
AM
C M

Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational Mathematics
(IMACM)

Preprint BUW-IMACM 19/35

Michael Stiglmayr, José Rui Figueira, Kathrin Klamroth, Luís Paquete und
Britta Schulze

Decision Space Robustness for Multi-Objective Integer
Linear Programming

December 3, 2019

http://www.math.uni-wuppertal.de

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

Decision Space Robustness for Multi-Objective Integer Linear
Programming

Michael Stiglmayra, José Rui Figueirab, Kathrin Klamrotha, Luís Paquetec, Britta
Schulzea

aSchool of Mathematics and Natural Sciences, University of Wuppertal, Germany
bCEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal

cCISUC, Department of Informatics Engineering, University of Coimbra, Portugal

Abstract

In this article we introduce robustness measures in the context of multi-objective integer
linear programming problems. The proposed measures are in line with the concept of
decision space robustness, which considers the uncertainty with respect to the imple-
mentation of a specific solution. An efficient solution is considered to be decision space
robust if many solutions in its neighborhood are efficient as well. This rather new area
of research differs from robustness concepts dealing with imperfect knowledge (arbitrari-
ness, uncertainty, imprecision, and ill-determination) of data parameters. Our approach
implies a two-phase procedure, where in the first phase the set of all efficient solutions
is computed, and in the second phase the neighborhood of each one of the solutions is
determined. The indicators we propose are based on the knowledge of these neighbor-
hoods. They are mainly of two types, cardinality indicators and quality indicators. We
discuss consistency properties for the indicators and present some numerical evaluations
for specific problem classes.

Keywords: multi-objective integer linear programming, decision space robustness,
connectedness of efficient solutions, representation, decision analysis.

1. Introduction

In industrial or economical applications, a computed optimal or efficient solution may
be subject to small changes or deviations during its implementation. These deviations
may be due to technical, political, and/or strategic reasons, which are generally not
known beforehand and which are thus not included in the optimization model. As a
consequence, a solution obtained with an optimization method may, in practice, not be
implementable, or may be affected with severe drawbacks.
In this paper, we focus on multi-objective integer programming problems that have a

Email addresses: stiglmayr@math.uni-wuppertal.de (Michael Stiglmayr),
figueira@tecnico.ulisboa.pt (José Rui Figueira), klamroth@math.uni-wuppertal.de (Kathrin
Klamroth), paquete@dei.uc.pt (Luís Paquete), schulze@math.uni-wuppertal.de (Britta Schulze)

Preprint submitted to European Journal of Operational Research December 3, 2019

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

discrete solution set. Implementation uncertainties then relate to specific variables or, for
example, items that were selected for a knapsack solution, but that become unavailable
when the solution is to be implemented. In this situation, we can try to anticipate the
potential failure of (parts of) solutions and incorporate appropriate robustness measures
into the optimization process.
Dealing with uncertainty or, more general, with the imperfect knowledge of data in
single and multi-objective optimization is not new. Imperfect knowledge about data and
models in general is mainly due to four aspects: the arbitrariness when, for example,
we opted for a specific objective function or constraint among several others that would
be also adequate; the uncertainty since we are using methods, tools, and approaches for
modeling and anticipating an unknown future; the imprecision related with the tools we
are using to measure objects; and, the ill-determination related with the fact that we
are modeling some aspects that are possibly not well determined and defined (for more
details see, for example, Roy et al., 2014).
Dealing with the imperfect knowledge about the whole model in single and multi-
objective optimization is rather a Herculean task. Researchers have been concentrat-
ing their attention mainly on the imperfect knowledge of some type of data, i.e., the
model parameters. For single objective optimization we can mention three fundamen-
tal references: Ben-Tal et al. (2009), Kouvelis and Yu (1997), and Birge and Louveaux
(1997).
In multi-objective optimization there is a long tradition for dealing with the imperfect
knowledge of data and several approaches have been proposed in the literature. For a sur-
vey about different concepts of robustness in multi-objective optimization see, for exam-
ple, Ide and Schöbel (2016). The following is a brief and non-exhaustive summary with
main approaches found in the literature: stochastic programming (Inuiguchi et al., 2016;
Słowiński and Teghem, 1990); fuzzy/possibilistic programming (Adeyefa and Luhand-
jula, 2011; Inuiguchi et al., 2016; Słowiński and Teghem, 1990); fuzzy-stochastic program-
ming (Inuiguchi et al., 2016; Sakawa et al., 2011); interval programming (Oliveira and
Henggeler-Antunes, 2007); parametric programming (Dellnitz and Witting, 2009; Wit-
ting et al., 2013); minimax like programming (Aissi et al., 2009; Ehrgott et al., 2014);
set valued optimization (Ide and Köbis, 2014); and, Monte Carlo simulation (Mavrotas
et al., 2015). The different approaches have in common to find solutions which are more
or less robust with respect to changes in some parameters which occur in the constraints
and/or objectives of an optimization problem. We refer to this as parameter robustness
in the following. In this context, a solution that is more or less immune to parameter
changes is a robust solution.
If, however, the uncertainty is an intrinsic property of the variables, we talk about
decision robustness or variable robustness (see, for example, Beyer and Sendhoff, 2007).
Very recently, Eichfelder et al. (2015, 2017, 2019) introduced and made some studies
about the concept of uncertainty with respect to the implementation of decision variable
values in continuous multi-objective optimization.
Despite the vast literature in the field there is a missing link: Multi-objective integer
linear programs (MOILP) that have a combinatorial nature are rarely addressed, and
robustness measures with respect to implementation uncertainties are unavailable. Nev-

2

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

ertheless, the number of practical situations is wide, and the following examples can give
a flavor about our positions with respect to the development of new robustness measures.
Bi-objective {0, 1}−knapsack problem: Consider a set of technology projects P =
{P1, . . . , Pj , . . . , Pn}. These projects were assessed according to two different criteria:
the net present value and the dual use potential with respect to already implemented
technology projects. The two criteria are to be maximized: we want to maximize the
overall net present value and to maximize the overall dual use potential. Each project was
also assessed in terms of its investment cost and there is a budgetary constraint, which
avoids the selection of the whole set of projects. Assume now that a decision maker
selected the best compromise set of projects to be implemented, say S. At the right
moment of the implementation, suppose that one of the projects, say project Pj ∈ S,
is interdicted, i.e., it becomes unavailable. This may happen because there was an
uncertainty with respect to the future, i.e., in between the moment the decision maker
selected the subset of projects and the moment of their implementation. One major
question may arise: What is the most robust selection of projects S (if any) so that even
if S can not be implemented as planned, there is a viable alternative set of projects S′
in the neighborhood of S that may be used instead?
Multi-objective shortest path problem: Consider a multi-objective routing problem
form source s to destination t minimizing, e.g., travel time, CO2-emission and the total
cost of toll fees. An important prerequisite for a practicable route is the possibility
to avoid traffic jams and road closures by a local adaptation of the route. Since the
information on those obstructions of traffic may get available during driving time, one
searches for a local detour rather than a second best s-t path. Depending on the chosen
route, the number and quality of route variants with local detours may vary significantly.
Similar situations, where a part of a chosen solution fails, can be considered, e.g., in the
context of job assignments (multi-objective linear or bottleneck assignment problems,
failure of one assignment: one worker cannot do a certain job) or in the cable trench
problem which is a variant of the multi-objective spanning tree problem (failure of one
edge in the graph). All these applications in common is that one is not willing to
completely discard a once chosen solution only because one single component of it is
not available/blocked/fails. The repair of a solution can be considered as replacing the
chosen solution by a neighboring one.
The robustness measures that we discuss in this paper can be best understood with the
help of the following questions.

