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Abstract. In the semantic segmentation of street scenes, the reli-
ability of a prediction is of highest interest. The assessment of neu-
ral networks by means of uncertainties is a common ansatz to pre-
vent safety issues. As in online applications like automated driving,
a video stream of images is available, we present a time-dynamical
approach to investigate uncertainties and assess the prediction qual-
ity of neural networks. To this end, we track segments over time and
gather aggregated metrics per segment, e.g. mean dispersion metrics
derived from the softmax output and segment sizes. Due to identi-
fying segments over consecutive frames, we obtain time series of
metrics from which we assess prediction quality. We do so by ei-
ther classifying between intersection over union (IoU ) = 0 and
IoU > 0 (meta classification) or predicting the IoU directly (meta
regression). In our tests, we analyze the influence of the length of
the time series on the predictive power of metrics and study different
models for meta classification and regression. We use two publicly
available DeepLabv3+ networks as well as two street scene datasets,
i.e., VIPER as a synthetic one and KITTI based on real data. We
achieve classification accuracies of up to 81.20% and AUROC val-
ues of up to 88.68% for the task of meta classification. For meta
regression we obtain R2 values of up to 87.51%. We show that these
results yield improvements compared to other approaches.

1 Introduction
Semantic segmentation, i.e., the pixel-wise classification image
content, is an important tool for scene understanding. In recent
years, neural networks have demonstrated outstanding performance
for this task. In safety relevant applications like automated driving
[26] and medical imaging [48], the reliability of predictions and thus
uncertainty quantification is of highest interest. While most works
focus on uncertainty quantification for single frames, there is often
video data available. In this work, we investigate uncertainties taking
the temporal information into account. To this end, we track objects
over time and construct metrics that express the model’s uncertainty.

Uncertainty measures. A very important type of uncertainty
is the model uncertainty resulting from the fact that the ideal
parameters are unknown and have to be estimated from data.
Bayesian models are one possibility to consider these uncertainties
[35]. Therefore, different frameworks based on variational approxi-
mations for Bayesian inference exist [3, 16]. Recently, Monte-Carlo
(MC) Dropout [19] as approximation to Bayesian inference has
aroused a lot of interest. In classification tasks, the uncertainty score
can be directly determined on the network’s output [19]. Threshold
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values for the highest softmax probability or threshold values for
the entropy of the classification distributions (softmax output) are
common approaches for the detection of false predictions (false
positive) of neural networks, see e.g. [24, 34]. Uncertainty metrics
like classification entropy or the highest softmax probability are
usually combined with model uncertainty (MC Dropout inference)
or input uncertainty, cf. [19] and [34], respectively. Alternatively,
gradient-based uncertainty metrics are proposed in [37] and an
alternative to Bayesian neural networks is introduced in [32] where
the idea of ensemble learning is used to consider uncertainties.
These uncertainty measures have proven to be practically efficient
for detecting uncertainty and some of them have also been trans-
ferred to semantic segmentation tasks, such as MC Dropout, which
also achieves performance improvements in terms of segmentation
accuracy, see [30]. The works presented in [29] and [48] also
make use of MC Dropout to model the uncertainty and filter out
predictions with low reliability. This line of research is further
developed in [26] to detect spacial and temporal uncertainty in
the semantic segmentation of videos. In semantic segmentation
tasks the concept of meta classification and meta regression is
introduced in [39]. Meta classification refers to the task of predicting
whether a predicted segment intersects with the ground truth or not.
Therefore, the intersection over union (IoU , also known as Jaccard
index [27]), a commonly used performance measure for semantic
segmentation, is considered. The IoU quantifies the degree of
overlap of prediction and ground truth, it is equal to zero if and only
if the predicted segment does not intersect with the ground truth. The
meta-classification task corresponds to (meta-)classifying between
IoU = 0 and IoU > 0 for every predicted segment. Meta regression
is the task of predicting the IoU (e.g. via linear regression) directly.
The main aim of both tasks is to have a model that is able to reliably
assess the quality of a semantic segmentation obtained from a neural
network. The predicted IoU therefore also serves as a performance
estimate. As input both methods use segment-wise metrics extracted
from the segmentation network’s softmax output. The same tasks
are pursued in [14, 25] for images containing only a single object,
instead of metrics they utilize additional CNNs. In [40] the work
of [39] is extended by adding resolution dependent uncertainty and
further metrics. In [17] performance measures for the segmentation
of videos are introduced, these measures are also based on image
statistics and can be calculated without ground truth.

