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Abstract

This work deals with geometric numerical integration on a Lie group using the
Cayley transformation. We investigate a coupled system of differential equations
in a Lie group setting that occurs in Lattice Quantum Chromodynamics. To
simulate elementary particles, expectation values of some operators are computed
using the Hybrid Monte Carlo method. In this context, Hamiltonian equations
of motion in a non-Abelian setting are solved with a time-reversible and volume-
preserving integration method. Usually, the exponential function is used in the
integration method to map the Lie algebra to the Lie group. In this paper, the focus
is on geometric numerical integration using the Cayley transformation instead
of the exponential function. The geometric properties of the method are shown
for the example of the Störmer-Verlet method. Moreover, the advantages and
disadvantages of both mappings are discussed.

Keywords: Numerical Analysis, Geometric Integration, Differential Equations
on Lie Groups, Cayley Transform, Störmer-Verlet Scheme, Hybrid Monte Carlo,
Lattice QCD

1. Introduction

This paper investigates the usage of the Cayley transform for matrix Lie groups
inside the Störmer-Verlet scheme in the context of Lattice Quantum Chromo Dy-
namics (LQCD). For Lattice QCD computations, the Störmer-Verlet scheme de-
fines a geometric integration method adapted to the Lie group structure. It uses
the exponential function as local parameterization inside the Lie group. Since, in
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general, the computation of matrix exponential functions is very costly, the Cay-
ley transform is surveyed as alternative local parameterization inside the Störmer-
Verlet method. Both parameterizations are described in several publications, for
example, in [1]-[9] and some applications can be found in [10]-[12].

Concerning Lattice QCD, the geometric properties – time-reversibility and
volume-preservation – of the numerical integration scheme are of importance in
order that they are also investigated in this work. For a numerical test, the geo-
metric numerical integration schemes are applied on the Hamiltonian equations of
motion in Lattice QCD, see, for example, [13] or [15]. More precisely, we simulate
lattice gauge fields using Hybrid Monte Carlo (HMC) simulations [16] such that a
Markov chain of configurations of lattice gauge fields is produced. Finally, these
results are used for the computation of expectation values of some operators, for
example for the mass of elementary particles. For this work, it is important that
the Hybrid Monte Carlo method is composed of a Molecular Dynamics and an ac-
ceptance step. In the Molecular Dynamics part, Hamiltonian equations of motion
occur which are coupled differential equations on a Lie group and a Lie algebra.
They have to be solved with a time-reversible and volume-preserving numerical
scheme to assure that the Markov chain tends towards the correct fixed point, i.e.
the expectation values are computed correctly.

This paper opens with the recapitulation of some information about ordinary
differential equations on Lie groups in section 2. It includes the local param-
eterizations used in numerical methods for Lie group equations and states the
Lie-Euler and Störmer-Verlet schemes. Afterwards, the Cayley transform is in-
troduced in section 3. In this part, the Störmer-Verlet method is adapted to
the Cayley transform and finally, the geometric properties time-reversibility and
volume-preservation are proven. Next, a brief introduction in Lattice QCD is fol-
lowed in section 4. Here, the focus is put on the differential equations that have
to be solved in the Hybrid Monte Carlo method. Also the Hamiltonian needed
for the acceptance step is described in this part. Afterwards, the simulation of
lattice gauge fields and its numerical results are described in section 5 leading to
the conclusion in section 6.

2. Ordinary Differential Equations on Lie Groups

In this section, the concept of solving ordinary differential equations on Lie
groups via local parameterizations is presented following the line of sections IV.5-
IV.8 of [5]. Let G be a matrix Lie group and g its associated Lie algebra. Then,
the differential equation

Ẏ (t) = A(t) · Y (t) (1)
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with Y (t) ∈ G and A(t) ∈ g is a differential equation on a Lie group, i.e. its
solution has to be in the Lie group. This result can be obtained via the connection
of Lie groups and Lie algebras via differentiable manifolds as described in section
IV.5 in [5] which is also the basis for the next paragraph.

