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Abstract

The modelling of sound propagation in the ocean by the solution of mode

parabolic equations is concisely discussed. Mode parabolic equations can be

obtained as the one-way approximation to horizontal refraction equations for

modal amplitudes. Their wide-angle capabilities depend on the order of the

Padé approximation of the involved pseudo-differential operators.

Various aspects of numerical solution methods for wide-angle mode parabolic

equations are considered in detail, including artificial domain truncation and

Cauchy initial data for the point source field approximation. The skills of the dis-

cussed numerical approaches are demonstrated in several important test cases,

including the problems of sound propagation in a penetrable wedge and in a sea

with an underwater canyon.
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1. Introduction

The representation of an acoustic field in a 3D shallow-water waveguide

in the form of a modal decomposition leads to 2D Helmholtz-type equations

for the modal amplitudes [1, 2, 3] (see Eq. (2) below). They are often called

horizontal refraction equations (HREs). Many techniques were developed for5

the solution of HREs since they appeared in the literature in 1970s for the

first time, including ray theory [2], parabolic approximation [4] and a variety of

analytical methods (see, e.g., [3]).

Parabolic approximations to HREs also known as mode parabolic equations

(MPEs) were first introduced in ocean acoustics in 1993 by Collins [4] and later10

independently also derived by Trofimov [5]. Although in the pioneering studies

mode coupling effects in the MPE propagation models were neglected, in later

works Abawi et al [6] and Trofimov et al [7] also proposed systems of MPEs

that take mode interaction into account. From [7] it is clear however that

narrow-angle MPEs with mode interaction terms fail to accurately describe15

important horizontal refraction effects. In principle, narrow-angle MPEs can

be solved numerically by exactly the same methods as Schrödinger equations

and (paraxial) parabolic equations from optics and radiophysics (e.g., by finite

differences, exponential time differencing, split-step Fourier and many other

methods [1]). In some important cases MPEs also admit analytical solutions by20

group-theoretical technique [8, 9, 10].

Although usually mode coupling is considered more important for propaga-

tion models in underwater acoustics than their wide-angle capabilities in the

horizontal plane, recent results [11] indicate that, on the contrary, the latter

feature is crucial for handling many practical problems. To our knowledge, un-25

til now little attention was paid in the literature to the derivation, validation

and numerical solution of wide-angle mode parabolic equations (WAMPEs). The

aim of this work is two-fold. Firstly, we provide a comprehensive description of

state-of-the-art numerical approaches that can be used for adiabatic WAMPE
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solution. This description covers such issues as very-wide-angle numerical prop-30

agators, artificial domain truncation, and the design of the initial condition for

the modelling of an omnidirectional point source. Secondly, we present a collec-

tion of numerical examples that demonstrate the performance of the numerical

methods and the accuracy of 3D acoustical fields simulation. In this study we

do not take mode interaction effects into account, and from our results one can35

conclude that in many cases they are of secondary importance as compared to

the horizontal refraction effects. Our work will be also used as a basis for the

development of WAMPE theory with mode interaction in future.

In our opinion, WAMPEs are a very useful alternative to omnivorous but

somewhat computationally inefficient three-dimensional parabolic equations (3D40

PEs). Formally, a system of WAMPEs can be considered a result of model or-

der reduction procedure [12] applied to a 3D PE, since the field in the vertical

dimension for which one normally needs at least several hundreds of discretiza-

tion points is represented by a combination of acoustical modes (usually no

more than a dozen is necessary). Thus, the computations can be performed45

much faster even for a coupled system of mode parabolic equations for the

modal amplitudes. The solution is simplified even further in the case of adia-

batic (uncoupled) WAMPEs (and very often this does not really affect accuracy

in any significant way).

WAMPEs can be solved both in polar [4] and in Cartesian [5] coordinate50

systems. We find it more practical to use the latter one, since on one hand

this somewhat better fits practical problems (see, e.g., [13, 14], and, on the

other hand, does not require any tessellation of the grid (increasing azimuthal

sampling at long range from the source) which is often needed for the solution

of wave propagation problems in polar coordinates.55

An inherent feature of MPEs is that they are always solved on unbounded

domains (by contrast to “normal”, or “vertical” parabolic equations in under-

water acoustics which are solved in a stack of layers that have ocean surface

as their upper boundary and, at least in theory, some lower boundary at the

sea bottom as well). Thus, a proper artificial truncation of the computational60
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domain in y-direction is an inevitable step of a numerical solution of such equa-

tions. This truncation approach should of course change the model as little

as possible. At artificial boundaries one has to set up perfectly matched layers

(PMLs) or transparent/absorbing boundary conditions (TBCs/ABCs). Another

important of the parabolic equations approach is the proper choice of the initial65

(Cauchy) data, also called a PE starter. In underwater acoustics starters are

usually designed in such a way that the PE solution approximates the solution

of the respective Helmholtz equation with a point source on the right-hand side.

All these issues are discussed in the present work in the context of MPEs.

The paper is organized as follows. In Section 2 we introduce horizontal re-70

fraction equations (HREs) and use them as a basis for the derivation of pseudo-

differential mode parabolic equations (PDMPEs) in Section 3. Next, in Sec-

tion 4 we turn to the numerical solution discussing first high-order Padé mode

parabolic equations in §4.1 and the split-step Padé (SSP) solution approach for

the PDMPE in §4.2. Later we describe the finite difference discretization of the75

operator L in §4.3. In Section 5 we discuss artificial truncation of the computa-

tional domain in the horizontal y-direction using PML (§5.1) or discrete TBCs

(§5.2). Next, in Section 6, we describe different initial data (’starters’) modelling

a point source that can be used to initialize the solution of a WAMPE. Finally,

in Section 7 we present some numerical examples to illustrate the accuracy80

of the WAMPE-based computational model in various propagation scenarios of

shallow-water acoustics and to compare the three starters discussed in Section 6.

We provide the code used in the numerical examples in this work as supple-

mentary material. High-order Padé MPEs solution scheme with fully-discrete

TBCs was implemented in C++ [15], while the SSP method implementation85

with PMLs for the artificial domain truncation was accomplished in MATLAB

[16]. The figures presented in §7 were obtained using a MATLAB version of

the SSP solution algorithm, but the C++ code produces absolutely identical

results.
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2. The Horizontal Refraction Equation90

The sound field p(x, y, z) produced by a time-harmonic point source in a

3D shallow-water waveguide is described by the three-dimensional Helmholtz

equation (where z denotes the depth, and x, y are the horizontal coordinates).