Visual object tracking. Object tracking is an essential task
in video applications, such as automated driving, robot navigation
and many others. The tasks of object tracking consist of detecting
the objects and then tracking them in consecutive frames, eventually
studying their behavior [54]. In most works, the target object
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bounding box [31]. Labeling objects with bounding boxes keeps
annotation costs low and allows a fast and simple initialization of
the target object. The approaches described in the following work
with bounding boxes. A popular strategy for object tracking is the
tracking-by-detection approach [4]. A discriminative classifier is
trained online while performing the tracking, to separate the object
from the background only by means of the information where the
object is located in the first frame. Another approach for tracking-
by-detection uses adaptive correlation filters that model the targets
appearance, the tracking is then performed via convolution with the
filters [7]. In [13] and [46], the trackers based on correlation filters
are improved with spatial constraints and deep features, respectively.
Another object tracking algorithm [36] combines Kalman filters
and adaptive least squares to predict occluded objects where the
detector shows deficits. In contrast to online learning, there are also
tracking algorithms that learn the tracking task offline and perform
tracking as inference, only. These methods differ greatly from the
tracking-by-detection procedure. The idea behind these approaches
[23, 6] is to train offline a similarity function on pairs of video
frames instead of training a discriminative classifier online. In [6]
a fully-convolutional siamese network is used and this approach is
improved by making use of region proposals ([33]), angle estimation
and spatial masking ([22]) as well as memory networks ([51]).
Another approach for object tracking with bounding boxes is
presented in [52] where semantic information is used for tracking.
Most algorithms and also the ones described here use bounding
boxes, mostly for initializing and predicting the position of an object
in the subsequent frames. In contrast, [11] uses coarse binary masks
of target objects instead of rectangles. There are other procedures
that initialize and/or track an object without bounding boxes, since
a rectangular box does not necessarily capture the shape of every
object well. In [28] a temporal quad-tree algorithm is applied, where
the objects are divided into squares getting smaller and smaller.
Other approaches use semantic image segmentation such as [21],
where the initialization includes a segmentation for predicting object
boundaries. Segmentation-based tracking algorithms are presented
in [2] and [15] based on a pixel-level probability model and an adap-
tive model, respectively. In the latter case, co-training takes place
between detector and segmentation. The approaches presented in [5]
and [43] are also based on segmentation and use particle filters for
the tracking process. There are also a superpixel-based approaches,
see e.g. [53], and a fully-convolutional siamese approach [47] that
creates binary masks and starts from a bounding box initialization.

Our contribution. In this work we elaborate on the meta
classification and regression approach from [39] that provides
a framework for post processing a semantic segmentation. This
method generates uncertainty heat maps from the softmax output
of the semantic segmentation network, such as pixel-wise entropy,
probability margin or variation ratio. In fig. 1 a visualization of
the segment-wise variation ratio is given. In addition to these
segment-wise metrics, further quantities derived from the predicted
segments are used, for instance various measures corresponding to
the segments geometry. This set of metrics, yielding a structured
dataset where each row corresponds to a predicted segment, is
presented to meta classifier/regressor to either classify between
IoU = 0 and IoU > 0 or predict the IoU directly. In contrast to
[39] we use the additional metrics proposed in [40]. In this paper,
we extend the work presented in [39] by taking time-dynamics
into account. A core assumption is that a semantic segmentation

Figure 1. Segmentation predicted by a neural network (top) and heat map
Vz (bottom).

network and a video stream of input data are available. We present
a light-weight approach that tracks semantic segments over time.
The segments are matched according to their overlap in multiple
frames and we improve these measures due to shifting segments
according to expected location in the next frame. We gather time
series of metrics that are presented as input to meta classifiers and
regressors. For the latter we study different types of models and their
dependence on the length of the time series.

In our tests, we employ two publicly available DeepLabv3+
networks [9] and we perform all tests on the VIsual PERception
(VIPER) dataset [38] as well as on the KITTI dataset [20]. For
the synthetic VIPER dataset we train a DeepLabv3+ network and
demonstrate that the additional information from our time-dynamical
approach improves over its single frame counterpart w.r.t. meta
classification and regression (meta tasks). Furthermore, the different
methods for classification and regression improve the prediction
accuracy of the IoU = 0. For the task of meta regression we
obtain an R2 value of up to 85.82% and for the meta classification
AUROC values of up to 86.01% as well as classification accuracies
of up to 77.88%. For the VIPER dataset there are labeled ground
truth images for each frame, while for the KITTI dataset only a
few frames are labeled with ground truth. For the KITTI datset
we use alternative sources of useful information besides the real
ground truth to train the meta tasks and we employ both networks
for investigations. For meta regression we achieve R2 values of up
to 87.51% and for the meta classification AUROC values of up to
88.68% as well as a classification accuracies of up to 81.20%. We
also show that these results yield significant improvements compared
to the results obtained by the predecessor method introduced in [39].