Local parameterization. Differential equations on Lie groups are solved via the
usage of a local parameterization

Ψ : g 7→ G, Y (t) = Ψ(Ω(t)) (2)

from the Lie algebra g to the Lie group G. Here, a new unknown Ω(t) ∈ g is
introduced which is the result of the differential equation

Ω̇ =
(

d Ψ−1
Ω

)
(A) (3)

in the Lie algebra, i.e. the expression d Ψ−1
Ω is applied on the Lie algebra element

A such that the result Ω̇ is also in the Lie algebra. This is advantageous because
the Lie algebra is a linear space such that the new differential equation Ω̇ can be
solved using any numerical integration scheme for the Abelian case. Afterwards,
the result is mapped back via the local parameterization (2) to the Lie group.

One difficulty is the detection of the expression d Ψ−1
Ω . This can be achieved

using the definition (
d

d Ω
Ψ(Ω)

)
(H) =

(
d ΨΩ(H)

)
·Ψ(Ω) (4)

where d
d Ω

Ψ(Ω) and d ΨΩ are applied on a Lie algebra element H. Here, first the ex-
pression Ψ(Ω) has to be fixed. Then, the derivative d

d Ω
Ψ(Ω) applied on H follows

using simple matrix calculus. Afterwards, the expression for d ΨΩ(H) is the only
unknown in equation (4) and can be computed which leads to its inverse d Ψ−1

Ω (H).

Exponential function as local parameterization. One possibility for the local pa-
rameterization is the exponential function as described in paragraphs IV.7 and
IV.8 of [5]. It has the advantage that it can be used for any matrix Lie group such
that it is applied as standard parameterization. The theorem of Magnus presents
one way of solving the differential equation in the Lie group using the exponential
function.

Theorem 1 (Magnus, [5], [17]). The solution of the matrix differential equa-
tion (1) can be written as

Y (t) = exp(Ω(t)) Yn (5)
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with initial value Yn ∈ G and Ω(t) defined by

Ω̇(t) = d exp−1
Ω (A(t)), Ω(tn) = Ωn = 0. (6)

As long as ||Ω(t)|| < π the convergence of the d exp−1
Ω expansion

d exp−1
Ω (A) =

∞∑
k≥0

Bk

k!
adkΩ(A) (7)

with Bernoulli numbers Bk and adjoint operator adΩ(A) = [Ω, A] is assured.

The Bernoulli numbers Bk and the adjoint operator adkΩ are stated in the following
definitions.

Definition 1 (Bernoulli Numbers, [5], [18]). The Bernoulli numbers Bk are
defined by

∞∑
k≥0

Bk

k!
xk =

x

exp(x)− 1
. (8)

The first few Bernoulli numbers are B0 = 1, B1 = −1
2
, B2 = 1

6
, B3 = 0.

Definition 2 (Adjoint Operator, [5], [19]). The adjoint operator adΩ(A) is a
linear operator

ad : g 7→ g, A 7→ adΩ(A) = [Ω, A] (9)

for a fixed Ω and matrix commutator [Ω, A] = Ω · A− A · Ω.

The adjoint operator can be used iteratively, such that adkΩ denotes the k-th it-
erated application of the linear operator adΩ. It holds adk+1

Ω =
[
Ω, adkΩ

]
. By

convention, ad0
Ω(A) is set to A.

The theorem of Magnus reveals how to replace the initial value problem (1) in
the Lie group with an initial value problem (6) in the Lie algebra using the local
parameterization

exp : g→ G, Ω(t) 7→ Y (t) = exp(Ω(t)) · Yn . (10)

So, the differential equation (6) can be solved with any Runge-Kutta method for
the Abelian case. Afterwards, its numerical approximation Ωn+1 is mapped back to
the Lie group via equation (10). Nevertheless, the usage of the exponential function
suffers from one big disadvantage: the inverse of the derivative of the exponential
function is an infinite series as stated in equation (7). In general, there is no closed
form for (d expΩ)−1, with the result that this series has to be truncated somehow
in the numerical method. This procedure is known as Munthe-Kaas method.
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Algorithm 1 (Munthe-Kaas schemes, [5], [20]). The Lie group problem (1)
with initial values Y (tn) := Yn ∈ G and A(tn) := An ∈ g can be solved as follows:

1. Consider the differential equation

d exp−1
Ω (A) ≈ Ω̇ =

q∑
k≥0

Bk

k!
adkΩ(A) =: fq(Ω, A) (11)

with initial value Ω(tn) = Ωn = 0.