Its solution can be expressed in the form of the modal decomposition [1, 3]

p(x, y, z) =

J∑

j=1

Aj(x, y)ϕj(z, x, y), z > 0, (1)

where ϕj(z, x, y) are the modal functions [1] and Aj(x, y) denote the modal

amplitudes. Under the adiabatic assumption modal amplitudes satisfy the so-

called (uncoupled) horizontal refraction equation (HRE) [1, 2, 10]:

∂2Aj

∂x2
+

∂2Aj

∂y2
+ k2j (x, y)Aj = −ϕj(zs) δ(x)δ(y), j = 1, . . . J, (2)

where kj = kj(x, y) are the modal wavenumbers, and zs denotes the source

depth. The modal functions ϕj(z, x, y) and the respective horizontal wavenum-

bers kj(x, y) can be obtained from an acoustical spectral problem (we refer to

[1] for details).

3. The Pseudo-differential Mode Parabolic Equation95

In this section we deduce a pseudo-differential mode parabolic equation from

the HRE (2). To do so, we start with the formal factorization of the operator

in the HRE (2)

(
∂x + i

√
k2j + ∂2

y

)(
∂x − i

√
k2j + ∂2

y

)
Aj = 0 (3)

and focus on its solution consisting of the waves propagating in the positive

direction of the x-axis, i.e. we consider

(
∂x − i

√
k2j + ∂2

y

)
Aj = 0 . (4)

Introducing the reference modal eigenvalue kj,0 and cancelling out the principal

oscillation from Aj

Aj(x, y) = eikj,0xAj(x, y) ,
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we obtain the pseudo-differential mode parabolic equation (PDMPE)

∂Aj

∂x
= ikj,0

(√
1 + Lj − 1

)
Aj , (5)

where k2j,0Lj = ∂2
y + k2j − k2j,0.

While the one-way Helmholtz equation (5) formulated in terms of the formal

square-root Helmholtz operator, may be adequate for weakly range-dependent

environments (if the number of wavelengths travelled is not too large), the

inherently two-way (global) Helmholtz equation can be exactly reformulated, in100

a well-posed manner, in terms of one-way wave equations constructed in terms

of appropriate Dirichlet-to-Neumann (DtN) operators [17, 18].

4. Numerical solution and approximations of PDMPE

The numerical solution of the PDMPE (5) usually follows one of the two

approaches described in this section. In one of them (see §4.1 below) the square105

root operator
√
1 + Lj in the PDMPE (5) is replaced by a Padé approximation,

and therefore the PDMPE turns into a wide-angle Padé MPE. The technique

for its numerical solution is well-developed in the literature, and in the simplest

case it can be considered as a generalization of the Crank-Nicholson method

for the Schrödinger equation. The idea of this method was first outlined by110

Claerbout [19].

The second method, called split-step Padé (SSP), combines the accuracy of

higher-order Padé approximation with the efficiency of split-step approaches; it

is based on the approximation of the propagator of the evolutionary equation

(5) by a Padé series. This technique was first proposed by Collins [20] for the115

standard 2D PEs in underwater acoustics. It was also independently developed

by Avilov [21]. For an application of the SSP method in conjunction with TBCs

in electromagnetic wave propagation we refer the reader to [22].

Since both methods heavily rely on the Padé approximations of pseudo-

differential operators, we start with its definition. Consider a function F (λ)
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and its (l,m)-Padé approximant R(F, l,m)

F (λ) ≈ R(F, l,m)(λ) ≡
PF
l,m(λ)

QF
l,m(λ)

, (6)

where PF
l,m(λ) and QF

l,m(λ) are the polynomials of degrees l and m, respectively.

Their coefficients can be easily computed from a linear system that is obtained120

by equating the rational function PF
l,m(λ)/QF

l,m(λ) to the truncated Taylor series

of F (λ) containing l + m + 1 terms. A (l,m)-Padé approximant of a pseudo-

differential operator F (L) is formally defined as PF
l,m(L)/QF

l,m(L) (here L is

assumed to be a differential operator, e.g., Lj), cf. [23].

We remark that an alternative extremely effective and accurate rational op-125

erator approximation scheme for the square-root operator in the PDMPE (5) is

what is commonly referred to as the “rotated Padé” approximation [24]. This

approach is especially noteworthy for the relatively easy and accurate determi-

nation of the coefficients for very high order Padé approximation.

4.1. High-order Padé Mode Parabolic Equations130

Replacing the operator square root by its Padé approximant in the PDMPE (5)

we obtain a high-order Padé MPE (or simply wide-angle MPE)

∂Aj

∂x
= ikj,0

(
PF
l,m(Lj)

QF
l,m(Lj)

− 1

)
Aj . (7)

The algorithm of the coefficients computation in Eq. (7) is based on the

comparison of the Padé series with a truncated Taylor series. The details can

be found in [25] (see also our MATLAB code). These coefficients can be also

easily computed using a symbolic mathematical software, e.g. in the MAPLE

software package the function call135

l:=2; m:=2;

with(numapprox):pade(sqrt(1+Lj), Lj, [l,m]);

yields the desired values for the (l,m)-Padé approximant (6), cf. [26].

Now, the simplest way to solve wide-angle MPEs (WAMPEs) of the form

(7) is to use the standard second-order Crank-Nicholson discretization along
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the principal propagation direction (that is, in positive x-direction). Let us

introduce a uniform grid xn = nh with the step ∆x = h, and denote the values

of Aj at the grid nodes as An
j ∼ Aj(xn, y). Then, the WAMPE (7) can be

discretized in x-dreiction as

D+
h An

j = ikj,0

(
PF
l,m(Lj)

QF
l,m(Lj)

− 1

)
An+1/2

j , (8)

where F (·) = √·,

D+
h An =

An+1 −An

h
, An+1/2 =

An+1 +An

2

denote the usual forward difference operator and the midpoint average (here-

after, for brevity, we always omit in the sequel the mode number subscript in140

discretized equations).