1. Are there enough feasible neighbors around the selected efficient solution that may
be used to replace it in case an impossibility occurs at the moment of its imple-
mentation?

2. Are there enough efficient neighbors around the selected efficient solution that
may be used to replace it in case an impossibility occurs at the moment of its
implementation?

3. Are there enough high quality neighbors around the selected efficient solution that
may be used to replace it in case an impossibility occurs at the moment of its

3

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

implementation? This leads to a second question: How good should be the quality
of the neighbors? Among several possibilities we are interested in two of them:
The worst case, and the average case.

With respect to these questions, in our study we consider two specific cases of neighbor-
hood: N (x) is the set of all immediate neighbors of a feasible solution x, and N j(x) is
the set of all immediate neighbors of a feasible solution x in which a specific component,
say xj , is interdicted (i.e., it becomes unavailable and/or cannot be implemented). The
purpose of this paper is to answer the questions by presenting ways of measuring the
robustness in multi-objective discrete optimization problems. In this attempt, the paper
covers a variety of MOILP problems with a combinatorial structure with applications in
a vast range of areas.
This paper is organized as follows. Section 2 summarizes the fundamental concepts, their
definitions, and the adopted notation. Section 3 presents several robustness indicators
for MOILP problems, some numerical results, theoretical properties of the indicators
and a fundamental distinction between robustness and representation. In Section 4 the
proposed robustness concepts are applied in the context of representation problems and
decision making using Electre Tri-C. Finally, some concluding remarks and avenues
for future research are provided.

2. Concepts, Definitions, and Notation

This section is devoted to the presentation of the problem, the main concepts of dom-
inance and efficiency, as well as the concepts of neighborhood and adjacency. It ends
with the introduction of an illustrative example.

2.1. Problem Formulation
A general multi-objective optimization problem can be stated as follows.

max
x∈X

z(x) =
(
z1(x), . . . , zp(x)

)> (1)

where z is a vector-valued function such that z : X → Rp with X ⊆ Rn. In this
formulation Rn is called the decision space, while its subset X represents the feasible
region. Each function zk, for k = 1, . . . , p, is a real-valued function such that zk : X →
R, and Rp is referred to as the objective space.
In what follows we will restrict ourselves to discrete multi-objective optimization prob-
lems where the feasible region X can be defined as X = P ∩ Zn, with P = {x ∈
Rn : Ax ≤ b, x = 0} being a polyhedron, i.e., the intersection of finitely many halfs-
paces.
The functions zk, for k = 1, . . . , p, are linear. They can be defined as follows: zk = ck> x,
where ck = (ck1, . . . , ckn)> ∈ Rn is the vector of coefficients of the objective function zk for
k = 1, . . . , p. Within such a framework we are placed in the context of multi-objective
integer linear programming. This problem can be presented in a more compact way, as
follows.

4

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

max
x∈X

z(x) = C x, (2)

where C is a p×nmatrix in which each rows corresponds to a vector ck>, for k = 1, . . . , p.
The outcome vector of a feasible solution x ∈ X is the image of x under the vector-valued
function, i.e., z(x). The set Z = {z(x) : x ∈ X} = z(X) ⊆ Rp is the feasible set in the
objective or outcome space Rp.
It is well-known that whenever p > 2 there is no canonical order in the objective space.
The following vector componentwise order can thus be used.

z′ = z′′ ⇐⇒ z′k > z′′k , k = 1, . . . , p,
z′ ≥ z′′ ⇐⇒ z′k > z′′k , k = 1, . . . , p, with z′ 6= z′′,

z′ > z′′ ⇐⇒ z′k > z′′k , k = 1, . . . , p.

In multi-objective optimization dominance relations replace the canonical ordering struc-
ture of real numbers. Based on the componentwise order the concept of dominance allows
to define a partial order in the objective space of a multi-objective problem and make a
distinction between dominated and non-dominated vectors or points as it will be shown
in the next section. It will also be possible to see the particularities of a MOILP problem
with respect to the definition of its non-dominated vectors (for more details, see Ehrgott,
2005; Steuer, 1986).

2.2. Dominance and Efficiency
Dominance plays a central role in multi-objective optimization. From the componentwise
order defined in the previous section a straightforward definition can be stated as follows.

Definition 2.1 (Dominance). Let z′, z′′ ∈ Rp denote two outcome vectors. Then, z′
dominates z′′ if z′ ≥ z′′.

Let z̄ ∈ Z denote a feasible outcome vector. Then, z̄ is called a non-dominated vector
if and only if there does not exist another z ∈ Z such that z ≥ z̄. Otherwise, z̄ is a
dominated outcome vector. Let ZN denote the set of all non-dominated outcome vectors
or points.
A feasible solution x̄ ∈ X is called an efficient solution if and only if there does not exist
another x ∈ X such that z(x) = Cx ≥ z(x̄) = Cx̄. Otherwise, x̄ is called inefficient. Let
XE denote the set of all efficient solutions. For MOILPs it holds that XE 6= ∅ if X 6= ∅.
A non-dominated outcome vector z̄ ∈ ZN is said to be supported non-dominated if there
is a real vector λ ∈ Rp with λ ≥ 0 such that λ> z̄ > λ> z for all other feasible outcome
vectors z ∈ Z. Otherwise, the non-dominated outcome vector is called unsupported non-
dominated. Analogously, the preimage of a supported non-dominated vector is called
supported efficient solution, while the preimage of an unsupported non-dominated vec-
tor is called unsupported efficient solution. Let the sets of supported non-dominated
vectors, unsupported non-dominated vectors, supported efficient solutions, and unsup-
ported efficient solutions be denoted, respectively by ZsN, ZuN, XsE, and XuE.

5

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

2.3. Adjacency and Neighborhood
In order to investigate the relations and distances between feasible solutions in the
decision space, we need to introduce three concepts: adjacency, adjacency graph, and
neighborhood structure. We adopt two concepts of adjacency as suggested in Gorski
et al. (2011): An LP-based definition of adjacency and a combinatorial definition of
adjacency. For the first, we have to assume that all feasible solutions in X correspond
to extreme points of the linear programming relaxation of the problem, i.e., X = ext{x ∈
Rn : Ax ≤ b} with some integer constraint matrix A and right-hand-side b. Then two
feasible solutions x′, x′′ ∈ X are called adjacent if and only if x′′ can be obtained from
x′ by applying a single pivot operation. Note that the resulting concept of adjacency
depends on the given ILP formulation of the problem and is in general not unique.
A combinatorial definition of adjacency, on the other hand, operates directly on the
combinatorial structure of the considered problem. It is thus formulated for multi-
objective combinatorial optimization problems (MOCO), i.e., for MOIP problems that
possess a combinatorial structure. Examples are knapsack and assignment problems
as well as shortest path, spanning tree, and network flow problems. Adjacency in this
sense is always problem specific. For example, in an instance of the knapsack problem
two binary solutions x′, x′′ can be considered adjacent if they differ in at most two
variable entries, where at most one of these entries is equal to 1 in each of the two
adjacent solutions. Similarly, two spanning trees x′, x′′ of a minimum spanning tree
problem are usually called adjacent if x′′ can be obtained from x′ by adding an edge and
removing another edge from the obtained cycle. In some of these cases, a combinatorial
definition of adjacency may in fact be equivalent to an appropriate LP-based definition
of adjacency. We refer to Gorski et al. (2011) for more details. In both cases, we refer
to the operation of moving from one feasible solution x′ to an adjacent feasible solution
x′′ as an elementary move.
The notion of adjacency imposes an interrelation between the feasible solutions in X
which can be represented in terms of a so-called adjacency graph.