2. Apply a Runge-Kutta method with initial values Ωn = 0 to reach the numer-
ical approximation Ωn+1 ≈ Ω(tn + h).

3. Define the numerical solution by

Yn+1 = exp(Ωn+1) Yn. (12)

At this place, a model error is introduced because the considered differential equa-
tion (11) differs from the original differential equation (7) as discussed, e.g, in [21].
The model error should be smaller than the desired convergence order such that it
does not influence the result. Munthe-Kaas describes a criterion for the truncation
index q such that the model error is small enough related to a desired convergence
order of the Runge-Kutta scheme as follows:

Theorem 2 (Truncation index, [5], [20]). The method of algorithm 1 is of or-
der p if the truncation index in (11) satisfies q ≥ p − 2 and the underlying
Runge–Kutta method is also of (classical) order p.

The proof of this theorem can be found in section IV.8.2 of [5].

Lie-Euler scheme. The explicit Euler is the most simple example for a Munthe-
Kaas Runge-Kutta scheme. It has convergence order p = 1 such that (according
to theorem 2) the truncation index used in equation (11) would be q = p−2 = −1.
Since values of q smaller than zero are not defined, q = 0 is used such that the
differential equation Ω̇ = A with initial value Ωn = 0 has to be solved in the Lie
algebra. Then, the explicit Euler scheme leads to the numerical approximation

Ωn+1 = Ωn + h Ω̇(tn) = hf0(Ωn, A) = h An. (13)

Finally, the result is mapped via equation (10) in the Lie group:

Ωn+1 7→ Yn+1 = exp(Ωn+1) · Yn. (14)

Often, the combination of these two steps is mentioned as Lie-Euler method

Yn+1 = exp(hAn) · Yn. (15)
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This is a special case of Munthe-Kaas as well as Crouch-Grossmann Runge-Kutta
schemes of convergence order p = 1 using the exponential function as local param-
eterization in the Lie group [5].

Coupled differential equation in a Lie group and its associated Lie algebras. We are
concerned with geometric integration schemes for a coupled system of differential
equations on a matrix Lie group G and its associated matrix Lie algebra g. More
precise, the system is given by

Ẏ (t) = A(t) · Y (t) (16a)

and Ȧ(t) = F (Y (t)) (16b)

with matrix Lie group element Y (t) ∈ G, matrix Lie algebra element A(t) ∈ g
and matrix Lie algebra-valued function F : G 7→ g. The first equation (16a) a
differential equation on a Lie group G as equation (1) and can be treated in the
same way. The second equation (16a) is solved on a Lie algebra g which is a linear
space. This means, it can be solved with any numerical method applicable for the
Abelian case.

Störmer-Verlet scheme for Lie groups and Lie algebras. The most simple geomet-
ric, i.e. time-reversible and volume-preserving numerical integration scheme for
such a system is the Leapfrog or Störmer-Verlet scheme. It solves the initial-value
problem (16) with initial values Y (t0) = Yn ∈ G and A(t0) = An ∈ g and reads

An+ 1
2

= An + h
2
F (Yn), (17a)

Ωn+1 = hAn+ 1
2
, (17b)

Yn+1 = exp(Ωn+1)Yn, (17c)

An+1 = An+ 1
2

+ h
2
F (Yn+1). (17d)

Here, the parameterization Ψ = exp is used such that Ω̇ = d exp−1
Ω has to be solved

numerically as explained for the explicit Lie-Euler scheme.