Related work. Most works [49, 31, 4, 7, 13, 46, 36, 50, 23,
6, 33, 22, 51, 52] in the field of object tracking make use of bound-
ing boxes while our approach is based on semantic segmentation.
There are some approaches that make use of segmentation masks.
However, only a coarse binary mask is used in [11] and in [21]
the segmentation is only used for initialization. In [2, 15] not
only information of the semantic segmentations are included in
the tracking algorithm, but the segmentation and the tracking are
executed depending on each other. In our procedures, a segmentation
is inferred first, tracking is performed afterwards. In addition to the
different forms of object representations, there are various algo-
rithms for object tracking. In the tracking-by-detection methods a
classifier for the difference between object and background is trained
and therefore only information about the location of the object in
the first frame is given [4, 7, 13, 46]. We do not train classifiers as
this information is contained in the inferred segmentations. Another
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The works of [2, 15, 5, 43, 47] are based on segmentation and they
use different tracking methods, like probability models, particle
filters and fully-convolutional siamese network, respectively. Our
algorithm is solely based on the degree of overlap of predicted
segments.

With respect to uncertainty quantification, MC dropout – many
forward passes under dropout at inference time – is widely used,
c.f. [19, 30, 29, 48]. Whenever dropout is used in a segmentation
network, the resulting heat-map can be equipped by our framework.
However, in this work we do not include MC dropout. There are
alternative measures of uncertainty like gradient based ones [37]
or measures based on spatial and temporal differences between the
colors and movements of the objects [17]. We construct metrics
based on aggregated dispersion measures from the softmax output
of a neural network at segment level. The works [14, 25] closest
to ours are constructed to work with one object per image, instead
on hand crafted metrics they are based on post-processing CNNs.
We extend the work of [39] by a temporal component and further
investigate methods for the meta classification and regression, e.g.
gradient boosting and neural networks.

Outline. The remainder of this work is organized as follows.
In section 2 we introduce a tracking algorithm for semantic seg-
mentation. This is followed by the construction of segment-wise
metrics using uncertainty and geometry information in section 3. In
section 4 we describe the meta regression and classification methods
including the construction of their inputs consisting of time series of
metrics. Finally, we present numerical results in section 5. We study
the influence of time-dynamics on meta classification and regression
as well as the incorporation of various classification and regression
methods.

2 Tracking Segments over Time

In this section we introduce a light-weight tracking method for the
case where a semantic segmentation is available in each frame of a
video. Semantic image segmentation aims at segmenting objects in
an image, to this end it can be defined as a pixel-wise classification of
image content (cf. top panel of fig. 1). To obtain a semantic segmen-
tation, the goal is to assign to each image pixel z of an input image x
a label y within a prescribed label space C = {y1, . . . , yc}. Here, this
task is performed by a neural networks that provides for each pixel
z a probability distribution fz(y|x,w) over the class labels y ∈ C,
given learned weights w and an input image x. The predicted class
for each pixel z is obtained by

ŷz(x,w) = argmaxy∈Cfz(y|x,w) . (1)

Let Ŝx = {ŷz(x,w)|z ∈ x} denote the predicted segmentation and
K̂x the set of predicted segments. The idea of our algorithm is to
match segments of the same class according to their overlap in con-
secutive frames. So we denote by {x1, . . . , xT } the image sequence
with a length of T and xt corresponds to the tth image. Furthermore,
we formulate the overlap of a segment k with a segment j through

Oj,k =
|j ∩ k|
|j| . (2)

To account for the motion of objects, we also register geometric
centers of predicted segments. The geometric center of a segment

k ∈ K̂xt in frame t is defined as

k̄t =
1

|k|
∑

z∈k
z (3)

where z = (z1, z2) is given by its vertical and horizontal coordinates
of pixel z.

Our tracking algorithm is applied sequentially to each frame t,
t = 1, . . . , T , and we aim at tracking all segments present in at
least one of the frames. To give the segments different priorities for
matching, the segments of each frame are sorted by size and treated
in descending order. As is the case when a segment in frame t has
been matched with a segment from previous frames, it is ignored in
further steps and matched segments are assigned an id. Within the de-
scription of the matching procedure, we introduce parameters cnear ,
cover , cdist and clin, the respective numerical choices are given in
section 5. More formally, our algorithm consists of the following five
steps:

Step 1 (aggregation of segments). The minimum distance be-
tween segment i ∈ K̂xt and all j ∈ K̂xt \ {i} of the same class is
calculated. If the distance is less than a constant cnear , the segments
are so close to each other that they are regarded as one segment and
receive a common id.