Definition 2.2 (Adjacency graph). The adjacency graph for a set of solutions X is a
graph G = (V,A) where each node in V represents one solution in X and vice versa.
Two vertices vx′ and vx′′ are connected by an edge [vx′ , vx′′] ∈ A if and only if the
corresponding solutions x′ and x′′ are adjacent.

Definition 2.3 (Neighborhood). The neighborhood of a feasible solutions x, denoted
by N (x), is a subset of X containing all feasible solutions x′ that are adjacent to x. The
solutions x′ ∈ N (x) are also called neighbors of x.

Solutions in the neighborhood of a feasible solutions x are also denoted as immediate
or first-order neighbors, i.e., those solutions that are at most a single elementary move
away from x. Analogously, it is possible to define a k-order neighborhood, where the
neighbors of x are at most k elementary moves away from x. In what follows only
immediate neighbors are used to form the neighborhood structure.
In the next section all the concepts will be illustrated through the use of a bi-objective
cardinality constrained problem.

6

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

2.4. Illustrative Example
To illustrate the neighborhood structure of a combinatorial optimization problem we use
a bi-objective cardinality constrained optimization problem (CCP):

max z1(x) =
n∑
j=1

c1
j xj

max z2(x) =
n∑
j=1

c2
j xj

subject to:
n∑
j=1

xj = `

xj ∈ {0, 1}, j = 1, . . . , n

(CCP)

The feasible set of problem (CCP) is denoted by X := {x ∈ {0, 1}n :
∑n
j=1 xj = `}. We

define one elementary move as swapping two variables, i.e., two feasible solutions x and
x′ are adjacent if there exist p, q ∈ {1, . . . , n} such that

xp = 0 and x′p = 1 for p ∈ {1, . . . , n},
xq = 1 and x′q = 0 for q ∈ {1, . . . , n} \ {p}, and
xj = x′j for all j ∈ {1, . . . , n} \ {p, q}

Note that every vertex vx in G has the same degree |N (x)| = `(n − `), i.e., the same
number of immediate neighbors.
Consider the following numerical example of a bi-objective cardinality constrained prob-
lem with 10 items:

max z1(x) = (9, 5, 3, 5, 10, 5, 9, 9, 8, 4)x
max z2(x) = (6, 10, 10, 3, 8, 5, 3, 2, 4, 4)x

s.t.
10∑
i=1

xi = 5

xi ∈ {0, 1} ∀i ∈ {1, . . . , 10}.

(3)

The set of non-dominated solutions for the previous problem is the following. They are
lexicographically ordered with respect to the first objective function value.

ZN =
{
z1 = (45, 23), z2 = (42, 29), z3 = (41, 31), z4 = (38, 32),

z5 = (37, 33), z6 = (36, 37), z7 = (35, 38), z8 = (32, 39)
}

The sets of supported non-dominated and unsupported non-dominated outcome vectors
are, respectively, the following, ZsN = {z1, z3, z6, z7, z8} and ZuN = {z2, z4, z5} (see
Figure 1).

7

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

z125 30 35 40 45

z2

20

25

30

35

40

z1 = (45, 23)

z3 = (41, 31)

z6 = (36, 37)
z7 = (35, 38)

z8 = (32, 39)

z2 = (42, 29)

z4 = (38, 32)
z5 = (37, 33)

Figure 1: The set of feasible, supported non-dominated (squares) and unsupported non-dominated
(circles) outcome vectors for the illustrative example in Section 2.4.

The set of corresponding efficient solutions is as follows.

XE =
{
x1 = (1000101110), x2 = (1100101100), x3 = (1100101010), x4 = (1100111000),

x5 = (1100110010), x6 = (1110101000), x7 = (1110100010), x8 = (1110110000)
}

Analogously, the sets of supported efficient and unsupported efficient solutions are, re-
spectively, the following, XsE = {x1, x3, x6, x7, x8} and XuE = {x2, x4, x5}.
Let us now consider an efficient solution, say x3 ∈ XE and determine the neighbor-
hood N (x3). It consists of the following `(n− `) = 5 · (10− 5) = 25 solutions:

x3(1) = (0110101010), x3(2) = (0101101010), x3(3) = (0100111010), x3(4) = (0100101110),
x3(5) = (0100101011), x3(6) = (1010101010), x3(7) = (1001101010), x3(8) = (1000111010),
x3(9) = (1000101110) x3(10)= (1000101011), x3(11) = (1110001010), x3(12)= (1101001010),
x3(13) = (1100011010), x3(14)= (1100001110), x3(15) = (1100001011), x3(16)= (1110100010),
x3(17) = (1101100010), x3(18)= (1100110010), x3(19) = (1100100110), x3(20)= (1100100011),
x3(21) = (1110101000), x3(22)= (1101101000), x3(23) = (1100111000), x3(24)= (1100101100),
x3(25) = (1100101001).

8

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

And, the image of N (x3) in the objective space consists of the following outcome vectors
(plotted in Figure 2):

z3(1) = (35, 35), z3(2) = (37, 28), z3(3) = (37, 30), z3(4) = (41, 27),
z3(5) = (36, 29), z3(6) = (39, 31), z3(7) = (41, 24), z3(8) = (41, 26),
z3(9) = (45, 23), z3(10)= (40, 25), z3(11) = (34, 33), z3(12)= (36, 26),
z3(13) = (36, 28), z3(14)= (40, 25), z3(15) = (35, 27), z3(16)= (35, 38),
z3(17) = (37, 31), z3(18)= (37, 33), z3(19) = (41, 30), z3(20)= (36, 32),
z3(21) = (36, 37), z3(22)= (38, 30), z3(23) = (38, 32), z3(24)= (42, 29),
z3(25) = (37, 31).

z125 30 35 40 45

z2

20

25

30

35

40

z3 = (41, 31)

Figure 2: The neighborhood of solution x3 in the objective space (illustrative example in Section 2.4).

The neighborhoods of all efficient solutions x ∈ XE of the example given in (3) are
illustrated in Figure 5 in the Appendix.

3. Robustness Indicators for MOILP Problems

In this section we introduce two main classes of robustness indicators for MOILP prob-
lems. The first subsection is devoted to a feasibility based robustness indicator, while
the second subsections presents some efficiency based indicators. The section ends with
a continuation of the example (3) introduced in Section 2.4.

3.1. Feasibility Based Indicators
In case of failure of an efficient solution, the feasibility based robustness indicator answers
the question on the number of alternative neighboring solutions, which could be used

9

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

to substitute. In that sense, counting the number of feasible neighbors is a measure of
robustness for a given efficient solution. The following definition presents these concepts
in a more formal and concrete way.

Definition 3.1 (Feasibility robustness indicator). Let x ∈ XE denote an efficient solu-
tion. Then the number of feasible neighbors of x

Icf
(
x,N (x)

)
= |N (x)|,

is called feasibility robustness indicator of x w.r.t. N (x).

In the case of problem (CCP) we have that Icf (x) = |N (x)| = (n − `)` is constant, for
all x ∈ X. Thus, feasibility robustness yields no meaningful result for (CCP). Let us
consider feasibility robustness for other MOILPs with a neighborhood structure based
on swaps of items. Given an efficient solution, x ∈ XE, where x is composed of several
items, assume we cannot implement one of its items, say item j, i.e., xj = 1. This item
will be replaced by another item, say item i, with xi = 1. An immediate neighbor is a
solution of the form, x′ = x + ei − ej , where ei and ej are unit vectors. More formally,
the set of immediate neighbors of x is given by:

N (x) = {x′ ∈ X : x′ = x+ ei − ej , i, j = 1, . . . , n, i 6= j, xi = 0, xj = 1}.