3. Cayley Transform

The Cayley transform can be used as alternative parameterization for quadratic
Lie groups G = {Y |Y >PY = P} with given constant matrix P 6= 0 as mentioned
in section IV.8.3 of [5]. It reads

g 7→ G : Ω 7→ cay(Ω) =
(
I − Ω(t)

)−1(
I + Ω(t)

)
. (18)

6



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

So, differential equations on Lie groups can be solved using the parameterization
Ψ = cay such that the differential equation Ω̇ = d cay−1

Ω with

g 7→ g : d cay−1
Ω

(
A(t)

)
=

1

2

(
I − Ω(t)

)
A(t)

(
I + Ω(t)

)
(19)

has to be solved in the Lie algebra. Here, no infinite series has to be truncated such
that just two matrix multiplications have to be performed. On the other hand,
the Cayley transform is feasible for quadratic Lie groups and, moreover, also the
inverse of I−Ω(t) must exist and be computable in an easy and numerically stable
way.

Inverse of I − Ω(t). In this work, we focus on the Hamiltonian equations of mo-
tion used in Lattice QCD which are defined for the Lie group SU(N,C) and its
associated Lie algebra su(N,C). In this case, it is sufficient to show that the
eigenvalues of Ω(t) are purely imaginary. The matrix Ω(t) is an element of the
Lie algebra su(N,C) such that it is traceless and anti-hermitian. This means,
Ω(t) + ΩH(t) = 0. The eigenvalues λ of Ω(t) are computed via Ω(t)x = λx. It
follows (Ω(t)x)H = λ̄xH with complex conjugate eigenvalue λ̄ such that it holds

0 = xH
(

Ω(t) + ΩH(t)
)
x = |λ̄+ λ|x. (20)

This implies that the real part of the eigenvalues λ of Ω(t) must be zero such that
they are purely imaginary. Thus, the matrix I − Ω(t) is a regular matrix.

Numerical Schemes. Starting from an initial value Ωn = 0, the numerical approx-
imation Ωn+1 is computed as

Ωn+1 = Ωn + h · d cay−1
Ω = h

2
An. (21)

according to equation (19). Then, the explicit Cayley-Lie-Euler scheme reads

Yn+1 = cay(Ωn+1)Yn = cay(h
2
An)Yn, (22)

with result in the Lie group. Finally, we are interested in the Cayley-Leapfrog or
Cayley Störmer-Verlet method for Lie groups:

An+ 1
2

= An + h
2
F (Yn), (23a)

Ωn+1 = Ωn + h
2
An+ 1

2
, (23b)

Yn+1 = cay(Ωn+1)Yn, (23c)

An+1 = An+ 1
2

+ h
2
F (Yn+1). (23d)
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This method is similar to the aforementioned scheme (17). Just the numerical
approximation for the differential equation on the Lie group is adapted: the lo-
cal parameterization in equation (23c) is changed from the exponential function
(equation (17c)) to the Cayley transform. That requires an additional change
from Ωn+1 = hAn+ 1

2
(see equation (17b)) in the standard Störmer-Verlet scheme

towards Ωn+1 = h · 0.5An+ 1
2

to meet the same convergence order. This means for

the Störmer-Verlet scheme, the operators d exp−1
Ω and d cay−1

Ω differ by a factor 0.5.

For the usage in HMC simulations it must be ensured that the numerical inte-
gration method is time-reversible and volume-preserving. The standard Störmer-
Verlet scheme for coupled Lie group / Lie algebra problems as defined in equation
(17) is known to have these qualities. Next, it is proven that the Cayley-Leapfrog
method for Lie groups is also time-reversible and volume-preserving.

Volume-preservation. The Störmer-Verlet scheme computes the numerical approx-
imation (Yn+1, An+1,Ωn+1) from the initial values (Yn, An,Ωn). So, we observe
the phase space G × g × g which corresponds to the canonical volume form on
RN×N × RN×N × RN×N . The volume-preservation of the scheme is assured if the
value of the determinant of the Jacobian of the overall step

Θ :=
∂(Yn+1, An+1,Ωn+1)

∂(Yn, An,Ωn)
(24)

takes the value ±1.