After some algebraic calculations the semi-discretized WAMPE (8) can be

rewritten as

An+1 =
U(L)

W (L)
An , (9)

where

U(L) =
(
1− ik0

2
h
)
QF

l,m(L) +
ik0
2
hQF

l,m(L) ,

W (L) =
(
1 +

ik0
2
h
)
QF

l,m(L)− ik0
2
hQF

l,m(L) ,

are the polynomials in L of degree p = max(l,m). It is convenient to rewrite

their ratio U/W in Eq. (9) using a partial fraction expansion

An+1 =

(
1 +

p∑

s=1

asl,mL

1 + bsl,mL

)
An . (10)

This additive splitting form of equation (10) prevents powers of L and hence it

is convenient for a numerical implementation (discussed in the next Section 4.2)

and suitable for parallel computing.

4.2. The SSP Solution Approach for the PDMPE145

Another approach proposed by Collins [20] to solve the one-way Helmholtz

equations is called the split-step Padé (SSP) algorithm that also allows for a
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powerful parallel implementation. Within this approach the Padé approxima-

tion and the marching of the field in range are interchanged, i.e. , first the

PDMPE (5) is formally advanced in range and then the Padé approximation is

used for the respective propagator. On a small interval of length ∆x = h the

PDMPE (5) can be formally solved as

An+1 = exp
(
ikj,0h

(√
1 + L− 1

))
An . (11)

A (l,m)-Padé approximant of the exponential on the right-hand side of the

latter formula (knows as the propagator) can be written in the form of a partial

fraction expansion as

exp
(
ikj,0h

(√
1 + L− 1

))
≈ Ũ(L)

W̃ (L)
=

(
1 +

p∑

s=1

ãsl,mL

1 + b̃sl,mL

)
, (12)

and hence the solution of the PDMPE (5) can be advanced in x-direction by

An+1 =

(
1 +

p∑

s=1

ãsl,mL

1 + b̃sl,mL

)
An . (13)

Clearly, the polynomials Ũ(λ) and W̃ (λ) in Eq. (13) are different from U(λ)

and W (λ) in Eq. (9). The coefficients asl,m, bsl,m and ãsl,m, b̃sl,m from their

respective partial fraction expansions are different as well (we emphasize this

fact by tildes over the latter ones). At the same time, the marching schemes (9)

and (13) are obviously very similar, and they can be advanced in x-direction by150

the same simple method described below (hereafter we omit the tildes keeping

in mind that all discussed techniques are applicable to both forms).

We note that the computation of the coefficients asl,m, bsl,m is described in

[25], and we do not reproduce the details here (clearly, it is very close to the

standard partial fraction expansion method). It is also important to note that155

although in many cases the choice l = m works fairly well, an additional accuracy

for the treatment of evanescent modes can be gained by using the so-called θ-

propagator approach [27, 25]. Within this approach, the approximant Ũ/W̃ in

Eq. (12) is the weighted combination of the Padé expansions with l = m and

l = m− 1 (with weights θ and 1− θ, respectively).160
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A very useful implementation of SSP approach for the simulation of ra-

diowaves propagation is described in a recent paper [28].

4.3. The Finite-difference Discretization of L

Let us now introduce, for simplicity only, a uniform grid yq = qδ with step

size ∆y = δ in the transverse direction and replace the second derivative in L

by its standard finite-difference counterpart

D2
δAn+1,q =

An+1,q+1 − 2An+1,q +An+1,q−1

δ2
, q ∈ Z,

where An,q ∼ A(xn, yq). Then both Eq. (13) and Eq. (9) turn into a fully

discretized marching scheme of the additive form

An+1,q =

(
1 +

p∑

s=1

asl,mLδ

1 + bsl,mLδ

)
An,q , q ∈ Z, (14)

where k20Lδ = D2
δ + k2 − k20.

Next, we introduce the intermediate functions Bn+1,q
1 , . . . ,Bn+1,q

p−1 such that

(1 + bsl,mLδ)Bn+1,q
s = asl,m LδAn,q , s = 1, 2, . . . , p− 1, (15)

and separately for s = p

(1 + bpl,mLδ)Bn+1,q
p = An,q + (bpl,m + apl,m)LδAn,q . (16)

Here, Bn,q
s , s = 1, 2, . . . , p, can be computed efficiently by inverting tridiagonal

matrices (1 + bsl,mLδ). Thus we arrive finally at the following system

An+1,q =

p∑

s=1

Bn+1,q
s , q ∈ Z. (17)

4.4. The SSP Solution Approach for the discretized operator Lδ165

Here we briefly review an idea of Collins [20] who showed how to modifiy

the split-step Padé approach of Section 4.2 for the discretized operator Lδ. A

Taylor series yields formally

An(yq±1) = exp(±δ∂y)An(yq) = exp
(
±δk0(

√
L− (k/k0 − 1)

)
An(yq)

10



and for simplicity we set k = k0 and obtain the expression

Lδ = −k−2
0

eδk0

√
L − 2 + e−δk0

√
L

δ2
= −2

cosh
(
τ
√
L
)
− 1

τ2
, τ = δk0, (18)

which is well-known from the classical von-Neumann stability analysis. Now

solving equation (18) for L yields L as a function of Lδ:

L = Γ(Lδ) = τ−2 log2
[
1− τ2

2
Lδ +

√
(
1− τ2

2
Lδ

)2 − 1
]
, (19)

and thus we have

An+1,q = exp
(
ik0h

(√
1 + Γ(Lδ)− 1

))
An,q, n > 0. (20)

We proceed analogously to (12) and apply the Padé approximation

exp
{
ik0h

(√
1 + Γ(Lδ)− 1

)}
≈ 1 +

p∑

s=1

ãsl,mLδ

1 + b̃sl,mLδ

. (21)

Finally, inserting (21) into (20) we get the marching scheme

An+1,q = An,q +

p∑

s=1

ãsl,mLδ

1 + b̃sl,mLδ

An,q, n > 0. (22)

5. Artificial truncation of the computational domain

In practical problems of underwater acoustics the computational domain is

usually unbounded in the transverse direction to the acoustical track of interest.

Indeed, it represents an area of the sea with no physical walls at y = y0 and

y = yQ. Thus, in general it is necessary to suppress the reflections of waves at170

these artificial boundaries. There exist two main approaches for handling this

issue. In the first approach the domain is extended by two layers that absorb

outgoing waves (one on each side of the domain where the solution in sought).

The second approach consists in designing the artificial boundary conditions of

a special kind that couple the solution in the domain of interest to the outgoing-175

wave solution in the outer halfspace. Both methods have certain strengths and

weaknesses, and we discuss them in detail in the remainder of this section.
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It is important to note that all domain truncation methods considered here

require that the medium outside the computational domain is homogeneous.