The motivation for our indicator comes from the fact that if, for some reason, we cannot
implement exactly the solution x, we should be able to implement a solution x′ ∈ N (x).
Thus, the higher the cardinality of the neighborhood of a solution the better the solution
is (the larger the number of alternatives available for replacing it).

3.2. Efficiency Based Indicators
Efficiency based indicators go beyond feasibility based robustness indicators and take
into account not only the number of feasible solutions in the neighborhood but also their
quality. Counting the number of efficient neighbors is a measure of robustness for a
given efficient solution and allows to define a class of indicators. Another general class
of indicators is defined by taking into account the changes in the components of the
outcome vectors.

3.2.1. Cardinality Based Efficiency Indicator
Let x ∈ XE denote an efficient solution, and let N (x) denote the set of neighbors of x.
The number of neighbors that are also efficient is an indicator of how well the solutions
in the immediate neighborhood of x perform with respect to the dominance ordering.
The following formal definition can now be introduced.

Definition 3.2 (Efficiency robustness indicator). Let x ∈ XE. Then the number of
efficient immediate neighbors of x

Ice
(
x,N (x), XE

)
= |N (x) ∩XE|,

10

Pr
ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

is called efficiency robustness indicator of x w.r.t. N (x) and XE.

Let x̄ be an efficient solution of problem (CCP) containing item i, and suppose item i
becomes unavailable. Consider the same instance of (CCP) but without item i, denoted
by (CCP−i). Then, all neighbors of x̄ without item i that are efficient in (CCP) are
efficient solutions of (CCP−i).

3.2.2. ε-robustness Indicator
Let x ∈ XE and let N (x) denote the set of the neighbors of x. The Iε(x) indicator
measures the highest outcome criterion-wise degradation with respect to ZN over the
complete set of neighbors of x. The smaller the value of Iε(x) is the more robust x is
with respect to this indicator.

Definition 3.3 (ε-robustness indicator). Let x ∈ XE. Then

Iε
(
x,N (x), ZN

)
= max

x̂∈N (x)

{
min
z∈ZN

{
max
k=1,...,p

{
zk

ck> x̂

}}}
,

is called ε-robustness indicator of x w.r.t. N (x) and ZN.

The value of the ε-robustness indicator of an efficient solution x is the smallest scalar
such that each image of a neighboring solution which is stretched by this scalar domi-
nates at least one non-dominated point. One might wonder why we are not considering
the stretching factor to make any neighboring point non-dominated, which would be rea-
sonable from an application point of view. However, the determination of this factor is
difficult since it would involve a disjunctive formulation (better in at least one objective
function).
The ε-robustness indicator is defined in analogy to the ε-indicator as used in representa-
tion and approximation algorithms (see, e.g., Zitzler et al., 2003). However, ε-indicator
follows a different paradigm:

min
R⊆ZN
|R|=k

max
z∈ZN

{
min
x̂∈R

{
max
k=1,...,p

{
zk

ck> x̂

}}}

The value of the ε-indicator is the scalar stretching factor such that each point in the
non-dominated set is dominated by at least one stretched non-dominated point in the
representation. For a graphical comparison of ε-robustness indicator and ε-indicator see
Figure 3.
Instead of considering the worst case, i.e., the maximal stretching factor required for
a solution in the neighborhood, the ε-average-robustness indicator takes the average
stretching factor into account. This can compensate neighboring solutions quite far
away form the Pareto front if the majority of neighbors is efficient or close to the Pareto
front.

11

Pr
ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

c1>
x

c2>
x

εz′

εz′′

z′

z′′

(a) ε-robustness indicator

c1>
x

c2>
x

εrepz′

εrepz′′

z′

z′′

(b) ε-indicator

Figure 3: Comparison of ε-robustness indicator ε and ε-indicator εrep. In both cases the same two points
z′ and z′′ are selected as an illustrative example for images of neighboring solutions or for a representative
subset, respectively. In the illustration both points z′ and z′′ are streched by the same factor such that
at least one point is dominated by each or all points are dominated by at least one, respectively.

Definition 3.4 (ε-average-robustness indicator). Let x ∈ XE. Then

IΣε
(
x,N (x), ZN

)
= 1
|N (x)|

∑
x̂∈N (x)

min
z∈ZN

{
max
k=1,...,p

{
zk
ck>x̂

}}
,

is called ε-average-robustness indicator of x w.r.t. N (x) and ZN.

In some applications, it may be meaningful to assume that, whenever an item becomes
unavailable in an efficient solution x, it is replaced by the best possible alternative. In
this case, we can consider a criterion-wise ε-robustness indicator as follows. Let N j(x)
denote the set of neighbors of x, in which the j-th variable with value 1 in x has value
0 in those neighbors. The IεD(x) indicator measures the highest outcome criterion-wise
degradation with respect to ZN, assuming that whenever a variable should be replaced,
the best possible replacement will be used.

Definition 3.5 (Interdiction ε-robustness indicator). Let x ∈ XE. Then

IεD

(
x,N j(x), ZN

)
= max

j=1,...,n

{
min

x̂∈N j(x)

{
min
z∈ZN

{
max
k=1,...,p

{
zk
ck>x̂

}}}}
,

is called interdiction ε-robustness indicator of x w.r.t. N (x) and ZN.

Also in the case of interdiction robust indicators we take an average case analysis into
account by defining the interdiction ε-average-robustness indicator.

Definition 3.6 (interdiction ε-average-robustness indicator). Let x ∈ XE, and let
ϕj ∈ [0, 1] (

∑n
j=1 ϕj = 1) denote a multiplier factor that, if an item selected in x gets

12

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

unavailable, it will be item j, j = 1, . . . , n. Then

IΣε
D

(
x,N j(x), ZN

)
=

n∑
j=1

ϕj

(
min

x̂∈N j(x)

{
min
z∈ZN

{
max
k=1,...,p

{
zk
ck>x̂

}}})

is called interdiction ε-average-robustness indicator of x w.r.t. N (x) and ZN.

Note that the multiplier factor ϕj maybe be a probability, a weight, or in the case of
our cardinality constrained knapsack problem ϕj = `, for j = 1, . . . , n.
Before we investigate the properties of the robustness indicators we evaluate all of them
on the example introduced in Section 2.4. The computation of the robustness indicators
is straight forward based on the determination of the neighborhood of the respective
solution. The results are presented in Table 1.

3.3. Comparison to Decision Robustness in the Continuous Case
In Eichfelder et al. (2017) decision robustness is considered for continuous multi-objective
optimization problems. Since our robustness indicators significantly differ from the set-
valued optimization approach suggested therein, we will show the differences and high-
light why our indicators are better suited for the discrete structure of MOILPs. In the
continuous case the set of realizations of a solution x is assumed to be a compact set
containing x, which we can identify with an appropriately chosen neighborhood U(x).
According to Eichfelder et al. (2017), a solution x is called decision robust feasible if all
of its realizations are feasible, i.e. U(x) ⊂ X. Furthermore, a solution x∗ ∈ X̂ = {x ∈
X : U(x) ⊂ X} is called decision robust efficient if there is no x′ ∈ X̂ \ {x∗} such that

z
(
U(x′)

)
⊂ z

(
U(x∗)

)
+Rp+ ⇐⇒ ∀x ∈ U(x∗) ∃x′′ ∈ U(x′) : z(x) 6 z(x′′)

A solution is decision robust, if there is no other solution, which is better in all realiza-
tions.
Applying this definition to discrete optimization problems is problematic, since discrete
neighborhoods are not local like in the continuous case. Depending on the definition of
neighborhood and the problem structure all neighborhoods of feasible solutions might
contain infeasible solutions. Moreover, the discrete neighborhood of a solution often
covers a significantly large part of the feasible set. In the assignment problem, for
example, the distance between any pair of solutions is at most two elementary swaps, i.e.,
changes along alternating paths (Gorski et al., 2011). Thus, the images of the solutions
in the neighborhood might be spread considerably in objective space. Consequently,
the majority of solutions would be decision robust w.r.t. to the set-valued definition,
because not all realizations. However, in the discrete case it is not possible to consider
smaller neighborhoods than the ones defined by basic swaps. Consequently, we relaxed
both concepts decision feasibility robustness and decision efficiency robustness to gradual
indicators.

