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Abstract. Many design/layout processes of warehouses, depots or park-
ing lots are subject to reachability constraints, i.e., each individual stor-
age/parking space must be directly reachable without moving any other
item/car. Since every storage/parking space must be adjacent to a corri-
dor/street one can alternatively consider this type of layout problem as
a network design problem of the corridors/streets.

More specifically, we consider the problem of placing quadratic park-
ing spaces on a rectangular shaped parking lot such that each of it is
connected to the exit by a street. We investigate the optimal design of
parking lot as a combinatorial puzzle, which has—as it turns out—many
relations to classical combinatorial optimization problems.

Keywords: combinatorial optimization, network design problem, max-
imum leaf spanning tree, connected dominating set

1 Introduction

In contrast to articles [1,2] in the area of civil engineering and architecture in-
vestigating the (optimal) design of a parking lot, we focus on the topological
layout of the parking lot rather than on issues like the optimal width of parking
spaces and streets, one- or two-way traffic, traffic flow, angle of parking spaces
to the streets, or irregular shaped parking lots. These modeling assumptions
and restrictions allow to formulate a complex practical problem as a combina-
torial optimization problem. This model was proposed in the didactic textbook
[3] as a combinatorial puzzle. In the Bachelor thesis [4] integer programming
formulations were presented and solved using a constructive heuristic.

We search for the optimal layout of a parking lot on a given a rectangular shaped
area maximizing the number of individual parking spaces. The rectangular area
is subdivided by a square grid such that every cell of the grid represents either
an individual parking space or a part of a street. For the reachability constraint
we assume that cars can move on that grid only vertically or horizontally. This
implies that every individual parking space must be connected by a street to the
exit, where “connected” is defined based on the 4-neighborhood Ny of a grid cell
(see Figure 1 for an example). One of the major modeling aspects is thereby the
connectivity of street fields to the exit, for which we will present two different
formulations. In general there may be cells not neighboring a street, which can
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Fig. 1. Sketch of a parking lot layout, individual parking spaces are marked with P.
Feasible solution with 19 parking spaces (on the left) and optimal solution with 20
parking spaces (right).

not be used as parking space and are not streets fields connected to the exit.
However, such blocked cells can be neglected since there is always a solution
without blocked cells having the same number of individual parking spaces.

2 Model Formulations

2.1 Formulation Based on the Distance to the Exit

Let (4,7) denote a cell in the grid with ¢ € Z = {1,...,m} being its row index,
Jj€J ={1,...,n} its column index. Then, we introduce a binary variable z;;
which is equal to one if (4, j) serves as a parking space and zero if (4, j) is part of a
street. A method to model the reachability constraint based on the connectivity
of street fields is to measure the discrete distance to the exit by a binary variable
zfj, with k € K = {1,...,n-m} denoting the number of street cells to the exit.
Thereby zfj =1, if (ij) represents a street field, which is k steps away from the
exit, and zero otherwise. Note that many of these variables can be set to zero in
advance, if k£ is smaller than the shortest path to the exit.

Then, the parking lot problem can be written as:

n m
max szij (1)
i=1 j=1
s. t. Z:CJ + Tij S 1 Vi,j, k (1&)
k k-1 k—1 k—1 k—1 .
Zig S Ziiq,;F %0120, 20 Vi, j, k (1b)
mn
zij < Z(zz"c—l,j + sz,j—l + sz+1,j + sz.,j-t,-l) Vi, j (1c)
k=1
d oz <1 Vi, j (1d)
k
zgm =1 (le)
ij, 2y € {0,1} Vi, j, k (1f)

The constraint (1a) ensures that the distance values z,kj = 0 for all k if the cell
1, j is a parking space, i.e., the distance to the exit is only measured on and along
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the streets. A street cell can only have a distance of k to the exit if one of its
neighboring cells has a distance of k—1 to the exit (constraint (1b)) and one cell
can not have two different distances to the exit (constraint (1d)). Note that (1a)
and (1d) can be merged to >, zf] +a;; < 1Vi,j. Constraint (1c) states that any
parking space requires one neighboring street field, i.e., a cell with a distance
to the exit. The large number of binary variables to formulate the reachability
constraint, O(n?m?), makes this problem difficult for branch and bound solvers.

2.2 Network Flow Based Formulation

Consider the movement of the cars to leave the parking lot as a network flow. To
model this approach we identify each cell of the grid by one node and connect
a node (i,7) with a node (rs) if (rs) is in the 4-neighborhood of (i,j), i.e.,
(rs) € Nu(ij) ={(t—1,j—1),(¢t —1,5+1),(¢+1,5—1),(¢+1,5+1)}. Since
every cell is the potential location of a parking space, we set the supply of every
node to one unit of flow, and associate with the exit node (in our instances node
(mn)) a demand of mn—1. Then, nodes without inflow represent parking spaces,
all other nodes represent street fields. For this network flow based formulation
we need two types of variables: continuous flow variables and binary decision
variables.