Of course, this is not a realistic requirement for the real ocean, and in practice180

we simply have to choose the domain is such a way that the inhomogeneities

outside it do not affect the solution. For an artificial boundary condition for an

elastic sea bootom we refer the interested reader to [29].

5.1. Perfectly matching layers

In 1994 the perfectly matched layer method (PML) was pioneered by Bérenger185

[30] for Maxwell’s equations and Chew and Weedon [31] showed that the PML

can be regarded as a complex coordinate stretching. In the sequel, Levy [32]

adapted the PML method to parabolic wave equation models. Later in 2007,

Lu and Zhu [33] showed the effectiveness of computing an underwater acoustic

benchmark wedge problem with operator rational approximations to the one–190

way Helmholtz equation and a PML of 1/4 wavelength thickness.

Let us note that a brief construction of the PML for the Schrödinger equation

can be found in [34, Section 3.3] and this method is outlined in [35, Section 3.5]

Assume that the solution of Eq. (5) is sought on the domain (x, y) ∈ Ω =

[0, xmax] × [y0, yQ]. We increase the width of this stripe by ε from each side

and consider an initial-value problem for Eq. (5) on the extended domain Ω̄ =

[0, xmax]× [−y0 − ε, yQ + ε], where the operator L is replaced by LPML defined

as

k20LPML =
1

1 + iβ(y)

∂

∂y

1

1 + iβ(y)

∂

∂y
+ k2 − k20 ,

for a smooth function β(y) which is increasing in y on [yQ, yQ+ε], decreasing on

[y0 − ε, y0], and such that β(y) = 0 for y ∈ [y0, yQ]. Thus, the operator LPML195

coincides on [−y0, yQ] with L, and outside this interval the derivatives ∂
∂y in L

are replaced by 1
1+iβ(y)

∂
∂y .

Our numerical scheme implements the solution of an initial-boundary value

problem for Eq. (5) on the domain Ω̄ with homogeneous Dirichlet boundary

conditions of the form A|y=y0−ε = A|y=yQ+ε = 0 at the boundaries y = y0 − ε200

and y = yQ + ε of the PMLs. Inside the domain Ω, this solution accurately

12



approximates the solution of Eq. (5) on the unbounded domain −∞ < y <

∞, x ≥ 0 provided that β(y) increases sufficiently smoothly from zero to its

maximal value as we move deeper into the PML. In the examples presented

later in this study, we set β(y) = β0(y − yQ)
3/ε3 (with β0 = 5, ε = 300 m).205

It is also important that the replacement of the operator L with its PML

counterpart LPML is equivalent to the following coordinates transformation

ỹ = y + i

∫ y

0

β(y) dy . (23)

This property is used later for matching the PML with the non-localized initial

conditions, see Eq. (36).

5.2. Transparent boundary conditions

Specific boundary conditions that suppress wave reflection at an artificial

boundary are called transparent boundary conditions (TBCs). They were first210

independently developed by Baskakov and Popov [36] and Papadakis [37] for

narrow-angle parabolic equation. Later on, Popov was also first to derive TBCs

for simplest wide-angle PEs [38]. In all these pioneering works TBCs were

obtained in the continuous form.

While such TBCs fully solve the problem of cutting off the horizontal y-215

domain for the differential equation, their adequate numerical discretization is

far from trivial [39]. In fact, all available discretizations are less accurate than

the discretized half-space problem and they render the overall numerical scheme

only conditionally stable [40, 41]. Papadakis [37] derived in 1994 a TBC for the

one-way Helmholtz equation that was later (in a similar formulation) imple-220

mented by Brooke and Thomson [42] and exposed computational instabilities.

Also in 2000, [43] Friese, Schmidt and Yevick proposed semi-discrete TBCs

for a fourth-order wide-angle approximation of the two-dimensional Helmholtz

equation that yielded an unconditionally stable propagation method. This ap-

proach, being discrete in the propagation direction, was later generalized in [44]225

for arbitrary Padé approximations.
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Fully-discrete TBCs for narrow-angle PEs were developed by Arnold and

Ehrhardt [39] (see also a review article [35]). These TBCs fully eliminate spu-

rious reflections at artificial boundaries and lead to the unconditionally stable

numerical scheme Later the theory was also extended to wide-angle Padé PEs230

in [45, 46, 26, 47].

Here we construct and analyze the discrete transparent boundary conditions

(TBCs) for the split-step Padé algorithm for the PDMPE. The discrete TBCs

are obtained by Z–transformation of the numerical schemes for q ≤ 0 or q ≥ Q.

In the sequel we make the basic assumption that the initial data A0 ∼235

A(0, y), is confined in the computational domain y0 < y < yQ, i.e. suppA(0, y) ⊂
(y0, yQ). Approaches to overcome this restriction, e.g. when using the self-starter

(see §6.2) can be found in [48, 46].

We consider the system (15)–(16)

asl,m LδAn,q − bsl,m LδBn+1,q
s = Bn+1,q

s , s = 1, 2, . . . , p− 1,

(bpl,m + apl,m)LδAn,q − bpl,m Lδ Bn+1,q
p = Bn+1,q

p −An,q.

and recalling that k20Lδ = D2
δ + k2 − k20 we arrive at

asl,m D2
δAn,q − bsl,m D2

δBn+1,q
s

= k20Bn+1,q
s + bsl,m(k2 − k20)Bn+1,q

s − asl,m(k2 − k20)An,q

for s = 1, 2, . . . , p− 1 and

(bpl,m + apl,m)D2
δAn,q − bpl,mD2

δ Bn+1,q
p

= k20Bn+1,q
p − k20An,q + bpl,m(k2 − k20)Bn+1,q

p − (bpl,m + apl,m)(k2 − k20)An,q.

Without loss of generality we focus on the case of the right discrete TBC at

q = Q. To solve this system we use the Z-transformation with respect to x

Z{An,q} = Âq(ζ) :=

∞∑

n=0

ζ−nAn,q, ζ ∈ C, |ζ| > RÂq , (24)

where RÂq denotes the convergence radius of this Laurent series. Note that

we denoted in (24) the transformation variable with ζ in order keep z for the
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depth variable. We apply the Z-transformation (24) which yields the following

Z-transformed system for the right exterior problem q ≥ Q

asl,m D2
δÂq − ζbsl,m D2

δ B̂q
s = ζhk20B̂q

s + ζbsl,m(k2 − k20) B̂q
s − asl,m(k2 − k20) Âq

for s = 1, 2, . . . , p− 1 and

(bpl,m + apl,m)D2
δÂq − ζbpl,mD2

δ B̂q
p

= ζk20B̂q
p − k20Âq + ζbpl,m(k2 − k20) B̂q

p − (bpl,m + apl,m)(k2 − k20) Âq.