Step 2 (shift). If the algorithm was applied to at least two pre-
vious frames, the geometric centers

(
k̄t−2

)
and

(
k̄t−1

)
of segment

k ∈ K̂xt−1 are computed. The segment from frame t − 1 is shifted
by the vector

(
k̄t−1 − k̄t−2

)
and the overlap Oj,k with each seg-

ment j ∈ K̂xt from frame t is determined. If Oj,k ≥ cover or
j = argmaxi∈K̂xt

Oi,k, the segments k and j are matched and re-
ceive the same id. If there is no match found for segment k during
this procedure, the quantity

d = min
j∈K̂xt

∥∥j̄t − k̄t−1

∥∥
2

+
∥∥(k̄t−1 − k̄t−2

)
−
(
j̄t − k̄t−1

)∥∥
2

(4)

is calculated for each available j and both segments are matched if
d ≤ cdist. This allows for matching segments that are closer to k̄t−1

than expected. If segment k exists in frame t − 1, but not in t − 2,
then step 2 is simplified: only the distance between the geometric
center of k ∈ K̂xt−1 and j ∈ K̂xt is computed and the segments are
matched if the distance is smaller than cdist.

Step 3 (overlap). If t ≥ 2, The overlap Oj,k of the segments
k ∈ K̂xt−1 and j ∈ K̂xt of two consecutive frames is calculated. If
Oj,k ≥ cover or j = argmaxi∈K̂xt

Oi,k, the segments k and j are
matched.

Step 4 (regression). In order to account for flashing predicted
segments, either due to false prediction or occlusion, we implement
a linear regression and match segments that are more than one, but at
most nlr−2, frames apart in temporal direction. If the id of segment
k ∈ K̂x∗ , ∗ ∈ {t − nlr, . . . , t − 1}, in frame t has not yet been as-
signed and t ≥ 4, i.e., three frames have already been processed, then
the geometric centers of segment k are computed in frames t − nlr
to t− 1 (in case k exists in all these frames). If at least two geomet-
ric centers are available, a linear regression is performed to predict
the geometric center (ˆ̄kt). If the distance between the predicted ge-
ometric center and the calculated geometric center of the segment
j ∈ K̂xt is less than a constant value clin, k and j are matched. If
no match was found for segment k, segment k ∈ K̂xtmax

is shifted

by the vector
(

ˆ̄kt − k̄tmax

)
, where tmax ∈ {t − nlr, . . . , t − 1}

denotes the frame where k contains the maximum number of pixels.
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Oi,k applies to the resulting
overlap, k and j are matched.

Step 5 (new ids). All segments j ∈ K̂xt that have not yet
received an id are assigned with a new one.

3 Segment-wise Metrics and Time Series

In the previous chapter, we presented the semantic segmentation and
the resulting probability distribution fz(y|x,w) for an image x, pixel
z and weights w. The degree of randomness in fz(y|x,w) is quan-
tified by dispersion measures. In this work, we consider three pixel-
wise dispersion measures: the entropy Ez , the variation ratio Vz and
the probability margin Mz . The measures are given by

Ez(x,w) = − 1

log(q)

∑

y∈C
fz(y|x,w) log fz(y|x,w), (5)

Vz(x,w) = 1− fz(ŷz(x,w)|x,w) (6)

and

Mz(x,w) =1− fz(ŷz(x,w)|x,w)

+ max
y∈C\{ŷz(x,w)}

fz(y|x,w) (7)

and a visualization of segment-wise variation ratio is shown in fig. 1.
Note that also other heat maps (like MC Dropout variance) can be
processed. At segment level, we define for each k ∈ K̂x the interior
kin ⊂ k where a pixel z is an element of kin if all eight neighbouring
pixels are an element of k, the boundary kbd = k \ kin and the
following metrics (see [39, 40]):

• the segment sizes S = |k|, Sin = |kin|, Sbd = |kbd|
• the mean dispersions D̄, D̄in, D̄bd defined as

D̄](k) =
1

S]

∑

z∈k]

Dz(x) , ] ∈ { , in, bd}

where Dz ∈ {Ez, Vz,Mz}
• the relative segment sizes S̃ = S/Sbd, S̃in = Sin/Sbd

• the relative mean dispersions ˜̄D = D̄S̃, ˜̄Din = D̄inS̃in where
D ∈ {E, V,M}

• the geometric center k̄ defined in equation (3)
• the mean class probabilities for each class y ∈ {1, . . . , c}

P (y|k) =
1

S

∑

z∈k
fz(y|x,w)

Additionally we define the set of metrics by

Uk = {S, Sin, Sbd, S̃, S̃in, D̄, D̄in, D̄bd, ˜̄D, ˜̄Din|
D ∈ {E, V,M}} ∪ {k̄} ∪ {P (y|k) : y = 1, . . . , c}.