13

Pr
ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

x Icf (·) Ice(·) Iε(·) IΣε(·) IεD(·) IΣε
D (·)

x1 25 2 1.277778 1.099418 1.125000 1.044693
x2 25 4 1.208333 1.071064 1.064516 1.023337
x3 25 6 1.171429 1.065554 1.088235 1.029076
x4 25 5 1.185185 1.083877 1.129032 1.045390
x5 25 4 1.193548 1.085609 1.114286 1.045097
x6 25 5 1.166667 1.058705 1.064516 1.024709
x7 25 4 1.166667 1.058705 1.088235 1.034909
x8 25 4 1.230769 1.087099 1.114286 1.039918

Table 1: Robustness indicators for the example (3) introduced in Section 2.4.

3.4. Properties of Robustness Indicators
This section provides some theoretical properties of the proposed indicators and the
relationship between the three types of indicators. The most well-known unary require-
ments an indicator must fulfill are quite natural and easy to check. Despite these two
aspects, it is important to consider them as properties of our indicators in this paper.

Proposition 3.7 (Existence). All the proposed indicators always exist and are well-
defined, but they are not unique with respect to the feasible solutions x ∈ X (i.e., two or
more solutions can have the same indicator value).

Proof. It is easy to see from the definitions that all the indicators are well-defined for-
mulas. They are not unique, i.e., they are non-injective, since several solutions can have
the same indicator value as it can be seen in Table 1.

Proposition 3.8 (Symmetry). All the proposed indicators are symmetric with respect
to any permutation of the components and/or elements of their input.

Proof. The proof is also trivial for all indicators. Let us take for example indicator IεD,
which has as input the solution x = (x1, . . . , xj , . . . , xn), the neighborhoods N j(x), for
j = 1, . . . , n, and the set of non-dominated points ZN. It is easy to see that for any x
re-ordered as xπ = (xπ(1), . . . , xπ(j), . . . , xπ(n)), where π : {1, . . . , n} → {1, . . . , n} is an
arbitrary permutation of the indices, the value of the indicator does not change. The
same applies to any permutation of the elements of the sets N j(x), for j = 1, . . . , n, and
ZN.

Proposition 3.9 (Idempotency). Indicators Iε, IΣε, IεD, and IΣε
D are idempotent with

respect to the arguments of their aggregation operators.

Proof. This proof is also trivial for all the indicators. Let us consider again indica-
tor IεD. This indicator is composed of four min /max aggregation operators. The result
min /max of a set where all the arguments have the same value, e.g., min{a, . . . , a, . . . , a},
is always the same value a.

14

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

Proposition 3.10 (Scale invariance). Indicators Iε, IΣε, IεD, and IΣε
D are positively

homogeneous with respect to the coefficients of the matrix C, i.e., any multiplication
with a positive scalar of the coefficients of the matrix, αC, does not have impact on the
values of any of these indicators. However, these indicators are not stable with respect
to translations of the coefficients of C (i.e., linear affine transformations).

Proof. Positive homogeneity is only related with the aggregation operator:

max
{

zk
ck>x̂

}
It is very easy to see that multiplying both zk and ck> by α > 0 does not change the
aggregation value since the operator is still the same:

αzk
αck>x̂

= zk
ck>x̂

.

The indicators are not stable with respect to linear affine transformations, which can be
easily seen from the definition.

Proposition 3.11. If Iε(x) = 1 then |N (x)| = |N (x) ∩XE|.

Proof. This proof is trivial.

Proposition 3.12. The relations between the following pairs of indicators hold.

1. Ice(x) 6 Icf (x)

2. IεD(x) 6 Iε(x)

3. IΣε(x) 6 Iε(x)

4. IΣε
D (x) 6 IεD(x)

Proof. The proofs are trivial.

4. Fields of Applications for the Robustness Indicators

The proposed robustness indicators can be considered as a tool to evaluate the quality
of efficient solutions in an a-posteriori analysis. This additional quality measure can be
utilized in different ways. Two possible approaches will be covered in this section.
Due to the possibly large number of non-dominated points (and efficient solutions, re-
spectively) decision makers are confronted with huge amount of mathematically incom-
parable alternatives. The burden of the decision maker can be significantly reduced by
the selection of a representative subset of non-dominated points/efficient solutions (see
e.g. Sayın, 2000; Vaz et al., 2015). In an a-posteriori algorithm to determine a represen-
tation, decision robustness can be integrated as an additional quality criterion, ensuring
robustness of the representation.

15

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

Instead of leaving the decision to a human decision maker it is also possible to use
automatic tools, so called decision support systems, to select the most preferred efficient
solutions. Since the robustness of a solution can be considered as a quality criterion, it
should be integrated in the process of decision making.

4.1. Decisions Robust Representations
We aim at the computation of a representative subsetR ⊆ XE of efficient solutions, which
has a fixed cardinality of |R| = k, optimizes some representation quality measure and
is “decision robust”. However, the decision robustness indicators proposed in Section 3
gradually measure the robustness of a single solution. We thus extend this solution-
wise definition to sets of solutions. Since every single solution in a representative subset
should be a valuable choice for the decision maker, each one should satisfy a certain
robustness level. This consideration leads us to a worst case analysis:

Definition 4.1 (Decision Robustness of solution sets). Let R ⊆ XE be a subset of effi-
cient solutions and let I ∈ {Icf , Ice, Iε, IΣε, IεD} denote a decision robustness indicator.
Then the respective decision robustness of a subset of efficient solutions R ∈ XE is

I(R) = max
r∈R

I(r)

Most representation quality measures are based on points in the objective space. Since
we are considering representative sets of the efficient set R ⊆ XE in the decision space,
we adapt the definitions of uniformity, coverage, and ε-indicator (Sayın, 2000; Zitzler
et al., 2003) to our notation. Note that the representation quality is increasing with
increasing values of uniformity, thus we will use (contrary to the original definition)
their negative value to obtain three minimization quality measures QU , QC , and Qε.