We rewrite this transformed system above in matrix notation as

XD2
δψ̂q = Yψ̂q, q ≥ Q, (25)

where we defined the vector ψ̂q = (Âq, B̂q
1, . . . , B̂q

p)
⊤ ∈ C

p+1 and the complex

(p+ 1)× (p+ 1)-matrices

X :=




a1l,m −ζb1l,m
...

. . .

ap−1
l,m −ζbp−1

l,m

bpl,m + apl,m . . . . . . −ζbpl,m




and

Y :=




−a1
l,m

(k2
−k2

0) ζhk2
0+ζb1

l,m
(k2

−k2
0)

...
. . .

−a
p−1
l,m

(k2
−k2

0) ζhk2
0+ζb

p−1
l,m

(k2
−k2

0)

−k2
0−(b

p
l,m

+a
p
l,m

)(k2
−k2

0) ζk2
0+ζb

p
l,m

(k2
−k2

0)




.

The remaining part of the construction follows [26]. By introducing ξ̂q := ∆−
h ψ̂q

we rewrite (25) as a system of 2(p+ 1) first order difference equations


0 X

I −I




︸ ︷︷ ︸
A

∆+
h


ψ̂q

ξ̂q


 =


Y 0

0 I




︸ ︷︷ ︸
B


ψ̂q

ξ̂q


 ,
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i.e.

∆+

h ψ̂q

∆+
h ξ̂q


 = A−1B


ψ̂q

ξ̂q


 or


ψ̂q+1

ξ̂q+1


 = (A−1B+ I)


ψ̂q

ξ̂q


 , q ≥ Q .

We split the Jordan form J = diag(J1,J2) of A
−1B+ I , J1 ∈ C

(p+1)×(p+1)

containing the Jordan blocks corresponding to solutions decaying for q → ∞ and

J2 ∈ C
(p+1)×(p+1) those which increase. With the matrix of left eigenvectors

P−1 =
(
P1 P2

P3 P4

)
the equation

P−1


ψ̂q+1

ξ̂q+1


 = P−1(A−1B+ I)


ψ̂q

ξ̂q


 = P−1P


J1 0

0 J2




P1 P2

P3 P4




ψ̂q

ξ̂q




=


J1 0

0 J2




P1ψ̂q +P2ξ̂q

P3ψ̂q +P4ξ̂q




holds and thus the transformed right discrete TBC reads

P3ψ̂Q +P4ξ̂Q = 0.

For a regular matrix P4 the Z–transformed right discrete TBC can be written

in DtN form

∆−
h ψ̂Q = D̂ψ̂Q ,

where D̂ = −(P4)
−1P3. Finally, an inverse Z-transformation yields the discrete

right TBC

ψn+1
Q −ψn+1

Q−1 −D0ψn+1
Q =

n∑

l=1

Dn+1−lψl
Q . (26)

for the vector ψn
q = (An,q,Bn,q

1 , . . . ,Bn,q
p )⊤ ∈ C

p+1, q = Q − 1, Q, with the

convolution coefficients given by the Cauchy integral formula

Dn = Z−1{D̂(z)} =
τn

2π

2π∫

0

D̂(τeiϕ)einϕ dϕ, n ∈ Z0, τ > 0.

Since this inverse Z-transformation cannot be done explicitly, we use a numerical

inversion technique based on FFT (cf. [49]); details of this routine (especially240

the choice of the inversion radius τ) can be found in [50]; see also [47] for another

inversion approach.

16



6. Initial conditions for WAMPEs

In this section we describe starters (Cauchy data) that can be used to ini-

tialize the solution of a WAMPE at x = 0. In underwater acoustics starters are245

usually constructed in such a way that the resulting WAMPE solution approx-

imates the field produced by a point source. Technically, the approaches for

initializing standard wide-angle PEs (see, e.g., [1]) can be also used for MPEs,

with the exception of modal starters. In this section we discuss advantages and

shortcomings of different initial conditions (ICs) for WAMPEs.250

6.1. Greene’s starter

The Greene’s starter originally developed for a rational-linear Padé PE [1,

51] is probably the simplest initial condition for WAMPEs to implement. For

equation
∂Aj

∂x
= ikj,0

α0 + α1Lj

1 + cLj
Aj . (27)

it is given by the formula

Aj(0, y) =
ϕj(zs)

2
√
π

(
1.4467− 0.8402k2j,0y

2
)
e−

k2
j,0y2

1.5256 . (28)

It provides sufficient aperture to solve most practical problems of underwater

acoustics. Obviously, it is strongly localized in a relatively small vicinity of

y = 0, and therefore it can be easily used both with PMLs and TBCs. On

the other hand, it also sets a restriction on the grid steps in both x and y255

direction. If the step size δ is too large, then the starter is not smooth enough,

and the resulting oscillations can spoil the solution. We found that 15 points per

half-period of the horizontal wavelength 2π/kj,0 is usually sufficient to obtain

an accurate solution, and therefore 15kj,0δ < π (i.e., δ should be less that

|0.2/kj,0|).260

Although in principle high-order Padé MPEs admit much larger steps h in

range x than required by the usual wavelength-based rule (e.g., 10–20 points per

wavelength), and they can be even larger in the SSP method, the starter (28)

poses additional restriction on the value of h due to the non-physical oscillations

in its sidelobes.265
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6.2. Self-starter

The self-starter approach was originally developed 1992 by Collins [52]. It

can be used both for wide-angle PEs and in the SSP solution procedure. In this

subsection we show how this self-starter can be used with MPEs and explain

how it can be combined with PMLs.270

In the description of the self-starter it is more convenient to use Eq. (5) that

can be also rewritten as

∂xA = ik0
(√

1 + L− 1
)
A , (29)

where we again omit the subscript j numbering the vertical modes. Let us

assume for the moment that the medium properties in Eq. (5) are independent

on x, i.e., that k = k(y).