It holds that an overall scheme is volume-preserving if it is composed of volume-
preserving schemes. The Leapfrog method is composed of four subsequent single
updates:YnAn

Ωn

 α−→

 Yn
An+ 1

2

Ωn

 β−→

 Yn
An+ 1

2

Ωn+1

 γ−→

Yn+1

An+ 1
2

Ωn+1

 δ−→

Yn+1

An+1

Ωn+1


Thus, it has to be shown that the determinant of the Jacobians of the single
updates α, β, γ and δ have the values ±1. The Jacobians read

α :=

(
∂(Yn, An+1/2,Ωn)

∂(Yn, An,Ωn)

)
, β :=

(
∂(Yn, An+1/2,Ωn+1)

∂(Yn, An+1/2,Ωn)

)
,

γ :=

(
∂(Yn+1, An+1/2,Ωn+1)

∂(Yn, An+1/2,Ωn+1)

)
, δ :=

(
∂(Yn+1, An+1,Ωn+1)

∂(Yn+1, An+1/2,Ωn+1)

)

8
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and take the values

α =

 I 0 0
h
2
F ′(Yn) I 0

0 0 I

 , β =

I 0 0
0 I 0
0 h

2
I I

 ,

γ =

cay(Ωn+1) 0 dcayΩ(Ωn+1)Yn
0 I 0
0 0 I

 , δ =

 I 0 0
h
2
F ′(Yn+1) I 0

0 0 I

 .

The determinants of each Jacobian α, β and δ are obviously equal to one. For the
determinant of γ it holds

det(γ) = det
(

cay(Ωn+1)
)
.

Here, we know that the Cayley transform maps an element of the Lie algebra to
the Lie group. Thus, for Lie groups characterized through a determinant with
value one, it holds det

(
cay(Ωn+1)

)
= 1. This is valid, for example for the spe-

cial orthogonal or special unitary Lie groups SO(N) and SU(N,C) arising in the
Lattice QCD setting in sections 4 and 5.

Time-reversibility. A method

Φh : (Yn, An)→ (Yn+1, An+1) (25)

is time-reversible if it holds

Φh ◦ ρ ◦ Φh = ρ with ρ =

(
I 0
0 −I

)
. (26)

If the scheme is symmetric, i.e., Φh = Φ−1
−h, then time-reversibility is equivalent to

ρ ◦ Φh = Φ−h ◦ ρ. (27)

Symmetry for a scheme is given if exchanging the subscripts n ↔ n + 1 and step
size h↔ −h leaves the method unaltered. This property can easily be verified for
the Cayley-Leapfrog scheme described in equation (23). In addition, it can easily
be shown that this scheme is also time-reversible. We just compute ρ ◦Φh(Yn, An)
and Φ−h ◦ ρ(Yn, An) and compare these values. Starting with ρ ◦ Φh gives

ρ ◦ Φh(Yn, An) =

(
cay

(
h
2
(An + h

2
F (Yn))

)
Yn

−
(
An + h

2
F (Yn) + h

2
F
(

cay
(
h
2
(An + h

2
F (Yn))

)
Yn
)))> .

9
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The second equation leads to

Φ−h ◦ ρ(Yn, An) =

 cay
(
−h

2

(
−An − h

2
F (Yn)

))
Yn

−An − h
2
F (Yn)− h

2
F

(
cay
(
−h

2

(
−An − h

2
F (Yn)

))
Yn

)
>

.

Thus, this shows that the condition for time-reversibility (27) is fulfilled.

4. Lattice QCD and Geometric Integration

We apply the Störmer-Verlet scheme on the Hamiltonian equations of motion
occurring in Lattice Quantum Chromo Dynamics (LQCD), which investigates sub-
atomic particles via simulations on an equidistant lattice. More precisely, the sub-
atomic particles build the protons and neutrons inside the nucleus of an atom.
They are called quarks and gluons; the quarks are are represented as complex
vectors with a spin and color index whereas the gluons are modeled as elements
of the special unitary Lie group SU(3,C) which consists of complex and unitary
matrices of size 3 × 3 and determinant one. For the simulations, the quarks and
gluons are put on a 4-dimensional lattice such that the quarks are situated on
the sites of the lattice and the gluons on the interconnecting lines between them.
For our purposes of investigating the Cayley transform as local parameterization
in the most simple geometric integration method, it is sufficient to work with a
lattice gauge field of gluons which are also called link matrices or just links. In
our simulations, we consider just the gluons, the quarks are left out.