The separate treatment of interior and boundary in all dispersion
measures is motivated by typically large values of Dz for z ∈ kbd.
In addition, we find that poor or false predictions are often accompa-
nied by fractal segment shapes (which have a relatively large amount
of boundary pixels, measurable by S̃ = S/Sbd and S̃in = Sin/Sbd)
and/or high dispersions D̄in on the segment’s interior.

Table 1. Overview of meta classification and regression methods. For clas-
sification we consider LR L1, GB, NN L2 and for regression all of them.

methods
LR linear regression
LR L1 linear / logistic regression with `1-penalization
LR L2 linear regression with `2-penalization
GB gradient boosting
NN L1 neural network with `1-penalization
NN L2 neural network with `2-penalization

4 Prediction of IoU from Time Series
A measure to determine the prediction accuracy of the segmentation
network with respect to the ground truth is the IoU . Therefore we
define Kx the set of connected components in the ground truth Sx,
analogously to K̂x (the set of connected components in the predicted
segmentation Ŝx). The corresponding class of k′ ∈ Kx is denoted
by yz(x) ∈ C (for any z ∈ k′). For k ∈ K̂x let Kkx = {k′ ∈ Kx :
ŷz(x,w) = yz(x) for z ∈ k ∩ k′ and k ∩ k′ 6= ∅}. For each k ∈ K̂x
the IoU is given by

IoU (k) =
|k ∩K′|
|k ∪K′| , K′ =

⋃

k′∈Kk
x

k′. (8)

In our test we use a slight modification, i.e., the adjusted IoU

IoU adj(k) =
|k ∩K′|

|k ∪ (K′ \Q)| , Q =
⋃

q∈Qk
x

q. (9)

with Qkx = {q ∈ K̂x : ŷz(x,w) = yz(x), z ∈ q ∩ K′ 6= ∅}
proposed in [39]. In this work, we make segment-wise predictions of
the IoU adj via different regression approaches and classify between
IoU adj = 0 and IoU adj > 0 (meta classification) for every pre-
dicted segment. These prediction tasks are performed by means of
the metrics introduced in section 3. Note that these metrics can be
computed without the knowledge of the ground truth. Our aim is to
analyze to which extent they are suitable for the meta tasks and what
influence the temporal information has. For each segment k ∈ K̂xt
in frame twe have the metricsUkt and further measures from the pre-
vious frames due to the segment matching. For meta regression and
classification we make use of these metrics Uki , i = t − nτ , . . . , t,
where nτ describes the number of considered frames. For meta clas-
sification we define yk = {0 if IoU adj(k) = 0, 1 if IoU adj(k) >
0} and we want to predict this value by three different methods.
One method used is the least absolute shrinkage and selection op-
erator (LASSO [44]) method. The LASSO method makes use of `1-
penalization and investigates the predictive power of different com-
binations of input variables. Here, we study the influence of the var-
ious metrics of previous frames. The two other methods we apply
to meta classification are gradient boosting [18] and a shallow neu-
ral network, which contains only one hidden layer with 50 neurons.
For the meta regression we follow a similar procedure and compare
six methods for this task. The procedure includes simple linear re-
gression, as well as linear regression with `1- and `2-penalization.
Furthermore we use gradient boosting and shallow neural networks.
One net with `1-penalization and another one with `2. An overview
of the different methods for regression and classification is given in
table 1.

5 Numerical Results
In this section, we investigate the properties of the metrics defined
in the previous sections, the influence of the length of the time se-
ries considered and of different meta classification and regression



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
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and in particular the given values are reached. The best classification and regression results are highlighted.

Meta Classification IoU adj = 0, > 0
LR L1 GB NN L2

ACC AUROC ACC AUROC ACC AUROC
75.75%(±0.49%)8 83.44%(±0.47%)7 77.88%(±0.60%)2 86.01%(±0.56%)4 76.62%(±0.51%)6 84.52%(±0.50%)11

Meta Regression IoU adj

LR LR L1 LR L2
σ R2 σ R2 σ R2

0.124(±0.002)6 82.58%(±0.45%)6 0.124(±0.002)7 82.56%(±0.43%)7 0.124(±0.002)5 82.57%(±0.44%)5

GB NN L1 NN L2
σ R2 σ R2 σ R2

0.112(±0.002)6 85.82%(±0.36%)6 0.118(±0.002)4 84.36%(±0.51%)4 0.117(±0.002)2 84.58%(±0.44%)2

(a) (b)

Figure 2. (a): Predicted IoU adj vs. IoU adj for all non-empty segments.
The dot size is proportional to the segment size. (b): Segment lifetime (time
series length) vs. mean interior segment size, both on log scale.

