_{\Omega} \|f(s)\|_{-1,s}^{p} \, \mathrm{d}s = \|f\|_{\mathrm{L}^{p}(\Omega,(X_{-1,s})_{s\in\Omega}}^{p} < \infty,$$

ore $q \in \mathrm{L}^{p}(\Omega,X)$.

and therefore $g \in L^p(\Omega, X)$.

As a direct consequence we recover the following result, which has previously been used in in the continuous setting in [10, Sect. 4].

Corollary 3.4. Let (A, D(A)) be a generator of a C_0 -semigroup on a Banach space X and denote ist first extrapolation space by X_{-1}^A . Define the operator $(\mathcal{M}, D(\mathcal{M}))$ on $L^p(\Omega, X)$ by

$$(\mathcal{M}f)(s) := Af(s), \quad f \in \mathcal{D}(\mathcal{M}) := \mathcal{L}^p(\Omega, \mathcal{D}(A)), \ s \in \Omega.$$

Then $(L^p(\Omega, X))_{-1}(\mathcal{M}) = L^p(\Omega, X^A_{-1}).$

Acknowledgement

We would like to thank Bálint Farkas for a discussion in which the idea for the collaboration which resulted in this paper was initiated. Furthermore, we are indepted to Rainer Nagel for helpful feedback.

References

- C. Budde. General Extrapolation Spaces and Perturbations of Bi-Continuous Semigroups. PhD thesis, Bergische Universität Wuppertal, 2019.
- C. Budde and B. Farkas. Intermediate and extrapolated spaces for bi-continuous operator semigroups. Journal of Evolution Equations, 19(2):321–359, Jun 2019.
- [3] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.
- [4] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.
- [5] I. Ganiev and G. S. Mahmuod. The Bochner integral for measurable sections and its properties. Ann. Funct. Anal., 4(1):1–10, 2013.
- [6] T. Graser. Operator multipliers generating strongly continuous semigroups. Semigroup Forum, 55(1):68–79, Jan 1997.
- [7] A. E. Gutman. Banach bundles in the theory of lattice-normed spaces. II. Measurable Banach bundles. Siberian Adv. Math., 3(4):8–40, 1993. Siberian Advances in Mathematics.
- [8] R. Heymann. Multiplication operators on Bochner spaces and Banach fibre spaces. PhD thesis, Eberhard-Karls-Universität Tübingen, 01 2015.
- [9] R. Nagel. Extrapolation spaces for semigroups. RIMS Kôkyûroku, 1009:181–191, 1997.
- [10] R. Nagel, G. Nickel, and S. Romanelli. Identification of extrapolation spaces for unbounded operators. Quaest. Math., 19(1-2):83–100, 1996.
- [11] S. Thomaschewski. Form methods for autonomous and non-autonomous Cauchy problems. PhD thesis, Universität Ulm, 2003.

North-West University, Department of Mathematics, Unit for BMI, Potchefstroom 2531, South Africa *E-mail address*: christian.budde@nwu.ac.za

STELLENBOSCH UNIVERSITY, MATHEMATICS DIVISION, FACULTY OF SCIENCE, MERRIMAN AVENUE, 7600 STELLENBOSCH, SOUTH AFRICA

E-mail address: rheymann@sun.ac.za