Simulations of lattice gauge fields aim at computing expectation values of some
operators using a Markov chain Monte Carlo method. Here, the Hybrid Monte
Carlo method alternating a Molecular Dynamics and an acceptance step is fre-
quently used. Inside the Molecular Dynamics step, a geometric integration scheme
Φ is applied on Hamiltonian equations of motion such that a new test configuration
is achieved. Afterwards, the probability for the new configuration is compared to
the probability of the old configuration in the acceptance step. This is based on
the difference of the Hamiltonians before and after a Molecular Dynamics step.
Finally, either the old or the new configuration is added to the Markov chain and
used as initial configuration for the next step. We focus on the Hamiltonian equa-
tions of motion inside the Molecular Dynamics step which have to be solved using a
time-reversible and volume-preserving numerical integration scheme as described
in [16]. Then, a Markov chain of configurations is produced according to the
probability distribution of the Wilson action SG. For the HMC, the Hamiltonian

10
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H([U ], [P ]) as well as its Hamiltonian equations of motion

U̇x,µ =
∂H([U ], [P ])

∂Px,µ
and Ṗx,µ = −∂H([U ], [P ])

∂Ux,µ
(28)

are of importance. The links [U ] represent the set of gluons whereas the momenta
[P ] are purely fictitious but traceless and hermitian matrices of size N ×N .

The Hamiltonian equations of motion occur for each pair (Ux,µ, Px,µ) at position
(x, µ) on the grid and read in general

U̇x,µ = iPx,µUx,µ and iṖx,µ = F (Ux,µ). (29)

Here, Ux,µ is an element of the Lie group SU(N,C), iPx,µ an element of the Lie
algebra su(N,C) and F a linear mapping from the Lie group to the Lie algebra.
(Compared to the formulation given in (28), the second equation is multiplied with
i to work in the Lie algebra.) The Hamiltonian equations of motion (29) have the
same shape as the coupled Lie group / Lie algebra problem (16). Thus, equation
(16a) is a differential equation on a Lie group and requires a solution in the Lie
group whereas equation (16b) is a differential equation on a Lie algebra and solved
there. The numerical schemes have to be time-reversible and volume-preserving
such that the Markov chain tends towards the correct equilibrium distribution.

The d-dimensional lattice itself consists on Ld grid points numbered from
x = 1, . . . , Ld and d dimensions labeled with the Greek letters µ, ν = 1, . . . , d
as explained, for example, in paragraph 2.1.1 of [14]. The links are situated on
the dLd interconnecting lines between the grid points. The indices (x, µ) denote
all links Ux,µ in direction µ. More precisely, Ux,µ denotes the link between the grid
points x and x+ aµ̂ with lattice distance a and unit vector µ̂ in direction µ. The
links are unitary such that a link in opposite direction −µ is denoted with U−1

x,µ.
Usually, d is set to d = 4 or smaller. In our example, we work with d = 2 such
that 2L2 coupled differential equations have to be solved in each step.

As mentioned before, the Hamiltonian has to be computed in the acceptance
step of the Hybrid Monte Carlo algorithm. The Hamiltonian

H([U ], [P ]) = EK([P ]) + SG([U ]) (30)

is composed of the Wilson gauge action

SG([U ]) =
∑
x

∑
µ6=ν

β

(
1− 1

2N
Tr
(
Ux,µν

))
(31)

11
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(with N being the dimension of the matrices of the Lie group SU(N,C) and
coupling constant β) and the kinetic energy

EK([P ]) =
1

2

∑
x,µ

Tr
(
P 2
x,µ

)
(32)

as defined in [15]. The kinetic energy is composed of all fictitious momenta [P ]
such that it has no actual physical meaning but it ensures that the Hamiltonian is a
conserved quantity. It is the sum of the traces of all squared momenta. Concerning
the Wilson action SG, the first sum runs over all possible plaquettes Ux,µν . The
plaquette

Ux,µν = Ux,µ · Ux+aµ̂,ν · U−1
x+aν̂,µ · U

−1
x,ν (33)

used in equation (31) can be visualized as the shortest closed loop starting and
ending at site x in the (µ, ν) plane and is a product of link matrices in clockwise or
anti-clockwise direction. The summation in equation (31) means that all plaquettes
at points x = 1, . . . , Ld corresponding to the different existing (µ, ν) planes for
µ, ν = 1, . . . , d are computed.