Figure 3. Ground truth image (bottom left), prediction obtained by a neural
network (bottom right), a visualization of the true segment-wise IoU adj of
prediction and ground truth (top left) and its prediction obtained from meta
regression (top right). Green color corresponds to high IoU adj values and
red color to low ones. For the white regions there is no ground truth available,
these regions are not included in the statistical evaluation.

methods. We perform our tests on two different datasets for the se-
mantic segmentation of street scenes where also videos are available,
the synthetic VIPER dataset [38] obtained from the computer game
GTA V and the KITTI dataset [20] with real street scene images
from Karlsruhe, Germany. In all our tests we consider two different
DeepLabv3+ networks [9] for semantic segmentation for which we
use a reference implementation in Tensorflow [1]. The DeepLabv3+
implementation and weights are available for two network back-
bones. First, there is the Xception65 network, a modified version of
Xception [10] and it is a powerful structure for server-side deploy-
ment. On the other hand, is MobilenetV2 [42] a fast structure de-
signed for mobile devices. Primarily we use Xception65 for VIPER

and MobilenetV2 for KITTI, for the latter we also use Xception65
as a reference network to generate pseudo ground truth for the meta
classification and regression tasks. For tests with KITTI we used the
publicly available weights for both networks.

For tracking segments with our procedure, we assign the param-
eters defined in section 2 with the following values: cnear = 10,
cover = 0.35, cdist = 100 and clin = 50. We study the predictive
power of our 22 metrics and segment-wise averaged class probabil-
ities per segment and frame. From our tracking algorithm we get
these metrics additionally from previous frames for every segment.

VIPER dataset. The VIPER dataset consists of more than
250K high-resolution 1,920 × 1,080 video frames and for all
frames there is ground truth available for 23 classes. We trained an
Xception65 network starting from the weights for ImageNet [41].
We choose an output stride of 16 and the input image is evaluated
within the framework only on its original scale (deeplab allows
for evaluation on different scales and averaging the results). For a
detailed explanation of the chosen parameters we refer to [9]. We
retrain the Xception65 net on the VIPER dataset on 5,147 training
images and 847 validation images. We only use images from the
day category (i.e., bright images, no rain) for training and further
processing. We achieve a mean IoU of 50.33%. If we take out the
classes with a mean IoU below 10%, the total mean IoU rises to
57.38%. This case applies to the three classes mobile barrier, chair
and van, classes that are also underrepresented in the dataset. For
meta classification and regression we use only 13 video sequences
consisting of 3,593 images in total. From these images we obtain
roughly 309,874 segments (not yet matched over time) of which
251,368 have non-empty interior. The latter are used in all numerical
tests. We investigate the influence of time-dynamics on meta classi-
fication and regression, i.e., we firstly only present the segment-wise
metrics Ukt of a single frame t into the meta classifier/regressor,
secondly we extend the metrics to time series with a length of up to
10 previous time steps Uki , i = t − 10, . . . , t − 1. In summary, we
obtain 11 different inputs for the meta classification and regression
models. The presented results are averaged over 10 runs obtained
by random sampling of the train/validation/test splitting. In tables
and figures, the corresponding standard deviations are given in
brackets and by shades, respectively. Out of the 251,368 segments
with non-empty interior, 85,291 have an IoU adj = 0. We start with
the detection of the segments with IoU adj = 0, i.e., we perform
meta classification to detect false positive segments. To this extent,
we use 38,000 segments that are not presented to the segmentation
network during training and apply a train/validation/test splitting of
70%/10%/20%. To evaluate the performance of different models for
meta classification we consider classification accuracy and AUROC
values. The AUROC is obtained by varying the decision threshold
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Figure 4. A selection of results for meta classification AUROC and regression R2 as functions of the number of frames and for different compositions of
training data (cf. table 3). (a): meta classification via a neural network with `2-penalization, (b): meta classification via gradient boosting, (c): meta regression
via gradient boosting.

in a binary classification problem, here for the decision between
IoU = 0 and IoU > 0. We achieve test AUROC values of up
to 86.01%(±0.56%) and accuracies of up to 77.88%(±0.60%).
Table 2 shows the best results for three different meta classification
methods, i.e., logistic regression, a neural network and gradient
boosting, cf. table 1. The super script denotes the number of frames
where the best performance and in particular the given values are
reached. On the one hand, we observe that the best results are
achieved when considering more than one frame. On the other hand,
significant differences between the methods for meta classification
can be observed, gradient boosting shows the best performance with
respect to classification accuracy and AUROC.