T(ij),(rs) € Ry flow between node (ij) and node (rs)

1 if node (ij) has not zero inflow
2 =
) 0 otherwise

min Z Z 2(45) (2)

i=1 j=1
5. t. S Tapnes = DL T = 1 V(ij) \ (mn)  (2a)
(rs)€N4(ij) (rs)EN4(ij)
Y Ty = Y, T(s)(mm) = —mn+1 (2b)
(rs)€Ng(mn) (rs)eNyg(mn)
D wea < M-z V(i) (2c)
(rs)eNa(ij)
Tij)(rs) € Ry (rs) € Na(ij) (2d)

Equations (2a)—(2b) are classical flow conservation constraints. The big-M con-
straint (2c) couples the inflow to the decision variable z;;: If the sum of incoming
flow of a node 4, j is zero, z(;;) can be set to zero. Otherwise, if there is a non
zero inflow, z(;;) = 1. Setting M := m - n — 1 does not restrict the amount of
inflow if z(;;) = 1.
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3 Properties of the Parking Lot Problem

3.1 Upper Bound and Geometrically Implied Constraints

We will in the following investigate theoretical properties of the parking lot
problem, which hold for both problem formulations (1) and (2). Based on the
4-neighborhood obviously every street field serves directly at most three parking
spaces, if it is end point of a street, two parking spaces, if it is in the middle of a
straight street and one parking space, if it is a T-junction. Since every additional
end point of a street is associated with one T-junction we obtain the following
upper bound on the number of parking spaces:

2
# parking spaces < 3 nm

Besides this global upper bound on the number of parking spaces, the grid
structure of the problem allows to state several geometrically implied constraints
which are all satisfied by at least one optimal solution.

no streets along the border A street along the border of the parking lot can
be moved in parallel one step to the interior of the parking lot, where each
street field can serve directly more than one parking space.

street field next to the exit The exit field has only two neighboring fields,
only one of which can be a street field in a optimal solution.

street field on the border of every rectangle In the border of every rect-
angular shaped region of size larger than 3 x 3 is at least one street field.

street field in every row/column cut Every row 1 < i < m and every col-
umn 1 < j < n contains at least one street field.

3.2 Tree Structure

Theorem 1. For any instance of (2) there is an optimal solution in which the
edges with positive flow value form a spanning tree.

Proof. Consider a basic feasible solution of the minimum cost flow problem given
by the supply and demand values of (2). The edges with strictly positive flow
form a tree of the grid graph, since there are no capacity constraints and con-
sequently all non-basic edges have a flow value of zero. Furthermore, the tree is
spanning (every basic edge has positive flow), since every node has a supply of
one flow unit.

Definition 1 (see e.g., [5]). Let G = (V, E) be a graph. A connected domi-
nating set in G is a subset U C V' for which the following two properties hold

— connected: Yuy,us € U there is a path P = (uy,...,us) C U from uy to ug
— dominating: Yo € V\ U Ju € U such that (u,v) € F

Theorem 2 ([6]). Let n := |V| and d := |U| be the cardinality of a minimum
connected dominating set U, then £ = n — d is the mazimal number of leafs of a
spanning tree in G = (V, E).
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Proof. Let U be a minimum connected dominating set. Then there exists a tree
T in U, and all nodes in V \ U can be connected as leafs to T, consequently
£ > n —d. Contrary, let T = (V, E’) be a spanning tree in G = (V, E) and L the
set of leafs of T. Then V' \ L is a connected dominating set. Thus, £ =n —d

Identifying the leafs with the individual parking spaces and the street fields with
a connected dominating set, the maximum leaf spanning tree problem maximizes
the number of individual parking spaces, while the minimum connected domi-
nating set minimizes the number of street fields. Independently, Reis et al. [7]
proposed a flow based formulation of the maximum leaf spanning tree problem
which is equivalent to (2). Alternative formulation of the maximum leaf spanning
tree problems are presented in [8].

Theorem 3 ([9]). The mazimum leaf spanning tree problem is N'P-complete
even for planar graphs with mazimum node degree 4.

Proof. By reduction from dominating set, which can be reduced form vertex
cover.

The parking lot problem is, thus, a special case of an NP-complete optimization
problem. In contrast to general maximum leaf spanning tree problems the park-
ing lot problem has a very regular structure, such that this complexity result
does not directly transfer.

4 Heuristic Solution Approach

In [4] a constructive heuristic is proposed, which is based on the use of building
blocks of three row or columns, respectively (see Figure 2). The parking lot is

P[P

. . 1
TP P[- P[P
—+ —+ P

Fig. 2. Illustration of column- and row-wise building blocks.

filled row- or column-wise with blocks of three rows/columns, where the last
block of rows/columns has one additional street field at the exit. If the number
of rows n is not a multiple of three, one or two rows remain, which can be used
for one or m — 1 additional parking spaces. Analogously, in the case of column
building blocks. Based on the number of rows and columns the performance
of the row- and column-wise building blocks differs. This constructive heuristic
works best if the number of rows/columns is a multiple of three, since the building
blocks achieve the theoretical upper bound of % See Figure 3 for a suboptimal
heuristic solution in comparison to the optimal solution.
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Fig. 3. Example of a suboptimal heuristic solution consisting of column building blocks
for 10x 10 with 58 parking spaces (left), optimal solution with 60 parking spaces (right).

5 Conclusion

We presented two integer programming formulations of the parking lot problem
and focused thereby in particular on the reachability constraint. The first model
(1) based on a distance along the streets to the exit is intuitive but requires many
binary variables. However, this formulation allows to limit the distance to the
exit which could be relevant, e.g., in evacuation scenarios. In the second model
(2), which is based on network flows, the distances to the exit are not encoded.
Possible extensions of it could, e.g., balance the flow on streets and thus avoid
congestions.
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