5. Numerical Results

The Cayley-Leapfrog method for Lie groups is tested for the Hamiltonian equa-
tions of motion occurring in lattice gauge theory. More precisely, the Wilson action
SG is simulated in an SU(2,C) Yang-Mills theory using the Hybrid Monte Carlo
method. So, we work with a pure gauge field which consists of gluons and fictitious
momenta of size 2× 2. The gluons are complex special matrices with determinant
one and the momenta Pxµ are traceless and hermitian. The simulations run on a
small 2-dimensional lattice with periodic boundary conditions using Matlab. The
lattice in our example has size 8× 8.

We compute subsequent configurations of lattice gauge fields using the Hybrid
Monte Carlo method. Here, the Hamiltonian equations of motion are computed
with a Störmer-Verlet method with varying step sizes h and trajectory length
τ = 1. This means, there are always n = τ/h integration steps performed before
each acceptance step. For the results shown here, 5000 trajectories are computed
and the first 1000 are left out for thermalization reasons. Usually, for such a
small lattice, the system is thermalized with less steps but we did not investigate
this fact and want to be on the safe side. At this place, we state the Hybrid
Monte Carlo algorithm and the details of the computation such that the results
are reproducible. The HMC works as follows:

Algorithm 2. HMC

12
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1. Start with a gauge field of links [U ]i.

2. Draw a field of random and fictitious momenta [P ]i.

3. Perform a Molecular Dynamics Step

([U ]i, [P ]i)→ ([U ]j, [P ]j) = Φ([U ]i, [P ]i) (34)

using a geometric integration scheme Φ.

4. Accept the new configuration with probability

min
(

1, exp(−∆H)
)
, ∆H = H([U ]j, [P ]j)−H([U ]i, [P ]i) (35)

5. Proceed with step 2.

Representation of the elements of the Configurations. For our simulations, we have
chosen a 2-dimensional lattice with gauge field [U ] consisting of elements of special
unitary Lie group SU(2,C). It is stated in section 1.4.4 of [15] that the matrices
Ux,µ, x = 1, . . . , L2, µ = 1, 2 can be build from the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(36)

which are traceless and hermitian such that it holds σj = σ†j for j = 1, 2, 3. Every
matrix U ∈ SU(2,C) can be represented by the basis {σ1, σ2, σ3, I2} as

U = i
3∑
j=1

xjσj + x4 · I2 (37)

with i =
√
−1, identity matrix I2 ∈ R2 and a vector x ∈ R4 with length ||x||2 = 1.

The values xj, j = 1, 2, 3, 4 are drawn as uniformly distributed random numbers
with xj ∈ [−1, 1]. The corresponding fictious momenta Px,µ, x = 1, . . . , L2, µ = 1, 2
are traceless and hermitian such that they can be build from a linear combination
of the Pauli matrices σ1, σ2, σ3 as

Px,µ =
i√
2

3∑
j=1

yjσj (38)

with Gaussian distributed values y ∈ R3. A multiplication with i leads to the
special unitary Lie algebra su(2,C).

13
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Molecular Dynamics Step. For the Molecular Dynamics step, the numerical scheme
Φ is applied on the Hamiltonian equations of motion

U̇x,µ = iPx,µUx,µ and iṖx,µ =
β

N
{Ux,µΣx,µ}TA. (39)

Here, Σx,µ is the so-called staples

Σx,µ = Ux+aµ̂,ν · U−1
x+aν̂,µ · U

−1
x,ν + U−1

x+a(µ̂−ν̂),ν · U
−1
x−aν̂,µ · Ux−aν̂,ν (40)

embracing the link Ux,µ and {·}TA denotes the traceless anti-hermitian operator

{M}TA :=
1

2
(M −MH)− 1

2N
Tr(M −MH) · I2. (41)

N is the size of the matrices, i.e. N = 2 and β the coupling constant chosen at
the beginning of the simulation. In our simulations, the value is set to β = 2.0.