In the next step, we predict IoU adj values via meta regression
to get an uncertainty measure. For this task we indicate resulting
standard deviations σ and R2 values. We achieve R2 values
of up to 85.82%(±0.36%). This value is obtained by gradient
boosting incorporating 5 previous frames. For this particular study,
the relationship between the calculated and predicted IoU adj is
shown in fig. 2 (a), an illustration of the resulting uncertainty
measure is given in fig. 3. We also provide video sequences that
visualize the IoU adj prediction and the segment tracking, see
https://youtu.be/TQaV5ONCV-Y. Result for meta regres-
sion are also summarized in table 2, the findings are in analogy
to those for meta classification. Gradient boosting performs best,
and more frames yield better results than a single one. Figure 2 (b)
depicts the time series length vs. the mean interior segment size. On
average, a predicted segment exists for 4.4 frames, however when
we consider only segments that contain at least 1,000 interior pixels,
the average life time increases to 19.9 frames.

KITTI dataset. For the KITTI dataset, we use both DeepLabv3+
networks (pre-trained on the Cityscapes dataset [12], available on
GitHub). As parameters for the Xception65 network we choose an
output stride of 8, a decoder output stride of 4 and an evaluation of
the input on scales of 0.75, 1.00 and 1.25 (averaging the results).
For the MobilenetV2 we use an output stride of 16 and the input
image is evaluated within the framework only on its original scale.
We use both nets to generate the output probabilities on the KITTI
dataset. In our tests we use 29 street scene videos consisting of
12,223 images with a resolution of 1392 × 512. Of these images,
only 142 are labelled. An evaluation of meta regression and clas-
sification requires a train/validation/test splitting. Therefore, the
small number of labeled images seems almost insufficient. Hence,

Table 3. Train/val/test splitting, different compositions of training data and
their approximate number of segments.

splitting types of data / annotation no. of segments
R real ∼ 3,400
RA real and augmented ∼ 27,000

train RAP real, augmented and pseudo ∼ 27,000
RP real and pseudo ∼ 27,000
P pseudo ∼ 27,000

val real ∼ 500
test real ∼ 1,000

we acquire alternative sources of useful information besides the
(real) ground truth. First, we utilize the Xception65 net with high
predictive performance, its predicted segmentations we term pseudo
ground truth. We generate pseudo ground truth for all images where
no ground truth is available. The mean IoU performance of the
Xception65 net for the 142 labelled images is roughly 65% (and
for the MobilenetV2 the mean IoU is about 50%). In addition, to
augment the structured dataset of metrics, we apply a variant of
SMOTE for continuous target variables for data augmentation (see
[8, 45]). An overview of the different compositions of training data
and the train/val/test splitting are given in table 3. The train/val/test
splitting of the data with ground truth available is the same as for
the VIPER dataset, i.e., 70%/10%/20%. The shorthand “augmented”
refers to data obtained from SMOTE, “pseudo” refers to pseudo
ground truth obtained from the Xception65 net and “real” refers to
ground truth obtained from a human annotator. These additions are
only used during training. We utilize the Xception65 network only
for the generation of pseudo ground truth, all tests are performed
using the MobilenetV2. The KITTI dataset consists of 19 classes (4
classes less than VIPER), thus we have 41 metrics in total.

From the 12,223 chosen images, we obtain 452,287 segments of
which 378,984 have non-empty interior. Of these segments, 129,033
have an IoU adj = 0. A selection of results for meta classification
AUROC and regression R2 as functions of the number of frames,
i.e., the maximum time series length, is given in fig. 4. The meta
classification results for neural networks presented in subfigure (a)
indeed show, that an increasing length of time series has a positive
effect on meta classification. On the other hand, the results in sub-
figure (b) show that gradient boosting does not benefit as much from
time series. In both cases augmentation and pseudo ground truth do
not improve the models’ performance on the test set and although
the neural network benefits a lot from time series, its best perfor-
mance is still about 1% below that of gradient boosting. With respect
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nt Table 4. Results for meta classification and regression for different compositions of training data and methods. The super script denotes the number of frames

where the best performance and thus the given value is reached. The best results for each data composition are highlighted.

Meta Classification IoU adj = 0, > 0
LR L1 GB NN L2

ACC AUROC ACC AUROC ACC AUROC
R 76.69%(±1.68%)10 85.13%(±0.84%)1 81.20%(±1.02%)4 88.68%(±0.80%)6 79.67%(±0.93%)10 87.42%(±0.75%)10