Uniformity QU (R) =− min
ri,rj∈R
ri 6=rj

‖z(ri)− z(rj)‖

Coverage QC(R) = max
z∈ZN

min
r∈R
‖z(r)− z′‖

ε-Indicator Qε(R) = max
z∈ZN

min
r∈R

max
i∈{1,...,q}

zi
(z(r))i

Definition 4.2 (Biobjective robust representation problem). Let Q ∈ {QU , QC , Qε}
denote one of the representation quality measures uniformity, coverage, or ε-indicator,
and let I ∈ {Icf , Ice, Iε, IΣε, IεD} denote a decision robustness indicator. Then, the
biobjective robust representation problem is defined as

min I(R)

min Q
(
z(R)

)
s.t. |R| = k

R ⊆ XE

(RRP)

16

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

Since the worst case robustness value I(R) = maxx∈R I(x) is attained by (at least) one
efficient solution in the representation, it is possible to solve (RRP) by a sequence of
|XE| ε-constraint scalarizations, which can be rewritten by considering only sufficiently
robust solutions:

min Q
(
z(R)

)
s.t. |R| = k

R ⊆ {r ∈ XE : I(r) ≤ ε}
(RRP-ε)

In case of biobjective integer programming problems (RRP-ε) can be solved in a running
time polynomial in the number of efficient solutions using dynamic programming (Vaz
et al., 2015).
We use the numerical example (3) introduced in Section 2.4 to evaluate the biobjective
representation problem (RRP) with respect to coverage and ε-robustness.

min
R⊆XE
|R|=3

(
Iε(R), QC

(
z(R)

))
(4)

This example (4) has eleven efficient representations mapping to three nondominated
points (w.r.t. coverage and ε-robustness), see Figure 4. Since the solution z1 which
is important to yield a small coverage radius (c.f. Figure 4(a)), has a rather high ε-
robustness indicator value, the two quality measures are conflicting. On the other hand,
the three most robust solutions (z3, z6, z7) do not cover the non-dominated set well (c.f.
Figure 4(c)).

z135 40 45

z2

25

30

35

40

z1

z3

z8

(a) R = {x1, x3, x8},
QC(R) = 4.472, Iε(R) = 1.278

z135 40 45

z2

25

30

35

40
z7

z2

z4

(b) R = {x2, x4, x7},
QC(R) = 6.708, Iε(R) = 1.208

z135 40 45

z2

25

30

35

40

z3

z6z7

(c) R = {x3, x6, x7},
QC(R) = 8.944, Iε(R) = 1.171

Figure 4: Three nondominated representation w.r.t. coverage and ε-robustness indicator. The supported
non-dominated points are depicted as squares, unsupported non-dominated as circles, which are filled
black if the respective is in the robust representative subset. The grey circles indicate the coverage radii.

17

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

4.2. A Composite Qualitative Robustness Index
This section is devoted to composite qualitative robustness indices that can be used for
assessing the robustness of each efficient solution, x ∈ XE, with respect to (most of)
the indicators presented in this paper. We will exemplify this by applying a simplified
version of Electre Tri-C (Almeida-Dias et al., 2010). In this simplified version we
consider one criterion per indicator and we do not make use of discriminating and veto
thresholds. The method can be illustrated through the data in Table 1, by removing
index Icf (·) since its value is the same for all the solutions. The remaining indices are
thus our criteria. The notation g1, . . . , g5 will be used to represent them in this context,
where gj(x) denotes the performance of an efficient solution x ∈ XE on criterion gj , for
j = 1, . . . , 5 (we will use the subscript j to avoid confusion with components of the vector
of variables x). For the sake of simplicity we assume without loss of generality that all
the criteria are to be minimized. In the context of our illustrative problem (3), we thus
multiply the data of the first column by −1. The performance table can be presented in
the following Table 2 (see also Table 1).

x g1(x) g2(x) g3(x) g4(x) g5(x)
min −6 1.166667 1.017986 1.064516 1.023337
max −2 1.277778 1.057133 1.129032 1.045390
x1 −2 1.277778 1.057133 1.125000 1.044693
x2 −4 1.208333 1.029872 1.064516 1.023337
x3 −6 1.171429 1.024572 1.088235 1.029076
x4 −5 1.185185 1.042190 1.129032 1.045390
x5 −4 1.193548 1.043855 1.114286 1.045097
x6 −5 1.166667 1.017986 1.064516 1.024709
x7 −4 1.166667 1.017918 1.088235 1.034909
x8 −4 1.230769 1.045288 1.114286 1.039918

Table 2: Performance for the example problem (3) introduced in Section 2.4.

The Electre Tri-C method is a pairwise comparison method with the objective to form
an outranking relation for all ordered pairs of efficient solutions (hereafter we use the
term actions instead of solutions), and then explore this relation by assigning the actions
to categories. In the following, we will discuss the two main steps of the Electre Tri-C
method, i.e., outranking and classification, in more detail and illustrate them using the
data of Table 2.

4.2.1. Pairwise Comparison and Outranking
In the simplified version of Electre Tri-C, there are only three possibilities when
comparing an ordered pair of actions (x, x̂) ∈ XE × XE on each criterion gj , for j =
1, . . . , n (recall that all the criteria are to be minimized):

x is at least as good as (outranks) x̂ (x %j x̂), iff gj(x) 6 gj(x̂);

x is strictly preferred to x̂ (x �j x̂), iff gj(x) < gj(x̂);

18

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

x is indifferent to x̂ (x ∼j x̂), iff gj(x) = gj(x̂).

The weight or relative importance (weights can also be interpreted as the voting power
of the criterion) of each criterion gj , denoted by wj ∈ [0, 1], with

∑n
j=1wj = 1 is

a fundamental preference parameter that impacts the outranking relation. In what
follows, we consider the same normalized weight for each criterion, i.e., wj = 1/5 = 0.2,
for j = 1, . . . , 5 in the example problem.

4.2.2. Categorization
In our example, we consider only three categories: “low robustness (C1)”, “medium ro-
bustness (C2)”, and ”high robustness (C3)” in order to qualitatively classify the eight
efficient actions by taking into account all the criteria (indices) in a composite (aggre-
gated) way.
Each category is represented by a representative/central element, say x̂1 for the category
C1 of the lowest robustness level; x̂2 for the category C2 with the medium robustness
level; and x̂3 for the category C3 of the highest robustness level. In the example problem,
we can consider the following data for each one of these central actions (let us assume
that the actions are “well” separated according to the separability properties of the
method). These values are obtained by taking into account the range of each criterion
in Table 2, but possibly also some additional information on the quality of the given
actions in the respective criterion. For example, the range of the values of g1 are given
by g1(x) ∈ [−6,−2] for x ∈ XE, where actually the worst attained value of −2 might
still be quite good as compared to other non-listed actions. This information is used for
defining the first components of the representative actions of each category. Since we
are minimizing, the value −1 is a rather bad value for an action, −3 is a medium value,
and −5 is a good value for g1. We proceed in the same way for the other components
and set

g(x̂1) = (−1, 1.260, 1.047, 1.120, 1.041)
g(x̂2) = (−3, 1.230, 1.037, 1.100, 1.033)
g(x̂3) = (−5, 1.200, 1.027, 1.080, 1.028).

4.2.3. Implementation
The first step in the method is to construct a comprehensive outranking relation by
taking into account all the criteria at the same time (i.e, by aggregating them). For such
a purpose a degree of credibility between an ordered pair of actions, (x, x̂), denoted by
σ(x, x̂), is computed. In the simplified version of the method, this degree of credibility
is computed only by the power of the coalition of criteria for which x outranks x̂, i.e,

σ(x, x̂) =
∑

{j : gj(x)6gj(x̂)}
wj .