Acceptance Step. For the acceptance step, the Hamiltonian is computed before
and after the numerical integration according to formula (30). If the new value Hj

is smaller than the old value Hi, the new configuration is directly accepted. Oth-
erwise, a uniformly distributed random number r ∈ [0, 1] is drawn and compared
to exp(−∆H). If r is larger than exp(−∆H), the new value is rejected and the
old one added to the Markov chain of configurations.

Numerical Results. We investigate the convergence as well as the computational
cost for the Cayley-Störmer-Verlet scheme compared to the standard Störmer-
Verlet scheme.

Concerning the convergence, we expect that the convergence behaviour of the
Cayley-Störmer-Verlet scheme is the same as for the standard Störmer-Verlet
method. Here, we investigate the mean absolute difference of the Hamiltonian
before and after one Molecular Dynamics step of both schemes including statis-
tical errors. The statistical errors also include auto-correlation effects which are
computed according to [22]. In figure 1, the convergence is shown. The numerical
error is of order O(h2) which implies a convergence order two for a single step as
expected. This test is more or less just a reference that the code works correctly.

Finally, we inspect the computational cost of both schemes. We show the
CPU time for one HMC integration of trajectory length τ = 1 versus the absolute
value of the mean energy difference ∆H. This means, we always compute τ/h
steps for one trajectory. The matrix exponential exp(A) is computed via the

14



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Step Size

10 -3 10 -2 10 -1 10 0

<
|
∆

 H
|>

10 -8

10 -6

10 -4

10 -2

10 0

exp

cay

h2

Figure 1: Convergence order of the standard Leapfrog (blue crosses) and the Cayley-Leapfrog
(red crosses) scheme

matrix decomposition method described by Moler and Van Loan in [23] based
on a similarity transformation A = UDU−1. Finally, the exponential function is
computed via exp(A) = U exp(D)U−1. For our example of the Lie group SU(2),
we conclude that the Störmer-Verlet scheme using the Cayley transformation is
≈ 4.5 times faster than the exponential function. We also checked the acceptance
rate of both methods: on this small lattice, it takes values of ≈ 100% for step sizes
lower than 0.1.

6. Conclusion

We examined the usage of the Cayley transform as local parameterization for
the numerical approximation of differential equations on Lie groups. In this con-
text, we focus on the geometric properties of the scheme and consider the Störmer-
Verlet scheme applied on Lie group / Lie algebra problems using the Cayley trans-
form. We prove that the Cayley-Störmer-Verlet scheme is time-reversible for any
quadratic Lie group and volume-preserving for Lie groups with determinant one.
Furthermore, we apply the scheme on the Hamiltonian equations of motion occur-
ring in the Hybrid Monte Carlo method used in Lattice QCD, i.e. in the matrix
Lie group SU(2,C). Concerning this Lie group, we see that the scheme works
better than the standard Störmer-Verlet scheme which is widely used in that field.
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Figure 2: Computational cost of the Cayley-Leapfrog (red crosses) and the standard Störmer-
Verlet scheme (blue crosses).

The Cayley-Störmer-Verlet scheme has two advantages. First, it hold for
SU(2,C) that the computation of the Cayley transform is approximately 4.5 times
faster than the most rapid tested matrix exponential function. Second, no model
error is introduced using this parameterization. Compared to the exponential
function, the only disadvantage is that the Cayley transform is just feasible for
quadratic Lie groups and that the inverse of I −Ω(t) must exist. Concerning Lat-
tice QCD, the disadvantage does not come into play since all differential equations
on Lie groups are modeled with special unitary Lie groups which are quadratic.

In a next step, the Cayley transform can be used for the development of higher-
order partitioned Munthe-Kaas Runge-Kutta methods. The usage of the standard
exponential function leads to difficulties because more and more Lie brackets have
to be included for higher convergence orders. This is prevented using the Cayley
transform. Concerning simulations in Lattice QCD, the Cayley transform can be
tested on larger lattices for more elaborated simulations. If it really saves as much
computing time as shown here, it would be very beneficial to replace the exponen-
tial function with the Cayley transform.
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