RA 76.60%(±1.31%)7 85.00%(±1.05%)7 80.73%(±1.03%)9 88.47%(±0.73%)7 78.62%(±0.61%)11 87.00%(±0.81%)10

RAP 76.18%(±1.22%)7 85.39%(±0.97%)6 79.64%(±1.03%)7 87.80%(±0.82%)3 77.08%(±1.05%)9 86.34%(±0.84%)10

RP 76.52%(±0.80%)8 85.38%(±0.87%)8 78.45%(±0.88%)8 87.11%(±0.90%)4 76.35%(±0.67%)9 85.70%(±0.88%)11

P 75.96%(±0.80%)11 84.94%(±1.03%)6 77.56%(±0.95%)5 86.40%(±0.93%)5 75.68%(±0.67%)11 85.12%(±0.92%)11

Meta Regression IoU adj

LR LR L1 LR L2
σ R2 σ R2 σ R2

R 0.128(±0.003)2 83.48%(±0.99%)2 0.129(±0.003)2 83.37%(±0.92%)2 0.128(±0.003)2 83.49%(±0.96%)2

RA 0.134(±0.003)2 82.06%(±0.96%)2 0.134(±0.003)3 82.09%(±0.94%)3 0.134(±0.003)2 82.08%(±0.95%)2

RAP 0.129(±0.003)7 83.38%(±0.89%)7 0.129(±0.003)7 83.35%(±0.90%)7 0.129(±0.003)7 83.40%(±0.92%)7

RP 0.128(±0.003)7 83.62%(±0.91%)7 0.128(±0.002)7 83.54%(±0.88%)7 0.128(±0.003)7 83.61%(±0.91%)7

P 0.128(±0.003)7 83.43%(±0.90%)7 0.129(±0.002)7 83.36%(±0.86%)7 0.129(±0.003)7 83.41%(±0.91%)7

GB NN L1 NN L2
σ R2 σ R2 σ R2

R 0.114(±0.004)5 87.02%(±1.00%)5 0.114(±0.005)1 86.98%(±1.07%)1 0.113(±0.005)1 87.16%(±1.25%)1

RA 0.116(±0.004)3 86.39%(±1.11%)3 0.118(±0.007)1 85.94%(±1.76%)1 0.116(±0.005)1 86.46%(±1.32%)1

RAP 0.112(±0.003)7 87.51%(±0.61%)7 0.114(±0.003)1 87.03%(±0.71%)1 0.114(±0.005)1 86.97%(±1.10%)1

RP 0.112(±0.002)9 87.45%(±0.72%)9 0.116(±0.004)1 86.51%(±0.88%)1 0.115(±0.003)2 86.69%(±0.85%)2

P 0.114(±0.002)11 86.88%(±0.67%)11 0.118(±0.004)1 86.13%(±0.95%)1 0.117(±0.004)3 86.24%(±0.99%)3

to the influence of time series length, the results for meta regres-
sion with gradient boosting in subfigure (c) are qualitatively simi-
lar to those in subfigure (b). However, we observe in this case that
the incorporation of pseudo ground truth slightly increases the per-
formance. Noteworthily, gradient boosting trained with real ground
truth and gradient boosting trained only with pseudo ground truth
perform almost equally well. This shows that meta regression can be
learned when there is no ground truth but a strong reference model
available. Note that this (except for the data augmentation part) is
in accordance to our findings for the VIPER dataset. Results for a
wider range of tests (including those previously discussed) are sum-
marized in table 4. Again we provide video sequences that visual-
ize the IoU adj prediction and the segment tracking, see https://
youtu.be/YcQ-i9cHjLk. For meta classification, we achieve
accuracies of up to 81.20%(±1.02%) and AUROC values of up to
88.68%(±0.80%), for meta regression we achieve R2 values of up
to 87.51%(±0.61%). As the labeled 142 images only yield 4,877
segments, we observe overfitting in our tests for all models when
increasing the length of the time series. This might serve as an expla-
nation that in some cases, time series do not increase performance.
In particular, we observe overfitting in our tests when using gradient
boosting, this holds for both datasets, KITTI and VIPER. It is indeed
well-known that gradient boosting requires plenty of data.

6 Conclusion and Outlook
In this work we extended the approach presented in [39] by incor-
porating time series as input for meta classification and regression.
To this end, we introduced a light-weight tracking algorithm for se-
mantic segmentation. From matched segments we generated time
series of metrics and use these as inputs for the meta tasks. In our
tests we studied the influence of the time series length on differ-
ent models for the meta tasks, i.e., gradient boosting, neural net-
works and linear ones. Our results show significant improvements
in comparison to those presented in [39]. More precisely, in con-
trast to the single frame approach using only linear models, we in-
crease the accuracy by 6.78 pp and the AUROC by 5.04 pp. The R2

value for meta regression is increased by 5.63 pp. As a further im-
provement, we plan to develop additional time-dynamical metrics,

as the presented metrics are still single-frame based. In addition, we
plan to further investigate and improve the tracking algorithm by
using autoregressive time series and comparing it with approaches
based on bounding boxes. Another interesting direction could be to
jointly performing segmentation and tracking. The source code of our
method is publicly available at https://github.com/kmaag/
Time-Dynamic-Prediction-Reliability.
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