Consider a complete system of eigenfunctions {fν(y)} of the operator ∂2
y+k2

on the interval (−∞,∞) with their respective eigenvalues λ2
ν . The solution of

the horizontal refraction equation (2) for x > 0 in this case can be written as

A(x, y) =
iϕ(zs)

2

∫
1

λν
fν(0)fν(y) e

iλνx dν . (30)

It can be easily seen that the solution (30) at x = 0 reduces to the function

A0(y) ≡ A(0, y) =
iϕ(zs)

2

∫
1

λν
fν(0)fν(y) dν ,

that satisfies a one-dimensional boundary-value problem (BVP) for the equation

√
∂2
y + k2A0 =

iϕ(zs)

2
δ(y)

with the radiation boundary conditions at infinity. This BVP does not admit

direct numerical solution k = k(y). Instead, indirect approach of Collins [52]

can be adapted to the case of MPEs. The algorithm consists of three steps, and

the first one is the solution of an auxiliary BVP

(1 + L)Φ =
iϕ(zs)

2k20
δ(y) , (31)

that can be easily obtained numerically (using matching conditions for the delta

function δ(y) at y = 0). In the case of constant k(y) = k0, the BVP (31)
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possesses a simple analytical solution

Φ0(y) =
ϕ(zs)

4
eik0|y| , (32)

with the discontinuous derivative at y = 0. In the case of arbitrary k(y) the

solution of (31) can be expressed in terms of eigenfunctions {fν(y)}

Φ0(y) =
iϕ(zs)

2

∫
1

λ2
ν

fν(0)fν(y)dν δ(y) . (33)

The second step consists in advancing Φ(y) short range to x = x0 using either

the scheme (10) or its SSP counterpart (13). As a result, we obtain

Φx0
(y) =

iϕ(zs)

2

∫
1

λ2
ν

eiλνx0fν(0)fν(y)dν δ(y) . (34)

From Eq. (30) it is clear, that modal amplitude A(x0, y) can be computed from

Φx0
(y) by applying the operator k0

√
1 + L, i.e.,

A(x0, y) = k0
√
1 + LΦx0(y) .

At this point the operator
√
1 + L can be replaced by its Padé approximation

(in a product form)
√
1 + L =

p∏

s=1

1 + csL

1 + bsL
. (35)

Using the operator approximation in Eq. (35) we can easily compute A(x0, y)

from Φx0
(y) and use it as a starter for a WAMPE at x = x0.275

Although this approach allows to set up a starter with arbitrarily large angu-

lar aperture in the horizontal plane, it also brings some spurious oscillations into

the numerical solutions since advancing of Φ0 to the range x = x0 involves the

computation of its second derivative with respect to y (and even its first deriva-

tive is not continuous). However, self-starter works reasonably well provided280

that the the steps h and δ are sufficiently small (see examples in §7).
Let us also note, that the initial condition at x = 0 obtained from the BVP

(31) does not have compact support. This is also clear from Eq. (32). Thus,

it is inefficient to use it in a combination with the TBCs, and the PML option
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should be chosen for this type of starter. The coordinate transformation (23)

allows us to adapt Eq. (32) for a solver with PMLs, e.g., for y > 0 we have

Φ0(y) =
ϕ(zs)

4
eik0ye−k0

∫
y

0
β(y)dy , (36)

where the last factor is responsible for the decay of Φ0(y) inside the PMLs.

Since the numerical solution of the BVP (31) must also start with an analytical

computation of Φ0(y) on the intervals [y0 − ε, y0] and [yQ, yQ + ε], it is not

difficult to extend the correction associated with PML to this case.285

For the cubic PML attenuation profile from §5.1 Eq. (36) turns into

Φ0(y) =
ϕ(zs)

4
eik0ye−

k0β0
4ε3

(y−yQ)4 (37)

for y > yQ.

6.3. A ray-based starter for WAMPEs

In this subsection we propose a new starter for WAMPEs (that can be also

used for standard PEs) which is based on the ray theory. The very idea is

very simple and natural for the considered problem setting, as the computa-290

tional domains for MPEs are typically unbounded in y (by contrast to the case

of standard PEs solved in r, z coordinates on the domain which is typically

bounded in z). For such domains and slowly varying environmental parameters

the ray-theoretical solution is highly accurate and easy to compute. One might

argue that the need in PEs is questionable when the ray theory can be success-295

fully applied. In our opinion, however, in practical problems PEs offers more

advantages due to their robustness and their omnivorous nature. The solution

algorithms for PEs are straightforward, and typical issues that cripple any ray-

based code, including eigenray identification problems, caustics and ray chaos,

never emerge. All these difficulties however can be ignored when computing the300

ray solution at ranges of several tens of meters from the source.

Assume that for x < x0 (where x0 is comparable to the wavelength) the

medium properties do not depend on x, i.e., k = k(y). The ray-theoretical

representation [1] of the solution of Eq. (2) has the form

A(x, y) = M(x, y)eik0S(x,y) + o(1/k0) , (38)
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where M(x, y) in the zeroth-order amplitude and S(x, y) is the phase (this is

an asymptotic of the exact solution for large k0). The phase S satisfies the

Hamilton-Jacobi equation

(∂xS)
2 + (∂yS)

2 = n(x, y) , (39)

where n(x, y) ≡ k(x, y)/k0 is the horizontal refractive index. After solving (39)

the amplitude M can be obtained from the transfer equation of the form

2(∂xS∂xM + ∂yS∂yM) + (∂2
xS + ∂2

yS)M = 0 . (40)

Both Eq. (39) and Eq. (40) can be solved along the characteristics determined

from the Hamiltonian system

dx

dℓ
=

1

n
ξ ,

dξ

dℓ
= ∂xn ,

dy

dℓ
=

1

n
η ,

dη

dℓ
= ∂yn ,

(41)

where ℓ denotes a natural parameter (i.e., the arclength along the characteris-

tics), and ξ, η are conjugate variables to (x, y) (the momenta). The projections

of the characteristics (41) onto the coordinate plane (x, y) are called horizontal

rays corresponding to the vertical mode under consideration (the one for which

we are computing the amplitude A = Aj). Let us note that the ray-theoretical

representation of modal amplitudes was first used by Burridge and Weinberg [2].

The initial condition for the system (41) reads

x(0) = 0 , ξ(0) = cosα ,

y(0) = 0 , η(0) = sinα ,
(42)

where the the rays family is parametrized by the take-off angle α.