This is a fuzzy number since σ(x, x̂) ∈ [0, 1], which represents the degree to which x
outranks x̂. In other words, it specifies the fraction of votes favorable to x over x̂. The

19

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

degrees of credibility between the solutions of our example are shown in Table 3.
For example, we compare the performance lists of x4 and x̂2, taking into account
their performances g(x4) = (−5,1.185185, 1.042190, 1.129032, 1.045390) and g(x̂2) =
(−3, 1.230,1.037,1.100,1.033), respectively. Action x4 is better in the first two criteria
and worse in the other three. Thus, σ(x4, x̂2) = 0.2 + 0.2 = 0.4 (the fraction of votes
favorable to x4 against x̂2 is 0.4) and σ(x̂2, x4) = 0.2 + 0.2 + 0.2 = 0.6 (with similar
interpretation).

x̂1 x̂2 x̂3 x̂1 x̂2 x̂3

x1 0.2 0.0 0.0 0.8 1.0 1.0
x2 1.0 1.0 0.4 0.0 0.0 0.6
x3 1.0 1.0 0.6 0.0 0.0 0.4
x4 0.6 0.4 0.4 0.4 0.6 0.8
x5 0.8 0.4 0.2 0.2 0.6 0.8
x6 1.0 1.0 1.0 0.0 0.0 0.2
x7 1.0 0.8 0.4 0.0 0.2 0.6
x8 1.0 0.2 0.0 0.0 0.8 1.0

Table 3: Credibility degrees σ(x, x̂) and σ(x̂, x).

In order to transform the fuzzy numbers into crispy ones, we can use a kind of cutting or
majority level, denoted by λ, which may be interpreted as a majority level like in voting
theory. For example, if λ > 0.55 we only accept an outranking where the coalition
of criteria has a majority over 55% (in our example, x4 does not outrank x̂2 since
σ(x4, x̂2) < 0.55, but x̂2 outranks x4 since σ(x̂2, x4) > 0.55). After the application of
such a λ cutting level we can devise the following comprehensive relations for an ordered
pair of alternatives (these relation will further be used to compare the solutions against
the characteristic central action and in the assignment procedures in order to assign
them to the most adequate category(ies)):

x outranks x̂ (x %λ x̂) iff σ(x, x̂) > λ;

x is preferred to x̂ (x �λ x̂) iff σ(x, x̂) > λ and σ(x̂, x) < λ;

x̂ is preferred to x (x̂ �λ x) iff σ(x̂, x) > λ and σ(x, x̂) < λ;

x̂ is indifferent to x (x̂ ∼λ x) iff σ(x, x̂) > λ and σ(x̂, x) > λ;

x̂ is incomparable to x (x̂‖λx) iff σ(x, x̂) < λ and σ(x̂, x) < λ.

Back to our example, since the central action x̂2 is preferred to x4, we use the (reverse
strict preference) notation x4 ≺λ x̂2. Table 4 presents the preference relations between
solutions and central actions and it will be useful to understand the mechanism of the
assignment procedures (the relations depend on the chosen λ; in this case we choose
λ = 0.55).

20

Pr
ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

–
Pr

ep
ri
nt

x̂1 x̂2 x̂3

x1 ≺0.55 ≺0.55 ≺0.55
x2 �0.55 �0.55 ≺0.55
x3 �0.55 �0.55 �0.55
x4 �0.55 ≺0.55 ≺0.55
x5 �0.55 ≺0.55 ≺0.55
x6 �0.55 �0.55 �0.55
x7 �0.55 �0.55 ≺0.55
x8 �0.55 ≺0.55 ≺0.55

Table 4: Preference relations with central actions.

From these relations Electre Tri-C makes use of two assignment procedures conjointly
to assign the actions to an interval of categories (the best situation occurs when the two
procedures produce the same assignment). The categories are, in our case, C1 ≺ C2 ≺
C3: they are ordered from the worst to the best and they are characterized by x̂1, x̂2,
and x̂3, respectively. The two procedures need the definition of a selection function of
the form

ρ(x, x̂) = min{σ(x, x̂), σ(x̂, x)}.

In our example, ρ(x4, x̂2) = min{σ(x4, x̂2), σ(x̂2, x4)} = {0.4, 0.6} = 0.4. Table 5 below
presents the computations for all the solutions.

x̂1 x̂2 x̂3

x1 0.2 0.0 0.0
x2 0.0 0.0 0.4
x3 0.0 0.0 0.4
x4 0.4 0.4 0.4
x5 0.2 0.4 0.2
x6 0.0 0.0 0.2
x7 0.0 0.2 0.4
x8 0.0 0.2 0.0

Table 5: The values of ρ(x, x̂).

The two procedures can be presented as follows.

Algorithm 4.3 (Descending procedure). Choose λ ∈ [0.5, 1]. Decrease k from 3 to the
first value k such that σ(x, x̂k) > λ (i.e, x %λ x̂

k), or set k to 0 if such a value does not
exist.

1. For k = 3, select C3 as a possible category to assign action x.

2. For 0 < k < 3, if ρ(x, x̂k) > ρ(x, x̂k+1), then select Ck as a possible category to
assign x; otherwise, select Ck+1.

21

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

3. For k = 0, select C1 as a possible category to assign x.

If we continue with our example for λ = 0.55, the first k for which σ(x4, x̂k) > 0.55 is for
k = 1. We are in Case 2 of Algorithm 4.3, but since we do not have ρ(x4, x̂1) = 0.4 >
ρ(x, x̂2) = 0.4, then x4 will be assigned to C2.

Algorithm 4.4 (Ascending procedure). Choose λ ∈ [0.5, 1]. Increase k from 1 to the
first value k such that σ(x̂k, x) > λ (i.e, x̂k %λ x), or set k to 4 if such a value does not
exist.

1. For k = 1, select C1 as a possible category to assign action x.

2. For 1 < k < 4, if ρ(x, x̂k) > ρ(x, x̂k−1), then select Ck as a possible category to
assign x; otherwise, select Ck−1.

3. For k = 4, select C3 as a possible category to assign x.

If we follow the procedure for our example for λ = 0.55, the first k for which σ(x̂k, x4) >
0.5 is for k = 2. We are in Step 2, but since we do not have ρ(x4, x̂2) = 0.4 > ρ(x, x̂1) =
0.4, then x4 will be assigned to C1.
The results are as follows (note that the previous tables change when changing the values
of λ), when using the two procedures conjointly:

• Assignments with λ = 0.55:

C1 = {x1, x4}, C2 = {x4, x5, x8}, C3 = {x2, x3, x6, x7}.

All the actions are precisely assigned, except x4 which can be of low and medium
robustness.

• Assignments with λ = 0.65:

C1 = {x1, x4}, C2 = {x4, x5, x8}, C3 = {x2, x3, x6, x7}.

The assignments are the same, even with a higher cutting level.

• To show the impact of the cutting level, we also computed the assignments for
λ = 0.85 (even though very high cutting levels are of little practical relevance):

C1 = {x1, x4, x5}, C2 = {x7, x8}, C3 = {x2, x3, x4, x5, x6, x7}.

Note that at this very high cutting level, the actions x4 and x5 can not be clearly
assigned, i.e., the method provides uncertainty about the robustness of these solu-
tions at this cutting level.

If we look at the indicator values for the actions, the assignments for λ = 0.55 (and also
for λ = 0.65) make sense. We can say, that x2, x3, x6, and x7 are quite robust actions,
while x1 is an action with low robustness.

22

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

5. Concluding Remarks

In this paper we adopt the concept of decision space robustness to multiobjective integer
linear programming problems. In many practical applications, the computed optimal
solutions can not be exactly implemented in reality. By identifying possible sets of
alternative realizations in appropriately chosen neighborhoods, we propose robustness
indicators that assess the quality of the considered solution under slight deviations.
This can be applied to support decision making and the selection of a most preferred
and simultaneously robust solution. We exemplify such an approach using the Electre
Tri-C method. Moreover, robustness indicators can be extended to sets of solutions,
such that the robustness of different representations of the efficient set can be evaluated
and optimized.
From a computational perspective, the computation of neighborhoods of solutions usu-
ally requires the a priori computation of the complete efficient set or feasible set, respec-
tively, which is usually very costly. However, depending on the problem structure, this
neighborhood information can be obtained already during the solution process, for ex-
ample, in dynamic programming type algorithms Correia et al. (see, e.g., 2018). Future
research could also address possible advantages of using neighborhood search techniques,
despite the fact that the efficient set of multiobjective integer linear programming prob-
lems is not connected in general Gorski et al. (2011).