After solving Eq. (41) we can compute the phase along the rays as

S(ℓ) = S(0) +

∫ ℓ

0

n(ℓ) dℓ.

The amplitude M(ℓ) in the case n = n(y) can be expressed as

M(ℓ) =
M0

n(ℓ)

√
cosα

∂y(ℓ, α)/∂α
, (43)
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where M0 denotes the amplitude at 1m from the source.

Since we need the ray-based solution only for small values of x < x0, in

most cases the starter is accurate enough even if we use the rays computed for

a horizontally homogeneous medium with k(x, y) = k0 (n = 1). In this case we

have

x(ℓ) = ℓ cosα , y(ℓ) = ℓ sinα , S(ℓ) = ℓ , M(ℓ) =
M0√
r
, (44)

whereM0 = eiπ/4/
√
8πk0 (the amplitude normalisation factorM0 is chosen to fit

the analytical solution of Eq. (2) in the homogeneous medium). Obviously, the305

ray-based starter can also be used for standard PEs involving the z coordinate

(including 3D PEs). However this approach should be done carefully, especially

in the low-frequency regime (when the wavelength is comparable with the water

depth), and in most cases the numerical solution of the system (41) will be

required.310

For a ray-based starter one can explicitly specify the required aperture by

suitably defining the interval of the values of the take-off angle α. Outside the

interval a tapering function should be used for the amplitudes in order to make

the starter smooth.

7. Numerical Examples315

In this section we present a collection of computational examples that il-

lustrate the accuracy of the WAMPE-based computational model in various

propagation scenarios of shallow-water acoustics. In the first example we con-

sider the Pekeris waveguide (i.e., the one with flat horizontal bottom) in order

to illustrate the capabilities of the three starters discussed above (see §6). In320

the second example we handle a standard 3D wedge problem which is routinely

used for the validation of 3D sound propagation models. In the third example

we study the problem where the acoustical field is focused by an underwater

canyon.
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7.1. Shallow-water waveguide with flat bottom: different starters325

In the first example we consider the sound propagation in a shallow-water

waveguide with a flat horizontal bottom (i.e., the sea depth is constant, also

called Pekeris problem). For such a waveguide analytical expressions for the

modal amplitudes are well-known, and the modal expansion (1) has the form

p(x, y, z) =
i

4

∞∑

j=1

ϕj(zs)ϕj(z)H
(1)
0

(
kj
√
x2 + y2

)
, (45)

where H
(1)
0 denotes the zeroth-order Hankel function of the first kind.

In our example the point source with frequency f = 25 Hz is located at

x = y = 0, zs = 100m in a 200m deep shallow sea. The acoustic field is

computed at the receiver depth of zr = 30m.

The sound speed cw and density ρw in the sea water and the respective

parameters cb and ρb in the bottom have the following values

cw = 1500 m/s , ρw = 1 g/cm
3
, cb = 1700 m/s , ρb = 1.5 g/cm

3
.

For the given frequency and the given set of the parameters the waveguide sup-330

ports 3 trapped (waterborne) modes, that are taken into account when comput-

ing acoustical field in this section (continuous spectrum modes are neglected).

The modal wavenumbers kj and their respective eigenfunctions ϕj(z) were

precomputed by the CAMBALA code [53] based on the finite-difference dis-

cretization of acoustical spectral problem. Note that the results presented below335

were obtained by the SSP method and PMLs for the artificial domain truncation

(although in all considered examples the codes based on the WAMPE solution

technique and the use of discrete TBCs instead of the PML produce absolutely

identical results).

A better understanding of the performance of considered starters can be340

provided by a direct comparison of the resulting solution at some range from

the source r =
√
x2 + y2 = r0 = const. Such comparison is presented in Fig. 2

for r = r0 = 3 km. Sound pressure level at this range is can be considered as a

function of the polar angle α on the interval [−π/2, π/2]. Due to the problem
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Figure 1: Contour plots of acoustical field magnitude |P (x, y, z = zr)| (in dB re 1 m from the

source).

symmetry, the analytical solution at r = r0 is constant, while the WAMPE345

solutions exhibit some inaccuracies for sufficiently large values of α. Firstly,

one can see that at this relatively small range the Greene’s starter does not

properly excite the waves with grazing angles |α| > 30◦ (the inaccuracy is more

than 1 dB). The wide-angle capabilities of the ray-based starter are clearly

much better, and the resulting solution is very smooth. The propagation angles350

α up to 75◦ can be handled by this starter with the error of no more than

1dB. Theoretically, the self-starter ensures this accuracy for even larger aperture

|α| < 80◦. However, this can be achieved only by using very small step in range

h ≤ 2 m due to the presence of spurious oscillations clearly visible in Fig. 2. For

larger steps the solution becomes unstable and can unexpectedly blow up for a355
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certain mode thus totally spoiling the computed acoustical field. By contrast,

the computations with the ray-based IC are much more robust, and the accuracy

of 1dB within the interval |α| < 75◦ is maintained up to h = 250 m. From this
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−60
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−57

−56
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|,
 d

B
 r

e
 1

 m

 

 

analytical solution

self−starter

Greene starter

ray−based starter

Figure 2: Sound pressure (1 dB re 1 m) as a function of polar angle α at r = r0 = 3 km

computed using various starters.

example we conclude that the ray-based starter is apparently the best option

for the solution of WAMPEs, and hence it is used in all remaining examples in360

this study.

Note that if the acoustical field is computed in a stripe of a fixed width of

few kilometres then the results at long range from the source will be identical

for all starters. However, spurious oscillations triggered by the starter can also

propagate long distances and eventually spoil the solution at some unexpected365

point.

7.2. The penetrable wedge: 3D ASA benchmark problem

In the second example we consider sound propagation in a coastal wedge

formed by the sea surface and the sloping penetrable bottom (see Fig. 3). This

is a standard test problem which is used for the validation of 3D sound propa-

gation models in underwater acoustics. All environment and source parameters

are identical to those from the previous example with the exception for bottom

relief that is described by the formula

h(y) = h0 + tan(γ)y ,
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Figure 3: Wedge-like shallow-water waveguide. The y axis is aligned along the bottom slope.
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Figure 4: Contour plot of acoustical field (in dB re 1 m) produced by a point source in the

coastal wedge (at the depth z = zr = 30 m).

where h0 = 200 m is the water depth at the source location, and γ is the bottom

slope angle. In this example we set γ = 2.86◦, so that at y = −4 km the depth

h(y) = 0 (i.e., y = −4 km represents the coastline). It is known that strong370

horizontal refraction effects can be observed in this environment, especially for

acoustical tracks aligned along the x axis. If the receiver is located at the same

isobath as the source, then for each vertical mode there exist two horizontal rays

connecting the former and the latter (these rays have the form of hyperbolae).

In [7] it was shown that narrow-angle MPE is not capable to properly take375

the horizontal refraction effects in this problem into account. Thus, involved

propagation angles can be covered only by the aperture of a WAMPE. Note that

in this problem 3 waterborne modes are excited by the source, and their cut-off

depths are reached one by one by acoustical waves propagating upslope. It is

widely accepted in acoustical community that this problem cannot be handled380
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by any adiabatic propagation model.

Our goal is to compute acoustical field at the depth zr = 30 m, and the

standard way of benchmarking of various propagation models is to compare

the results along x axis (i.e., at y = 0). There are several ways to produce a

reference solution for this problem, and in this study we use the so-called source385

images method [54].

The contour plot of acoustical field P (x, y, zr) (in dB re 1 m) obtained using

the WAMPE by the SSP method is shown in Fig. 4. Its comparison with a

source images solution is presented in Fig. 5 (as a function of y at x = 10 km

and x = 25 km) and Fig. 6 (as a function of x at y = 0). The solid curve in Fig. 6390

corresponds to the WAMPE solution for the step h = 20 m, but it can be also

accurately computed with the range steps up to 1000 m (the markers in Fig. 6

represent the solution obtained with h = 500 m. Such step sizes show that SSP

technique is extremely computationally efficient, and the theoretical limitations

on the step size are posed not by the numerical method but rather by the media395

variations (typically media parameters, e.g., the depth have significant variation

over the horizontal steps of this order).

Note that although our model does not take mode interaction into account,

the comparison in Fig. 6 and Fig. 5 highlight excellent agreement of WAMPE

computation results with those obtained by the source images methods (that400

fully takes mode interaction into account). This somewhat unexpected result

confirms that in the wedge problem horizontal refraction plays much more im-

portant role than the mode coupling effects.

7.3. Shallow Sea with Underwater Canyon

In the third example we consider sound propagation in a shallow sea with

an underwater canyon (see schematic in Fig. 7). The bottom relief is described

by the formula

z = h(y) = h0 +∆h sech2(σy) , (46)

where we set h0 = 20 m, ∆h = 15 m, σ = 7 · 10−4 m−1 (i.e., the depth of the405

canyon is 15 m, and its halfwidth is about 2.5 km).
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Figure 5: Acoustical field in the ASA wedge at z = zr = 30 m as a function of y at x = 10 km

(a) and x = 25 km (b).
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Figure 6: Acoustical field (in dB re 1 m) in the wedge as a function of x for y = 0, z = zr =

30 m.

Figure 7: Schematic illustration of an underwater canyon.
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Figure 8: Acoustical field (in dB re 1 m from the source) in the shallow sea with underwater

canyon at z = zs = 10 m as a function of x, y. The field is computed by the virtual sources

technique (a) and by solving WAMPE (b).

In this scenario horizontal refraction manifests in the focusing of acoustical

energy in the water column over the canyon. The field in the canyon area can

be represented in the form of a decomposition over specific horizontal modes

studied in [3].410

Let us assume that the source of the frequency f = 150 Hz is located at

the depth zs = 10 m over the canyon axis (i.e., at y = 0). For these values of
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Figure 9: Acoustical field (in dB re 1 m) a shallow sea with underwater canyon as a function

of x for y = 0, z = zr = 30 m (i.e., along the canyon axis, where the focusing takes place).

the parameters the waveguide supports 4 trapped (waterborne) modes near the

channel axis y = 0 and only two trapped modes outside the canyon (for large

y). Thus we can expect strong mode coupling effects associated with upslope415

propagation of acoustical waves from the canyon axis towards its periphery. On

the other hand we should expect focusing of acoustical energy over the canyon

caused by the horizontal refraction.

Acoustical field P (x, y, zs) (in dB re 1 m) as a function of the horizontal

coordinates x, y is shown in Fig. 8(b). The reference solution for this case is420

obtained by the virtual sources approach [55] (see Fig. 8(a)). Just as in the

previous example, despite strong mode coupling the fields computed by the two

methods look almost identical.

A more detailed comparison is presented in Fig. 9 where acoustical pressure

along the channel axis y = 0 is plotted as a function of longitudinal coordinate425

x. In this figure small discrepancies caused by the absence of mode coupling in

the MPE simulation are noticeable, although the accuracy of the latter is still

sufficient for most practical applications of underwater acoustics.
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8. Conclusion

In this study we systematically develop numerical techniques for the mod-430

elling of adiabatic sound propagation. Our approach is based on mode parabolic

equations that are capable of simulating horizontal wide-angle refraction effects.

These equations are obtained by the Padé approximation of the PDMPE (5) or

its propagator (11) (in the SSP approach).

Although the idea to use Padé approximations for the approximation of435

pseudo-differential operators is by no means new, it has not been systematically

discussed in the context of MPEs in the literature until now. Our study shows

that adiabatic WAMPEs allow accurate modelling of acoustical field even in the

cases when strong (or resonant [7]) mode coupling is expected. At the same

time, it is very important that MPEs described in this work have large aperture440

in the horizontal plane. This feature is crucial, e.g., for the wedge problem

(see §7.2). Now the standard reference solution of the ASA wedge problem by

the source images method can be replaced by a much more efficient WAMPE

solution [16, 15] implemented both in MATLAB and C++.

We also provide a comprehensive treatment of various issues related to the445

numerical solution of WAMPEs, especially the problems of artificial domain

truncation and the proper design of a starter. In particular, it is shown that in

most cases the ray-based initial condition proposed here is the most robust and

efficient way to simulate the field produced by a point source in the WAMPE

framework.450

The inability to take mode interaction effects into account still remains the

main shortcoming of adiabatic MPEs, and our main challenge for the future work

is to overcome it. However, as can be seen from the examples presented here,

even adiabatic MPEs can produce highly accurate solutions for the problems

where the mode interaction seems to play an important role (see §7.2 and §7.3).455

It is also obvious that MPEs are in general the fastest and most robust approach

for the simulation of acoustical fields in 3D ocean environments.
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