Acknowledgments. This work was supported by DAAD-CRUP Luso-German bilateral
cooperation under the 2017-2018 research project MONO-EMC (Multi-Objective Net-
work Optimization for Engineering and Management Support). José Rui Figueira also
acknowledges the support from the FCT grant SFRH/BSAB/139892/2018 during his
stay at the Department of Mathematics of the University of Wuppertal, Germany.

23

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

Appendix

z125 30 35 40 45

z2

20

25

30

35

40

z1 = (45, 23)

z125 30 35 40 45

z2

20

25

30

35

40

z3 = (41, 31)

z125 30 35 40 45

z2

20

25

30

35

40

z5 = (37, 33)

z125 30 35 40 45

z2

20

25

30

35

40 z7 = (35, 38)

z125 30 35 40 45

z2

20

25

30

35

40

z2 = (42, 29)

z125 30 35 40 45

z2

20

25

30

35

40

z4 = (38, 32)

z125 30 35 40 45

z2

20

25

30

35

40
z6 = (36, 37)

z125 30 35 40 45

z2

20

25

30

35

40 z8 = (32, 39)

Figure 5: Neighborhoods N (x) for all efficient solutions x ∈ XE of the example given in (3).

24

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

References

A. Adeyefa and M. Luhandjula. Multiobjective stochastic linear programming: An
overview. American Journal of Operations Research, 1:203–213, 2011.

H. Aissi, C. Bazgan, and D. Vanderpooten. Min–max and min–max regret versions
of combinatorial optimization problems: A survey. European Journal of Operational
Research, 197(2):427–438, 2009.

J. Almeida-Dias, J.-R. Figueira, and B. Roy. Electre Tri-C: A multiple criteria sorting
method based on characteristic reference actions. European Journal of Operational
Research, 204(3):565–580, 2010.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University
Press, Princeton, USA, 2009.

H.-G. Beyer and B. Sendhoff. Robust optimization – A comprehensive survey. Computer
Methods in Applied Mechanics and Engineering, 196:3190–3218, 07 2007. doi: 10.1016/
j.cma.2007.03.003.

J. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, New York,
NY, USA, 1997.

P. Correia, L. Paquete, and J. R. Figueira. Compressed data structures for bi-objective
0,1-knapsack problems. Computer and Operations Research, 89:82–93, 2018. doi:
doi:10.1016/j.cor.2017.08.008.

M. Dellnitz and K. Witting. Computation of robust Pareto points. International Journal
of Computing Science and Mathematics, 2:243–266, 2009.

M. Ehrgott. Multicriteria Optimization. Springer, Berlin, Germany, 2nd edition, 2005.

M. Ehrgott, J. Ide, and A. Schöbel. Minimax robustness for multi-objective optimization
problems. European Journal of Operational Research, 239(1):17–31, 2014.

G. Eichfelder, C. Krüger, and A. Schöbel. Multi-objective regularization robustness.
Technical Report 2015-13, Preprint-Reihe, Institut für Numerische und Angewandte
Mathematik, Georg-August Universität Göttingen, 2015.

G. Eichfelder, C. Krüger, and A. Schöbel. Decision uncertainty in multiobjective op-
timization. Journal of Global Optimization, 69(2):485–510, apr 2017. doi: 10.1007/
s10898-017-0518-9.

G. Eichfelder, J. Niebling, and S. Rocktäschel. An algorithmic approach to multiobjective
optimization with decision uncertainty. Journal of Global Optimization, jul 2019. doi:
10.1007/s10898-019-00815-9.

J. Gorski, K. Klamroth, and S. Ruzika. Connectedness of efficient solutions in multiple
objective combinatorial optimization. Journal of Optimization Theory and Applica-
tions, 150(3):475–497, 2011.

25

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

J. Ide and E. Köbis. Concepts of efficiency for uncertain multi-objective optimization
problems based on set order relations. Mathematical Methods of Operations Research,
80(1):99–127, 2014.

J. Ide and A. Schöbel. Robustness for uncertain multi-objective optimization: A survey
and analysis of different concepts. OR Spectrum, 38:235–271, 2016.

M. Inuiguchi, K. Kato, and H. Katagiri. Fuzzy multi-criteria optimization: Possibilistic
and fuzzy/stochastic approaches. In S. Greco, M. Ehrgott, and J.-R. Figueira, editors,
Multiple Criteria Decision Analysis: State of the Art Surveys, pages 851–902. Springer
Science + Business Media, Inc., New York, NY, USA, 2016.

P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers, Norwell, MA, USA, 1997.

G. Mavrotas, J.-R. Figueira, and E. Siskos. Robustness analysis methodology for multi-
objective combinatorial optimization problems and application to project selection.
Omega: The International Journal of Management Science, 52:142–155, 2015.

C. Oliveira and C. Henggeler-Antunes. Multiple objective linear programming models
with interval coefficients – An illustrated overview. European Journal of Operational
Research, 181(3):1434–1463, 2007.

B. Roy, J. R. Figueira, and J. Almeida-Dias. Discriminating thresholds as a tool to cope
with imperfect knowledge in multiple criteria decision aiding: Theoretical results and
practical issues. Omega: The International Journal of Management Science, 43:9–20,
2014.

M. Sakawa, I. Nishizaki, and H. Katagiri. Fuzzy Stochastic Multiobjective Programming.
Springer Publishing Company, Inc., New York, NY, USA, 2011.

S. Sayın. Measuring the quality of discrete representations of efficient sets in multiple
objective mathematical programming. Mathematical Programming, 87(3):543–560,
2000.

R. Słowiński and J. Teghem, editors. Stochastic vs. Fuzzy Approaches to Multiobjec-
tive Mathematical Programming Under Uncertainty. Kluwer Academic Publishers,
Norwell, MA, USA, 1990.

R. Steuer. Multiple Criteria Optimization: Theory, Computation, and Application. John
Wiley & Sons, New York, USA, 1986.

D. Vaz, L. Paquete, C. M. Fonseca, K. Klamroth, and M. Stiglmayr. Representation
of the non-dominated set in biobjective combinatorial optimization. Computers &
Operations Research, 63:172–186, 2015.

K. Witting, S. Ober-Blöbaum, and M. Dellnitz. A variational approach to define ro-
bustness for parametric multiobjective optimization problems. Journal of Global Op-
timization, 57:331–345, 2013.

26

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca. Per-
formance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation, 7(2):117–132, 2003.

27

	Introduction
	Concepts, Definitions, and Notation
	Problem Formulation
	Dominance and Efficiency
	Adjacency and Neighborhood
	Illustrative Example

	Robustness Indicators for MOILP Problems
	Feasibility Based Indicators
	Efficiency Based Indicators
	Cardinality Based Efficiency Indicator
	epsilon-robustness Indicator

	Comparison to Decision Robustness in the Continuous Case
	Properties of Robustness Indicators

	Fields of Applications for the Robustness Indicators
	Decisions Robust Representations
	A Composite Qualitative Robustness Index
	Pairwise Comparison and Outranking
	Categorization
	Implementation

	Concluding Remarks

